CENESAS

RA2A2 Group

Renesas Microcontrollers

Ultra low power 48 MHz Arm[®] Cortex[®]-M23 core, up to 512-KB code flash memory, 48-KB SRAM, 12-bit A/D Converter, 24-bit Sigma-Delta A/D Converter, LCD Controller/driver, Independent power supply RTC, On-chip 32-bit multiplier and multiply-accumulator, Security and Safety features.

Features

- Arm Cortex-M23 Core
- Armv8-M architecture
- Maximum operating frequency: 48 MHz
- Arm Memory Protection Unit (Arm MPU) with 8 regions
- Debug and Trace: DWT, FPB, CoreSight[™] MTB-M23
- CoreSight Debug Port: SW-DP
- Memory
 - Up to 512-KB code flash memory

 - Op to State
 Bank Swap
 Dual bank flash (256 KB × 2 banks)
 8-KB data flash memory (100,000 program/erase (P/E) cycles)
 CKP SR AM

 - Memory Mirror Function (MMF) • 128-bit unique ID

Connectivity

- Serial Communications Interface (SCI) × 5
- Asynchronous interfaces
- 8-bit clock synchronous interface
 Simple IIC
- Simple SPI
- Smart card interface • Serial Peripheral Interface (SPI) × 1
- I²C bus interface (IIC) × 2

Analog

- 24-bit Sigma-Delta A/D Converter (SDADC24)
 Sampling rate is 7.813 kHz/8.333 kHz or 3.906 kHz/4.166 kHz
 - Differential/Single-ended input mode, up to 7 ch
 - Main clock oscillator (MOSC) 12 MHz or 16 MHz
 - PLL clock multiplied from Sub-clock oscillator (SOSC) (32.768 kHz)
- High-speed on-chip oscillator (HOCO) (24/32/48/64 MHz)
 12-bit A/D Converter (ADC12)
- Temperature Sensor (TSN)
- Timers
 - General PWM Timer 16-bit (GPT16) × 6
 - 16-bit Low Power Asynchronous General Purpose Timer (AGT) × 8
 - 32-bit Low Power Asynchronous General Purpose Timer (AGTW)
 - Watchdog Timer (WDT)
- Human Machine Interface (HMI)
- Segment LCD Controller (SLCDC)
 - Internal voltage boosting method, capacitor split method, and external resistance division method are switchable
 - Segment signal output: 21 to 45 (when 8 com is not used)
 - Segment signal output: 17 to 41 (when 8 com is used)
 - Common signal output: 4 (when 8 com is not used)
 Common signal output: 8 (when 8 com is used)
 - Waveform A or B selectable
- On-Chip 32-Bit Multiplier and Multiply-Accumulator (MACL)

 - 32 bits × 32 bits = 64 bits (unsigned or signed)
 32 bits × 32 bits + 64 bits = 64 bits (unsigned or signed)
 The results of multiply-and-accumulate operations (cumulative values) can be retained in any of 24 buffer channels and can be accessed with independent address.
- Safety
 - ECC in SRAM
 - SRAM parity error check
 - Flash area protection

 - ADC self-diagnosis function Clock Frequency Accuracy Measurement Circuit (CAC) Cyclic Redundancy Check (CRC)
 - Data Operation Circuit (DOC)

- Port Output Enable for GPT (POEG)
- Independent Watchdog Timer (IWDT)GPIO readback level detection
- Register write protection
- Main oscillator stop detection
 Sub and main oscillation stop detection circuit for SDADC24 clock switch

Datasheet

R01DS0418EJ0120

Rev.1.20

Sep 16, 2024

- · Illegal memory access
- Security and Encryption
- AES
- Cipher modes of operation: ECB/CBC/CTR/GCM/CMAC/CCM
 Encryption key length: 128/256 bits
 True Random Number Generator (TRNG)

System and Power Management

- · Low power modes
- Event Link Controller (ELC)
- Data Transfer Controller (DTC)
- Power-on reset
- Low Voltage Detection (LVD) with voltage settings
 Low Voltage Detection for EXLVDVBAT pin (select interrupt from 7 levels)
- Low Voltage Detection for VRTC pin (select interrupt from 4
- levels)Low Voltage Detection for EXLVD pin (select interrupt from 1 level)
- Independent power supply RTC × 1 (calendar for 99 years, alarm function, and clock correction function)
- On-chip RTC power-on-reset (RTCPOR) circuit for VRTC power supply

Multiple Clock Sources

- Main clock oscillator (MOSC) (1 to 20 MHz)
 Sub-clock oscillator (SOSC) (32.768 kHz)
- High-speed on-chip oscillator (HOCO) (24/32/48/64 MHz)
- Middle-speed on-chip oscillator (MOCO) (8 MHz)
- Low-speed on-chip oscillator (LOCO) (32.768 kHz)
- Clock trim function for HOCO/MOCO/LOCO
- IWDT-dedicated on-chip oscillator (15 kHz)
 PLL clock for SDADC24
- Clock out support
- Up to 77 Pins for General I/O Ports, Including 3 Pins Input Only and 1 Pin Output Only

Page 1 of 115

- 5-V tolerance, open drain, input pull-up
- Operating Voltage
- VCC: 1.6 to 5.5 V

Operating Temperature and Packages

- $Ta = -40^{\circ}C$ to $+105^{\circ}C$
 - 100-bit LQFP (14 mm × 14 mm, 0.5 mm pitch)
 80-pin LQFP (12 mm × 12 mm, 0.5 mm pitch)
 64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch)

1. Overview

The MCU integrates multiple series of software- and pin-compatible Arm[®]-based 32-bit cores that share a common set of Renesas peripherals to facilitate design scalability.

The MCU in this series incorporates an energy-efficient Arm Cortex[®]-M23 32-bit core, that is particularly well suited for cost-sensitive and low-power applications, with the following features:

- Up to 512-KB (256 KB \times 2 banks) code flash memory
- 48-KB SRAM
- Memory Mirror Function (MMF)
- 12-bit A/D Converter (ADC12)
- 24-bit Sigma-Delta A/D Converter (SDADC24)
- Segment LCD Controller/driver
- Independent power supply RTC
- On-chip 32-bit multiplier and multiply-accumulator
- Security features

1.1 Function Outline

Table 1.1 Arm core

Feature	Functional description
Arm Cortex-M23 core	 Maximum operating frequency: up to 48 MHz Arm Cortex-M23 core: Revision: r1p0-00rel0 Armv8-M architecture profile Single-cycle integer multiplier 19-cycle integer divider Arm Memory Protection Unit (Arm MPU): Armv8 Protected Memory System Architecture 8 protect regions SysTick timer: Driven by SYSTICCLK (LOCO) or ICLK

Table 1.2 Memory

Feature	Functional description
Code flash memory	Maximum 512 KB (512 KB in 2 banks) of code flash memory.
Data flash memory	8 KB of data flash memory.
Option-setting memory	The option-setting memory determines the state of the MCU after a reset.
Memory Mirror Function (MMF)	The Memory Mirror Function (MMF) can be configured to mirror the desired application image load address in code flash memory to the application image link address in the 23-bit unused memory space (memory mirror space addresses). Your application code is developed and linked to run from this MMF destination address. The application code does not need to know the load location where it is stored in code flash memory.
SRAM	On-chip high-speed SRAM with either parity bit or Error Correction Code (ECC).

Table 1.3System (1 of 2)

Feature	Functional description
Operating modes	Two operating modes: • Single-chip mode • SCI boot mode
Resets	The MCU provides 14 resets.

Table 1.3 System (2 of 2)

Feature	Functional description
Low Voltage Detection (LVD)	The Low Voltage Detection (LVD) module monitors the voltage level input to the VCC pin, EXLVDVBAT pin, VRTC pin, and EXLVD pin, and the detection level can be selected using a software program. The LVD module consists of six separate voltage level detectors (LVD0, LVD1, LVD2, LVD_VBAT, LVD_VRTC, and EXLVD). LVD0, LVD1, and LVD2 measure the voltage level input to the VCC pin. LVD_VBAT measures the voltage level input to the EXLVDVBAT pin. LVD_VRTC measures the voltage level input to the VRTC pin. EXLVD measures the voltage level input to the EXLVD pin. LVD registers allow your application to configure detection of VCC, Battery Backup Power Supply, and VRTC changes at various voltage thresholds.
Clocks	 Main clock oscillator (MOSC) Sub-clock oscillator (SOSC) High-speed on-chip oscillator (HOCO) Middle-speed on-chip oscillator (MOCO) Low-speed on-chip oscillator (LOCO) IWDT-dedicated on-chip oscillator (IWDTLOCO) 12.0 MHz/12.8 MHz PLL clock for Sigma-Delta A/D Multiplied from 32.768 kHz Clock out support
Clock Frequency Accuracy Measurement Circuit (CAC)	The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be measured (measurement target clock) within the time generated by the clock selected as the measurement reference (measurement reference clock), and determines the accuracy depending on whether the number of pulses is within the allowable range. When measurement is complete or the number of pulses within the time generated by the measurement reference clock is not within the allowable range, an interrupt request is generated.
Interrupt Controller Unit (ICU)	The Interrupt Controller Unit (ICU) controls which event signals are linked to the Nested Vector Interrupt Controller (NVIC), and the Data Transfer Controller (DTC) modules. The ICU also controls non-maskable interrupts.
Low power modes	Power consumption can be reduced in multiple ways, including setting clock dividers, stopping modules, selecting power control mode in normal operation, and transitioning to low power modes.
Register write protection	The register write protection function protects important registers from being overwritten due to software errors. The registers to be protected are set with the Protect Register (PRCR).
Memory Protection Unit (MPU)	The MCU has four Memory Protection Units (MPUs) and a CPU stack pointer monitor function is provided.
Watchdog Timer (WDT)	The Watchdog Timer (WDT) is a 14-bit down counter that can be used to reset the MCU when the counter underflows because the system has run out of control and is unable to refresh the WDT. In addition, the WDT can be used to generate a non-maskable interrupt or an underflow interrupt or watchdog timer reset.
Independent Watchdog Timer (IWDT)	The Independent Watchdog Timer (IWDT) consists of a 14-bit down counter that must be serviced periodically to prevent counter underflow. The IWDT provides functionality to reset the MCU or to generate a non-maskable interrupt or an underflow interrupt. Because the timer operates with an independent, dedicated clock source, it is particularly useful in returning the MCU to a known state as a fail-safe mechanism when the system runs out of control. The IWDT can be triggered automatically by a reset, underflow, refresh error, or a refresh of the count value in the registers.

Table 1.4 Event link

Feature	Functional description
	The Event Link Controller (ELC) uses the event requests generated by various peripheral modules as source signals to connect them to different modules, allowing direct link between the modules without CPU intervention.

Table 1.5Direct memory access

,	
Feature	Functional description
Data Transfer Controller (DTC)	A Data Transfer Controller (DTC) module is provided for transferring data when activated by an interrupt request.

Table 1.6 Timers

Feature	Functional description
General PWM Timer (GPT)	The General PWM Timer (GPT) is a 16-bit timer with GPT16 × 6 channels. PWM waveforms can be generated by controlling the up-counter, down-counter, or the up- and down-counter. In addition, PWM waveforms can be generated for controlling brushless DC motors. The GPT can also be used as a general-purpose timer.
Port Output Enable for GPT (POEG)	The Port Output Enable (POEG) function can place the General PWM Timer (GPT) output pins in the output disable state
Low Power Asynchronous General Purpose Timer (AGT)	The Low Power Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used for pulse output, external pulse width or period measurement, and counting external events. This timer consists of a reload register and a down counter. The reload register and the down counter are allocated to the same address, and can be accessed with the AGT register.
Low Power Asynchronous General Purpose Timer (AGTW)	The Low Power Asynchronous General Purpose Timer (AGTW) is a 32-bit timer that can be used for pulse output, external pulse width or period measurement, and counting external events. This timer consists of a reload register and a down counter. The reload register and the down counter are allocated to the same address, and can be accessed with the AGT register.
Realtime Clock (RTC)	The realtime clock (RTC) has two counting modes, calendar count mode and binary count mode, that are used by switching register settings. For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and automatically adjusts dates for leap years. For binary count mode, the RTC counts seconds and retains the information as a serial value. Binary count mode can be used for calendars other than the Gregorian (Western) calendar.

Table 1.7 Communication interfaces

Feature	Functional description
Serial Communications Interface (SCI)	 The Serial Communications Interface (SCI) × 5 channels have asynchronous and synchronous serial interfaces: Asynchronous interfaces (UART and Asynchronous Communications Interface Adapter (ACIA)) 8-bit clock synchronous interface Simple IIC (master-only) Simple SPI Smart card interface The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and transmission protocol. SCIn (n = 0) has FIFO buffers to enable continuous and full-duplex communication, and the data transfer speed can be configured independently using an on-chip baud rate generator.
I ² C bus interface (IIC)	The I ² C bus interface (IIC) has 2 channels. The IIC module conforms with and provides a subset of the NXP I ² C (Inter-Integrated Circuit) bus interface functions.
Serial Peripheral Interface (SPI)	The Serial Peripheral Interface (SPI) has one channel. The SPI provides high-speed full-duplex synchronous serial communications with multiple processors and peripheral devices.

Table 1.8 Analog

Feature	Functional description
12-bit A/D Converter (ADC12)	A 12-bit successive approximation A/D converter is provided. Up to 4 analog input channels are selectable. Temperature sensor output and internal reference voltage are selectable for conversion.
24-bit Sigma-Delta A/D Converter (SDADC24)	A 24-bit Sigma-Delta A/D Converter (SDADC24) with a programmable gain amplifier is provided. Up to 7 differential or single-ended analog input channels are selectable. Analog input is input to the sigma-delta A/D converter by the programmable gain amplifier (PGA). The A/D conversion result is passed through the phase adjustment circuit, the digital filter, and the high-pass filter, and then stored into the conversion result registers. Each time conversion is completed, the interrupt request signal is generated to notify the CPU that the conversion result can be read.
Temperature Sensor (TSN)	The on-chip Temperature Sensor (TSN) determines and monitors the die temperature for reliable operation of the device. The sensor outputs a voltage directly proportional to the die temperature, and the relationship between the die temperature and the output voltage is fairly linear. The output voltage is provided to the ADC12 for conversion and can be further used by the end application.

Table 1.9 Human machine interfaces

Feature	Functional description
Segment LCD Controller/Driver (SLCDC)	 The SLCDC provides the following functions: Internal voltage boosting method, capacitor split method, and external resistance division method are switchable VL1 or VL2 reference mode is selectable under internal voltage boosting method VCC or VL4 reference mode is selectable under capacitor split method Segment signal output: 21 (17) to 45 (41) Common signal output: 4 (8) Waveform A or B selectable The LCD can be made to blink Note: The values in parentheses are the number of signal outputs when 8 com is used.

Table 1.10 Data processing

Feature	Functional description
Cyclic Redundancy Check (CRC)	The Cyclic Redundancy Check (CRC) generates CRC codes to detect errors in the data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first communication. Additionally, various CRC-generation polynomials are available. The snoop function allows to monitor the access to specific addresses. This function is useful in applications that require CRC code to be generated automatically in certain events, such as monitoring writes to the serial transmit buffer and reads from the serial receive buffer.
Data Operation Circuit (DOC)	The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. When a selected condition applies, 16-bit data is compared and an interrupt can be generated.
32-bit Multiply-accumulator (MACL)	 The 32-bit multiply-accumulator has the following functions: 32 bits × 32 bits = 64 bits (unsigned or signed) 32 bits × 32 bits + 64 bits = 64 bits (unsigned or signed) Cumulative values of product operation can be retained by 24 channel buffers and can be read out with independent address.

Table 1.11 I/O ports

Feature	Functional description
I/O ports	 I/O ports for the 100-pin, 7-channel LQFP I/O pins: 67 Input pins: 3 Output pins: 1 Pull-up resistors: 64 N-ch open-drain outputs: 58 5-V tolerance: 2 5-V tolerance: RTCICn (n = 0 to 2): 3 I/O ports for the 100-pin, 4-channel LQFP I/O ports for the 100-pin, 4-channel LQFP I/O ports for the 80-pin LQFP V tolerance: 1 S-V tolerance: 2 5-V tolerance: 52 N-ch open-drain outputs: 46 5-V tolerance: 2 S-V tolerance: 2 S-V tolerance: 2 S-V tolerance: 1 Pull-up resistors: 52 N-ch open-drain outputs: 46 5-V tolerance: 2 S-V tolerance: 1 Pull-up resistors: 52 N-ch open-drain outputs: 46 S-V tolerance: 2 S-V tolerance: 3 Output pins: 4 S-V tolerance: 2

1.2 Block Diagram

Figure 1.1 shows a block diagram of the MCU superset. Some individual devices within the group have a subset of the features.

Figure 1.1 Block diagram

1.3 Part Numbering

Figure 1.2 shows the product part number information, including memory capacity and package type. Table 1.12 shows a list of products.

	Production identification code 0: MCU version 1.0 1: MCU version 1.1
	Terminal material (Pb-free)
	Packing A: Tray U: Tray (Full tray) B: Tray (Full carton) H: Tape and reel
	Package type FP: LQFP 100 pins FN: LQFP 80 pins FM: LQFP 64 pins
	Quality Grade
	Operating temperature
	Code flash memory size
	Feature set A: Security (AES), SDADC24 7 ch B: Security (AES), SDADC24 4 ch
	Group name
	Series name
	RA Family
	Flash memory

Figure 1.2 Part numbering scheme

Table 1.12 Product list

Product part number	Package code	SDADC24	Code flash	Data flash	SRAM	Operating temperature
R7FA2A2AD3CFP	PLQP0100KB-B	7 ch				
R7FA2A2BD3CFP	PLQP0100KB-B		512 KB	8 KB	48 KB	-40 to +105°C
R7FA2A2BD3CFN	PLQP0080KB-B	4 ch	512 KD	OND	40 ND	-40 to +105 C
R7FA2A2BD3CFM	PLQP0064KB-C					

1.4 Function Comparison

Table 1.13Function comparison

Parts number		R7FA2A2AD3CFP	R7FA2A2BD3CFP	R7FA2A2BD3CFN	R7FA2A2BD3CFM					
Pin count		1	00	80	64					
Package			LC	QFP						
Code flash memory			512	2 KB						
Data flash memory			8	KB						
SRAM		48 KB								
	Parity		32	KB						
	ECC		16	KB						
System	CPU clock		48	MHz						
	Sub-clock oscillator	Yes								
	PLL	Yes								
	ICU		Y	és						
Event control	ELC	Yes								
DMA	DTC	Yes								
Timers	GPT16		5							
	AGT									
	AGTW	8								
	RTC		Yes							
	WDT/IWDT		Yes							
Communication	SCI		4							
	IIC		1							
	SPI									
Analog	ADC12		4		2					
	SDADC24	7 ch		4 ch						
	TSN		Y	/es						
HMI	SLCDC	39 seg × 4 com 35 seg × 8 com	45 seg × 4 com 41 seg × 8 com	32 seg × 4 com 28 seg × 8 com	21 seg × 4 com 17 seg × 8 com					
Data processing	CRC		Y	íes						
	MACL	Yes	(24 ch buffer readable	with independent add	ress)					
	DOC		Y	és						
Security			AES ar	d TRNG						
I/O ports	I/O pins	67	73	55	39					
	Input pins	3	3	3	3					
	Output pins	1	1	1	1					
	Pull-up resistors	64	70	52	37					
	N-ch open-drain outputs	58	64	46	32					
	5-V tolerance	2	2	2	2					
	5-V tolerance/ RTCICn (n = 0 to 2)	3	3	3	2					

1.5 Pin Functions

Table 1.14Pin functions (1 of 3)

Function	Signal	I/O	Description
Power supply	VCC	Input	Power supply pin. Connect it to the system power supply. Connect this pin to VSS by a 0.1- μ F capacitor. Place the capacitor close to the pin.
	VCL	I/O	Connect this pin to the VSS pin by the smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin.
	VSS	Input	Ground pin. Connect it to the system power supply (0 V).
	VRTC	Input	Independent Power Supply for Sub-clock oscillator (XCIN, XCOUT) and RTC (RTCIC0-RTCIC2)
Voltage detector	EXLVD	Input	Low voltage detector for external pin
	EXLVDVBAT	Input	Low Voltage detector for battery backup
Clock	XTAL	Output	Pins for a crystal resonator. An external clock signal can be input
	EXTAL	Input	hrough the EXTAL pin.
	XCIN	Input	Input/output pins for the sub-clock oscillator. Connect a crystal
	XCOUT	Output	resonator between XCOUT and XCIN.
	CLKOUT	Output	Clock output pin
Operating mode control	MD	Input	Pin for setting the operating mode. The signal level on this pin must not be changed during operation mode transition on release from the reset state.
System control	RES	Input	Reset signal input pin. The MCU enters the reset state when this signal goes low.
CAC	CACREF	Input	Measurement reference clock input pin
On-chip debug	SWDIO	I/O	Serial wire debug data input/output pin
	SWCLK	Input	Serial wire clock pin
Interrupt	NMI	Input	Non-maskable interrupt request pin
	IRQ0 to IRQ11	Input	Maskable interrupt request pins
GPT	GTETRGA, GTETRGB	Input	External trigger input pins
	GTIOCnA (n = 4 to 9), GTIOCnB (n = 4 to 9)	I/O	Input capture, output compare, or PWM output pins
	GTIU	Input	Hall sensor input pin U
	GTIV	Input	Hall sensor input pin V
	GTIW	Input	Hall sensor input pin W
	GTOUUP	Output	3-phase PWM output for BLDC motor control (positive U phase)
	GTOULO	Output	3-phase PWM output for BLDC motor control (negative U phase)
	GTOVUP	Output	3-phase PWM output for BLDC motor control (positive V phase)
	GTOVLO	Output	3-phase PWM output for BLDC motor control (negative V phase)
	GTOWUP	Output	3-phase PWM output for BLDC motor control (positive W phase)
	GTOWLO	Output	3-phase PWM output for BLDC motor control (negative W phase)
AGT	AGTEEn (n = 0 to 7)	Input	External event input enable signals
	AGTIOn (n = 0 to 7)	I/O	External event input and pulse output pins
	AGTOn (n = 0 to 7)	Output	Pulse output pins
	AGTOAn (n = 0 to 7)	Output	Output compare match A output pins
	AGTOBn (n = 0 to 7)	Output	Output compare match B output pins
	· · · /		

Table 1.14Pin functions (2 of 3)

Function	Signal	I/O	Description
AGTW	AGTWEEn (n = 0 to 1)	Input	External event input enable signals
	AGTWIOn (n = 0 to 1)	I/O	External event input and pulse output pins
	AGTWOn (n = 0 to 1)	Output	Pulse output pins
	AGTWOAn (n = 0 to 1)	Output	Output compare match A output pins
	AGTWOBn (n = 0 to 1)	Output	Output compare match B output pins
RTC	RTCOUT	Output	Output pin for 1-Hz or 64-Hz clock
	RTCICn (n = 0 to 2)	Input	RTC time capture event input
SCI	SCKn (n = 0 to 3, 9)	I/O	Input/output pins for the clock (clock synchronous mode)
	RXDn (n = 0 to 3, 9)	Input	Input pins for received data (asynchronous mode/clock synchronous mode)
	TXDn (n = 0 to 3, 9)	Output	Output pins for transmitted data (asynchronous mode/clock synchronous mode)
	CTSn_RTSn (n = 0 to 3, 9)	I/O	Input/output pins for controlling the start of transmission and reception (asynchronous mode/clock synchronous mode), active-low.
	SCLn (n = 0 to 3, 9)	I/O	Input/output pins for the IIC clock (simple IIC mode)
	SDAn (n = 0 to 3, 9)	I/O	Input/output pins for the IIC data (simple IIC mode)
	SCKn (n = 0 to 3, 9)	I/O	Input/output pins for the clock (simple SPI mode)
	MISOn (n = 0 to 3, 9)	I/O	Input/output pins for slave transmission of data (simple SPI mode)
	MOSIn (n = 0 to 3, 9)	I/O	Input/output pins for master transmission of data (simple SPI mode)
	SSn (n = 0 to 3, 9)	Input	Chip-select input pins (simple SPI mode), active-low
IIC	SCLn (n = 0, 1)	I/O	Input/output pins for the clock
	SDAn (n = 0, 1)	I/O	Input/output pins for data
SPI	RSPCKA	I/O	Clock input/output pin
	MOSIA	I/O	Input or output pins for data output from the master
	MISOA	I/O	Input or output pins for data output from the slave
	SSLA0	I/O	Input or output pin for slave selection
	SSLA1 to SSLA3	Output	Output pins for slave selection
Analog power supply	AVCC	Input	Analog voltage supply pin for the ADC12, SDADC24, TSN
	AVSS	Input	Analog ground pin for the ADC12, SDADC24, TSN
	AVCM	Input	Common mode voltage for 24-bit Sigma-Delta A/D converter
	AREGC	I/O	Regulator capacitance for 24-bit Sigma-Delta A/D converter
	AVRT	Output	Reference voltage for 24-bit Sigma-Delta A/D converter
	VREFH0	Input	Analog reference voltage supply pin for the ADC12. Connect this pin to AVCC when not using the ADC12.
	VREFL0	Input	Analog reference ground pin for the ADC12. Connect this pin to AVSS when not using the ADC12.
ADC12	AN000 to AN003	Input	Input pins for the analog signals to be processed by the A/D converter.
	ADTRG0	Input	Input pin for the external trigger signals that start the A/D conversion, active-low.
SDADC24	ANIN0 to ANIN6	Input	24-bit Sigma-Delta A/D converter analog input. These are the negative input pins. (Differential/Single-end)
	ANIP0 to ANIP6	Input	24-bit Sigma-Delta A/D converter analog input. These are the positive input pins. (Differential/Single-end)

Table 1.14Pin functions (3 of 3)

Function	Signal	I/O	Description
LCD	VL1 to VL4	I/O	Voltage for Driving LCD
	CAPH, CAPL	I/O	Capacitor Connection for Segment LCD Controller/Driver
	COM0 to COM7	Output	Segment LCD controller/driver common signal outputs
	SEG0 to SEG44	Output	Segment LCD controller/driver segment signal outputs
I/O ports	P001, P002, P004 to P015	I/O	General-purpose input/output pins
	P100 to P115	I/O	General-purpose input/output pins
	P200	Input	General-purpose input pin
	P201, P203 to P213	I/O	General-purpose input/output pins
	P214, P215	Input	General-purpose input pins
	P300 to P313	I/O	General-purpose input/output pins
	P400 to P405, P408 to p411	I/O	General-purpose input/output pins
	P500 to P506	I/O	General-purpose input/output pins
	P600	Output	General-purpose output pin

1.6 Pin Assignments

Figure 1.3 to Figure 1.6 show the pin assignments from the top view.

Figure 1.3 Pin assignment for LQFP 100-pin 7 ch (top view)

Figure 1.4 Pin assignment for LQFP 100-pin 4 ch (top view)

Figure 1.6 Pin assignment for LQFP 64-pin (top view)

1. Overview

1.7 Pin Lists

Table 1.15 Pin list (1 of 4)

Num	ı.					Timers		Communi	cation int	terfaces	Analog	5	НМІ				
LQFP100 (7ch)	LQFP100 (4ch)	LQFP80	LQFP64	Power, System, Clock, Debug, CAC	I/O ports	АGTW	АGТ	GPT_OPS, POEG	GPT	RTC	sc	S	SPI	12-bit ADC	24-bit SDADC	Segment LCDC	Interrupt
1	1	1	1	EXLV DVBA T	P015	_	_	_	—	_	_	_	_	AN003	_	_	_
2	2	—	—	_	P403	—	_	—	GTIOC4B	—	_	—	MISO A_B	_	_	_	-
3	3	—		_	P404	_	_	—	_	_	_	_	MOSI A_B	-	_	_	-
4	4	—	—	_	P405	_	_	_	_	_	_	_	RSPC KA_B	_	_	_	-
5	5	2	_	_	P400	_	_	_	_	RTCIC 0	_	_	_	_	_	_	IRQ9
6	6	3	2	_	P401	_	_	_	_	RTCIC 1	_	_	_	_	_	_	IRQ10
7	7	4	3	_	P402		_	_	_	RTCIC 2/ RTCO UT_A	_		_	_	_	—	IRQ11
8	8	5	4	VRTC	—	_	_	—	—	—	_	_	—	_	—	_	—
9	9	6	5	XCIN	P215	—	_	—	_	_	_	—	—	_	—	—	—
10	10	7	6	XCOU T	P214	_	_	—	_	_	_	_	—	_	_	—	-
11	11	8	7	VSS	_	—	_	_	_	_	—	—	_	_	_	—	—
12	12	9	8	VCL	_	_	_	_	_	_	_	_	_	_	_	_	—
13	13	10	9	XTAL	P213	_	_	_	_	_	_	_	_	_	_	_	—
14	14	11	10	EXTAL	P212	_	_	_	_	_	_	_	_	_	_	_	—
15	15	12	11	VCC	_	_	_	_	_	_	_	_	_	_	_	_	_
16	16	13	12	EXLV D	P211	_	_	_	_	_	_	_	_	_	_	_	-
17	17	14	13	CLKO UT_A	P210	-	_	-	GTIOC5B _A	_	_	-	_	ADTR G0_B	_	_	IRQ8
18	18	15	14	RES	_	_	_	_	_	_	_	_	_	_	_	_	—
19	19	16	15	MD	P201	_	_	_	_	_	_	_	_	_	_	_	-
20	20	17	16	_	P200	_	_	_	_	_	_	_	_	_	_	_	NMI
21	21	18	17	_	P600	_	_	_	_	_	_	_	_	_	_	_	-
22	22	—	_	—	P408	—	_	—	GTIOC9A _ ^B	—	_	—	SSLA0 _ ^B	_	—	_	-
23	23	—	_	_	P409	—	_	—	GTIOC9B _B	_	_	_	SSLA1 _ ^B	_	_	_	-
24	24	19	_	_	P410	-	_	—	GTIOC6A _A	_	_	SDA0	—	_	_	_	-
25	25	20	_	_	P411	_	_	_	GTIOC7A	_	_	SCL0	_	_	_	_	-
26	26	21	18	SWCL K	P300	_	_	_	GTIOC6B _A	_	_	_	—	_	_	_	-
27	27	22	19	SWDI O	P108	—	_	_	GTIOC7B	RTCO UT_B	_	—	_		_	_	_

Table 1.15Pin list (2 of 4)

Nun	n.					Timers					Communi	cation in	terfaces	Analog	s	нмі	
LQFP100 (7ch)	LQFP100 (4ch)	LQFP80	LQFP64	Power, System, Clock, Debug, CAC	I/O ports	АGTW	АGТ	GPT_OPS, POEG	GPT	RTC	SC	IIC	IdS	12-bit ADC	24-bit SDADC	Segment LCDC	Interrupt
28	28	23	20	_	P209	_	_	—	—	_	_	—	_	—	-	CAPH	—
29	29	24	21	—	P208	—	—	—	—	_	—	—	—	—	-	CAPL	—
30	30	25	22	—	_	—	_	—	—	_	—	—	-	—	-	VL1	—
31	31	26	23	—	_	—		-		_	—	-	-	—	-	VL2	—
32	32	27	24	_	-	_	_	-	-	_	-	—	-	-	-	VL4	-
33 34	33 34	28 29	25		P207	_ _	—	-	-	_	—	—	-	-	-	VL3 COM0	
34 35	34 35	29 30	26 27	_	P206 P205	_			_	_	_		_	_	- _	COM0 COM1	_
36	36	31	28		P204	_	_	_	_	_	_	_		_	_	COM2	_
37	37	32	29		P203	_	_	_	_	_	_	_	_	_	_	COM3	_
38	38	33	30	_	P301	_		_	_		_	_	_		_	COM4/	_
																SEG0	
39	39	34	31	_	P302	_	—	-	_	_	_	-	-	_	-	COM5/ SEG1	-
40	40	35	32	_	P303	_	_	_	_	_	_	_	_	_	-	COM6/ SEG2	—
41	41	36	33	_	P304	_	_	_	_		_	_	-	_	_	COM7/ SEG3	—
42	42	-	—	—	P305	—	_	—	—	_	—	—	—	—	—	SEG4	_
43	43	-	-	_	P306	_	_	-	_		_	_	-	_	_	SEG5	IRQ0_ B
44	44	-	—	_	P307	_	_	-	-	_	_	-	-	_	-	SEG6	IRQ1_ B
45	45	-	-	_	P308	_	_	_	_	_	_	_	—	—	-	SEG7	IRQ2_ B
46	46	-	-	_	P309	_	_	-	_	_	_	-	-	-	-	SEG8	IRQ3_ B
47	47	37	-	_	P310	_	_	-	_	_	_	-	-	-	-	SEG9	IRQ4_ B
48	48	38	-	_	P311	_	_	-	_	—	_	-	-	-	-	SEG10	IRQ5_ B
49	49	39	—	_	P312	_	_	_	_	_	_	_	_	_	-	SEG11	IRQ6_ B
50	50	40	—	_	P313	_	_	_	_	_	_	_	_	_	-	SEG12	IRQ7_ B
51	51	41	34	_	P100		AGTO0/ AGTOA0/ AGTOB0/ AGTEE0	GTIU	GTIOC8A _A	_	TXD0/ MOSI0/ SDA0	_	_		_	SEG13	—
52	52	42	35	_	P101	AGTW O0	AGTO1/ AGTOA1/ AGTOB1/ AGTEE1	GTIV	GTIOC8B _A	_	RXD0/ MISO0/ SCL0	_	_	_	_	SEG14	_
53	53	43	36	—	P102	AGTW EE0	AGTO2/ AGTOA2/ AGTOB2/ AGTEE2	GTIW	GTIOC6A _ ^B	—	SCK0	_	_	ADTR G0_A	_	SEG15	_

Table 1.15Pin list (3 of 4)

Num	ı.					Timers		Communi	cation in	terfaces	Analogs		нмі				
LQFP100 (7ch)	LQFP100 (4ch)	LQFP80	LQFP64	Power, System, Clock, Debug, CAC	I/O ports	АGTW	AGT	GPT_OPS, POEG	GPT	RTC	SC	S	BP	12-bit ADC	24-bit SDADC	Segment LCDC	Interrupt
54	54	44	37	_	P103	AGTW IO0	AGTO3/ AGTOA3/ AGTOB3/ AGTEE3	GTOU UP	GTIOC6B _ ^B	_	CTS0_R TS0/SS0	_	SSLA3	_	_	SEG16	_
55	55	45	38	CLKO UT_B	P109	AGTW OB0	AGTO4/ AGTOA4/ AGTOB4/ AGTEE4	GTOU LO	_	_	TXD9/ MOSI9/ SDA9	_	_	_	_	SEG17 ^{*1}	_
56	56	46	39	_	P110	AGTW OA0	AGTO5/ AGTOA5/ AGTOB5/ AGTEE5	GTOV UP	_	_	RXD9/ MISO9/ SCL9	_	_	_	_	SEG18	
57	57	47	40	_	P111	_	AGTO6/ AGTOA6/ AGTOB6/ AGTEE6	GTOV LO	GTIOC5A _B	_	SCK9	_	_	_	_	SEG19	_
58	58	48	41	_	P112	_	AGTO7/ AGTOA7/ AGTOB7/ AGTEE7	GTOW UP	GTIOC5B _B	_	CTS9_R TS9/SS9	_	SSLA2	_	_	SEG20	_
59	59	-	—	_	P113	_	_	_	_	_	—	_	-	_	_	SEG21	—
60	60	-	—	_	P114	_	_	_	_	—	—	—	_	_	—	SEG22	-
61	61	-	—	—	P115	—	_	—	_	_	—	—	—	_	—	SEG23	—
62	62	—	—	VCC	—	—	_	—	_	—	_	—	—	—	—	_	—
63	63	—	—	VSS	—	—	—	—	_	—	—	—	—	—	—	—	—
64	64	49	-	_	P104	—	—	_	GTIOC8A _B	_	SCK2	_	_	_	_	SEG24	-
65	65	50	—	-	P105	_	_	-	GTIOC8B _B	_	CTS2_R TS2/SS2	_	-	—	_	SEG25	—
66	66	51	_	_	P106	_	_	_	_	_	TXD2/ MOSI2/ SDA2	_	-	_	_	SEG26	-
67	67	52	—	_	P107	_	_	_	—	_	RXD2/ MISO2/ SCL2	_	SSLA1 _A		_	SEG27	_
68	68	53	42	_	P500	AGTW EE1	AGTIO0	GTOW LO	—	—	RXD3/ MISO3/ SCL3	—	_	—	_	SEG28	IRQ4_ A
69	69	54	43	_	P501	AGTW IO1	AGTIO1	GTET RGA	_	_	TXD3/ MOSI3/ SDA3	_	_	_	_	SEG29	IRQ5_ A
70	70	55	44	-	P502	AGTW O1	AGTIO2	GTET RGB	GTIOC9A _A	—	SCK3	_	RSPC KA_A	—	-	SEG30	IRQ6_ A
71	71	56	45	_	P503	AGTW OA1	AGTIO3	-	GTIOC9B _A	—	CTS3_R TS3/SS3	_	SSLA0 _A	—	—	SEG31	IRQ7_ A
72	72	57	46	-	P504	AGTW OB1	AGTIO4	-	_	_	SCK1	_	MOSI A_A	_	_	SEG32	_
73	73	58	47	_	P505	_	AGTIO5	_	_	_	CTS1_R TS1/SS1	_	MISO A_A	_	_	SEG33	_
74	74	59	48	-	P506	_	AGTIO6	_	_	_	TXD1/ MOSI1/ SDA1	_	_	_	_	SEG34	IRQ0_ A

Table 1.15 Pin list (4 of 4)

Num	ı.					Timers		Communi	cation in	terfaces	Analogs		НМІ				
								U									
LQFP100 (7ch)	LQFP100 (4ch)	LQFP80	LQFP64	Power, System, Clock, Debug, CAC	I/O ports	AGTW	AGT	GPT_OPS, POEG	GPT	RTC	SC	⊇	SPI	12-bit ADC	24-bit SDADC	Segment LCDC	Interrupt
75	75	60	49	_	P013	_	AGTIO7	_	—	_	RXD1/ MISO1/ SCL1	SDA1	_	_	_	SEG35	IRQ1_ A
76	76	61	50	CACR EF_A	P012	—	_	_	GTIOC5A _ ^A	_	_	SCL1	_	_	_	SEG36	IRQ2_ A
77	77	62	—	_	P011	_	_	_	GTIOC4A	_	_	_	_	_	_	SEG37	_
78	78	63	—	_	P010	_	_	_	_	_	_	_	_	_	_	SEG38	_
_	79	64	—	_	P009	_	_	_	_	_	_	_	_	_	_	SEG39	_
_	80		—	_	P008	_	_	_	_	_	_	_	_	_	_	SEG40	_
—	81	—	—	—	P007	_	_	_	_	_	_	—	_	_	—	SEG41	_
_	82	_	—	_	P006	_	_	_	_	_	_	_	_	_	_	SEG42	_
_	83	_	—	_	P005	_	_	_	_	_	_	_	_	_	_	SEG43	_
—	84	_	_	_	P004	_	_	_	_	_	_	_	_	_	_	SEG44	_
79	_	_	_	_	_	_	_	_	_	_	_	_	_	_	ANIP6	_	_
80	_	_	_	_	_	_	_	_	_	_	_	_	_	_	ANIN6	_	_
81	—	—	_	_	_	_	_	_	_	_	_	_	_	_	ANIP5	_	_
82	_	_	_	_	_	_	_	_	_	_	_	_	_	_	ANIN5	_	_
83	_	_	_	_	_	_	_	_	_	_	_	_	_	_	ANIP4	_	_
84	_	_	_	_	_	_	_	_	_	_	_	_	_	_	ANIN4	_	_
85	85	65	51	_	_	_	_	_	_	_	_	_	_	_	ANIP3	_	_
86	86	66	52	_	_	_	_	_	_	_	_	_	_	_	ANIN3	_	_
87	87	67	53	_	_	_	_	_	_	_	_	_	_	_	ANIP2	_	_
88	88	68	54	_	_	_	_	_	_	_	_	_	_	_	ANIN2	_	_
89	89	69	55	_	_	_	_	_	_	_	_	_	_	_	ANIP1	_	_
90	90	70	56	_	_	_	_	_	_	_	_	_	_	_	ANIN1	_	<u> </u>
91	91	71	57	_	_	_	_	_	_	_	_		_	_	ANIP0	_	-
92	92	72	58	_	_	_	_	_	_	_	_	_	_	_	ANIN0	_	-
93	93	73	59	_	_	_	_	_	_	_	_	_	_	_	AVRT	_	_
94	94	74	60	_	_	_	_	_	_	_	_	_	_	_	AVCM	_	_
95	95	75	61	-	_	_	_	_	_	_	_	_	_	_	AREG C	_	-
96	96	76	62	AVSS	_	_		_	_	_	_	_	_	_	_	_	_
97	97	77	63	AVCC	_	_	_	_	_	_	_	_	—	_	_	_	_
98	98	78		_	P002	—		—	—	_	_	—	—	VREF L0/ AN002	_	_	
99	99	79		—	P001	—	_	_	_	_	_	_	—	VREF H0/ AN001	_	_	_
10 0	10 0	80	64	CACR EF_B	P014	—	_	_		_	_	_	_	AN000	_	_	IRQ3_ A

Note: Several pin names have the added suffix of _A and _B. The suffix can be ignored when assigning functionality. Note 1. MCU Version 1.0 has the following restriction. The restriction is not required for MCU Version 1.1.

When using SEG17 with the internal voltage boost method, stop the voltage boosting circuit operation when the VCC voltage is lower than the LCD drive voltage V_{L4} ($V_{L4} > VCC$).

2. Electrical Characteristics

Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:

 $VCC^{*1} = AVCC = 1.6$ to 5.5 V, VRTC = 1.6 to 5.5 V, VREFH0 = 1.6 V to VCC

 $VSS = AVSS = VREFL0 = 0 V, Ta = T_{opr}$

Note 1. The typical condition is set to VCC = 3.3 V.

Figure 2.1 shows the timing conditions.

Figure 2.1 Input or output timing measurement conditions

The measurement conditions of the timing specifications for each peripheral are recommended for the best peripheral operation. However, make sure to adjust driving abilities for each pin to meet the conditions of your system.

Each function pin used for the same function must select the same drive ability. If the I/O drive ability of each function pin is mixed, the AC characteristics of each function are not guaranteed.

2.1 Absolute Maximum Ratings

Table 2.1 Absolute maximum ratings (1 of 2)

Parameter		Symbol	Value	Unit
Power supply voltage		VCC	-0.5 to +6.5	V
RTC power supply voltag	e	VRTC	-0.5 to +6.5	V
Input voltage	5V-tolerant ports ^{*1}	V _{in}	-0.3 to +6.5	V
	P400 to P402 (N-ch open-drain)	V _{in}	-0.3 to +6.5	V
	P001, P002, P014 to P015	V _{in}	-0.3 to AVCC + 0.3	V
	P214, P215	V _{in}	-0.3 to V _{RTC} + 0.3 *5	V
	Others	V _{in}	-0.3 to VCC + 0.3	V
Reference power supply		VREFH0	-0.3 to +6.5	V
voltage	AREGC, AVCM, AVRT	V _{ISDAD}	-0.3 to +2.1 ^{*6}	V
Analog power supply volt	age	AVCC	-0.5 to +6.5	V

Parameter			Symbol	Value	Unit
Analog input voltage	When AN000 to AN003 a	ire used	V _{AN}	-0.3 to AVCC + 0.3	V
	When ANINn and ANIPn	(n = 0 to 6) are used		-0.6 to AVCC + 0.3*7	V
LCD voltage	VL1 voltage		V _{L1}	-0.3 to +2.1 and -0.3 to V _{L4} + 0.3	V
	VL2 voltage		V _{L2}	-0.3 to +6.5	V
	VL3 voltage		V _{L3}	-0.3 to +6.5	V
	VL4 voltage		V _{L4}	-0.3 to +6.5	V
	CAPL, CAPH voltage *8		V _{LCAP}	-0.3 to VL4 + 0.3 ^{*5}	V
	COM0 to COM7, SEG0 to SEG44, output	External resistance division method	V _{OUT}	-0.3 to VCC + 0.3 ^{*5}	V
	voltage	Capacitor split method (VCC reference)		-0.3 to VCC + 0.3 ^{*5}	V
		Capacitor split method $(V_{L4} reference)$		-0.3 to VL4 + 0.3 ^{*5}	V
		Internal voltage boosting method (V _{L1} reference)		-0.3 to VL4 + 0.3 ^{*5}	V
		Internal voltage boosting method (V _{L2} reference)		-0.3 to VL4 + 0.3 ^{*5}	V
Operating temperature ^{*2 *3 *4}		1	T _{opr}	-40 to +105	°C
Storage temperature			T _{stg}	-55 to +125	°C

Table 2.1 Absolute maximum ratings (2 of 2)

Note 1. Ports P410 and P411 are 5V-tolerant.

When the ports are used as the IIC function, there is no problem even if the input pull-up power supply while the device is not powered. However, the current injection that results from input of such a signal or I/O pull-up might cause malfunction and the abnormal current that passes in the device at this time might cause degradation of internal elements.

Note 2. See section 2.2.1. Tj/Ta Definition.

Note 3. Contact Renesas Electronics sales office for information on derating operation under Ta = +105°C.

Derating is the systematic reduction of load for improved reliability.

Note 4. The upper limit of the operating temperature is 105°C, depending on the product.

Note 5. Must be 6.5 V or lower.

Note 6. This value defines the absolute maximum rating of AREGC, AVCM, and AVRT terminal. Do not use with voltage applied.

Note 7. The SDADC24 conversion target pin must not exceed AREGC +0.3 V.

Note 8. When using the internal voltage boosting method or capacitance split method, connect these VL1 to VL4 pins to VSS with a capacitor (0.47 µF ± 30%), and connect a capacitor (0.47 µF ± 30%) between the CAPL and CAPH pins.

Caution: Permanent damage to the MCU may result if absolute maximum ratings are exceeded.

To preclude any malfunctions due to noise interference, insert capacitors with high frequency characteristics between the VCC and VSS pins, between the AVCC and AVSS pins, and between the VREFH0 and VREFL0 pins when VREFH0 is selected as the high potential reference voltage for the ADC12. Place capacitors of the following value as close as possible to every power supply pin and use the shortest and heaviest possible traces:

- VCC and VSS: about 0.1 µF
- VRTC and VSS: about 0.1 µF
- AVCC and AVSS: about 0.1 μF and 10 μF in parallel
- VREFH0 and VREFL0: about 0.1 μF

Also, connect capacitors as stabilization capacitance.

Connect the VCL pin to a VSS pin by a 4.7 µF capacitor. Each capacitor must be placed close to the pin.

- VCL and VSS: 4.7 µF
- AREGC and AVSS: 0.47 µF
- AVCM and AVSS: 0.47 µF
- AVRT and AVSS: 0.47 µF

Parameter	Symbol		Min	Тур	Max	Unit
Power supply voltages	VCC*1 *2		1.6	_	5.5	V
	VSS		—	0	_	V
RTC power supply voltage	V _{RTC}	V _{RTC}				V
Analog power supply voltages	AVCC*1 *2		1.6	—	5.5	V
	AVSS		_	0	_	V
	VREFH0 When used as ADC12		1.6	—	AVCC	V
	VREFL0	Reference	_	0	_	V

Table 2.2 Recommended operating conditions

Note 1. Use AVCC and VCC under the following conditions: AVCC = VCC

AVCC = VCC

Note 2. When powering on the VCC and AVCC pins, power them on at the same time or the VCC pin first and then the AVCC pins. When powering off the VCC and AVCC pins, power them off at the same time or the AVCC pin first and then the VCC pins.

2.2 DC Characteristics

2.2.1 Tj/Ta Definition

Table 2.3DC characteristics

Conditions: Products with operating temperature (Ta) -40 to +105°C

Parameter	Symbol	Тур	Мах	Unit	Test conditions
Permissible junction temperature	Тј		125 ^{*1}	°C	High-speed mode Middle-speed mode Low-speed mode Subosc-speed mode

Note: Make sure that $Tj = T_a + \theta ja \times total power consumption (W)$, where total power consumption = (VCC - V_{OH}) × $\Sigma I_{OH} + V_{OL} \times \Sigma I_{OL} + I_{CC}max \times VCC$.

Note 1. The upper limit of operating temperature is 105°C, depending on the product. If the part number shows the operation temperature at 105°C, then the maximum value of Tj is 125°C.

I/O V_{IH}, V_{IL} 2.2.2

Table 2.4 I/O V_{IH}, V_{IL}

Conditions: VCC = AVCC = 1.6 to 5.5 V, VRTC = 1.6 to 5.5 V

Parameter			Symbol	Min	Тур	Max	Unit	Test Conditions
Input voltage	Input port pins	_	V _{IH}	AVCC × 0.8	—	—	V	_
	P001, P002, P014, P015	0	V _{IL}	_	—	AVCC × 0.2	1	
	Input port pins except fo	r P214, P215	V _{IH}	VRTC × 0.8	—	—	1	
			V _{IL}	_	—	VRTC × 0.2	1	
	Input port pins except fo		V _{IH}	VCC × 0.8	—	—	1	
	P001, P002, P014, P015	o, P214, P215	V _{IL}	_	—	VCC × 0.2	1	
	EXTAL		V _{IH}	VCC × 0.8	—	—	1	
			V _{IL}	_	_	VCC × 0.2	1	
5	5V-tolerant ports ^{*3}	V _{IH}	VCC × 0.8	_	5.8			
			V _{IL}	_	_	VCC × 0.2		
	RES, NMI, IRQ ^{*4}		V _{IH}	VCC × 0.8	_	_	1	
			V _{IL}	_		VCC × 0.2	1	
			ΔV _T *6	VCC × 0.10	_	_		VCC = 2.7 V to 5.5 V
				VCC × 0.05	—	—		VCC = 1.6 V to 2.7 V
	Peripheral functions ^{*5}	AGT, AGTW, GPT, SPI, Others ^{*4}	V _{IH}	VCC × 0.8	—	_		_
			V _{IL}	_	_	VCC × 0.2		
			ΔV _T *6	VCC × 0.10	—	—		VCC = 2.7 V to 5.5 V
				VCC × 0.05	—	—		VCC = 1.6 V to 2.7 V
		RTCIC0-2*7	V _{IH}	VRTC × 0.8	_	5.8	1	_
			V _{IL}	0	_	VRTC × 0.2	1	
			ΔV _T *6	_	0.71	_		
		IIC (except	V _{IH}	VCC × 0.7	_	5.8	1	_
		for SMBus) ^{*1}	V _{IL}	_	_	VCC × 0.3	1	
			ΔV _T *6	VCC × 0.10	_	_		VCC = 2.7 V to 5.5 V
				VCC × 0.05		—	1	VCC = 1.6 V to 2.7 V
		IIC (SMBus) ^{*2}	V _{IH}	2.2	—	_	1	VCC = 3.6 V to 5.5 V
			V _{IL}	2.0	_	_	1	VCC = 2.7 V to 3.6 V
			V _{IL}	_	_	0.8	1	VCC = 3.6 V to 5.5 V
			VIL	-	—	0.5	1	VCC = 2.7 V to 3.6 V

Note 1. SCL0, SDA0 (total 2 pins). 5V-tolerant ports are used as N-ch open-drain ports. Note 2. SCL0, SCL1, SDA0, SDA1 (total 4 pins)

Note 3. P410, P411 (total 2 pins). 5V-tolerant ports are used as normal CMOS ports.

Note 4. PmnPFS.ISEL = 1.

Note 5. PmnPFS.PMR = 1.

- Note 6. This is the hysteresis characteristic of the Schmitt Trigger circuit. Note 7. When inputting a high level to P400 to P402 (RTCIC0 to RTCIC2), connect the pins individually to the higher voltage of VCC and VRTC through a resistor.

I/O I_{OH}, I_{OL} 2.2.3

Table 2.5 I/O I_{OH}, I_{OL} (1 of 3)

Conditions: VCC = AVCC = 1.6 to 5.5 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Permissible output	Ports P001, P002, P014, P015, P212,	I _{OH}	—	_	-4.0	mA	
current (average value per pin)	P213, P410, P411	I _{OL}	—	—	8.0	mA	
	Ports P400 to P402	I _{OL}	-	—	15.0	mA	
	Other output pins ^{*1}	I _{OH}	—	—	-4.0	mA	
		I _{OL}	—	—	20.0	mA	
Permissible output	Ports P001, P002, P014, P015, P212,	I _{OH}	—	—	-4.0	mA	
current (max value per pin)	P213, P410, P411	I _{OL}	_	_	8.0	mA	
	Ports P400 to P402	I _{OL}	_	_	15.0	mA	
	Other output pins ^{*1}	I _{OH}	_	_	-4.0	mA	
		I _{OL}	_	—	20.0	mA	

Table 2.5 I/O I_{OH}, I_{OL} (2 of 3)

Conditions: VCC = AVCC = 1.6 to 5.5 V

Parameter			Symbol	Min	Тур	Мах	Unit	Test conditions			
Permissible output current (max value	Total of ports P001, P0	02, P014, P015	ΣI _{OH (max)}	-	-	-16	mA	AVCC = 2.7 to 5.5 V			
total pins) ^{*2}				—	-	-4	mA	AVCC = 1.8 to 2.7 V			
				—	-	-2	mA	AVCC = 1.6 to 1.8 V			
			ΣI _{OL (max)}	-	-	32	mA	AVCC = 2.7 to 5.5 V			
				—	—	2.4	mA	AVCC = 1.8 to 2.7 V			
				—	—	1.2	mA	AVCC = 1.6 to 1.8 V			
	Total of ports P212, P2	213	ΣI _{OH}	—	—	-8	mA	VCC = 2.7 to 5.5 V			
				-	—	-2	mA	VCC = 1.8 to 2.7 V			
				—	—	-1	mA	VCC = 1.6 to 1.8 V			
	Total of ports P212, P2	ΣI _{OL}	—	_	20.0	mA	VCC = 2.7 to 5.5 V				
					—	4	mA	VCC = 1.8 to 2.7 V			
			—	—	2	mA	VCC = 1.6 to 1.8 V				
	Total of ports P403 to I	ΣI _{OH}	—	-	-12	mA	VCC = 2.7 to 5.5 V				
				—	-	-3	mA	VCC = 1.8 to 2.7 V			
				—	—	-1.5	mA	VCC = 1.6 to 1.8 V			
			ΣI _{OL}	—	-	50	mA	VCC = 4.0 to 5.5 V			
				—	—	24	mA	VCC = 2.7 to 4.0 V			
				— — 1.8		1.8	mA	VCC = 1.8 to 2.7 V			
				—	—	0.9	mA	VCC = 1.6 to 1.8 V			
	Total of ports P108, P201, P204 to P211,	100-pin products	ΣI _{OH (max)}	_	—	-30	mA	VCC = 2.7 to 5.5 V			
	P300, P408 to P411, P600			—	_	-8	mA	VCC = 1.8 to 2.7 V			
				—	-	-4	mA	VCC = 1.6 to 1.8 V			
			ΣI _{OL (max)}	-	-	50	mA	VCC = 2.7 to 5.5 V			
							-	-	4	mA	VCC = 1.8 to 2.7 V
				—	-	2	mA	VCC = 1.6 to 1.8 V			

Table 2.5 I/O I_{OH}, I_{OL} (3 of 3)

Conditions: VCC = AVCC = 1.6 to 5.5 V

Parameter			Symbol	Min	Тур	Мах	Unit	Test conditions
Permissible output current (max value	Total of ports P100 to P103, P109 to P115,	100-pin products	ΣI _{OH (max)}	—	—	-30	mA	VCC = 2.7 to 5.5 V
total pins) ^{*2}	P203, P301 to P313			—	-	-8	mA	VCC = 1.8 to 2.7 V
				-	—	-4	mA	VCC = 1.6 to 1.8 V
			ΣI _{OL (max)}	-	_	50	mA	VCC = 2.7 to 5.5 V
				-	-	4	mA	VCC = 1.8 to 2.7 V
				-	—	2	mA	VCC = 1.6 to 1.8 V
	Total of ports P004 to P013, P104 to P107,	100-pin products	ΣI _{OH (max)}	_	—	-30	mA	VCC = 2.7 to 5.5 V
	P500 to P506			—	—	-8	mA	VCC = 1.8 to 2.7 V
				—	—	-4	mA	VCC = 1.6 to 1.8 V
			ΣI _{OL (max)}	-	—	50	mA	VCC = 2.7 to 5.5 V
				—	—	4	mA	VCC = 1.8 to 2.7 V
				—	—	2	mA	VCC = 1.6 to 1.8 V
	Total of all output pin	100-pin products	ΣI _{OH (max)}	—	—	-90	mA	
			ΣI _{OL (max)}	_	_	100	mA	
	Total of ports P009 to P013, P100 to P112,	80-pin products 64-pin products	ΣI _{OH (max)}	-	-	-30	mA	VCC = 2.7 to 5.5 V
	P201, P203 to P211, P300 to P304, P310 to P313, P410, P411,			-	—	-8	mA	VCC = 1.8 to 2.7 V
	P500 to P506, P600			-	-	-4	mA	VCC = 1.6 to 1.8 V
			ΣI _{OL (max)}	—	—	50	mA	VCC = 2.7 to 5.5 V
				-	-	4	mA	VCC = 1.8 to 2.7 V
				—	_	2	mA	VCC = 1.6 to 1.8 V
	Total of all output pin	80-pin products	ΣI _{OH (max)}	_	_	-60	mA	
		64-pin products	ΣI _{OL (max)}	_	_	100	mA	

Note 1. Except for Ports P200, P214, and P215, which are input ports.

Note 2. Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and I_{OH} = -30.0 mA

Total output current of pins = $(-30.0 \times 0.7)/(80 \times 0.01) \cong -26.2 \text{ mA}$ However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

Caution: To protect the reliability of the MCU, the output current values should not exceed the values in Table 2.5.

2.2.4 I/O V_{OH}, V_{OL}, and Other Characteristics

Table 2.6 I/O V_{OH}, V_{OL} (1)

Conditions: VCC = AVCC = 4.0 to 5.5 V

Parameter		Symbol	Min	Тур	Мах	Unit	Test conditions
Output	Ports P001, P002, P014, P015	V _{OH}	AVCC - 0.8	—	_	V	I _{OH} = -4.0 mA
voltage	Output pins except for P001, P002, P014, P015 ^{*1}	V _{OH}	VCC - 0.8	-	—		I _{OH} = -4.0 mA
Ports P001, P002, P014, P015		V _{OL}	_	—	0.8		I _{OL} = 8.0 mA
	Ports P212, P213, P410, P411	V _{OL}	—	—	0.8		I _{OL} = 8.0 mA
	Ports P400 to P402	V _{OL}	—	—	2.0		I _{OL} = 15.0 mA
Output pins except for P001, P002, P014, P015, P212, P213, P410, P411, and P400 to P402 ^{*1}		V _{OL}		_	1.2		I _{OL} = 20.0 mA

Note 1. Except for Ports P200, P214, and P215, which are input ports.

Table 2.7 I/O V_{OH}, V_{OL} (2)

Conditions: VCC = AVCC = 2.7 to 4.0 V

Parameter		Symbol	Min	Тур	Мах	Unit	Test conditions
Output	Ports P001, P002, P014, P015	V _{OH}	AVCC - 0.8	—	—	V	I _{OH} = -4.0 mA
Voltage Output pins except for P001, P002, P014, P015 ^{*1}		V _{OH}	VCC - 0.8	_	—		I _{OH} = -4.0 mA
	Ports P001, P002, P014, P015	V _{OL}	_	—	0.8		I _{OL} = 8.0 mA
	Ports P400 to P402	V _{OL}	_	—	0.4		I _{OL} = 3.0 mA
	Output pins except for P001, P002, P014, P015, P400 to P402 ^{*1}	V _{OL}	—	—	0.8		I _{OL} = 8.0 mA

Note 1. Except for Ports P200, P214, and P215, which are input ports.

Table 2.8 I/O V_{OH}, V_{OL} (3)

Conditions: VCC = AVCC = 1.6 to 2.7 V

Paramete	r	Symbol	Min	Тур	Max	Unit	Test conditions
Output voltage	Ports P001, P002, P014, P015	V _{OH}	AVCC - 0.5	-	_	V	I _{OH} = -1.0 mA AVCC = 1.8 to 2.7 V
			AVCC - 0.5	_	-		I _{OH} = -0.5 mA AVCC = 1.6 to 1.8 V
	Output pins except for P001, P002, P014, P015 ^{*1}	V _{OH}	VCC - 0.5	_	-		I _{OH} = -1.0 mA VCC = 1.8 to 2.7 V
			VCC - 0.5	_	_		I _{OH} = -0.5 mA VCC = 1.6 to 1.8 V
	Ports P001, P002, P014, P015	V _{OL}	—	_	0.4		I _{OL} = 0.6 mA AVCC = 1.8 to 2.7 V
			_	—	0.4		I _{OL} = 0.3 mA AVCC = 1.6 to 1.8 V
	Ports P400 to P402		_	_	0.4		I _{OL} = 2 mA VCC = 1.8 to 2.7 V
			_	_	0.4		I _{OL} = 1 mA VCC = 1.6 to 1.8 V
	Output pins except for P001, P002, P014, P015, P400 to P402 ^{*1}	V _{OL}	-	—	0.4		I _{OL} = 0.6 mA VCC = 1.8 to 2.7 V
			_	-	0.4		I _{OL} = 0.3 mA VCC = 1.6 to 1.8 V

Note 1. Except for Ports P200, P214, and P215, which are input ports.

Table 2.9I/O other characteristicsConditions: VCC = 4VCC = 1.6 to 5.5 V

Parameter		Symbol	Min	Тур	Мах	Unit	Test conditions
Input leakage current	RES, ports P200	I _{in}	_	_	1.0	μA	V _{in} = 0 V V _{in} = VCC
	Ports P214, P215		_	-	1.0	μA	V _{in} = 0 V V _{in} = VRTC
Three-state leakage current (off state)	5V-tolerant ports ^{*1}	I _{TSI}	_	_	1.0	μA	V _{in} = 0 V V _{in} = 5.8 V
	Ports P400 to P402 (N-ch open drain, 5V-tolerant)		_	-	1.0		V _{in} = 0 V V _{in} = 5.8 V
	Other ports (except for P200, P214, P215, and 5V-tolerant ports, P400 to P402)		_	-	1.0		V _{in} = 0 V V _{in} = VCC
Input pull-up resistor	All ports (except for P200, P214, P215, P400 to P402, P600)	R _U	10	20	100	kΩ	V _{in} = 0 V
Input capacitance	P200	C _{in}	_	_	30	pF	V _{in} = 0 V
	Other input pins	1	-	—	15	1	f = 1 MHz T _a = 25°C

Note 1. P410-411 (total 2 pins)

2.2.5 Operating and Standby Current

Table 2.10Operating and standby current (1) (1 of 2)

Conditions: VCC = AVCC = 1.6 to 5.5 V

						LDO mo	de	
Parameter					Symbol	Typ ^{*10}	Max	Unit
Supply	High-	Normal	All peripheral clocks	ICLK = 48 MHz*7	Icc	4.80 ^{*11}	—	mA
current*1	speed mode ^{*2}	mode	disabled, CoreMark code executing from	ICLK = 32 MHz*7		3.45	_	
			flash ^{*5}	ICLK = 16 MHz*7		2.10	—	
				ICLK = 8 MHz ^{*7}		1.45	-	
			All peripheral clocks enabled, code executing from flash ^{*5}	ICLK = 48 MHz ^{*9}		_	12.9 ^{*11}	
		Sleep	All peripheral clocks	ICLK = 48 MHz*7		1.06	-	1
		mode	disabled ^{*5}	ICLK = 32 MHz*7		1.00	—	-
				ICLK = 16 MHz*7		0.75	—	
				ICLK = 8 MHz ^{*7}		0.65 —	-	
			All peripheral clocks	ICLK = 48 MHz ^{*9}		4.45	-	
			enabled ^{*5}	ICLK = 32 MHz ^{*8}		4.40	—	
				ICLK = 16 MHz ^{*8}		2.50	-	1
				ICLK = 8 MHz ^{*8}		1.30	-	1
		Increase of	during BGO operation ^{*6}			2.1	-	1

Table 2.10Operating and standby current (1) (2 of 2)

Conditions: VCC = AVCC = 1.6 to 5.5 V

							LDO mo	ode	
Parameter						Symbol	Typ ^{*10}	Max	Unit
Supply	Middle-	Normal	All peripheral clocks	ICLK = 24 MHz ^{*7}		I _{CC}	2.65	—	mA
current ^{*1}	speed mode ^{*2}	mode	disabled, CoreMark code executing from flash ^{*5}	ICLK = 4 MHz ^{*7}			0.90	-	
			All peripheral clocks enabled, code executing from flash ^{*5}	ICLK = 24 MHz ^{*8}	_	_	9.0		
		Sleep	All peripheral clocks	ICLK = 24 MHz*7		_	0.80	_	
		mode	disabled ^{*5}	ICLK = 4 MHz ^{*7}			0.60	—	
			All peripheral clocks	ICLK = 24 MHz ^{*8}			3.35	_	
			enabled ^{*5}	ICLK = 4 MHz ^{*8}			1.05	—	
		Increase of	during BGO operation ^{*6}	1			1.75	_	
Supply current ^{*1}	Low- speed mode ^{*3}	Normal mode	All peripheral clocks disabled, CoreMark code executing from flash ^{*5}	ICLK = 2 MHz ^{*7}		I _{CC}	0.3	_	mA
			All peripheral clocks enabled, code executing from flash ^{*5}	ICLK = 2 MHz ^{*8}			_	3.3	
		Sleep mode	All peripheral clocks disabled ^{*5}	ICLK = 2 MHz ^{*7}		_	0.13	-	
			All peripheral clocks enabled ^{*5}	ICLK = 2 MHz ^{*8}		0.35	-		
	Subosc- speed mode ^{*4}	Normal mode	All peripheral clocks disabled, while (1) code executing from flash ^{*5}	ICLK = 32.768 kHz ^{*8}		I _{CC}	4.40	_	μA
			All peripheral clocks enabled, while (1) code executing from flash ^{*5}	ICLK = 32.768 kHz			7.80		
			All peripheral clocks	ICLK = 32.768 kHz ^{*8}	T _a = 25°C		9.3	_	
			enabled, code executing from flash ^{*5}		T _a = 55°C		10.6	—	
					T _a = 70°C		11.5	_	
					T _a = 85°C		13.0	_	
					T _a = 105°C		17.6	156	
		Sleep mode	All peripheral clocks disabled ^{*5}	ICLK = 32.768 kHz ^{*8}	_		2.40	-	
			All peripheral clocks	ICLK = 32.768 kHz ^{*8}	T _a = 25°C		5.80	—	
			enabled ^{*5}		T _a = 55°C		6.8	_	
			T _a = 70°C		7.65				
					T _a = 85°C		9.1	—	
					T _a = 105°C		15.6	_	

Note 1. Supply current is the total current flowing into VCC and VRTC. Supply current values apply when internal pull-up MOSs are in the off state and these values do not include output charge/discharge current from any of the pins.

Note 2. The clock source is HOCO.

Note 3. The clock source is MOCO.

Note 4. The clock source is the sub-clock oscillator.

Note 5. This does not include BGO and A/D operation. Note 6. This is the increase for programming or erasure of the flash memory for data storage during program execution.

Note 7. PCLKB and PCLKD are set to divided by 64.

Note 8. PCLKB and PCLKD are the same frequency as that of ICLK.

Note 9. PCLKB are set to be divided by 2 and PCLKD is the same frequency as that of ICLK.

Note 10. VCC = 3.3 V. Note 11. The prefetch is operating.

Table 2.11 **Operating and standby current (2)**

Conditions: VCC = AVCC = 1.6 to 5.5 V

Parameter				Symbol	Typ ^{*3}	Max	Unit
Supply	Software Standby	All SRAMs(0x2000_4000	T _a = 25°C	I _{CC}	0.40	2.5	μA
current ^{*1}	mode ^{*2}	to 0x2000_BFFF) are on	T _a = 55°C		0.85	9.8	
			T _a = 70°C	-	1.35	25	
			T _a = 85°C		2.60	40	
	Only 8KB SRAM (0x2000_4000 to		T _a = 105°C		6.05	63	
		T _a = 25°C		0.35	2.5		
	0x2000_4000 to 0x2000_5FFF) is on	T _a = 55°C		0.75	9.8		
			T _a = 70°C		1.20	25	
			T _a = 85°C		2.25	40	
Increment for independent power supply RTC operation in normal operation mode with sub-			T _a = 105°C		5.35	63	
	SOMCR.SODRV[1:0] are 11b (Low power mode 3)		0.15	—			
	clock oscillator ^{*4}		SOMCR.SODRV[1:0] are 00b (normal mode)		0.95	-	

Note 1. Supply current is the total current flowing into VCC. Supply current values apply when internal pull-up MOSs are in the off state and these values do not include output charge/discharge current from any of the pins.

Note 2. The IWDT and LVD are not operating.

Note 3. VCC = 3.3 V.

Note 4. Current flowing to VRTC pin, includes RTC power supply, sub-oscillation circuit current, and RTC.

Table 2.12Operating and standby current (3)

Conditions: VCC = AVCC = 0 V, VRTC = 1.6 to 5.5 V, VSS = AVSS = 0 V

Parameter				Symbol	Typ ^{*3}	Max ^{*3}	Unit
Supply	Increment for	VRTC = 3.3 V SOMCR.SODRV[1:0]	T _a = 25°C	I _{CC}	0.46	_	μA
current ^{*1}	independent power supply RTC operation	are 11b (Low power mode 3)	T _a = 55°C		0.50	_	
	when VCC is off *2*3		T _a = 85°C		0.60	_	
			T _a = 105°C		0.65	—	1
		VRTC = 3.3 V SOMCR.SODRV[1:0]	T _a = 25°C		1.25	_	
		are 00b (Normal mode)	T _a = 55°C		1.35	_	
		Ta = VRTC = 3.3V SOMCR.SODRV[1:0] Ta =	T _a = 85°C		1.55	_	
			T _a = 105°C	1	1.70	_	1
			T _a = 25°C		0.65	_	
		are 10b (Low power mode 2)	T _a = 55°C		0.70	_	
			T _a = 85°C		0.80	—	1
			T _a = 105°C		0.85	_	1
		VRTC = 3.3 V SOMCR.SODRV[1:0]	T _a = 25°C		0.80	_	
		are 01b (Low power mode 1)	T _a = 55°C		0.90	_	
		T _a = 85°C	1	1.00	—	1	
		T _a =	T _a = 105°C	1	1.10	_	1

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOS transistors are in the off state. The supply current is total current flowing into VRTC.

Note 2. Current flowing to VRTC pin, including RTC power supply, sub-oscillation circuit current, and RTC.

Note 3. Typ Ta = 25° C, max Ta = 105° C.

Table 2.13Operating and standby current (4) (1 of 2)

Parameter			Symbol	Min	Тур	Мах	Unit	
Analog power	During 12-bit A/D conversion (at high-speed A	/D conversion mode)	I _{AVCC}	_	—	1.44	mA	
supply current	During 12-bit A/D conversion (at low-power A/	D conversion mode)		_	_	0.78	mA	
	Waiting for 12-bit A/D conversion (all units) ^{*1}			_	_	1.0	μA	
	During 24-bit sigma-delta A/D conversion (normal conversion) (AVCC = 2.4 to 5.5 V) ^{*2}	7 ch + Regulator, 16 MHz, 8 kHz sampling mode		—	4.1	5.5	mA	
		4 ch + Regulator, 16 MHz, 8 kHz sampling mode		-	2.5	3.4	mA	
		3 ch + Regulator, 16 MHz, 8 kHz sampling mode		-	2.0	2.7	mA	
		1 ch + Regulator, 16 MHz, 8 kHz sampling mode		—	0.9	1.3	mA	
		1 ch + Regulator, 16 MHz, 8 kHz/4 kHz hybrid sampling mode	-	-	_	0.9	1.3	mA
		1 ch + Regulator, PLL (12.8 MHz) 8 kHz sampling mode ^{*3}		—	0.9	1.3	mA	
	During 24-bit sigma-delta A/D conversion (power down) (AVCC = 2.4 to 5.5 V)	7 ch SDADMR.PONn (n = 0 to 6), Regulator, 16 MHz, 8 kHz sampling mode		_	-	1.60	μA	
	Waiting for 24-bit sigma-delta A/D conversion	⁴ (AVCC = 2.4 to 5.5 V)		—	—	1.5	μA	
Reference power	During 12-bit A/D conversion		I _{REFH0}	-	_	120	μA	
supply current	Waiting for 12-bit A/D conversion			—	_	60	nA	
Temperature Sens	or (TSN) operating current		I _{TNS}	_	95	-	μA	
Watchdog timer operating current	Current flowing to VCC including ILOCO, main	clock is stopped	I _{WDT}	-	0.2	-	μA	
LVDVBAT	Current flowing to EXLVDVBAT		ILVDVBAT	_	0.033	-	μA	
operating current	Current flowing to VCC			—	0.04	-	μA	
LVDVRTC	Current flowing to VRTC		ILVDVRTC	-	0.15	-	μA	
operating current	Current flowing to VCC			—	0.04	-	μA	
LVDEXLVD	Current flowing to EXLVD		ILVDEXLVD	-	0.083	-	μA	
operating current	Current flowing to VCC			_	0.04	-	μA	
LVD0 operating current	Current flowing to VCC		I _{LVD0}	-	0.045	-	μA	
LVD1 operating current	Current flowing to VCC	Current flowing to VCC		-	0.141	-	μA	
LVD2 operating current	Current flowing to VCC		I _{LVD2}	-	0.120	-	μA	
Sub oscillation sto	p detection for SDADCCLK operating current		I _{SOSTD}	_	0.1	_	μA	
Main oscillation sto	op detection for SDADCCLK operating current		IMOSTD	_	29	<u> </u>	μA	
Bank programming	g operating current		I _{BNKP}	1	2.05	13.5	mA	

Table 2.13Operating and standby current (4) (2 of 2)

Conditions: VCC = AVCC = 1.6 to 5.5 V

Parameter				Symbol	Min	Тур	Max	Unit
LCD operating current	External resistance division method	$f_{LCD} = f_{SUB} (32.768 \text{ kHz})$ LCD clock = 128 Hz 1/3 bias, four-time-slices	VCC = 5.0 V, V _{L4} = 5.0 V	I _{LCD1} *5*6	_	0.05	_	μA
	Internal voltage boosting method	$f_{LCD} = f_{SUB} (32.768 \text{ kHz})$ LCD clock = 128 Hz 1/3 bias, four-time-slices	VCC = 3.0 V, V _{L4} = 3.0 V (VLCD = 04H)	I _{LCD2} *5	-	1.00	_	μA
		V _{L1} reference, VL1AMP enabled	VCC = 5.0 V, V _{L4} = 5.1 V (VLCD = 19H)		—	1.20	_	μA
		$f_{LCD} = f_{SUB} (32.768 \text{ kHz})$ LCD clock = 128 Hz 1/3 bias, four-time-slices	VCC = 3.0 V, V _{L4} = 3.0 V (VLCD = 84H)	I _{LCD4} *5	—	0.80	_	μA
V _{L2} reference, VL2AMP enabled		VCC = 5.0 V, V _{L4} = 5.1 V (VLCD = 99H)		_	1.00	_	μA	
	Capacitor split method	$ f_{LCD} = f_{SUB} (32.768 \text{ kHz}) $ LCD clock = 128 Hz 1/3 bias, four-time-slices V _{CC} reference,	VCC = 3.0 V, V _{L4} = 3.0 V	I _{LCD3} *5	_	0.20	-	μA
		$ f_{LCD} = f_{SUB} (32.768 \text{ kHz}) $ LCD clock = 128 Hz 1/3 bias, four-time-slices V _{L4} reference, VL4AMP enabled	VCC = 3.2 V, V _{L4} = 3.0 V	I _{LCD5} ^{*5}	_	0.80	-	μA

Note 1. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (ADC120 module-stop bit) is in the module-stop state.

Note 2. Typ condition is 3.0 V, 25°C, and the current is the current flowing to AVDD pin.

Note 3. Not including the current of PLL.

Note 4. When the MCU is in the MSTPCRD.MSTPD17 (SDADC24 module-stop bit) is in the module-stop state.

Note 5. Conditions of the Typ. value and Max. value are as follows:

- Setting 20 pins as the segment function and blinking all
- Selecting f_{SUB} for system clock when LCD clock = 128 Hz (LCDC0 = 07H)
- Setting four time slices and 1/3 bias.

Note 6. Not including the current flowing into the external division resistor when using the external resistance division method.

2.2.6 VCC Rise and Fall Gradient and Ripple Frequency

Table 2.14 VCC rise and fall gradient characteristics

Conditions: VCC = AVCC = 0 to 5.5 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Power-on VCC	Voltage monitor 0 reset disabled at startup	SrVCC	0.02	—	2	ms/V	—
rising gradient	Voltage monitor 0 reset enabled at startup ^{*1 *2}				_		
	SCI boot mode ^{*2}				2		

Note 1. When OFS1.LVDAS = 0.

Note 2. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of OFS1.LVDAS bit.

Table 2.15 Rising and falling gradient and ripple frequency characteristics

Conditions: VCC = AVCC = 1.6 to 5.5 V

The ripple voltage must meet the allowable ripple frequency $f_{r(VCC)}$ within the range between the VCC upper limit (5.5 V) and lower limit (1.6 V).

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Allowable ripple frequency	f _{r(VCC)}	-	_	10	kHz	Figure 2.2 $V_{r (VCC)} \leq VCC \times 0.2$
		_	_	1	MHz	Figure 2.2 $V_{r (VCC)} \leq VCC \times 0.08$
		—	_	10	MHz	Figure 2.2 $V_{r (VCC)} \leq VCC \times 0.06$
Allowable voltage change rising and falling gradient	dt/dVCC	1.0	—	—	ms/V	When VCC change exceeds VCC ± 10%

Figure 2.2 Ripple waveform

2.2.7 VRTC Rise and Fall Gradient

Table 2.16 VRTC rise and fall gradient characteristics

Conditions: VRTC = AVCC = 0 to 5.5 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Power-on VRTC rising gradient	SrVRTC	0.02	_	20	ms/V	—

2.2.8 Thermal Characteristics

Maximum value of junction temperature (Tj) must not exceed the value of section 2.2.1. Tj/Ta Definition.

Tj is calculated by either of the following equations.

- $Tj = Ta + \theta ja \times Total power consumption$
- $Tj = Tt + \Psi jt \times Total \text{ power consumption}$
 - Tj : Junction temperature (°C)
 - Ta : Ambient temperature (°C)
 - Tt : Top center case temperature (°C)

θja : Thermal resistance of "Junction"-to-"Ambient" (°C/W)

Ψjt : Thermal resistance of "Junction"-to-"Top center case" (°C/W)

- Total power consumption = Voltage × (Leakage current + Dynamic current)
- Leakage current of IO = Σ (IOL × VOL) / Voltage + Σ (|IOH| × |VCC VOH|) / Voltage
- Dynamic current of IO = Σ IO (Cin + Cload) × IO switching frequency × Voltage

Cin: Input capacitance

Cload: Output capacitance

Regarding θ ja and Ψ jt, see Table 2.17.

Table 2.17 Thermal resistance

Parameter	Package	Symbol	Value ^{*1}	Unit	Test conditions
Thermal resistance	100-pin LQFP	θја	49.6	°C/W	JESD 51-2 and 51-7
	80-pin LQFP		47.9		compliant
	64-pin LQFP		46.8		
	100-pin LQFP	Ψjt	0.99	°C/W	JESD 51-2 and 51-7
	80-pin LQFP		0.99		compliant
	64-pin LQFP		0.99		

Note 1. The values are reference values when the 4-layer board is used. Thermal resistance depends on the number of layers or size of the board. For details, see the JEDEC standards.

2.3 AC Characteristics

2.3.1 Frequency

Table 2.18 Operation frequency in high-speed operating mode

Conditions: VCC = AVCC = 1.8 to 5.5 V

Parameter			Symbol	Min	Тур	Max ^{*4}	Unit
	System clock (ICLK) ^{*1*2}	1.8 to 5.5 V	f	0.032768	_	48	MHz
frequency	Peripheral module clock (PCLKB)	1.8 to 5.5 V		—	_	32	
	Peripheral module clock (PCLKD) ^{*3}	1.8 to 5.5 V		—		64	

Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 2. The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Note 3. The lower-limit frequency of PCLKD is 1 MHz when the ADC12 is in use.

Note 4. The maximum value of operation frequency does not include internal oscillator errors. For details on the range for guaranteed operation, see Table 2.22.

Note 5. The lower-limit frequency of PCLKB is 1 MHz when the SDADC24 is in use.

Table 2.19Operation frequency in middle-speed mode

Conditions: VCC = AVCC = 1.6 to 5.5 V

Parameter	Parameter			Min	Тур	Max ^{*4}	Unit
Operation	System clock (ICLK) ^{*1*2}	1.8 to 5.5 V	f	0.032768	—	24	MHz
frequency		1.6 to 1.8 V		0.032768	—	4	
	Peripheral module clock (PCLKB)	1.8 to 5.5 V		—	—	24	
		1.6 to 1.8 V		—	—	4	
	Peripheral module clock (PCLKD) ^{*3}	1.8 to 5.5 V		—	—	24	
		1.6 to 1.8 V		—	—	4	

Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 2. The frequency accuracy of ICLK must be ± 1.0% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Note 3. The lower-limit frequency of PCLKD is 1 MHz when the ADC12 is in use.

Note 4. The maximum value of operation frequency does not include internal oscillator errors. For details on the range for guaranteed operation, see Table 2.22.

Note 5. The lower-limit frequency of PCLKB is 1 MHz when the SDADC24 is in use.

Table 2.20 Operation frequency in low-speed mode

Conditions: VCC = AVCC = 1.6 to 5.5 V

Parameter			Symbol	Min	Тур	Max ^{*4}	Unit
	System clock (ICLK) ^{*1*2}	1.6 to 5.5 V	f	0.032768	_	2	MHz
frequency	Peripheral module clock (PCLKB) *5	1.6 to 5.5 V		—	_	2	
	Peripheral module clock (PCLKD) ^{*3}	1.6 to 5.5 V		—	—	2	

Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory.

Note 2. The frequency accuracy of ICLK must be ± 1.0% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Note 3. The lower-limit frequency of PCLKD is 1 MHz when the ADC12 is in use.

Note 4. The maximum value of operation frequency does not include internal oscillator errors. For details on the range for guaranteed operation, see Table 2.22.

Note 5. The lower-limit frequency of PCLKB is 1 MHz when the SDADC24 is in use.

Table 2.21 Operation frequency in Subosc-speed mode

Conditions: VCC = AVCC = 1.6 to 5.5 V

Parameter			Symbol	Min	Тур	Max	Unit
	System clock (ICLK) ^{*1}	1.6 to 5.5 V	f	27.8528	32.768	37.6832	kHz
frequency	Peripheral module clock (PCLKB) *3	1.6 to 5.5 V		_	_	37.6832	
	Peripheral module clock (PCLKD) ^{*2}	1.6 to 5.5 V		—	_	37.6832	

Note 1. Programming and erasing the flash memory is not possible.

Note 2. The ADC12 cannot be used.

Note 3. The SDADC24 cannot be used when PCLKB is selected to subosc, but operating clock of SDADC24 can use PLL clock multiplied from subosc.

2.3.2 Clock Timing

Table 2.22Clock timing (1 of 2)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
EXTAL external clock input cycle time	t _{Xcyc}	50	—	—	ns	Figure 2.3
EXTAL external clock input high pulse width	t _{XH}	20	—	—	ns	
EXTAL external clock input low pulse width	t _{XL}	20	—	—	ns	
EXTAL external clock rising time	t _{Xr}	_	—	5	ns	
EXTAL external clock falling time	t _{Xf}	_	—	5	ns	
EXTAL external clock input wait time ^{*1}	t _{EXWT}	0.3	—	—	μs	
EXTAL external clock input frequency	f _{EXTAL}	_	—	20	MHz	1.8 ≤ VCC ≤ 5.5
		—	—	4		1.6 ≤ VCC < 1.8
Main clock oscillator oscillation frequency	f _{MAIN}	1	—	20	MHz	1.8 ≤ VCC ≤ 5.5
		1	—	4		1.6 ≤ VCC < 1.8
LOCO clock oscillation frequency	f _{LOCO}	27.8528	32.768	37.6832	kHz	—
LOCO clock oscillation stabilization time	t _{LOCO}	—	—	100	μs	Figure 2.4
IWDT-dedicated clock oscillation frequency	f _{ILOCO}	12.75	15	17.25	kHz	—
MOCO clock oscillation frequency	f _{MOCO}	6.8	8	9.2	MHz	—
MOCO clock oscillation stabilization time	t _{MOCO}	—	—	1	μs	_

Table 2.22Clock timing (2 of 2)

Parameter	Symbol	Min	Тур	Мах	Unit	Test conditions
HOCO clock oscillation frequency ^{*5} 100-pin LQFP	f _{HOCO24}	23.76	24	24.24	MHz	Ta =-20 to 85°C, 1.6 ≤ VCC ≤ 5.5
		23.64		24.36		Ta =-40 to 105°C, 1.6 ≤ VCC ≤ 5.5
	f _{HOCO32}	31.68	32	32.32		Ta =-20 to 85°C, 1.6 ≤ VCC ≤ 5.5
		31.52		32.48		Ta =-40 to 105°C, 1.6 ≤ VCC ≤ 5.5
	fHOCO48	47.52	48	48.48		Ta =-20 to 85°C, 1.6 ≤ VCC ≤ 5.5
		47.28		48.72		Ta =-40 to 105°C, 1.6 ≤ VCC ≤ 5.5
	f _{HOCO64}	63.36	64	64.64		Ta =-20 to 85°C, 1.6 ≤ VCC ≤ 5.5
		63.04		64.96		Ta =-40 to 105°C, 1.6 ≤ VCC ≤ 5.5
HOCO clock oscillation frequency ^{*5} 80-pin LQFP	f _{HOCO24}	23.76	24	24.24	MHz	Ta =-10 to 70°C, 1.6 ≤ VCC ≤ 5.5
64-pin LQFP		23.72		23.29		Ta =-20 to 85°C, 1.6 ≤ VCC ≤ 5.5
		23.57		24.44		Ta =-40 to 105°C, 1.6 ≤ VCC ≤ 5.5
	f _{HOCO32}	31.68	32	32.32		Ta =-10 to 70°C, 1.6 ≤ VCC ≤ 5.5
		31.62		32.39		Ta =-20 to 85°C, 1.6 ≤ VCC ≤ 5.5
		31.43		32.58		Ta =-40 to 105°C, 1.6 ≤ VCC ≤ 5.5
	f _{HOCO48}	47.52	48	48.48		Ta =-10 to 70°C, 1.6 ≤ VCC ≤ 5.5
		47.43		48.58		Ta =-20 to 85°C, 1.6 ≤ VCC ≤ 5.5
		47.14		48.87		Ta =-40 to 105°C, 1.6 ≤ VCC ≤ 5.5
	f _{HOCO64}	63.36	64	64.64		Ta =-10 to 70°C, 1.6 ≤ VCC ≤ 5.5
		63.24		64.77		Ta =-20 to 85°C, 1.6 ≤ VCC ≤ 5.5
		62.85		65.16		Ta =-40 to 105°C, 1.6 ≤ VCC ≤ 5.5
HOCO clock oscillation stabilization time ^{*3 *4}	t _{HOCO24} t _{HOCO32} t _{HOCO48} t _{HOCO64}	_	1.9	—	μs	Figure 2.5
Sub-clock oscillator oscillation frequency*6	f _{SUB}	-	32.768	_	kHz	—
Sub-clock oscillation stabilization time*2	t _{SUBOSC}	—	0.5	-	s	Figure 2.6
PLL input frequency*7	f _{PLLIN}	_	32.768	_	kHz	—
PLL clock frequency	f _{PLL}	10	12.8	13	MHz	—
PLL clock oscillation stabilization time*8	t _{PLLWT}	—	—	10	ms	Figure 2.7

Note 1. Time until the clock can be used after the Main Clock Oscillator stop bit (MOSCCR.MOSTP) is set to 0 (operating) when the external clock is stable.

- Note 2. After changing the setting of the SOSCCR.SOSTP bit to start sub-clock oscillator operation, only start using the sub-clock oscillator after the sub-clock oscillation stabilization wait time elapsed. Use the oscillator wait time value recommended by the oscillator manufacturer.
- Note 3. This is a characteristic when the HOCOCR.HCSTP bit is set to 0 (oscillation) in the MOCO stop state. When the HOCOCR.HCSTP bit is set to 0 (oscillation) during MOCO oscillation, this specification is shortened by 1 µs.
- Note 4. Check OSCSF.HOCOSF to confirm whether stabilization time has elapsed.
- Note 5. Accuracy at production test.
- Note 6. The power supply of sub-clock oscillator is VRTC.
- Note 7. The VCC range that the PLL can be used is 2.4 to 5.5 V (same as the power supply range of 24-bit Sigma-Delta A/D converter).
- Note 8. This is a characteristic when PLLCR.PLLSTP bit is set to 0 (operation) in SUBOSC operation state. After setting the PLLSTP bit to 0, confirm that the OSCSF.PLLSF bit is set to 1 before using the PLL clock for 24-bit Sigma-Delta A/D converter clock (SDADCCLK).

Figure 2.3 EXTAL external clock input timing

Figure 2.4 LOCO clock oscillation start timing

2.3.3 Reset Timing

Table 2.23 Reset timing

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions		
RES pulse width	At power-on (POR)	t _{RESWP}	10	—	-	ms	Figure 2.8	
	Not at power-on	t _{RESW}	30	—	_	μs	Figure 2.9	
Wait time after RES cancellation (at	LVD0 enabled ^{*1}	t _{RESWT}	—	0.9	_	ms	Figure 2.8	
power-on)	LVD0 disabled ^{*2}		—	0.2	—			
Wait time after RES cancellation (during	LVD0 enabled ^{*1}	t _{RESWT2}	—	0.9	—	ms	Figure 2.9	
powered-on state)	LVD0 disabled ^{*2}		—	0.2	—			
Wait time after internal reset	LVD0 enabled ^{*1}	t _{RESWT3}	—	0.9	—	ms	Figure 2.10	
cancellation (Watchdog timer reset, SRAM parity error reset, SRAM ECC error reset, bus master MPU error reset, bus slave MPU error reset, stack pointer error reset, software reset)	LVD0 disabled ^{*2}		_	0.15	_			

Note 1. When OFS1.LVDAS = 0. Note 2. When OFS1.LVDAS = 1.

Figure 2.10 Reset input timing (2)

2.3.4 Wakeup Time

Table 2.24Timing of recovery from low power modes (1)

Parameter				Symbol	Min	Тур	Max	Unit	Test conditions
Recovery time from Software Standby mode ^{*1}	High- speed mode	Crystal resonator connected to main clock oscillator	System clock source is main clock oscillator (20 MHz) ^{*2}	t _{SBYMC}	_	2	3	ms	
		External clock input to main clock oscillator	System clock source is main clock oscillator (20 MHz) ^{*3}	t _{SBYEX}	_	2.4	3.1	μs	
		System clock s (HOCO clock is	ource is HOCO s 32 MHz)	t _{SBYHO}	_	4.9	6.2	μs	Figure 2.11
		System clock s (HOCO clock is	ource is HOCO s 48 MHz)	t _{SBYHO}	—	4.8	6	μs	
		System clock s (HOCO clock is	ource is HOCO s 64 MHz)	t _{SBYHO}	_	4.9	6.2	μs	
		System clock s MHz)	ource is MOCO (8	t _{SBYMO}	_	4	5	μs	

Note 1. The division ratio of ICLK and PCLKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source.

Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x05.

Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00.

Table 2.25 Timing of recovery from low power modes (2)

Parameter				Symbol	Min	Тур	Max	Unit	Test conditions
Recovery time from Software Standby mode ^{*1}	Middle- speed mode	Crystal resonator connected to main clock oscillator	System clock source is main clock oscillator (20 MHz) ^{*2}	t _{SBYMC}	_	2	3	ms	
		External clock input to main clock oscillator	System clock source is main clock oscillator (20 MHz) ^{*3} VCC = 1.8 V to 5.5 V	t _{SBYEX}		2.4	3.1	μs	
			System clock source is main clock oscillator (4 MHz) ^{*3} VCC = 1.6 V to 1.8 V		—	8.5	9.1		
		System clock source is	VCC = 1.8 V to 5.5 V ^{*4}	t _{SBYHO}	-	5.2	6.5	μs	Figure 2.11
		НОСО	VCC = 1.6 V to 1.8 V	-	_	13.2	15		
		System clock source is	VCC = 1.8 V to 5.5 V	t _{SBYMO}	—	4	5	μs	
		MOCO (8 MHz)	VCC = 1.6 V to 1.8 V		—	7.2	9		

Note 1. The division ratio of ICLK and PCLKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source.

Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x05.

Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00.

Note 4. The system clock is 24 MHz.

Parameter			Symbol	Min	Тур	Max	Unit	Test conditions	
Recovery time from Software Standby mode ^{*1}	Low-speed mode	Crystal resonator connected to main clock oscillator	System clock source is main clock oscillator (2 MHz) ^{*2}	t _{SBYMC}	_	2	3	ms	Figure 2.11
		External clock input to main clock oscillator	System clock source is main clock oscillator (2 MHz) ^{*3}	t _{SBYEX}	_	14.5	16	μs	
		System clock source is MOCO (8 MHz)		t _{SBYMO}	—	12	15	μs	

 Table 2.26
 Timing of recovery from low power modes (3)

Note 1. The division ratio of ICLK and PCLKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source.

Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x05.

Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00.

 Table 2.27
 Timing of recovery from low power modes (4)

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions	
Recovery time from Software Standby mode ^{*1}	Subosc-speed mode	System clock source is sub-clock oscillator (32.768 kHz)	t _{SBYSC}	_	0.85	1	ms	Figure 2.11
		System clock source is LOCO (32.768 kHz)	t _{SBYLO}	_	0.85	1.2	ms	

Note 1. The sub-clock oscillator or LOCO itself continues oscillating in Software Standby mode during Subosc-speed mode.

Parameter	Parameter		Min	Тур	Max	Unit	Test conditions
Recovery time from Software Standby mode to Snooze mode	High-speed mode System clock source is HOCO	t _{SNZ}	—	4.1	5.2	μs	Figure 2.12
	Middle-speed mode System clock source is HOCO (24 MHz) VCC = 1.8 V to 5.5 V	t _{SNZ}	_	4.2	5.3	μs	
	Middle-speed mode System clock source is HOCO (24 MHz) VCC = 1.6 V to 1.8 V	t _{SNZ}	—	8.3	10	μs	
	Low-speed mode System clock source is MOCO (2 MHz)	t _{SNZ}	—	6.7	8.0	μs	

Table 2.28 Timing of recovery from low power modes (5)

Figure 2.12 Recovery timing from Software Standby mode to Snooze mode

2.3.5 NMI and IRQ Noise Filter

Table 2.29 NMI and IRQ noise filter

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions	
NMI pulse	t _{NMIW}	200	—	-	ns	NMI digital filter disabled	t _{Pcyc} × 2 ≤ 200 ns
width		t _{Pcyc} × 2 ^{*1}	-	—			t _{Pcyc} × 2 > 200 ns
		200	-	—		NMI digital filter enabled	t _{NMICK} × 3 ≤ 200 ns
		t _{NMICK} × 3.5 ^{*2}	-	_			t _{NMICK} × 3 > 200 ns
IRQ pulse	t _{IRQW}	200	-	-	ns	IRQ digital filter disabled	t _{Pcyc} × 2 ≤ 200 ns
width		t _{Pcyc} × 2 ^{*1}	—	—			t _{Pcyc} × 2 > 200 ns
		200	-	—		IRQ digital filter enabled	t _{IRQCK} × 3 ≤ 200 ns
		t _{IRQCK} × 3.5 ^{*3}	—	_			t _{IRQCK} × 3 > 200 ns

Note: 200 ns minimum in Software Standby mode.

Note: If the clock source is being switched it is needed to add 4 clock cycle of switched source.

Note 1. t_{Pcvc} indicates the PCLKB cycle.

Note 2. t_{NMICK} indicates the cycle of the NMI digital filter sampling clock.

Note 3. t_{IRQCK} indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 7).

Figure 2.13 NMI interrupt input timing

Figure 2.14 IRQ interrupt input timing

2.3.6 I/O Ports, POEG, GPT, AGT/AGTW, and ADC12 Trigger Timing

Table 2.30	I/O Ports, POEG, GPT, AGT/AGTW, and ADC12 trig	ger timing	I

Parameter			Symbol	Min	Max	Unit	Test conditions
I/O Ports	Input data pulse width	2.7 V ≤ VCC ≤ 5.5 V	t _{PRW}	2	—	t _{Pcyc}	Figure 2.15
		2.4 V ≤ VCC < 2.7 V		3			
		1.6 V ≤ VCC < 2.4 V		4			
POEG	POEG input trigger pulse width	•	t _{POEW}	3	—	t _{Pcyc}	Figure 2.16
GPT	Input capture pulse width	Single edge	t _{GTICW}	1.5	—	t _{PDcyc}	Figure 2.17
		Dual edge 2.5		—			
AGT/AGTW	AGTIO/AGTWIO, AGTEE/ AGTWEE input cycle	1.8 V ≤ VCC ≤ 5.5 V	t _{ACYC} *1	250	—	ns	Figure 2.18
		1.6 V ≤ VCC < 1.8 V		2000	—	ns	
		1.8 V ≤ VCC ≤ 5.5 V	t _{ACKWH} ,	100	—	ns	
	AGTWEE input high-level width, low-level width	1.6 V ≤ VCC < 1.8 V	t _{ackwl}	800	_	ns	
	AGTIO/AGTWIO, AGTO/	2.7 V ≤ VCC ≤ 5.5 V	t _{ACYC2}	62.5	—	ns	Figure 2.18
	AGTWO, AGTOA/ AGTWOA,AGTOB/AGTWOB	2.4 V ≤ VCC < 2.7 V		125	_	ns	-
	output cycle	1.8 V ≤ VCC < 2.4 V	1	250	—	ns	
		1.6 V ≤ VCC < 1.8 V]	500	—	ns	
ADC12	12-bit A/D converter trigger input	pulse width	t _{TRGW}	1.5	—	t _{Pcyc}	Figure 2.19

Note 1. Constraints on AGTIO input: $t_{Pcyc} \times 2$ (t_{Pcyc} : PCLKB cycle) < t_{ACYC} .

Figure 2.18 AGT/AGTW I/O timing

Figure 2.19 ADC12 trigger input timing

2.3.7 CAC Timing

Table 2.31 CAC timing

Conditions: VCC = AVCC = 1.6 to 5.5 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions	
CAC	CACREF input pulse width	$t_{Pcyc}^{*1} \le t_{CAC}^{*2}$	t _{CACREF}	$4.5 \times t_{CAC} + 3 \times t_{Pcyc}$	_	—	ns	—
	WIGHT	$t_{Pcyc}^{*1} > t_{CAC}^{*2}$		$5 \times t_{CAC} + 6.5 \times t_{Pcyc}$		_	ns	

Note 1. t_{Pcyc}: PCLKB cycle.

Note 2. t_{CAC} : CAC count clock source cycle.

2.3.8 SCI Timing

Table 2.32SCI timing (1)

Conditions: VCC = AVCC = 1.6 to 5.5 V

Parame	ter			Symbol	Min	Max	Unit	Test conditions
SCI	Input clock cycle	Asynchronous	2.7 V ≤ VCC ≤ 5.5 V	t _{Scyc}	125	—	ns	Figure 2.20
			2.4 V ≤ VCC < 2.7 V		250	—		
			1.8 V ≤ VCC < 2.4 V		500	—		
			1.6 V ≤ VCC < 1.8 V		1000	_		
		Clock	2.7 V ≤ VCC ≤ 5.5 V		187.5	_		
		synchronous	2.4 V ≤ VCC < 2.7 V		375	_		
			1.8 V ≤ VCC < 2.4 V		750	_		
			1.6 V ≤ VCC < 1.8 V		1500	—		
	Input clock pulse widt	h		t _{SCKW}	0.4	0.6	t _{Scyc}	
	Input clock rise time			t _{SCKr}	—	20	ns	
	Input clock fall time			t _{SCKf}	_	20	ns	
	Output clock cycle	Asynchronous	2.7 V ≤ VCC ≤ 5.5 V	t _{Scyc}	187.5	_	ns	_
			2.4 V ≤ VCC < 2.7 V	UScyc	375	—		
			1.8 V ≤ VCC < 2.4 V		750	—		
			1.6 V ≤ VCC < 1.8 V	-	1500	_		
		Clock	2.7 V ≤ VCC ≤ 5.5 V		125	_		
		synchronous	2.4 V ≤ VCC < 2.7 V		250	—		
			1.8 V ≤ VCC < 2.4 V		500	—		
			1.6 V ≤ VCC < 1.8 V		1000	_		
	Output clock pulse with	dth	1	t _{SCKW}	0.4	0.6	t _{Scyc}	
	Output clock rise time	1	1.8 V ≤ VCC ≤ 5.5 V	t _{SCKr}	—	20	ns	
			1.6 V ≤ VCC < 1.8 V		—	30		
	Output clock fall time		1.8 V ≤ VCC ≤ 5.5 V	t _{SCKf}	—	20	ns	
			1.6 V ≤ VCC < 1.8 V		—	30		
	Transmit data delay	Clock	1.8 V ≤ VCC ≤ 5.5 V	t _{TXD}	—	40	ns	Figure 2.21
	time (master)	synchronous	1.6 V ≤ VCC < 1.8 V		—	45		
	Transmit data delay	Clock	2.7 V ≤ VCC ≤ 5.5 V		—	55	ns	
	time (slave)	synchronous	2.4 V ≤ VCC < 2.7 V		—	60		
			1.8 V ≤ VCC < 2.4 V		—	100		
			1.6 V ≤ VCC < 1.8 V		—	125		
	Receive data setup	Clock	2.7 V ≤ VCC ≤ 5.5 V	t _{RXS}	45	—	ns	
	time (master)	synchronous	2.4 V ≤ VCC < 2.7 V		55	—		
	Receive data setup time (slave)Clock synchronouReceive data hold time (master)Clock sync		1.8 V ≤ VCC < 2.4 V		90	—		
			1.6 V ≤ VCC < 1.8 V		110	—		
			2.7 V ≤ VCC ≤ 5.5 V		40	—	ns	
		synchronous	1.6 V ≤ VCC < 2.7 V		45	-		
		Clock synchrono	pus	t _{RXH}	5	—	ns	
	Receive data hold time (slave)	Clock synchrono	bus	t _{RXH}	40	—	ns	

Figure 2.21 SCI input/output timing in clock synchronous mode

Table 2.33 SCI timing (2) (1 of 2)

Conditions: VCC = AVCC = 1.6 to 5.5 V

arame	ter	Symbol	Min	Max	Unit ^{*1}	Test conditions		
imple	SCK clock cycl	e output	2.7 V ≤ VCC ≤ 5.5 V	t _{SPcyc}	125	_	ns	Figure 2.22
PI	(master)		2.4 V ≤ VCC < 2.7 V		250	_		
			1.8 V ≤ VCC < 2.4 V		500	_		
			1.6 V ≤ VCC < 1.8 V		1000	_		
	SCK clock cycl	e input	2.7 V ≤ VCC ≤ 5.5 V		187.5	_		
	(slave)		2.4 V ≤ VCC < 2.7 V		375	_		
			1.8 V ≤ VCC < 2.4 V		750	_		
			1.6 V ≤ VCC < 1.8 V		1500	_		
	SCK clock high	pulse widt	h	t _{SPCKWH}	0.4	0.6	t _{SPcyc}	-
	SCK clock low	pulse width	1	t _{SPCKWL}	0.4	0.6	t _{SPcyc}	-
	SCK clock rise	and fall	1.8 V ≤ VCC ≤ 5.5 V	t _{SPCKr} ,	_	20	ns	-
	time		1.6 V ≤ VCC < 1.8 V	t _{SPCKf}	_	30	-	
	Data input	Master	2.7 V ≤ VCC ≤ 5.5 V	t _{SU}	45	_	ns	Figure 2.23 to
	setup time		2.4 V ≤ VCC < 2.7 V		55	_	-	Figure 2.26
			1.8 V ≤ VCC < 2.4 V		80	_		
			1.6 V ≤ VCC < 1.8 V		110	_		
		Slave	2.7 V ≤ VCC ≤ 5.5 V		40	_		
			1.6 V ≤ VCC < 2.7 V		45	_		
	Data input	Master		t _H	33.3	_	ns	-
	hold time	Slave			40	_		
	SS input setup	time		t _{LEAD}	1	_	t _{SPcyc}	-
	SS input hold ti	ime		t _{LAG}	1	_	t _{SPcyc}	-
	Data output	Master	1.8 V ≤ VCC ≤ 5.5 V	t _{OD}	_	40	ns	-
	delay time		1.6 V ≤ VCC < 1.8 V		_	50		
		Slave	2.4 V ≤ VCC ≤ 5.5 V		_	65		
			1.8 V ≤ VCC < 2.4 V		_	100		
			1.6 V ≤ VCC < 1.8 V		_	125		
	Data output	Master	2.7 V ≤ VCC ≤ 5.5 V	t _{OH}	-10	_	ns	-
	hold time		2.4 V ≤ VCC < 2.7 V		-20	_		
			1.8 V ≤ VCC < 2.4 V		-30	_		
			1.6 V ≤ VCC < 1.8 V		-40	_		
		Slave			-10	_	1	
	Data rise and	Master	1.8 V ≤ VCC ≤ 5.5 V	t _{Dr} , t _{Df}	_	20	ns	1
	fall time		1.6 V ≤ VCC < 1.8 V		_	30	1	
		Slave	1.8 V ≤ VCC ≤ 5.5 V		_	20		
			1.6 V ≤ VCC < 1.8 V		_	30	1	

Table 2.33 SCI timing (2) (2 of 2)

Parame	ter	Symbol	Min	Max	Unit ^{*1}	Test conditions		
Simple	Slave access time	2.4 V ≤ VCC ≤ 5.5 V		t _{SA}	—	6	t _{Pcyc}	Figure 2.26
SPI			24 MHz ≤ PCLKB ≤ 32 MHz		_	7		
			PCLKB < 24 MHz		_	6		
		1.6 V ≤ VCC < 1.8 V		—	6	t _{Pcyc}	-	
	Slave output release time	2.4 V ≤ VCC ≤ 5.5 V	t _{REL}	-	6			
		1.8 V ≤ VCC < 2.4 V	24 MHz ≤ PCLKB ≤ 32 MHz	-	_	7		
			PCLKB < 24 MHz		—	6	1	
		1.6 V ≤ VCC < 1.8 V	•		_	6	1	

Note 1. t_{Pcyc}: PCLKB cycle.

Table 2.34 SCI timing (3)

Parameter		Symbol	Min	Мах	Unit	Test conditions	
Simple IIC	SDA input rise time	t _{Sr}	—	1000	ns	Figure 2.27	
(Standard mode)	SDA input fall time	t _{Sf}	—	300	ns	_	
	SDA input spike pulse removal time	t _{SP}	0	4 × t _{IICcyc} *1	ns	_	
	Data input setup time	t _{SDAS}	250		ns	-	
	Data input hold time	t _{SDAH}	0	_	ns	_	
	SCL, SDA capacitive load	C _b *2	_	400	pF		
Simple IIC (Fast	SDA input rise time	t _{Sr}	_	300	ns	Figure 2.27	
mode)	SDA input fall time	t _{Sf}	_	300	ns		
	SDA input spike pulse removal time	t _{SP}	0	4 × t _{IICcyc} *1	ns		
	Data input setup time	t _{SDAS}	100	_	ns	_	
	Data input hold time	t _{SDAH}	0	_	ns	_	
	SCL, SDA capacitive load	C _b *2	_	400	pF	1	

Note 1. t_{IICcyc} : Clock cycle selected by the SMR.CKS[1:0] bits. Note 2. C_b indicates the total capacity of the bus line.

Figure 2.27 SCI simple IIC mode timing

2.3.9 SPI Timing

Table 2.35SPI timing (1 of 3)

Para	imeter			Symbol	Min	Max	Unit ^{*1}	Test conditions
SPI	RSPCK	Master	2.7 V ≤ VCC ≤ 5.5 V	t _{SPcyc}	62.5	_	ns	Figure 2.28
	clock cycle		2.4 V ≤ VCC < 2.7 V		125	_		C = 30 pF
			1.8 V ≤ VCC < 2.4 V		250	_		
			1.6 V ≤ VCC < 1.8 V		500	—		
		Slave	2.7 V ≤ VCC ≤ 5.5 V		187.5	_		
			2.4 V ≤ VCC < 2.7 V		375	_		
			1.8 V ≤ VCC < 2.4 V		750	—		
	RSPCK clock high pulse width		1.6 V ≤ VCC < 1.8 V		1500	—		
		Master		t _{spcкwн}	(t _{SPcyc} - t _{SPCKr} - t _{SPCKf}) / 2 - 3	_	ns	
		Slave			3 × t _{Pcyc}	—	1	
	RSPCK clock low pulse width	Master		t _{spckwl}	(t _{SPcyc} - t _{SPCKr} - t _{SPCKf}) / 2 - 3	_	ns	
		Slave			3 × t _{Pcyc}	—	_	
	RSPCK	Output	2.7 V ≤ VCC ≤ 5.5 V	t _{SPCKr} ,	_	10	ns	
	clock rise and fall time		2.4 V ≤ VCC < 2.7 V	t _{SPCKf}	_	15	1	
			1.8 V ≤ VCC ≤ 2.4 V		_	20	1	
			1.6 V ≤ VCC < 1.8 V		_	30	1	
	-	Input			_	0.1	µs/V	

Table 2.35SPI timing (2 of 3)

Para	meter				Symbol	Min	Мах	Unit ^{*1}	Test conditions
SPI	Data input	Master	2.7 V ≤ VCC ≤ 5.5 V		t _{SU}	10	_	ns	Figure 2.29
	setup time		2.4 V ≤ VCC < 2.7 V	16 MHz < PCLKB ≤ 32 MHz		30	_		to Figure 2.34 C = 30 pF
				PCLKB ≤ 16 MHz	-	10	—		
			1.8 V ≤ VCC < 2.4 V	16 MHz < PCLKB ≤ 32 MHz		55	_		
				8 MHz < PCLKB ≤ 16 MHz		30	_		
				PCLKB ≤ 8 MHz	-	10	_		
			1.6 V ≤ VCC < 1.8 V	CC < 1.8 V		10	_	ĺ	
		Slave	2.4 V ≤ VCC ≤ 5.5 V		-	10	—		
			1.8 V ≤ VCC < 2.4 V		-	15	—		
			1.6 V ≤ VCC < 1.8 V	6 V ≤ VCC < 1.8 V		20	—		
	Data input hold time	Master (RSPCK	is PCLKB/2)	PCLKB/2)		0	_	ns	
		Master (RSPCK	is not PCLKB/2)		t _H	t _{Pcyc}	—		
		Slave				20	_		
SPI	SSL setup time	Master	1.8 V ≤ VCC ≤ 5.5 V		t _{LEAD}	-30 + N × t _{SPcyc} *2	_	ns	
			1.6 V ≤ VCC < 1.8 V			-50 + N × t _{SPcyc} *2	_		
		Slave	I		-	6 × t _{Pcyc}	_	ns	
	SSL hold time	Master			t _{LAG}	-30 + N × t _{SPcyc} *3	_	ns	
		Slave			-	6 × t _{Pcyc}	_	ns	
	Data output	Master	2.7 V ≤ VCC ≤ 5.5 V		t _{OD}	_	14	ns	
	delay time		2.4 V ≤ VCC < 2.7 V		-	_	20	-	
			1.8 V ≤ VCC < 2.4 V		-	_	25		
			1.6 V ≤ VCC < 1.8 V		-	_	30		
		Slave	2.7 V ≤ VCC ≤ 5.5 V		-	_	50		
			2.4 V ≤ VCC < 2.7 V		-	_	60		
			1.8 V ≤ VCC < 2.4 V		-	_	85		
			1.6 V ≤ VCC < 1.8 V		-	_	110		
	Data output	Master				0	—	ns	
	hold time Slave				0	-			
	Successive Master transmission			t _{TD}	t _{SPcyc} + 2 × t _{Pcyc}	8 × t _{SPcyc} + 2 × t _{Pcyc}	ns		
	delay time	Slave]	6 × t _{Pcyc}	—]	

Table 2.35SPI timing (3 of 3)

ara	meter			Symbol	Min	Max	Unit ^{*1}	Test conditions
PI	MOSI and	Output	2.7 V ≤ VCC ≤ 5.5 V	t _{Dr} , t _{Df}	—	10	ns	Figure 2.29
	MISO rise and fall time		2.4 V ≤ VCC < 2.7 V		—	15		to Figure 2.34 C = 30 pF
			1.8 V ≤ VCC < 2.4 V		— :	20		
			1.6 V ≤ VCC < 1.8 V		—	30]	
		Input	•		—	1	μs	
	SSL rise and	Output	2.7 V ≤ VCC ≤ 5.5 V	t _{SSLr} ,	—	10	ns	-
	fall time		2.4 V ≤ VCC < 2.7 V	tsslf	—	15	1	
			1.8 V ≤ VCC < 2.4 V		—	20]	
			1.6 V ≤ VCC < 1.8 V		—	30		
		Input			—	1	μs	
	Slave access	time	2.4 V ≤ VCC ≤ 5.5 V	t _{SA}	-	2 × t _{Pcyc} + 100	ns	Figure 2.33 and Figure 2.34 C = 30 pF
			1.8 V ≤ VCC < 2.4 V		_	2 × t _{Pcyc} + 140		
			1.6 V ≤ VCC < 1.8 V		—	2 × t _{Pcyc} + 180		
	Slave output r time	elease	2.4 V ≤ VCC ≤ 5.5 V	t _{REL}	-	2 × t _{Pcyc} + 100	ns	
			1.8 V ≤ VCC < 2.4 V		-	2 × t _{Pcyc} + 140		
			1.6 V ≤ VCC < 1.8 V		-	2 × t _{Pcyc} + 180		

Note 1. t_{Pcyc}: PCLKB cycle.

Note 2. N is set as an integer from 1 to 8 by the SPCKD register.

Note 3. N is set as an integer from 1 to 8 by the SSLND register.

Figure 2.30 SPI timing (master, CPHA = 0) (bit rate: PCLKB division ratio is set to 1/2)

Figure 2.32 SPI timing (master, CPHA = 1) (bit rate: PCLKB division ratio is set to 1/2)

Figure 2.34 SPI timing (slave, CPHA = 1)

2.3.10 IIC Timing

Table 2.36 IIC timing

Conditions: VCC = AVCC = 2.7 to 5.5 V

Parameter		Symbol	Min ^{*1}	Мах	Unit	Test conditions
IIC (standard mode,	SCL input cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 1300	—	ns	Figure 2.35
SMBus)	SCL input high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	—	ns	
	SCL input low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	_	ns	
	SCL, SDA input rise time	t _{Sr}	—	1000	ns	
	SCL, SDA input fall time	t _{Sf}	—	300	ns	
	SCL, SDA input spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns	
	SDA input bus free time (when wakeup function is disabled)	t _{BUF}	3 (6) × t _{IICcyc} + 300	—	ns	
	SDA input bus free time (when wakeup function is enabled)	t _{BUF}	3 (6) × t _{IICcyc} + 4 × t _{Pcyc} + 300	—	ns	
	START condition input hold time (when wakeup function is disabled)	t _{STAH}	t _{IICcyc} + 300	-	ns	
	START condition input hold time (when wakeup function is enabled)	t _{STAH}	$\frac{1}{300} (5) \times t_{\text{IICcyc}} + t_{\text{Pcyc}} + 300$	—	ns	
	Repeated START condition input setup time	t _{STAS}	1000	—	ns	
	STOP condition input setup time	t _{STOS}	1000	—	ns	
	Data input setup time	t _{SDAS}	t _{IICcyc} + 50	—	ns	
	Data input hold time	t _{SDAH}	0	—	ns	
	SCL, SDA capacitive load	C _b	—	400	pF	
IIC (Fast mode)	SCL input cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 600	_	ns	Figure 2.35
	SCL input high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	_	ns	
	SCL input low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	—	ns	
	SCL, SDA input rise time	t _{Sr}	—	300	ns	
	SCL, SDA input fall time	t _{Sf}	_	300	ns	
	SCL, SDA input spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns	
	SDA input bus free time (When wakeup function is disabled)	t _{BUF}	3 (6) × t _{IICcyc} + 300	—	ns	
	SDA input bus free time (When wakeup function is enabled)	t _{BUF}	3 (6) × t _{IICcyc} + 4 × t _{Pcyc} + 300	_	ns	
	START condition input hold time (When wakeup function is disabled)	t _{STAH}	t _{IICcyc} + 300	—	ns	
	START condition input hold time (When wakeup function is enabled)	t _{STAH}	$\frac{1}{300} \times t_{\text{IICcyc}} + t_{\text{Pcyc}} + \frac{1}{300}$	—	ns	
	Repeated START condition input setup time	t _{STAS}	300	-	ns	
	STOP condition input setup time	t _{STOS}	300	_	ns	
	Data input setup time	t _{SDAS}	t _{IICcyc} + 50	_	ns	
	Data input hold time	t _{SDAH}	0	_	ns	
	SCL, SDA capacitive load	C _b	_	400	pF	

Note: t_{IICcyc} : IIC internal reference clock (IIC ϕ) cycle, t_{Pcyc} : PCLKB cycle

Note 1. Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.

2.3.11 CLKOUT Timing

Table 2.37 CLKOUT timing

Parameter			Symbol	Min	Max	Unit	Test conditions
CLKOUT	CLKOUT pin output cycle ^{*1}	2.7 V ≤ VCC ≤ 5.5 V	t _{Ccyc}	62.5	_	ns	Figure 2.36
		1.8 V ≤ VCC < 2.7 V		125	_		
		1.6 V ≤ VCC < 1.8 V		250	_		
	CLKOUT pin high pulse	2.7 V ≤ VCC ≤ 5.5 V	t _{CH}	15	_	ns	
	width ^{*2}	1.8 V ≤ VCC < 2.7 V		30	_		
	1.6 V ≤ VCC < 1.8 V 150		_				
	CLKOUT pin low pulse	2.7 V ≤ VCC ≤ 5.5 V	t _{CL}	15	_	ns]
	width ^{*2}	1.8 V ≤ VCC < 2.7 V		30	_		
		1.6 V ≤ VCC < 1.8 V		150	_		
	CLKOUT pin output rise time	2.7 V ≤ VCC ≤ 5.5 V	t _{Cr}	—	12	ns	
		1.8 V ≤ VCC < 2.7 V		—	25		
		1.6 V ≤ VCC < 1.8 V		—	50		
	CLKOUT pin output fall time	2.7 V ≤ VCC ≤ 5.5 V	t _{Cf}	_	12	ns	
		1.8 V ≤ VCC < 2.7 V		—	25		
		1.6 V ≤ VCC < 1.8 V		_	50		

Note 1. When the EXTAL external clock input or an oscillator is used with division by 1 (the CKOCR.CKOSEL[2:0] bits are 011b and the CKOCR.CKODIV[2:0] bits are 000b) to output from CLKOUT, specifications in Table 2.37 should be satisfied with 45% to 55% of input duty cycle.

Note 2. When MOCO is selected as the clock output source (the CKOCR.CKOSEL[2:0] bits are 001b), set the clock output division ratio to be divided by 2 (the CKOCR.CKODIV[2:0] bits are 001b).

Figure 2.37 AVCC to VREFH0 voltage range

Table 2.38 A/D conversion characteristics (1) in high-speed A/D conversion mode (1 of 2)

Conditions: VCC = AVCC = VREFH0 = 4.5 to 5.5 V^{*5}, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter	Min	Тур	Max	Unit	Test conditions	
PCLKD (ADCLK) frequency		1	_	64	MHz	ADACSR.ADSAC = 0
				48	MHz	ADACSR.ADSAC = 1
Analog input capacitance ^{*2}	Cs	—	—	9 ^{*3}	pF	High-precision channel
Analog input resistance	Rs	—	—	1.3 ^{*3}	kΩ	High-precision channel
Analog input voltage range	Ain	0	—	VREFH0	V	—
Resolution		—	_	12	Bit	—
Conversion time ^{*1} (Operation at PCLKD = 64 MHz)	Permissible signal source impedance Max. = 0.3 kΩ	0.70 (0.211) ^{*4}	_	_	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x0D ADACSR.ADSAC = 0

Table 2.38 A/D conversion characteristics (1) in high-speed A/D conversion mode (2 of 2)

Conditions: VCC = AVCC = VREFH0 = 4.5 to 5.5 V^{*5}, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Max	Unit	Test conditions
Conversion time ^{*1} (Operation at PCLKD = 48 MHz)	Permissible signal source impedance Max. = 0.3 kΩ	0.67 (0.219) ^{*4}	_	_	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1
Offset error		—	±1.0	±4.5	LSB	High-precision channel
Full-scale error		—	±1.0	±4.5	LSB	High-precision channel
Quantization error		_	±0.5	_	LSB	—
Absolute accuracy		—	±2.5	±5.0	LSB	High-precision channel
DNL differential nonlinearity	error	-	±1.0	—	LSB	—
INL integral nonlinearity erro	r	—	±1.5	±3.0	LSB	—

Note: The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O V_{OH}, V_{OL}, and Other Characteristics.

Note 3. Reference data.

Note 4. () lists sampling time.

Note 5. When VREFH0 < AVCC, the MAX. values are as follows.

Absolute accuracy/Offset error/Full-scale error:

For voltage difference between AVCC and VREFH0, it should be added ± 0.5 LSB/V to the Max spec.

INL integral non-linearity error: For voltage difference between AVCC and VREFH0, it should be added ±0.2 LSB/V to the Max spec.

Table 2.39 A/D conversion characteristics (2) in high-speed A/D conversion mode

Conditions: VCC = AVCC = VREFH0 = 2.7 to 5.5 V*5, VSS = AVSS = VREFL0 = 0 V

Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Мах	Unit	Test conditions
PCLKD (ADCLK) frequency		1	—	48	MHz	—
Analog input capacitance ^{*2}	Cs	—	—	9 ^{*3}	pF	High-precision channel
Analog input resistance	Rs	—	—	1.9 ^{*3}	kΩ	High-precision channel
Analog input voltage range	Ain	0	—	VREFH0	V	—
Resolution		—	—	12	Bit	—
Conversion time ^{*1} (Operation at PCLKD = 48 MHz)	Permissible signal source impedance Max. = 0.3 kΩ	0.67 (0.219) ^{*4}	_	_	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1
Offset error		—	±1.0	±5.5	LSB	High-precision channel
Full-scale error		—	±1.0	±5.5	LSB	High-precision channel
Quantization error		—	±0.5	_	LSB	—
Absolute accuracy		_	±2.5	±6.0	LSB	High-precision channel
DNL differential nonlinearity	error	_	±1.0	_	LSB	—
INL integral nonlinearity erro	r	_	±1.5	±3.0	LSB	—

Note: The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O V_{OH}, V_{OL}, and Other Characteristics.

- Note 3. Reference data.
- Note 4. () lists sampling time.
- Note 5. When VREFH0 < AVCC, the MAX. values are as follows. Absolute accuracy/Offset error/Full-scale error: For voltage difference between AVCC and VREFH0, it should be added ±0.5 LSB/V to the Max spec. INL integral non-linearity error: For voltage difference between AVCC and VREFH0, it should be added ±0.2 LSB/V to the Max spec.

Table 2.40 A/D conversion characteristics (3) in high-speed A/D conversion mode

Conditions: VCC = AVCC = VREFH0 = 2.4 to 5.5 V^{*5}, VSS = AVSS = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min		Мах	Unit	Test conditions
PCLKD (ADCLK) frequency		1	—	32	MHz	—
Analog input capacitance ^{*2}	Cs	—	_	9 ^{*3}	pF	High-precision channel
Analog input resistance	Rs	—	—	2.2 ^{*3}	kΩ	High-precision channel
Analog input voltage range	Ain	0	—	VREFH0	V	—
Resolution		—	_	12	Bit	—
Conversion time ^{*1} (Operation at PCLKD = 32 MHz)	Permissible signal source impedance Max. = 1.3 kΩ	1.00 (0.328) ^{*4}	_	_	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1
Offset error		_	±1.0	±5.5	LSB	High-precision channel
Full-scale error		—	±1.0	±5.5	LSB	High-precision channel
Quantization error		—	±0.5	—	LSB	—
Absolute accuracy		_	±2.50	±6.0	LSB	High-precision channel
DNL differential nonlinearity	DNL differential nonlinearity error		±1.0	_	LSB	—
INL integral nonlinearity erro	r	_	±1.5	±3.0	LSB	_

Note: The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O V_{OH}, V_{OL}, and Other Characteristics.

Note 3. Reference data.

Note 4. () lists sampling time.

Note 5. When VREFH0 < AVCC, the MAX. values are as follows.

Absolute accuracy/Offset error/Full-scale error:

For voltage difference between AVCC and VREFH0, it should be added ±0.5 LSB/V to the Max spec. INL integral non-linearity error:

For voltage difference between AVCC and VREFH0, it should be added ±0.2 LSB/V to the Max spec.

Table 2.41 A/D conversion characteristics (4) in low-power A/D conversion mode (1 of 2)

Conditions: VCC = AVCC = VREFH0 = 2.7 to $5.5 V^{*5}$, VSS = AVSS = VREFL0 = 0 VReference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Max	Unit	Test conditions
PCLKD (ADCLK) frequency		1	_	24	MHz	—
Analog input capacitance ^{*2}	Cs	_	_	9 ^{*3}	pF	High-precision channel
Analog input resistance	Rs	_	_	1.9 ^{*3}	kΩ	High-precision channel
Analog input voltage range	Ain	0	_	VREFH0	V	—
Resolution	Resolution		—	12	Bit	—

Table 2.41 A/D conversion characteristics (4) in low-power A/D conversion mode (2 of 2)

Conditions: VCC = AVCC = VREFH0 = 2.7 to $5.5 V^{*5}$, VSS = AVSS = VREFL0 = 0 VReference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Мах	Unit	Test conditions
Conversion time ^{*1} (Operation at PCLKD = 24 MHz)	Permissible signal source impedance Max. = 1.1 kΩ	1.58 (0.438) ^{*4}	_	_	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1
Offset error	Offset error		±1.25	±6.0	LSB	High-precision channel
Full-scale error		_	±1.0	±6.0	LSB	High-precision channel
Quantization error		_	±0.5	_	LSB	—
Absolute accuracy		_	±2.5	±7.0	LSB	High-precision channel
DNL differential nonlinearity error		-	±1.0	—	LSB	—
INL integral nonlinearity erro	r	—	±1.5	±4.0	LSB	—

Note: The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O V_{OH}, V_{OL}, and Other Characteristics.

Note 3. Reference data.

Note 4. () lists sampling time.

Note 5. When VREFH0 < AVCC, the MAX. values are as follows.

Absolute accuracy/Offset error/Full-scale error:

For voltage difference between AVCC and VREFH0, it should be added ±0.5 LSB/V to the Max spec.

INL integral non-linearity error: For voltage difference between AVCC and VREFH0, it should be added ±0.2 LSB/V to the Max spec.

Table 2.42 A/D conversion characteristics (5) in low-power A/D conversion mode

Conditions: VCC = AVCC = VREFH0 = 2.4 to 5.5 V*5, VSS = AVSS = VREFL0 = 0 V

Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Мах	Unit	Test conditions
PCLKD (ADCLK) frequency		1	_	16	MHz	—
Analog input capacitance ^{*2}	Cs	-	_	9 ^{*3}	pF	High-precision channel
Analog input resistance	Rs	—	_	2.2 ^{*3}	kΩ	High-precision channel
Analog input voltage range	Ain	0	_	VREFH0	V	—
Resolution		-	-	12	Bit	—
Conversion time ^{*1} (Operation at PCLKD = 16 MHz)	Permissible signal source impedance Max. = 2.2 kΩ	2.38 (0.656) ^{*4}	_	_	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1
Offset error		-	±1.25	±6.0	LSB	High-precision channel
Full-scale error		_	±1.0	±6.0	LSB	High-precision channel
Quantization error		_	±0.5	_	LSB	—
Absolute accuracy		_	±2.5	±7.0	LSB	High-precision channel
DNL differential nonlinearity error		_	±1.0	_	LSB	—
INL integral nonlinearity erro	r	-	±1.5	±3.5	LSB	_

Note: The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O V_{OH}, V_{OL}, and Other Characteristics.

- Note 3. Reference data.
- Note 4. () lists sampling time.
- Note 5. When VREFH0 < AVCC, the MAX. values are as follows. Absolute accuracy/Offset error/Full-scale error: For voltage difference between AVCC and VREFH0, it should be added ±0.5 LSB/V to the Max spec. INL integral non-linearity error: For voltage difference between AVCC and VREFH0, it should be added ±0.2 LSB/V to the Max spec.

Table 2.43 A/D conversion characteristics (6) in low-power A/D conversion mode

Conditions: VCC = AVCC = VREFH0 = 1.8 to 5.5 V^{*5} , VSS = AVSS = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Мах	Unit	Test conditions
PCLKD (ADCLK) frequency		1	—	8	MHz	—
Analog input capacitance ^{*2}	Cs	_	_	9 ^{*3}	pF	High-precision channel
Analog input resistance	Rs	_	_	6 ^{*3}	kΩ	High-precision channel
Analog input voltage range	Ain	0	—	VREFH0	V	—
Resolution		—	—	12	Bit	—
Conversion time ^{*1} (Operation at PCLKD = 8 MHz)	Permissible signal source impedance Max. = 5 kΩ	4.75 (1.313) ^{*4}	_	_	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1
Offset error		—	±1.25	±7.5	LSB	High-precision channel
Full-scale error		_	±1.5	±7.5	LSB	High-precision channel
Quantization error		_	±0.5	_	LSB	—
Absolute accuracy		_	±3.0	±9.5	LSB	High-precision channel
DNL differential nonlinearity error		-	±1.25	-	LSB	—
INL integral nonlinearity erro	r	-	±1.5	±3.5	LSB	—

Note: The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O V_{OH}, V_{OL}, and Other Characteristics.

Note 3. Reference data.

Note 4. () lists sampling time.

Note 5. When VREFH0 < AVCC, the MAX. values are as follows.

Absolute accuracy/Offset error/Full-scale error:

For voltage difference between AVCC and VREFH0, it should be added ±0.5 LSB/V to the Max spec.

INL integral non-linearity error:

For voltage difference between AVCC and VREFH0, it should be added ±0.2 LSB/V to the Max spec.

Table 2.44 A/D conversion characteristics (7) in low-power A/D conversion mode (1 of 2)

Conditions: VCC = AVCC = VREFH0 = 1.6 to $5.5 V^{*5}$, VSS = AVSS = VREFL0 = 0 VReference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Max	Unit	Test conditions
PCLKD (ADCLK) frequency		1	—	4	MHz	—
Analog input capacitance ^{*2}	Cs	_	_	9 ^{*3}	pF	High-precision channel
Analog input resistance	Rs	_	_	12 ^{*3}	kΩ	High-precision channel
Analog input voltage range	Ain	0	_	VREFH0	V	—
Resolution	Resolution		_	12	Bit	—

Table 2.44 A/D conversion characteristics (7) in low-power A/D conversion mode (2 of 2)

Conditions: VCC = AVCC = VREFH0 = 1.6 to $5.5 V^{*5}$, VSS = AVSS = VREFL0 = 0 VReference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Мах	Unit	Test conditions
Conversion time ^{*1} (Operation at PCLKD = 4 MHz)	Permissible signal source impedance Max. = 9.9 kΩ	9.5 (2.625) ^{*4}	_	_	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1
Offset error	Offset error		±1.25	±7.5	LSB	High-precision channel
Full-scale error		_	±1.5	±7.5	LSB	High-precision channel
Quantization error		_	±0.5	_	LSB	—
Absolute accuracy		—	±3.75	±9.5	LSB	High-precision channel
DNL differential nonlinearity error		-	±3.5	—	LSB	—
INL integral nonlinearity erro	r	_	±2.25	±3.5	LSB	—

Note: The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O V_{OH}, V_{OL}, and Other Characteristics.

Note 3. Reference data.

Note 4. () lists sampling time.

Note 5. When VREFH0 < AVCC, the MAX. values are as follows.

Absolute accuracy/Offset error/Full-scale error:

For voltage difference between AVCC and VREFH0, it should be added ± 0.5 LSB/V to the Max spec.

INL integral non-linearity error: For voltage difference between AVCC and VREFH0, it should be added ±0.2 LSB/V to the Max spec.

Table 2.45 A/D conversion characteristics (1) in high-speed A/D conversion mode (1 of 2)

Conditions: VCC = AVCC = 2.7 to 5.5 V, VSS = AVSS = 0 V

Reference voltage range applied to the AVCC and AVSS.

Parameter		Min	Тур	Мах	Unit	Test conditions
PCLKD (ADCLK) frequency		1 –	64	MHz	ADACSR.ADSAC = 0	
				48	MHz	ADACSR.ADSAC = 1
Analog input capacitance ^{*2}	Cs	—	—	9 ^{*3}	pF	High-precision channel
Analog input resistance	Rs	-	_	1.3 ^{*3}	kΩ	High-precision channel
Analog input voltage range	Ain	0	_	AVCC	V	—
Resolution		-	_	12	Bit	—
Conversion time ^{*1} (Operation at PCLKD = 64 MHz)	Permissible signal source impedance Max. = 0.3 kΩ	0.70 (0.211) ^{*4}	_	_	με	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x0D ADACSR.ADSAC = 0
Conversion time ^{*1} (Operation at PCLKD = 48 MHz)	Permissible signal source impedance Max. = 0.3 kΩ	0.67 (0.219) ^{*4}	-	_	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1
Offset error		-	±1.0	±5.0	LSB	High-precision channel
Full-scale error		-	±1.0	±5.0	LSB	High-precision channel
Quantization error		-	±0.5	—	LSB	—
Absolute accuracy		-	±2.5	±5.5	LSB	High-precision channel

Table 2.45A/D conversion characteristics (1) in high-speed A/D conversion mode (2 of 2)

Conditions: VCC = AVCC = 2.7 to 5.5 V, VSS = AVSS = 0 V

Reference voltage range applied to the AVCC and AVSS.

Parameter	Min	Тур	Мах	Unit	Test conditions
DNL differential nonlinearity error	—	±1.0	—	LSB	—
INL integral nonlinearity error	_	±1.5	±3.0	LSB	—

Note: The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O V_{OH}, V_{OL}, and Other Characteristics.

Note 3. Reference data.

Note 4. () lists sampling time.

Table 2.46 A/D conversion characteristics (2) in high-speed A/D conversion mode

Conditions: VCC = AVCC = 2.7 to 5.5 V, VSS = AVSS = 0 V

Reference voltage range applied to the AVCC and AVSS.

Parameter		Min	Тур	Max	Unit	Test conditions
PCLKD (ADCLK) frequency		1	—	48	MHz	—
Analog input capacitance ^{*2}	Cs	—	—	9 ^{*3}	pF	High-precision channel
Analog input resistance	Rs	_	_	1.9 ^{*3}	kΩ	High-precision channel
Analog input voltage range	Ain	0	-	AVCC	V	-
Resolution		_	—	12	Bit	-
Conversion time ^{*1} (Operation at PCLKD = 48 MHz)	Permissible signal source impedance Max. = 0.3 kΩ	0.67 (0.219) ^{*4}	_		μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1
Offset error		—	±1.0	±6.5	LSB	High-precision channel
Full-scale error		_	±1.0	±6.5	LSB	High-precision channel
Quantization error		_	±0.5	_	LSB	-
Absolute accuracy		_	±2.5	±7.0	LSB	High-precision channel
DNL differential nonlinearity error		_	±1.0	_	LSB	-
INL integral nonlinearity erro	or	_	±1.5	±3.0	LSB	-

Note: The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O V_{OH}, V_{OL}, and Other Characteristics.

Note 3. Reference data.

Note 4. () lists sampling time.

Table 2.47 A/D conversion characteristics (3) in high-speed A/D conversion mode (1 of 2)

Conditions: VCC = AVCC = 2.4 to 5.5 V, VSS = AVSS = 0 V

Reference voltage range applied to the AVCC and AVSS.

Parameter		Min	Тур	Мах	Unit	Test conditions
PCLKD (ADCLK) frequency		1	_	32	MHz	—
Analog input capacitance ^{*2}	Cs	_	_	9 ^{*3}	pF	High-precision channel
Analog input resistance	Rs	_	_	2.2 ^{*3}	kΩ	High-precision channel
Analog input voltage range	Ain	0	_	AVCC	V	—
Resolution		_	_	12	Bit	_

Table 2.47 A/D conversion characteristics (3) in high-speed A/D conversion mode (2 of 2)

Conditions: VCC = AVCC = 2.4 to 5.5 V, VSS = AVSS = 0 V Reference voltage range applied to the AVCC and AVSS.

Parameter		Min	Тур	Max	Unit	Test conditions
Conversion time ^{*1} (Operation at PCLKD = 32 MHz)	Permissible signal source impedance Max. = 1.3 kΩ	1.00 (0.328) ^{*4}	_	_	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1
Offset error		—	±1.0	±6.5	LSB	High-precision channel
Full-scale error		_	±1.0	±6.5	LSB	High-precision channel
Quantization error		_	±0.5	_	LSB	—
Absolute accuracy		_	±2.50	±7.0	LSB	High-precision channel
DNL differential nonlinearity error		-	±1.0	—	LSB	—
INL integral nonlinearity erro	r	—	±1.5	±3.0	LSB	—

Note: The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O V_{OH}, V_{OL}, and Other Characteristics.

Note 3. Reference data.

Note 4. () lists sampling time.

Table 2.48 A/D conversion characteristics (4) in low-power A/D conversion mode

Conditions: VCC = AVCC = 2.7 to 5.5 V, VSS = AVSS = 0 V

Reference voltage range applied to the AVCC and AVSS.

Parameter		Min	Тур	Max	Unit	Test conditions
PCLKD (ADCLK) frequency		1	—	24	MHz	—
Analog input capacitance ^{*2}	Cs	—	_	9 ^{*3}	pF	High-precision channel
Analog input resistance	Rs	—	_	1.9 ^{*3}	kΩ	High-precision channel
Analog input voltage range	Ain	0	_	AVCC	V	—
Resolution	!	—	—	12	Bit	_
Conversion time ^{*1} (Operation at PCLKD = 24 MHz)	Permissible signal source impedance Max. = 1.1 kΩ	1.58 (0.438) ^{*4}	_	_	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1
Offset error		_	±1.25	±7.0	LSB	High-precision channel
Full-scale error		_	±1.25	±7.0	LSB	High-precision channel
Quantization error		—	±0.5	-	LSB	_
Absolute accuracy		—	±3.25	±8.0	LSB	High-precision channel
DNL differential nonlinearity error		—	±1.5	-	LSB	_
INL integral nonlinearity erro	or	—	±1.75	±4.0	LSB	_

Note: The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O V_{OH} , V_{OL} , and Other Characteristics.

Note 3. Reference data.

Note 4. () lists sampling time.

Table 2.49 A/D conversion characteristics (5) in low-power A/D conversion mode

Conditions: VCC = AVCC = 2.4 to 5.5 V, VSS = AVSS = 0 V Reference voltage range applied to the AVCC and AVSS.

Parameter		Min	Тур	Max	Unit	Test conditions
PCLKD (ADCLK) frequency		1	—	16	MHz	—
Analog input capacitance ^{*2}	Cs	_	_	9 ^{*3}	pF	High-precision channel
Analog input resistance	Rs	_	_	2.2 ^{*3}	kΩ	High-precision channel
Analog input voltage range	Ain	0	_	AVCC	V	_
Resolution		-	_	12	Bit	—
Conversion time ^{*1} (Operation at PCLKD = 16 MHz)	Permissible signal source impedance Max. = 2.2 kΩ	2.38 (0.656) ^{*4}	_	_	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1
Offset error		_	±1.25	±7.0	LSB	High-precision channel
Full-scale error		-	±1.25	±7.0	LSB	High-precision channel
Quantization error		_	±0.5	_	LSB	—
Absolute accuracy		_	±3.25	±8.0	LSB	High-precision channel
DNL differential nonlinearity error		_	±1.5	—	LSB	_
INL integral nonlinearity error		_	±1.75	±4.0	LSB	_

Note: The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O V_{OH}, V_{OL}, and Other Characteristics.

Note 3. Reference data.

Note 4. () lists sampling time.

Table 2.50 A/D conversion characteristics (6) in low-power A/D conversion mode

Conditions: VCC = AVCC = 1.8 to 5.5 V, VSS = AVSS = 0 V Reference voltage range applied to the AVCC and AVSS.

Parameter PCLKD (ADCLK) frequency		Min	Тур	Мах	Unit	Test conditions
		1	<u> </u>	8	MHz	—
Analog input capacitance ^{*2}	Cs	—	_	9 ^{*3}	pF	High-precision channel
Analog input resistance	Rs	—	—	6 ^{*3}	kΩ	High-precision channel
Analog input voltage range Ain		0	—	AVCC	V	—
Resolution		_	—	12	Bit	—
Conversion time ^{*1} (Operation at PCLKD = 8 MHz)	Permissible signal source impedance Max. = 5 kΩ	4.75 (1.313) ^{*4}	_	_	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1
Offset error		—	±1.25	±8.5	LSB	High-precision channel
Full-scale error		—	±1.5	±8.5	LSB	High-precision channel
Quantization error		—	±0.5	_	LSB	—
Absolute accuracy		_	±3.75	±10.5	LSB	High-precision channel
DNL differential nonlinearity error		—	±2.0	_	LSB	—
INL integral nonlinearity error		_	±2.25	±4.5	LSB	—

Note: The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O V_{OH} , V_{OL} , and Other Characteristics.

Note 3. Reference data.

Note 4. () lists sampling time.

Table 2.51 A/D conversion characteristics (7) in low-power A/D conversion mode

Conditions: VCC = AVCC = 1.6 to 5.5 V, VSS = AVSS = 0 V Reference voltage range applied to the AVCC and AVSS.

Parameter		Min	Тур	Max	Unit	Test conditions
PCLKD (ADCLK) frequency		1	_	4	MHz	—
Analog input capacitance ^{*2}	Cs	-	—	9 ^{*3}	pF	High-precision channel
Analog input resistance	Rs	—	—	12 ^{*3}	kΩ	High-precision channel
Analog input voltage range	Ain	0	—	AVCC	V	_
Resolution		-	—	12	Bit	_
Conversion time ^{*1} (Operation at PCLKD = 4 MHz)	Permissible signal source impedance Max. = 9.9 kΩ	9.5 (2.625) ^{*4}	—	_	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1
Offset error		—	±1.25	±8.5	LSB	High-precision channel
Full-scale error		—	±1.5	±8.5	LSB	High-precision channel
Quantization error		—	±0.5	-	LSB	—
Absolute accuracy		-	±3.75	±10.5	LSB	High-precision channel
DNL differential nonlinearity error		-	±2.0	-	LSB	_
INL integral nonlinearity error		_	±2.25	±4.5	LSB	_

Note: The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O V_{OH}, V_{OL}, and Other Characteristics.

Note 3. Reference data.

Note 4. () lists sampling time.

Figure 2.38 shows the equivalent circuit for analog input.

Table 2.52 12-bit A/D converter channel classifica	tion
--	------

Classification	Channel	Conditions	Remarks
High-precision channel	AN000 to AN003	AVCC = 1.6 to 5.5 V	Pins AN000 to AN003 cannot be used as general I/O, TS transmission, when the A/D converter is in use.
Internal reference voltage input channel	Internal reference voltage	AVCC = 1.8 to 5.5 V	—
Temperature sensor input channel	Temperature sensor output	AVCC = 1.8 to 5.5 V	—

Table 2.53 A/D internal reference voltage characteristics

Conditions: VCC = AVCC = VREFH0 = 1.8 to 5.5 V^{*1}

Parameter	Min	Тур	Мах	Unit	Test conditions
Internal reference voltage input channel ^{*2}	1.42	1.48	1.54	V	_
PCLKD (ADCLK) frequency*3	1	_	2	MHz	—
Sampling time ^{*4}	5.0	_	_	μs	

Note 1. The internal reference voltage cannot be selected for input channels when AVCC < 1.8 V. Note 2. The 12-bit A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the 12-bit A/D converter.

Note 3. When the internal reference voltage is selected as the high-potential reference voltage. Note 4. When the internal reference voltage is converted.

Figure 2.39 Illustration of 12-bit A/D converter characteristic terms

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as the analog input voltage. For example, if 12-bit resolution is used and the reference voltage VREFH0 = 3.072 V, then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the analog input voltages. If analog input voltage is 6 mV, an absolute accuracy of ± 5 LSB means that the actual A/D conversion result is in the range of 0x003 to 0x00D, though an output code of 0x008 can be expected from the theoretical A/D conversion characteristics.

Integral nonlinearity error (INL)

Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

Differential nonlinearity error (DNL)

Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics and the width of the actual output code.

Offset error

Offset error is the difference between the transition point of the ideal first output code and the actual first output code.

Full-scale error

Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.

2.5 SDADC24 Characteristics

2.5.1 Reference Voltage

Table 2.54 Reference voltage characteristics

Conditions: VCC = AVCC = 2.4 to 5.5 V, VSS = AVSS = 0 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Internal reference voltage	V _{AVRTO}	—	0.69	_	V	—
Temperature coefficient for internal reference voltage ^{*1}	TC _{BOX}		10	_	ppm/°C	0.47 µF capacitor connected to AREGC, AVRT, and AVCM pins
AVCM output voltage	V _{AVCM}	_	0.45	_	V	0.47 μF capacitor connected to AVSS pin

Note 1. This is as stipulated by the BOX method.

Tj = -40 to 120° C after trimming.

Figure 2.40 Temperature coefficient evaluation using box method

2.5.2 Analog Input

Table 2.55 Analog input characteristics (1 of 2)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input voltage range (differential or Single-ended) ^{*1}	V _{AIN}	-500	—	500	mV	x1 gain
		-250	—	250	-	x2 gain
		-125	—	125		x4 gain
		-62.5	—	62.5		x8 gain
		-31.25	—	31.25		x16 gain
		-15.625	_	15.625		x32 gain

Table 2.55 Analog input characteristics (2 of 2)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input gain	ainGAIN	—	1	—	Times	x1 gain
		_	2	_		x2 gain
		_	4	_		x4 gain
		_	8	_		x8 gain
		_	16	_		x16 gain
		_	32	_		x32 gain
Input impedance	ainRIN	150	360	_	kΩ	Differential voltage
		100	240	_		Single-ended voltage

Note 1. Differential voltage (AINP - AINN), single-ended input AINP, AINN = PGA input common voltage.

2.5.3 4 kHz Sampling Mode (f_{OS} = 1.5 MHz)

Table 2.56 4 kHz sampling mode (f_{OS} = 1.5 MHz) characteristics

Conditions: VCC = AVCC = 2.4 to 5.5 V, VSS = AVSS = 0 V, ANINn and ANIPn (n = 0 to 6)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Operating clock (SDADCCLK) ^{*1}	f _{SDAD}	—	12	—	MHz	*1
Sampling frequency	f _S	—	3906	—	Hz	*1
Oversampling frequency	f _{OS}	—	1.5	_	MHz	*1
Output data rate	T _{DATA}	—	256	_	μs	*1
Data width	RES	_	24	_	bit	_
SNDR ^{*2}	SNDR	81	86	—	dB	x1 gain
		79	83	—		x2 gain
		77	81	_		x4 gain
		74	78	—		x8 gain
		69	74	—		x16 gain
Passband (low pass band)	f _{Chpf}	-	0.607	_	Hz	At -3 dB (phase in high- pass filter not adjusted). SDADHPFCR.COF[1:0] = 00b.
		-	1.214	—		At -3 dB (phase in high- pass filter not adjusted). SDADHPFCR.COF[1:0] = 01b.
		—	2.427	-		At -3 dB (phase in high- pass filter not adjusted). SDADHPFCR.COF[1:0] = 10b.
		—	4.855	-		At -3 dB (phase in high- pass filter not adjusted). SDADHPFCR.COF[1:0] = 11b.
In-band ripple 1	rp1	-0.01	-	0.01	dB	45 Hz to 55 Hz @50 Hz 54 Hz to 66 Hz @60 Hz
In-band ripple 2	rp2	-0.1	—	0.1	dB	45 Hz to 275 Hz @50 Hz 54 Hz to 330 Hz @60 Hz
In-band ripple 3	rp3	-0.1	—	0.1	dB	45 Hz to 1100 Hz @50 Hz 54 Hz to 1320 Hz @60 Hz
Passband (high pass band)	f _{Clpf}	—	1673	—	Hz	-3 dB
Stopband (high pass band)	f _{att}	—	2552	_	Hz	-80 dB
Out-band attenuation	ATT1	-80	—	—	dB	f _S
	ATT2	-80	_	_	dB	2 f _S

- Note 1. The operating clock frequency should be selected to 12 MHz at this mode for 24-bit Sigma-Delta A/D converter. When external clock input (12 MHz) or high- speed on-chip oscillator (24 MHz / 2 or 48 MHz / 4) or PLL clock of sub oscillation (12 MHz) is used as SDADC clock frequency (SDADCCLK), set bits [1:0] (CK[1:0]) of register SDADCCR to 10b and bits [29:28] (FR[1:0]) of register SDADMR to 00b.
- Note 2. It is not guaranteed value but only a design target.

2.5.4 4 kHz Sampling Mode (f_{OS} = 1.6 MHz)

Table 2.57 4 kHz sampling mode (f_{OS} = 1.6 MHz) characteristics

Conditions: VCC = AVCC = 2.4 to 5.5 V, VSS = AVSS = 0 V, ANINn and ANIPn (n = 0 to 6)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Operating clock (SDADCCLK)*1	f _{SDAD}	_	16	_	MHz	*1
		_	12.8	_		
Sampling frequency	f _S	—	4167	—	Hz	*1
Oversampling frequency	f _{OS}	_	1.6	_	MHz	*1
Output data rate	T _{DATA}	_	240	_	μs	*1
Data width	RES	_	24	_	bit	-
SNDR ^{*2}	SNDR	81	86	_	dB	x1 gain
		79	83	_		x2 gain
		77	81	_		x4 gain
		74	78	_		x8 gain
		69	74	_		x16 gain
Passband (low pass band)	fChpf	—	0.647	_	Hz	At -3 dB (phase in high- pass filter not adjusted). SDADHPFCR.COF[1:0] = 00b.
		-	1.295	-		At -3 dB (phase in high- pass filter not adjusted). SDADHPFCR.COF[1:0] = 01b.
		-	2.589	-		At -3 dB (phase in high- pass filter not adjusted). SDADHPFCR.COF[1:0] = 10b.
		-	5.179	-		At -3 dB (phase in high- pass filter not adjusted). SDADHPFCR.COF[1:0] = 11b.
In-band ripple 1	rp1	-0.01	—	0.01	dB	45 Hz to 55 Hz @50 Hz 54 Hz to 66 Hz @60 Hz
In-band ripple 2	rp2	-0.1	-	0.1	dB	45 Hz to 275 Hz @50 Hz 54 Hz to 330 Hz @60 Hz
In-band ripple 3	rp3	-0.1	-	0.1	dB	45 Hz to 1100 Hz @50 Hz 54 Hz to 1320 Hz @60 Hz
Passband (high pass band)	f _{Clpf}	—	1785	_	Hz	-3 dB
Stopband (high pass band)	f _{att}	_	2722	_	Hz	-80 dB
Out-band attenuation	ATT1	-80	_	_	dB	f _S
	ATT2	-80	<u> _</u>		dB	2 f _S

Note 1. The operating clock frequency should be selected to 16 MHz or 12.8 MHz at this mode for 24-bit Sigma-Delta A/D converter. When external clock input (16 MHz) or high-speed on-chip oscillator (32 MHz / 2 or 64 MHz / 4) is used as SDADC clock frequency (SDADCCLK), set bits [1:0] (CK[1:0]) of register SDADCCR to 11b and bits [29:28] (FR[1:0]) of register SDADMR to 00b. When PLL clock of sub oscillation (12.8 MHz) is used as SDADC clock frequency (SDADCCLK), set bits [1:0] (CK[1:0]) of register SDADCCR to 10b and bits [29:28] (FR[1:0]) of register SDADMR to 00b.

Note 2. It is not guaranteed value but only a design target.

2.5.5 8 kHz Sampling Mode (f_{OS} = 3.0 MHz)

Table 2.58 8 kHz Sampling Mode (f_{OS} = 3.0 MHz) characteristics

Conditions: VCC = AVCC = 2.4 to 5.5 V, VSS = AVSS = 0 V, ANINn and ANIPn (n = 0 to 6)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Operating clock (SDADCCLK) ^{*1}	f _{SDAD}	—	12	—	MHz	*1
Sampling frequency	f _S	—	7813	—	Hz	*1
Oversampling frequency	f _{OS}	—	3.0	—	MHz	*1
Output data rate	T _{DATA}	—	128	_	μs	*1
Data width	RES	_	24	_	bit	_
SNDR ^{*2}	SNDR	81	86	_	dB	x1 gain
		79	83	—		x2 gain
		76	80	—		x4 gain
		73	77	—		x8 gain
		69	73	—		x16 gain
Passband (low pass band)	f _{Chpf}	-	1.214	_	Hz	At -3 dB (phase in high- pass filter not adjusted). SDADHPFCR.COF[1:0] = 00b.
		-	2.427	_		At -3 dB (phase in high- pass filter not adjusted). SDADHPFCR.COF[1:0] = 01b.
		-	4.855	-		At -3 dB (phase in high- pass filter not adjusted). SDADHPFCR.COF[1:0] = 10b.
		-	9.710	-		At -3 dB (phase in high- pass filter not adjusted). SDADHPFCR.COF[1:0] = 11b.
In-band ripple 1	rp1	-0.01	—	0.01	dB	45 Hz to 55 Hz @50 Hz 54 Hz to 66 Hz @60 Hz
In-band ripple 2	rp2	-0.1	—	0.1	dB	45 Hz to 550 Hz @50 Hz 54 Hz to 660 Hz @60 Hz
In-band ripple 3	rp3	-0.1	—	0.1	dB	45 Hz to 2200 Hz @50 Hz 54 Hz to 2640 Hz @60 Hz
Passband (high pass band)	f _{Clpf}	_	3346	—	Hz	-3 dB
Stopband (high pass band)	f _{att}	—	5104	—	Hz	-80 dB
Out-band attenuation	ATT1	-80	—	—	dB	f _S
	ATT2	-80	_	_	dB	2 f _S

Note 1. The operating clock frequency should be selected to 12 MHz at this mode for 24-bit Sigma-Delta A/D converter. When external clock input (12 MHz) or high-speed on-chip oscillator (24 MHz / 2 or 48 MHz / 4) or PLL clock of sub oscillation (12 MHz) is used as SDADC clock frequency (SDADCCLK), set bits [1:0] (CK[1:0]) of register SDADCCR to 10b and bits [29:28] (FR[1:0]) of register SDADMR to 01b.

Note 2. It is not guaranteed value but only a design target.

2.5.6 8 kHz Sampling Mode (f_{OS} = 3.2 MHz)

Table 2.598 kHz Sampling Mode (f_{OS} = 3.2 MHz) characteristics (1 of 2)

Conditions: VCC = AVCC = 2.4 to 5.5 V, VSS = AVSS = 0 V, ANINn and ANIPn (n = 0 to 6)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Operating clock (SDADCCLK) ^{*1}	f _{SDAD}	—	16	_	MHz	*1
		_	12.8	_		
Sampling frequency	f _S	—	8333	_	Hz	*1

Table 2.598 kHz Sampling Mode (for = 3.2 MHz) characteristics (2 of 2)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Oversampling frequency	f _{OS}	—	3.2	—	MHz	*1
Output data rate	T _{DATA}	—	120	—	μs	*1
Data width	RES	_	24	—	bit	_
SNDR ^{*2}	SNDR	81	86	—	dB	x1 gain
		79	83	—		x2 gain
		76	80	—		x4 gain
		73	77	—	_	x8 gain
		68	73	_		x16 gain
Passband (low pass band)	f _{Chpf}	_	1.295	_	Hz	At -3 dB (phase in high- pass filter not adjusted). SDADHPFCR.COF[1:0] = 00b.
		—	2.589	_		At -3 dB (phase in high- pass filter not adjusted). SDADHPFCR.COF[1:0] = 01b.
		—	5.179	_		At -3 dB (phase in high- pass filter not adjusted). SDADHPFCR.COF[1:0] = 10b.
		—	10.357	-		At -3 dB (phase in high- pass filter not adjusted). SDADHPFCR.COF[1:0] = 11b.
In-band ripple 1	rp1	-0.01	—	0.01	dB	45 Hz to 55 Hz @50 Hz 54 Hz to 66 Hz @60 Hz
In-band ripple 2	rp2	-0.1	—	0.1	dB	45 Hz to 550 Hz @50 Hz 54 Hz to 660 Hz @60 Hz
In-band ripple 3	rp3	-0.1	—	0.1	dB	45 Hz to 2200 Hz @50 Hz 54 Hz to 2640 Hz @60 Hz
Passband (high pass band)	f _{Clpf}	—	3569	—	Hz	-3 dB
Stopband (high pass band)	f _{att}	—	5444	—	Hz	-80 dB
Out-band attenuation	ATT1	-80	_	—	dB	f _S
	ATT2	-80	_	_	dB	2 f _S

Note 1. The operating clock frequency should be selected to 12.8 MHz at this mode for 24-bit Sigma-Delta A/D converter. When high-speed on-chip oscillator (32 MHz / 2 or 64 MHz / 4) is used as SDADC clock frequency (SDADCCLK), set bits [1:0] (CK[1:0]) of register SDADCCR to 11b and bits [29:28] (FR[1:0]) of register SDADMR to 01b. When PLL clock of sub oscillation (12.8 MHz) is used as SDADC clock frequency (SDADCCLK), set bits [1:0] (CK[1:0]) of register

SDADCCR to 10b and bits [29:28] (FR[1:0]) of register SDADMR to 01b.

Note 2. It is not guaranteed value but only a design target.

2.5.7 8 kHz/4 kHz Hybrid Sampling Mode (f_{OS} = 3.0 MHz)

Table 2.608 kHz/4 kHz hybrid sampling mode (f_{OS} = 3.0 MHz) characteristics (1 of 3)

Conditions: VCC = AVCC = 2.4 to 5.5 V, VSS = AVSS = 0 V, ANINn and ANIPn (n = 0 to 3)

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Operating of	clock (SDADCCLK) ^{*1}	f _{SDAD}	—	12	—	MHz	*1
Sampling frequency	8 kHz sampling mode (Type 1)	f _S	—	7813	_	Hz	*1
	4 kHz hybrid sampling mode (Type 2)		_	3906	_		
Oversampl	ng frequency	f _{OS}	—	3.0	—	MHz	*1

Table 2.608 kHz/4 kHz hybrid sampling mode (for = 3.0 MHz) characteristics (2 of 3)

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions	
Output data rate	8 kHz sampling mode (Type 1)	T _{DATA}	—	128	-	μs	*1	
	4 kHz hybrid sampling mode (Type 2)		—	256	-			
Data width		RES	_	24	_	bit	_	
SNDR ^{*2}	8 kHz sampling mode	SNDR	81	86	-	dB	x1 gain	
	(Type 1)		79	83	_		x2 gain	
			76	80	_		x4 gain	
			73	77	_		x8 gain	
			69	73	_		x16 gain	
	4 kHz hybrid sampling mode		81	86	_		x1 gain	
	(Type 2)		79	83	_		x2 gain	
			77	81	_		x4 gain	
			74	78	_		x8 gain	
			69	74	—		x16 gain	
Passband low pass	8 kHz sampling mode (Type 1)	f _{Chpf}	—	1.214	-	Hz	At -3 dB (phase in high- pass filter not adjusted).	
oand)	4 kHz hybrid sampling mode (Type 2)		—	1.214	-		SDADHPFCR.COF[1:0] = 00b	
	8 kHz sampling mode (Type 1)		—	2.427	_		At -3 dB (phase in high- pass filter not adjusted).	
	4 kHz hybrid sampling mode (Type 2)		—	2.427	-		SDADHPFCR.COF[1:0] = 01b	
	8 kHz sampling mode (Type 1)		—	4.855	-		At -3 dB (phase in high- pass filter not adjusted).	
	4 kHz hybrid sampling mode (Type 2)		—	4.855	—		SDADHPFCR.COF[1:0] = 10b	
	8 kHz sampling mode (Type 1)		—	1.214	—		At -3 dB (phase in high- pass filter not adjusted).	
	4 kHz hybrid sampling mode (Type 2)		—	0.607	-		SDADHPFCR.COF[1:0] = 11b.	
n-band ipple 1	8 kHz sampling mode (Type 1)	rp1	-0.01	-	0.01	dB	45 Hz to 55 Hz @50 Hz 54 Hz to 66 Hz @60 Hz	
	4 kHz hybrid sampling mode (Type 2)						45 Hz to 55 Hz @50 Hz 54 Hz to 66 Hz @60 Hz	
n-band ipple 2	8 kHz sampling mode (Type 1)	rp2	-0.1	-	0.1	dB	45 Hz to 550 Hz @50 Hz 54 Hz to 660 Hz @60 Hz	
	4 kHz hybrid sampling mode (Type 2)						45 Hz to 275 Hz @50 Hz 54 Hz to 330 Hz @60 Hz	
n-band ipple 3	8 kHz sampling mode (Type 1)	rp3	-0.1	-	0.1	dB	45 Hz to 2200 Hz @50 Hz 54 Hz to 2640 Hz @60 Hz	
	4 kHz hybrid sampling mode (Type 2)						45 Hz to 1100 Hz @50 Hz 54 Hz to 1320 Hz @60 Hz	
Passband high pass	8 kHz sampling mode (Type 1)	f _{Clpf}		3346	_	Hz	-3 dB	
(nigh pass band)		1	1	1673	1	1	1	

Table 2.608 kHz/4 kHz hybrid sampling mode (f_{OS} = 3.0 MHz) characteristics (3 of 3)

Parameter		Symbol	Min	Тур	Мах	Unit	Test conditions
(high pass	8 kHz sampling mode (Type 1)	f _{att}	—	5104	_	Hz	-80 dB
band)	4 kHz hybrid sampling mode (Type 2)			2552			
Out-band at	tenuation	ATT1	-80	_	_	dB	f _S
		ATT2	-80	_	—	dB	2 f _S

Note 1. The operating clock frequency should be selected to 12 MHz at this mode for 24-bit Sigma-Delta A/D converter.

Note 2. It is not guaranteed value but only a design target.

2.5.8 8 kHz/4 kHz Hybrid Sampling Mode (f_{OS} = 3.2 MHz)

Table 2.618 kHz/4 kHz hybrid sampling mode (f_{OS} = 3.2 MHz) characteristics (1 of 2)

Conditions: VCC = AVCC = 2.4 to 5.5 V, VSS = AVSS = 0 V, ANINn and ANIPn (n = 0 to 3)

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Operating	clock (SDADCCLK) ^{*1}	f _{SDAD}	—	16	—	MHz	*1
			—	12.8	—		
Sampling frequency	8 kHz sampling mode (Type 1)	f _S	—	8333	—	Hz	*1
	4 kHz hybrid sampling mode (Type 2)		—	4167	—		
Oversampl	ing frequency	f _{OS}	—	3.2	—	MHz	*1
Output data rate	8 kHz sampling mode (Type 1)	T _{DATA}	—	120	—	μs	*1
	4 kHz hybrid sampling mode (Type 2)		—	240	-		
Data width		RES	—	24	—	bit	—
SNDR*2	8 kHz sampling mode SNDR (Type 1)	SNDR	81	86	—	dB	x1 gain
			79	83	—		x2 gain
			76	80	—		x4 gain
			73	77	—		x8 gain
			68	73	—		x16 gain
	4 kHz hybrid sampling mode		81	86	—		x1 gain
	(Type 2)		79	83	—		x2 gain
			77	81	—		x4 gain
			74	78	—		x8 gain
			69	74	_		x16 gain

Table 2.61 8 kHz/4 kHz hybrid sampling mode (f_{OS} = 3.2 MHz) characteristics (2 of 2) Conditions: VCC = AVCC = 2.4 to 5.5 V, VSS = AVSS = 0 V, ANINn and ANIPn (n = 0 to 3) Parameter Symbol Min Max Unit **Test conditions** Tvp Passband 1.295 Hz At -3 dB (phase in high-8 kHz sampling mode fChpf pass filter not adjusted). (low pass (Type 1) SDADHPFCR.COF[1:0] = 00b. band) 1.295 4 kHz hybrid sampling mode (Type 2) 8 kHz sampling mode 2.589 At -3 dB (phase in high-(Type 1) pass filter not adjusted). SDADHPFCR.COF[1:0] = 01b. 4 kHz hybrid sampling mode 2.589 (Type 2) 8 kHz sampling mode 5.179 At -3 dB (phase in highpass filter not adjusted). (Type 1) SDADHPFCR.COF[1:0] = 10b. 4 kHz hybrid sampling mode 5.179 (Type 2) 8 kHz sampling mode 1.295 At -3 dB (phase in highpass filter not adjusted). (Type 1) SDADHPFCR.COF[1:0] = 11b. 4 kHz hybrid sampling mode 0.647 (Type 2) In-band 8 kHz sampling mode 0.01 dB 45 Hz to 55 Hz @50 Hz rp1 -0.01 ripple 1 54 Hz to 66 Hz @60 Hz (Type 1) 4 kHz hybrid sampling mode 45 Hz to 55 Hz @50 Hz 54 Hz to 66 Hz @60 Hz (Type 2) 8 kHz sampling mode -0.1 0.1 dB 45 Hz to 550 Hz @50 Hz In-band rp2 54 Hz to 660 Hz @60 Hz ripple 2 (Type 1) 4 kHz hybrid sampling mode 45 Hz to 275 Hz @50 Hz 54 Hz to 330 Hz @60 Hz (Type 2) 8 kHz sampling mode 0.1 dB 45 Hz to 2200 Hz @50 Hz In-band rp3 -0.1 54 Hz to 2640 Hz @60 Hz ripple 3 (Type 1) 4 kHz hybrid sampling mode 45 Hz to 1100 Hz @50 Hz 54 Hz to 1320 Hz @60 Hz (Type 2) Passband 8 kHz sampling mode 3569 Hz -3 dB f_{Clpf} (high pass (Type 1) band) 1785 4 kHz hybrid sampling mode (Type 2) Stopband 8 kHz sampling mode 5444 Hz -80 dB f_{att} (high pass (Type 1) band)

Note 2. It is not guaranteed value but only a design target.

4 kHz hybrid sampling mode

(Type 2)

Out-band attenuation

Note 1.

2722

dB

dB

fS

 $2 f_{S}$

-80

-80

When high-speed on-chip oscillator (32 MHz / 2 or 64 MHz / 4) is used as SDADC clock frequency (SDADCCLK), set bits [1:0]

When PLL clock of sub oscillation (12.8 MHz) is used as SDADC clock frequency (SDADCCLK), set bits [1:0] (CK[1:0]) of register

The operating clock frequency should be selected to 12.8 MHz at this mode for 24-bit Sigma-Delta A/D converter.

ATT1

ATT2

(CK[1:0]) of register SDADCCR to 11b and bits [29:28] (FR[1:0]) of register SDADMR to 10b.

SDADCCR to 10b and bits[29:28] (FR[1:0]) of register SDADMR to 10b.

2.5.9 Other Characteristics for SDADC24

Table 2.62Other characteristics for SDADC24

Conditions: VCC = AVCC = 2.4 to 5.5 V, VSS = AVSS = 0V

The electrical specifications are applied at the differential input mode, with MOSC used as source clock, unless otherwise specified.

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Gain error ^{*1}	E _G	-3	—	3	%	x1 to x8 gain, excluding AVRT error
		-4	—	4	%	x16 gain, excluding AVRT error
Gain drift ^{*1 *2}	dE _G	_	15	—	ppm/°C	excluding AVRT error
Offset error ^{*1}	E _{OS}	-10	—	10	mV	x1 gain, excluding AVRT error, referred to input
Offset drift ^{*1 *3}	dE _{OS}	_	4	—	µV/°C	x1 gain, excluding AVRT error, referred to input
Integral non-linearity ^{*1}	INL	_	20	_	ppm of FSR	x1 gain
		—	50	—		x16 gain
Common mode Rejection ratio ^{*1}	CMRR	-	80	—	dB	
Power supply Rejection ratio ^{*1}	PSRR	_	70	—	dB	Analog input = 0 V
Input impedance ^{*1}	Z _{IN}	—	360	—	kΩ	differential input
		_	240	_		single-ended input

Note 1. This is not tested in production, but the design guarantees the characteristic.

Note 2. Gain drift is calculated by $(Max(E_G(T)) - Min(E_G(T))) / (Max(T) - Min(T))$ with T range from -40°C to +105°C

Note 3. Offset drift is calculated by $(Max(E_{OS}(T)) - Min(E_{OS}(T))) / (Max(T) - Min(T))$ with T range from -40°C to +105°C

2.5.10 Regulator for SDADC24 (AREGC) Characteristics

Table 2.63 Regulator for SDADC24 (AREGC) characteristics

Conditions: VCC = AVCC = 2.4 to 5.5 V, VSS = AVSS = 0 V Connect the AREGC pin to AVSS pin by a 0.47 µF capacitor.

Parameter	Symbol	Min	Тур	Max	Test conditions
AREGC output voltage	VADREG	1.5	1.55	1.6	0.47 µF capacitor connected to AVSS pin

2.6 TSN Characteristics

Table 2.64TSN characteristics

Conditions: VCC = AVCC = 1.8 to 5.5 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Relative accuracy	_	—	± 1.5	—	°C	2.4 V or above
		_	± 2.0	_	°C	Below 2.4 V
Temperature slope	_	_	-3.3	_	mV/°C	—
Output voltage (at 25°C)	—	—	1.05	—	V	VCC = 3.3 V
Temperature sensor start time	t _{START}	—	_	5	μs	—
Sampling time	_	5	_	_	μs	

2.7 OSC Stop Detect Characteristics

Table 2.65 Oscillation stop detection circuit characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Detection time	t _{dr}	—	—	1	ms	Figure 2.41

Figure 2.41 Oscillation stop detection timing

2.8 POR and LVD Characteristics

Table 2.66 Power-on reset circuit and voltage detection circuit characteristics (1) (1 of 2)

Parameter				Min	Тур	Max	Unit	Test Conditions
Voltage detection	Power-on reset	When power supply rise	V _{POR}	1.47	1.51	1.55	V	Figure 2.42
level ^{*1}	(POR)	When power supply fall	V _{PDR}	1.46	1.50	1.54		Figure 2.43
	Voltage detection	When power supply rise	V _{det0_0}	3.74	3.91	4.06	V	Figure 2.44
	circuit (LVD0) ^{*2}	When power supply fall		3.68	3.85	4.00	1	At falling edge VCC
		When power supply rise	V _{det0_1}	2.73	2.9	3.01		
		When power supply fall		2.68	2.85	2.96	1	
		When power supply rise	V _{det0_2}	2.44	2.59	2.70		
		When power supply fall		2.38	2.53	2.64		
		When power supply rise	V _{det0_3}	1.83	1.95	2.07		
		When power supply fall		1.78	1.90	2.02	-	
		When power supply rise	V _{det0_4}	1.66	1.75	1.88		
		When power supply fall		1.60	1.69	1.82		
Voltage detection	Voltage detection circuit (LVD1) ^{*3}	When power supply rise	V _{det1_0}	4.23	4.39	4.55	V	Figure 2.45 At falling edge
level ^{*1}		When power supply fall		4.13	4.29	4.45		VCC
		When power supply rise	V _{det1_1}	4.07	4.25	4.39		
		When power supply fall		3.98	4.16	4.30		
		When power supply rise	V _{det1_2}	3.97	4.14	4.29		
		When power supply fall		3.86	4.03	4.18		
		When power supply rise	V _{det1_3}	3.74	3.92	4.06		
		When power supply fall		3.68	3.86	4.00		
		When power supply rise	V _{det1_4}	3.05	3.17	3.29		
		When power supply fall		2.98	3.10	3.22		
		When power supply rise	V _{det1_5}	2.95	3.06	3.17		
		When power supply fall		2.89	3.00	3.11	-	
		When power supply rise	V _{det1_6}	2.86	2.97	3.08		
		When power supply fall		2.79	2.90	3.01		
		When power supply rise	V _{det1_7}	2.74	2.85	2.96		
		When power supply fall		2.68	2.79	2.90		

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions			
Voltage detection	Voltage detection	When power supply rise	V _{det1_8}	2.63	2.75	2.85	V	Figure 2.45	
level ^{*1}	circuit (LVD1) ^{*3}	When power supply fall		2.58	2.68	2.78	1	At falling edge VCC	
		When power supply rise	V _{det1_9}	2.54	2.64	2.75	1		
		When power supply fall		2.48	2.58	2.68			
		When power supply rise	V _{det1_A}	2.43	2.53	2.63			
		When power supply fall		2.38	2.48	2.58			
		When power supply rise	V _{det1_B}	2.16	2.26	2.36			
		When power supply fall		2.10	2.20	2.30	1		
		When power supply rise	V _{det1_C}	1.88	2	2.09	1		
		When power supply fall		1.84	1.96	2.05	-		
		When power supply rise	V _{det1_D}	1.78	1.9	1.99			
		When power supply fall		1.74	1.86	1.95			
		When power supply rise	V _{det1_E}	1.67	1.79	1.88	1		
		When power supply fall		1.63	1.75	1.84	1		
		When power supply rise	V _{det1_F}	1.65	1.7	1.78			
		When power supply fall		1.60	1.65	1.73			
Voltage detection	Voltage detection	When power supply rise	V _{det2_0}	4.20	4.40	4.57	V	Figure 2.46	
level ^{*1}	circuit (LVD2) ^{*4}	When power supply fall		4.11	4.31	4.48	1	At falling edge VCC	
		When power supply rise	V _{det2_1}	4.05	4.25	4.42			
		When power supply fall		3.97	4.17	4.34	-		
		When power supply rise	V _{det2_2}	3.91	4.11	4.28			
		When power supply fall		3.83	4.03	4.20			
		When power supply rise	V _{det2_3}	V _{det2_3} 3.71 3.91	3.91	4.08			
		When power supply fall		3.64	3.84	4.01			

Table 2.66 Power-on reset circuit and voltage detection circuit characteristics (1) (2 of 2)

Note 1. These characteristics apply when noise is not superimposed on the power supply. When a setting causes this voltage detection level to overlap with that of the voltage detection circuit, it cannot be specified whether LVD1 or LVD2 is used for voltage detection. Note 2. # in the symbol $V_{det0_{\#}}$ denotes the value of the OFS1.VDSEL0[2:0] bits.

Note 3. # in the symbol V_{det1} # denotes the value of the LVDLVLR.LVD1LVL[4:0] bits.

Note 4. # in the symbol $V_{det2_{\#}}$ denotes the value of the LVDLVLR.LVD2LVL[2:0] bits.

Parameter		Symbol	Min	Тур	Max	Unit	Test Conditions
Wait time after power-on	LVD0: enable	t _{POR}	—	4.3	—	ms	_
reset cancellation	LVD0: disable	t _{POR}	_	3.7	—	ms	—
Wait time after voltage	LVD0: enable ^{*1}	t _{LVD0,1,2}	_	1.4	—	ms	—
monitor 0, 1, 2 reset cancellation	LVD0: disable ^{*2}	t _{LVD1,2}	_	0.7	_	ms	_
Power-on reset response delay time ^{*3}		t _{det}	—	—	500	μs	Figure 2.42, Figure 2.43
LVD0 response delay time	*3	t _{det}	_	—	500	μs	Figure 2.44
LVD1 response delay time	*3	t _{det}	—	—	350	μs	Figure 2.45
LVD2 response delay time	*3	t _{det}	_	—	600	μs	Figure 2.46
Minimum VCC down time		t _{VOFF}	500	—	—	μs	Figure 2.42, VCC = 1.0 V or above
Power-on reset enable time		t _{W (POR)}	1	—	_	ms	Figure 2.43, VCC = below 1.0 V

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
LVD1 operation stabilization time (after LVD1 is enabled)	T _{d (E-A)}	-	—	300	μs	Figure 2.45
LVD2 operation stabilization time (after LVD2 is enabled)	T _{d (E-A)}	_	—	1200	μs	Figure 2.46
Hysteresis width (POR)	V _{PORH}	—	10	—	mV	—
Hysteresis width (LVD0, LVD1 and LVD2)	V _{LVH}	—	60	—	mV	LVD0 selected
		—	110	—		V_{det1_0} to V_{det1_2} selected
		—	70	_		V_{det1_3} to V_{det1_9} selected
		—	60	—		V_{det1_A} to V_{det1_B} selected
		—	50	—		V_{det1_C} to V_{det1_F} selected
		—	90	—		LVD2 selected

Note 1. When OFS1.LVDAS = 0. Note 2. When OFS1.LVDAS = 1.

Note 3. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR, Vdet0, V_{det1}, and V_{det2} for the POR/LVD.

Figure 2.43 Power-on reset timing

Figure 2.44 Voltage detection circuit timing (V_{det0})

Figure 2.45 Voltage detection circuit timing (V_{det1})

Figure 2.46 Voltage detection circuit timing (V_{det2})

2.9 VRTC POR Characteristics

Parameter				Symbol	Min	Тур	Max	Unit	Test Conditions
Voltage detection		When power	—	V _{RTCPOR}	1.51	1.55	1.59	V	Figure 2.47
level reset of VRTC (VRTC_POR)	supply rise	VCC < 1.0 V and Ta ≤ 85°C		1.48	1.55	1.59			
			VCC < 1.0 V and Ta > 85°C	-	1.51	1.55	1.78	-	
	When power	—	V _{RTCPDR}	1.49	1.53	1.57	1		
		supply fall	VCC < 1.0 V and Ta ≤ 85°C		1.46	1.53	53 1.59	-	
			VCC < 1.0 V and Ta > 85°C		1.49	1.53	1.78		
Hysteresis width o	f VRTC (VRTC_F	POR)		V _{RTCPORH}	—	20	-	mV	—
Wait time after pov	wer-on reset cano	cellation		t _{RTCPOR}	—	—	12	ms	Figure 2.47
Power-on reset of VRTC response delay time *1			t _{rtcdet}	—	—	500	μs	Figure 2.47	
Power-on reset of VRTC enable time ^{*1}			tw (VRTC_POR)	1	—	—	ms	Figure 2.47, VRTC = below 1.0 V	

Note 1. The minimum VRTC down time indicates the time when VRTC is below the minimum value of voltage detection level of VRTC_POR.

Figure 2.47 Voltage detection reset timing and power-on reset timing of VRTC

2.10 EXLVDVBAT Pin Voltage Detection Characteristics

Table 2.69 EXLVDVBAT pin voltage detection characteristics

Conditions: VCC = AVCC = 1.8 to 5.5 V, VSS = AVSS = 0 V

Parameter	Symbol	Conditions		Min	Тур	Max	Unit	Test conditions
Internal reference voltage	V _{LVDVBAT0}	VBTLVDCR.LVL	Rising	2.17	2.24	2.31	V	—
		[2:0] = 000	Falling	2.12	2.18	2.24		—
	V _{LVDVBAT1}	VBTLVDCR.LVL	Rising	2.37	2.44	2.51		—
		[2:0] = 001		2.31	2.38	2.45		—
	V _{LVDVBAT2}	VBTLVDCR.LVL	Rising	2.56	2.64	2.72		—
		[2:0] = 010	Falling	2.50	2.58	2.66		—
	V _{LVDVBAT3}	[2:0] = 011	Rising	2.66	2.74	2.82		—
		[2:0] = 011	Falling	2.60	2.68	2.76		—
	V _{LVDVBAT4}	VBTLVDCR.LVL	Rising	2.76	2.84	2.92		_
		[2:0] = 100	Falling	2.70	2.78	2.86		_
	LUDUDAIS	VBTLVDCR.LVL	Rising	2.85	2.94	3.03		_
		[2:0]=101	Falling	2.80	2.88	2.96		_
	V _{LVDVBAT6}	VBTLVDCR.LVL	Rising	3.05	3.14	3.23		—
		[2:0] = 110	Falling	2.99	3.08	3.17		—
Minimum pulse width	t _{pw_lvdvbat}	—	—	500	—	_	μs	Figure 2.48
Detection delay time	t _{d_lvdvbat}	—	_	—	_	500	μs	Figure 2.48
Pin resistor	rin_lvdvbat	_	VBTLV DCR.L VDE = 1	80	150	280	ΜΩ	-

2.11 VRTC Pin Voltage Detection Characteristics

Table 2.70 VRTC pin voltage detection characteristics

Conditions: VCC = AVCC =	1.8 to 5.5 V, VSS =	AVSS = 0 V, VRTC = 1.8 to 5.5 V	
			ĩ

Parameter	Symbol	Conditions		Min	Тур	Max	Unit	Test conditions
Internal reference voltage	V _{LVDVRTC0}	VRTLVDCR.LVL	Rising	2.16	2.22	2.28	V	—
		[1:0] = 00	Falling	2.10	2.16	2.22		—
	V _{LVDVRTC1}	VRTLVDCR.LVL	Rising	2.36	2.43	2.50		—
		[1:0] = 01	Falling	2.30	2.37	2.44		—
	V _{LVDVRTC2}	VRTLVDCR.LVL	Rising	2.56	2.63	2.70		—
		[1:0] = 10	Falling	2.50	2.57	2.64		_
	V _{LVDVRTC3}	VRTLVDCR.LVL	Rising	2.76	2.84	2.92		_
		[1:0] = 11	Falling	2.70	2.78	2.86		—
Minimum pulse width	t _{pw_lvdvrtc}	—	_	500	—	—	μs	Figure 2.49
Detection delay time	t _{d_lvdvrrtc}	—	—	_	—	500	μs	Figure 2.49

2.12 EXLVD Pin Voltage Detections

Table 2.71EXLVD pin voltage detection characteristics (1 of 2)

Conditions: VCC = AVCC = 1.8 to 5.5 V, VSS = AVSS = 0 V

Parameter	Symbol	Co	Conditions N		Тур	Max	Unit	Test conditions
Internal reference voltage	VLVDEXLVD	—	Rising	1.25	1.33	1.41	V	—
			Falling	1.20	1.28	1.36		_

	Table 2.71	Fable 2.71EXLVD pin voltage detection characteristics (2 of 2)									
Conditions: VCC = AVCC = 1.8 to 5.5 V, VSS = AVSS = 0 V											
	Parameter		Symbol	Conditions	Min	Тур	Мах				

Parameter	Symbol	Conditions N		Min	Тур	Мах	Unit	Test conditions
Minimum pulse width	t _{pw_lvdexlvd}	—	_	500	_	-	μs	Figure 2.50
Detection delay time	t _{d_exlvd}	—	_	_	_	500	μs	Figure 2.50
Pin resistor	r _{in_exlvd}	—	EXLVDCR.LVDE = 1	30	60	115	MΩ	—

Figure 2.50 EXLVD pin voltage detection circuit timing

2.13 Segment LCD Controller Characteristics

2.13.1 External Resistance Division Method

(1) Static display mode

Table 2.72 External resistance division method LCD characteristics (1)

Conditions: VL4 (Min) \leq VCC = AVCC \leq 5.5 V, VSS = AVSS = 0 V

Parameter	Symbol	Min	Тур	Мах	Unit	Test conditions
LCD drive voltage	V _{L4}	2.0	—	VCC	V	_

(2) 1/2 bias method, 1/4 bias method

Table 2.73 External resistance division method LCD characteristics (2)

Conditions: VL4 (Min) \leq VCC = AVCC \leq 5.5 V, VSS = AVSS = 0 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
LCD drive voltage	V_{L4}	2.7	_	VCC	V	_

(3) 1/3 bias method

Table 2.74 External resistance division method LCD characteristics (3)

Conditions: VL4 (Min) ≤ VCC = AVCC ≤ 5.5 V, VSS = AVSS = 0 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
LCD drive voltage	V_{L4}	2.5	_	VCC	V	—

2.13.2 Internal Voltage Boosting Method (VL1 Reference)

(1) 1/3 bias method

Table 2.75 Internal voltage boosting method LCD characteristics (1)

Conditions: VCC = AVCC = 1.8 V to 5.5 V, VSS = AVSS = 0 V

Parameter	Symbol	Conditions		Min	Тур	Max	Unit	Test conditions
LCD output voltage	V _{L1}	C1 to C4 ^{*5} = 0.47	VLCD ^{*1} = 0x04	0.97	1.01	1.04	V	—
variation range		μF	VLCD = 0x05	1.00	1.04	1.08	V	—
			VLCD = 0x06	1.04	1.07	1.11	V	_
			VLCD = 0x07	1.07	1.11	1.14	V	_
			VLCD = 0x08	1.10	1.14	1.18	V	—
			VLCD = 0x09	1.13	1.17	1.21	V	
			VLCD = 0x0A	1.16	1.21	1.25	V	—
			VLCD = 0x0B	1.20	1.24	1.28	V	—
			VLCD = 0x0C	1.23	1.27	1.32	V	—
			VLCD = 0x0D	1.26	1.31	1.35	V	—
			VLCD = 0x0E	1.29	1.34	1.38	V	—
			VLCD = 0x0F	1.33	1.37	1.42	V	
			VLCD = 0x10	1.36	1.40	1.45	V	—
			VLCD = 0x11	1.39	1.44	1.49	V	—
			VLCD = 0x12	1.42	1.47	1.52	V	—
			VLCD = 0x13	1.45	1.50	1.55	V	—
			VLCD = 0x14	1.49	1.54	1.59	V	—
			VLCD = 0x15	1.52	1.57	1.62	V	
			VLCD = 0x16	1.55	1.60	1.66	V	—
			VLCD = 0x17	1.58	1.64	1.69	V	—
			VLCD = 0x18	1.61	1.67	1.73	V	—
			VLCD = 0x19	1.65	1.70	1.76	V	—
			$VLCD = 0x1A^{*4}$	1.68	1.74	1.79	V	—
Double output voltage	V _{L2}	C1 to C4 ^{*5} = 0.47 µF	=	2 × V _{L1} - 5%	2 × V _{L1}	2 × V _{L1} + 5%	V	-
Triple output voltage	V _{L4}	C1 to C4 ^{*5} = 0.47 µF	=	3 × V _{L1} - 6%	3 × V _{L1}	3 × V _{L1} + 6%	V	-
Reference voltage setup time ^{*2}	t _{VL1S}	_		10	_	—	ms	Figure 2.51
Voltage boost wait time ^{*3}	t _{VLWT}	_		500	_	-	ms	Figure 2.51

Note: 0x0E to 0x1A setting is permitted when using 5V LCD panel, 0x04 to 0x07 setting is permitted when using 3V LCD panel at 1/3 bias.

Note 1. Bit [7] (MDSET[2]) of register VLCD is set to 0 and bits [7:6] (MDSET[1:0]) of register LCDM0 are set to 01 for internal voltage boosting method (VL1 reference), and bits [4:0] (VLCD4-0) of register VLCD are used for voltage variation setting.

Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET[1:0] bits of the LCDM0 register to 01b and MDSET[2] of the register VLCD to 0) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).

Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

Note 4. This setting is only available when VCC \geq VL1.

Note 5. This is a capacitor that is connected between the voltage pins that are used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND C1 = C2 = C3 = C4 = $0.47 \ \mu\text{F} \pm 30\%$

(2) 1/4 bias method

Table 2.76 Internal voltage boosting method LCD characteristics (2)

Conditions: VCC = AVCC = 1.8 V to 5.5 V, VSS = AVSS = 0 V

Parameter	Symbol	Conditions		Min	Тур	Max	Unit	Test conditio ns
LCD output voltage variation	V _{L1}	C1 to $C5^{*1} = 0.47$	VLCD*2 = 0x04	0.97	1.01	1.04	V	—
range		μF	VLCD = 0x05	1.00	1.04	1.08	V	—
			VLCD = 0x06	1.04	1.07	1.11	V	—
			VLCD = 0x07	1.07	1.11	1.14	V	—
			VLCD = 0x08	1.10	1.14	1.18	V	—
			VLCD = 0x09	1.13	1.17	1.21	V	
			VLCD = 0x0A	1.16	1.21	1.25	V	—
			VLCD = 0x0B	1.20	1.24	1.28	V	—
			VLCD = 0x0C	1.23	1.27	1.32	V	—
			VLCD = 0x0D	1.26	1.31	1.35	V	—
Double output voltage	V _{L2}	C1 to C5 ^{*1} = 0.47 μF	=	2 × V _{L1} - 5%	2 × V _{L1}	2 × V _{L1} + 5%	V	—
Triple output voltage	V _{L3}	C1 to C5 ^{*1} = 0.47 µF	=	3 × V _{L1} - 6%	3 × V _{L1}	3 × V _{L1} + 6%	V	-
Quadruple output voltage	V _{L4} *5	C1 to C5 ^{*1} = 0.47 µF	C1 to C5 ^{*1} = 0.47 μF		$4 \times V_{L1}$	4 × V _{L1} + 6%	V	—
Reference voltage setup time ^{*3}	t _{VL1S}	_		10	_	_	ms	Figure 2.51
Voltage boost wait time ^{*4}	t _{VLWT}	_		500	_	_	ms	Figure 2.51

Note 1. This is a capacitor that is connected between the voltage pins that are used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL3 and GND

C5: A capacitor connected between VL4 and GND

C1 = C2 = C3 = C4 = C5 = 0.47 µF ±30%

Note 2. Bit [7] (MDSET[2]) of register VLCD is set to 0 and bits [7:6] (MDSET[1:0]) of register LCDM0 are set to 01 for internal voltage boosting method (VL1 reference), and bits [4:0] (VLCD4-0) of register VLCD are used for voltage variation setting.

Note 3. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET[1:0] bits of the LCDM0 register to 01b and MDSET[2] of the register VLCD to 0) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).

Note 4. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

Note 5. V_{L4} must be 5.5 V or lower.

2.13.3 Internal Voltage Boosting Method (VL2 Reference)

(1) 1/3 bias method

Table 2.77 Internal voltage boosting method LCD characteristics (3) (1 of 2)

Conditions: VCC = AVCC = VL2 (Max) + 0.1 to 5.5 V, VSS = AVSS = 0 V

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit	Test conditions
Half output voltage	V _{L1}	C1 to C4 ^{*1} = 0.47 µF	1/2 × VL2 - 5%	1/2 × VL2	1/2 × VL2 + 5%	V	_

Table 2.77Internal voltage boosting method LCD characteristics (3) (2 of 2)

Conditions: VCC = AVCC = VL2 (Max) + 0.1 to 5.5 V, VSS = AVSS = 0 V

Parameter	Symbol	Conditions		Min	Тур	Max	Unit	Test conditions
LCD output voltage	V _{L2}	C1 to C4 ^{*1} = 0.47	VLCD*2 = 0x84	1.94	2.02	2.11	V	_
variation range		μF	VLCD = 0x85	2.00	2.09	2.18	V	_
			VLCD = 0x86	2.07	2.16	2.25	V	_
			VLCD = 0x87	2.13	2.22	2.32	V	—
			VLCD = 0x88	2.19	2.29	2.39	V	—
			VLCD = 0x89	2.26	2.36	2.46	V	_
			VLCD = 0x8A	2.32	2.42	2.53	V	—
			VLCD = 0x8B	2.39	2.49	2.59	V	—
			VLCD = 0x8C	2.45	2.56	2.66	V	—
			VLCD = 0x8D	2.51	2.62	2.73	V	_
			VLCD = 0x8E	2.58	2.69	2.80	V	—
			VLCD = 0x8F	2.64	2.76	2.87	V	_
			VLCD = 0x90	2.70	2.82	2.94	V	_
			VLCD = 0x91	2.77	2.89	3.01	V	—
			VLCD = 0x92	2.83	2.96	3.08	V	—
			VLCD = 0x93	2.90	3.02	3.15	V	—
			VLCD = 0x94	2.96	3.09	3.22	V	—
			VLCD = 0x95	3.02	3.15	3.29	V	—
			VLCD = 0x96	3.09	3.22	3.35	V	_
			VLCD = 0x97	3.15	3.29	3.42	V	_
			VLCD = 0x98	3.21	3.35	3.49	V	—
			VLCD = 0x99	3.28	3.42	3.56	V	—
			VLCD = 0x9A	3.34	3.49	3.63	V	—
Two-thirds output voltage	V _{L4} *5	C1 to C4 ^{*1} = 0.47 μF		2/3 × V _{L2} - 6%	2/3 × V _{L2}	2/3 × V _{L2} + 6%	V	-
Reference voltage setup time ^{*3}	t _{VL2S}	_		10	-	-	ms	Figure 2.51
Voltage boost wait time ^{*4}	t _{VLWT}	_		500	—	-	ms	Figure 2.51

Note: 0x8E to 0x9A setting is permitted when using 5V LCD panel, 0x84 to 0x87 setting is permitted when using 3V LCD panel at 1/3 bias.

Note 1. This is a capacitor that is connected between the voltage pins that are used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND

C1 = C2 = C3 = C4 = 0.47 µF ±30%

Note 2. Bit [7] (MDSET[2]) of register VLCD is set to 1 and bits [7:6] (MDSET[1:0]) of register LCDM0 are set to 01 for internal voltage boosting method (VL2 reference), and bits [4:0] (VLCD4-0) of register VLCD are used for voltage variation setting.

Note 3. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET[1:0] bits of the LCDM0 register to 01b and MDSET[2] of the register VLCD to 1) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).

Note 4. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

Note 5. V_{L4} must be 5.5 V or lower.

2.13.4 Capacitor Split Method (VCC Reference)

(1) 1/3 bias method

Table 2.78 Capacitor split method LCD characteristics (1)

Conditions: VCC = AVCC = 2.2 V to 5.5 V, VSS = AVSS = 0 V

Parameter	Symb ol	Conditions	Min	Тур	Max	Unit	Test conditions
VL4 voltage	V_{L4}	C1 to C4 ^{*2} = 0.47 µF	-	VCC	—	V	_
VL2 voltage	V _{L2}	C1 to C4 ^{*2} = 0.47 µF	2 / 3 × V _{L4} - 3%	2 / 3 × V _{L4}	2 / 3 × V _{L4} + 3%	V	_
VL1 voltage	V _{L1}	C1 to C4 ^{*2} = 0.47 µF	1 / 3 × V _{L4} - 3%	1 / 3 × V _{L4}	1 / 3 × V _{L4} + 3%	V	_
Capacitor split wait time ^{*1}	t _{WAIT}	—	100	—	—	ms	Figure 2.51

Note: Bit [7] (MDSET[2]) of register VLCD is set to 0 and bits [7:6] (MDSET[1:0]) of register LCDM0 are set to 10 for capacitor split method (VCC reference).

Note 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

Note 2. This is a capacitor that is connected between the voltage pins that are used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND

 $C1 = C2 = C3 = C4 = 0.47 \ \mu\text{F} \pm 30\%$

Figure 2.51 LCD reference voltage setup time, voltage boosting wait time, and capacitor split wait time

2.13.5 Capacitor Split Method (VL4 Reference)

(1) 1/3 bias method

Table 2.79 Capacitor split method LCD characteristics (3)

Conditions: VCC = AVCC = 3.2 V to 5.5 V, VSS = AVSS = 0 V

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Test conditions
VL4 voltage	V _{L4}	C1 to C4 ^{*2} = 0.47 µF	2.89	3.04	3.20	V	_
VL2 voltage	V _{L2}	C1 to C4 ^{*2} = 0.47 µF	1.89	2.03	2.17	V	_
VL1 voltage	V _{L1}	C1 to C4 ^{*2} = 0.47 µF	0.94	1.01	1.08	V	—
Reference voltage setup time ^{*3}	t _{VL4S}	_	10	_	_	ms	Figure 2.51
Capacitor split wait time ^{*1}	t _{WAIT}	_	100	_	—	ms	Figure 2.51

Note 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

Note 2. This is a capacitor that is connected between the voltage pins that are used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND

C1 = C2 = C3 = C4 = 0.47 µF ±30%

Note 3. Bit [7] (MDSET[2]) of register VLCD is set to 1 and bits [7:6] (MDSET[1:0]) of register LCDM0 are set to 10 for capacitor split method (VL4 reference).

2.14 Flash Memory Characteristics

2.14.1 Code Flash Memory Characteristics

Table 2.80Code flash characteristics (1)

Parameter		Symbol	Min	Тур	Мах	Unit	Conditions
Reprogramming	g/erasure cycle ^{*1}	N _{PEC}	10000	—	_	Times	—
Data hold time	After 1000 times N _{PEC}	t _{DRP}	20 ^{*2 *3}	_	_	Year	$T_a = +85^{\circ}C$
	After 10000 times N _{PEC}		10 ^{*2 *3}	_	_	Year	T _a = +105°C

Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 10,000), erasing can be performed n times for each block. For instance, when 4-byte programming is performed 512 times for different addresses in 2-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasure is not enabled (overwriting is prohibited).

Note 2. Characteristic when using the flash memory programmer and the self-programming library provided by Renesas Electronics.

Note 3. This result is obtained from reliability testing.

Table 2.81Code flash characteristics (2)

High-speed operating mode

			ICLK = 1 MHz		z	1	CLK = 48 MH	łz	
Parameter		Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Programming time	4-byte	t _{P4}	—	86	732	_	34	321	μs
Erasure time	2-KB	t _{E2K}	—	12.5	355	_	5.6	215	ms
Blank check time	4-byte	t _{BC4}	_	_	46.5	_	—	8.3	μs
	2-КВ	t _{BC2K}	—	_	3681	_	—	240	μs
Erase suspended time	1	t _{SED}	—	_	22.3	_	—	10.5	μs
Access window informat Start-up area selection a setting time		t _{AWSSAS}	_	21.2	570	-	11.4	423	ms
OCD/serial programmer time ^{*1}	ID setting	t _{OSIS}	_	84.7	2280	—	45.3	1690	ms
Flash memory mode trai time 1	nsition wait	t _{DIS}	2	_	-	2	_	-	μs
Flash memory mode trai time 2	nsition wait	t _{MS}	15	_	-	15	_	-	μs

Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.

Note: The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Note 1. Total time of four commands.

Table 2.82Code flash characteristics (3) (1 of 2)

Middle-speed operating mode

Conditions: VCC = AVCC = 1.6 to 5.5 V

				ICLK = 1 MHz			ICLK = 8 MHz ^{*2}			
Parameter		Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Programming time	4-byte	t _{P4}	—	86	732	—	39	356	μs	

Table 2.82Code flash characteristics (3) (2 of 2)

Middle-speed operating mode Conditions: VCC = AVCC = 1.6 to 5.5 V

			ICLK = 1 MHz		z	IC	CLK = 8 MHz	*2	
Parameter		Symbol	Min	Тур	Мах	Min	Тур	Мах	Unit
Erasure time	2-KB	t _{E2K}	_	12.5	355	—	6.2	227	ms
Blank check time	4-byte	t _{BC4}	_	_	46.5	_	_	11.3	μs
	2-KB	t _{BC2K}	_	_	3681	—	_	534	μs
Erase suspended time		t _{SED}	_	—	22.3	—	_	11.7	μs
	Access window information program Start-up area selection and security setting time		_	21.2	570	_	12.2	435	ms
OCD/serial programmer time ^{*1}	ID setting	t _{OSIS}	_	84.7	2280	_	48.7	1740	ms
Flash memory mode trar time 1	nsition wait	t _{DIS}	2	_	_	2	_	_	μs
Flash memory mode tran time 2	nsition wait	t _{MS}	15	—	—	15	—	—	μs

Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.

Note: The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Note 1. Total time of four commands.

Note 2. When 1.8 V \leq VCC = AVCC \leq 5.5 V

Table 2.83Code flash characteristics (4)

Low-speed operating mode

Conditions: VCC = AVCC = 1.6 to 5.5 V

			I	CLK = 1 MH	z	1	CLK = 2 MH	z	
Parameter		Symbol	Min	Тур	Мах	Min	Тур	Мах	Unit
Programming time	4-byte	t _{P4}	—	86	732	—	57	502	μs
Erasure time	2-KB	t _{E2K}	_	12.5	355	_	8.8	280	ms
Blank check time	4-byte	t _{BC4}	_	_	46.5	—	_	23.3	μs
	2-KB	t _{BC2K}	_	_	3681	—	_	1841	μs
Erase suspended time		t _{SED}	_	_	22.3	—	_	16.2	μs
Access window informat Start-up area selection a setting time		t _{AWSSAS}	_	21.2	570	_	15.9	491	ms
OCD/serial programmer time ^{*1}	ID setting	t _{OSIS}	_	84.7	2280	_	63.5	1964	ms
Flash memory mode trar time 1	nsition wait	t _{DIS}	2	_	_	2	_	_	μs
Flash memory mode tran time 2	nsition wait	t _{MS}	15	—	—	15	—	—	μs

Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.

Note: The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz or 2 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Note 1. Total time of four commands.

2.14.2 Data Flash Memory Characteristics

Table 2.84 Data flash characteristics (1)

Parameter	Symbol	Min	Тур	Max	Unit	Conditions	
Reprogramming/erasure cycle ^{*1}		N _{DPEC}	100000	1000000	_	Times	—
Data hold time	d time After 10000 times of N _{DPEC}		20*2 *3	—	_	Year	Ta = +105°C
	After 100000 times of N _{DPEC}		5 ^{*2 *3}	—	_	Year	
	After 1000000 times of N _{DPEC}		_	1 ^{*2 *3}	_	Year	Ta = +25°C

Note 1. The reprogram/erase cycle is the number of erasure for each block. When the reprogram/erase cycle is n times (n = 100,000), erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1,024 times for different addresses in 1-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasure is not enabled (overwriting is prohibited).

Note 2. Characteristics when using the flash memory programmer and the self-programming library provided by Renesas Electronics.

Note 3. This result is obtained from reliability testing.

 Table 2.85
 Data flash characteristics (2)

High-speed operating mode

Conditions: VCC = AVCC = 1.8 to 5.5 V

			ICLK = 4 MHz			IC			
Parameter	Parameter		Min	Тур	Max	Min	Тур	Max	Unit
Programming time	1-byte	t _{DP1}	—	45	404	—	34	321	μs
Erasure time	1-KB	t _{DE1K}	—	8.8	280	—	6.1	224	ms
Blank check time	1-byte	t _{DBC1}	_	_	15.2	—	_	8.3	μs
	1-KB	t _{DBC1K}	_	_	1832	—	—	466	μs
Suspended time during	erasing	t _{DSED}	—	—	13.2	—	—	10.5	μs
Data flash STOP recove	ery time	t _{DSTOP}	250	—		250	_	—	ns

Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.

Note: The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Table 2.86 Data flash characteristics (3)

Middle-speed operating mode

Conditions: VCC = AVCC = 1.6 to 5.5 V

			ICLK = 4 MHz			IC			
Parameter		Symbol	Min	Тур	Мах	Min	Тур	Мах	Unit
Programming time	1-byte	t _{DP1}	—	45	404	—	39	356	μs
Erasure time	1-KB	t _{DE1K}	—	8.8	280	—	7.3	248	ms
Blank check time	1-byte	t _{DBC1}	—	—	15.2	_	_	11.3	μs
	1-KB	t _{DBC1K}	—	_	1.84	_	—	1.06	ms
Suspended time during	erasing	t _{DSED}	_	_	13.2	_	_	11.7	μs
Data flash STOP recovery time		t _{DSTOP}	250	_		250	—	—	ns

Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.

Note: The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Note 1. When 1.8 V \leq VCC = AVCC \leq 5.5 V

Table 2.87 Data flash characteristics (4)

Low-speed operating mode Conditions: VCC = AVCC = 1.6 to 5.5 V

			I	CLK = 1 MH	z	I			
Parameter		Symbol	Min	Тур	Мах	Min	Тур	Max	Unit
Programming time	1-byte	t _{DP1}	—	86	732	—	57	502	μs
Erasure time	1-KB	t _{DE1K}	—	19.7	504	—	12.4	354	ms
Blank check time	1-byte	t _{DBC1}	_	—	46.5	_	_	23.3	μs
	1-KB	t _{DBC1K}	_	—	7.3	_	_	3.66	ms
Suspended time during	erasing	t _{DSED}	_	—	22.3	—	—	16.2	μs
Data flash STOP recovery time		t _{DSTOP}	250	—	—	250	—	_	ns

Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.

Note: The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 2 MHz, the frequency can be set to 1 MHz or 2 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

2.14.3 Serial Wire Debug (SWD)

Table 2.88 SWD characteristics (1)

Conditions: VCC = AVCC = 2.4 to 5.5 V

Parameter	Symbol	Min	Тур	Мах	Unit	Test conditions
SWCLK clock cycle time	t _{SWCKcyc}	80	_	_	ns	Figure 2.52
SWCLK clock high pulse width	t _{SWCKH}	35	_	_	ns	-
SWCLK clock low pulse width	tSWCKL	35	—	_	ns	
SWCLK clock rise time	t _{SWCKr}	—	_	5	ns	
SWCLK clock fall time	t _{SWCKf}	—	_	5	ns	
SWDIO setup time	t _{SWDS}	16	_	_	ns	Figure 2.53
SWDIO hold time	t _{SWDH}	16	_	_	ns	
SWDIO data delay time	t _{SWDD}	2	—	70	ns	

Table 2.89SWD characteristics (2)

Conditions: VCC = AVCC = 1.6 to 2.4 V

Parameter	Symbol	Min	Тур	Мах	Unit	Test conditions
SWCLK clock cycle time	t _{SWCKcyc}	250	-	—	ns	Figure 2.52
SWCLK clock high pulse width	t _{SWCKH}	120	—	—	ns	
SWCLK clock low pulse width	t _{SWCKL}	120	—	—	ns	
SWCLK clock rise time	t _{SWCKr}	_	—	5	ns	
SWCLK clock fall time	t _{SWCKf}	_	—	5	ns	
SWDIO setup time	t _{SWDS}	50	—	—	ns	Figure 2.53
SWDIO hold time	t _{SWDH}	50	-	—	ns	
SWDIO data delay time	t _{SWDD}	2	-	170	ns	

Appendix 1. Port States in each Processing Mode

 Table 1.1
 Port states in each processing mode (1 of 4)

Port name	Reset	Software Standby Mode
P001/VREFH0/AN001	Hi-Z	Кеер-О
P002/VREFL0/AN002	Hi-Z	Кеер-О
P004/SEG44	Hi-Z	Кеер-О
P005/SEG43	Hi-Z	Кеер-О
P006/SEG42	Hi-Z	Кеер-О
P007/SEG41	Hi-Z	Кеер-О
P008/SEG40	Hi-Z	Кеер-О
P009/SEG39	Hi-Z	Кеер-О
P010/SEG38	Hi-Z	Кеер-О
P011/SEG37/GTIOC4A	Hi-Z	Кеер-О
P012/CACREF_A/SEG36/GTIOC5A_A/IRQ2_A/SCL1	Hi-Z	Keep-O ^{*1}
P013/SEG35/RXD1/MISO1/SCL1/AGTIO7/IRQ1_A/SDA1	Hi-Z	[AGTIO7 output selected] AGTIO7 output ^{*2} [Other than the above] Keep-O ^{*1}
P014/CACREF_B/AN000/IRQ3_A	Hi-Z	Keep-O ^{*1}
P015/AN003/EXLVDVBAT	Hi-Z	Keep-O
P100/SEG13/TXD0/MOSI0/SDA0/AGTO0/AGTOA0/AGTOB0/AGTEE0/GTIU/ GTIOC8A_A	Hi-Z	[AGTO0/AGTOA0/AGTOB0 output selected] AGTO0/AGTOA0/AGTOB0 output ^{*2} [Other than the above] Keep-O
P101/SEG14/RXD0/MISO0/SCL0/AGTO1/AGTOA1/AGTOB1/AGTEE1/ AGTWO0/GTIV/GTIOC8B_A	Hi-Z	[AGTO1/AGTOA1/AGTOB1/AGTWO0 output selected] AGTO1/AGTOA1/AGTOB1/AGTWO0 output ^{*2} [Other than the above] Keep-O
P102/SEG15/ADTRG0_A/SCK0/AGTO2/AGTOA2/AGTOB2/AGTEE2/ AGTWEE0/GTIW/GTIOC6A_B	Hi-Z	[AGTO2/AGTOA2/AGTOB2 output selected] AGTO2/AGTOA2/AGTOB2 output ^{*2} [Other than the above] Keep-O
P103/SEG16/CTS0_RTS0/SS0/SSLA3/AGTO3/AGTOA3/AGTOB3/AGTEE3/ AGTWIO0/GTOUUP/GTIOC6B_B	Hi-Z	[AGTO3/AGTOA3/AGTOB3/ AGTWIO0 output selected] AGTO3/AGTOA3/AGTOB3/AGTWIO0 output ^{*2} [Other than the above] Keep-O
P104/SEG24/SCK2/GTIOC8A_B	Hi-Z	Кеер-О
P105/SEG25/CTS2_RTS2/SS2/GTIOC8B_B	Hi-Z	Keep-O
P106/SEG26/TXD2/MOSI2/SDA2	Hi-Z	Keep-O
P107/SEG27/RXD2/MISO2/SCL2/SSLA1_A	Hi-Z	Keep-O
P108/SWDIO/GTIOC7B/RTCOUT_B	Pull-up	[RTCOUT_B selected] RTCOUT_B output [Other than the above] Keep-O

Table 1.1	Port states in each processing mode (2 of 4)
-----------	--

Port name	Reset	Software Standby Mode
P109/SEG17/TXD9/MOSI9/SDA9/AGTO4/AGTOA4/AGTOB4/AGTEE4/ AGTWOB0/GTOULO/CLKOUT_B	Hi-Z	[AGTO4/AGTOA4/AGTOB4/ AGTWOB0 output selected] AGTO4/AGTOA4/AGTOB4/ AGTWOB0 output ^{*2} [CLKOUT_B selected] CLKOUT_B output [Other than the above] Keep-O
P110/SEG18/RXD9/MISO9/SCL9/AGTO5/AGTOA5/AGTOB5/AGTEE5/ AGTWOA0/GTOVUP	Hi-Z	[AGTO5/AGTOA5/AGTOB5/ AGTWOA0 output selected] AGTO5/AGTOA5/AGTOB5/ AGTWOA0 output ^{*2} [Other than the above] Keep-O
P111/SEG19/SCK9/AGTO6/AGTOA6/AGTOB6/AGTEE6/GTOVLO/ GTIOC5A_B	Hi-Z	[AGTO6/AGTOA6/AGTOB6 output selected] AGTO6/AGTOA6/AGTOB6 output ^{*2} [Other than the above] Keep-O
P112/SEG20/CTS9_RTS9/SS9/SSLA2/AGTO7/AGTOA7/AGTOB7/AGTEE7/ GTOWUP/GTIOC5B_B	Hi-Z	[AGTO7/AGTOA7/AGTOB7 output selected] AGTO7/AGTOA7/AGTOB7 output ^{*2} [Other than the above] Keep-O
P113/SEG21	Hi-Z	Кеер-О
P114/SEG22	Hi-Z	Кеер-О
P115/SEG23	Hi-Z	Кеер-О
P200/NMI	Hi-Z	Hi-Z
P201/MD	Pull-up	Keep-O
P203/COM3	Hi-Z	Keep-O
P204/COM2	Hi-Z	Keep-O
P205/COM1	Hi-Z	Keep-O
P206/COM0	Hi-Z	Keep-O
P207/VL3	Hi-Z	Keep-O
P208/CAPL	Hi-Z	Keep-O
P209/CAPH	Hi-Z	Keep-O
P210/ADTRG0_B/GTIOC5B_A/IRQ8/CLKOUT_A	Hi-Z	[CLKOUT_A selected] CLKOUT_A output [Other than the above] Keep-O ^{*1}
P211/EXLVD	Hi-Z	Keep-O
P212/EXTAL	Hi-Z	Keep-O
P213/XTAL	Hi-Z	Кеер-О
P214/XCOUT, P215/XCIN	Hi-Z	[Sub-clock Oscillator selected] Sub-clock Oscillator is operating [Other than the above] Hi-Z
P300/SWCLK /GTIOC6B_A	Pull-up	Keep-O
P301/COM4/SEG00	Hi-Z	Кеер-О
P302/COM5/SEG01	Hi-Z	Кеер-О
P303/COM6/SEG02	Hi-Z	Кеер-О

Table 1.1	Port states in each processing mode (3 of 4)
-----------	--

Port name	Reset	Software Standby Mode	
P304/COM7/SEG03	Hi-Z	Keep-O	
P305/SEG04	Hi-Z	Keep-O	
P306/SEG05/IRQ0_B	Hi-Z	Keep-O ^{*1}	
P307/SEG06/IRQ1_B	Hi-Z	Keep-O ^{*1}	
P308/SEG07/IRQ2_B	Hi-Z	Keep-O ^{*1}	
P309/SEG08/IRQ3_B	Hi-Z	Keep-O ^{*1}	
P310/SEG09/IRQ4_B	Hi-Z	Keep-O ^{*1}	
P311/SEG10/IRQ5_B	Hi-Z	Keep-O ^{*1}	
P312/SEG11/IRQ6_B	Hi-Z	Keep-O ^{*1}	
P313/SEG12/IRQ7_B	Hi-Z	Keep-O ^{*1}	
P400/RTCIC0/IRQ9	Hi-Z	Keep-O ^{*1}	
P401/RTCIC1/IRQ10	Hi-Z	Keep-O ^{*1}	
P402/RTCIC2/RTCOUT_A/IRQ11	Hi-Z	[RTCOUT_A output selected] RTCOUT_A output [Other than the above] Keep-O ^{*1}	
P403/GTIOC4B/MISOA_B	Hi-Z	Keep-O	
P404/MOSIA_B	Hi-Z	Keep-O	
P405/RSPCKA_B	Hi-Z	Keep-O	
P408/GTIOC9A_B/SSLA0_B	Hi-Z	Keep-O	
P409/GTIOC9B_B/SSLA1_B	Hi-Z	Keep-O	
P410(Nch OD)/SDA0/GTIOC6A_A	Hi-Z	Кеер-О	
P411(Nch OD)/SCL0/GTIOC7A	Hi-Z	Кеер-О	
P500/SEG28/RXD3/MISO3/SCL3/AGTIO0/AGTWEE1/GTOWLO/IRQ4_A	Hi-Z	[AGTIO0 output selected] AGTIO0 output ^{*2} [Other than the above] Keep-O ^{*1}	
P501/SEG29/TXD3/MOSI3/SDA3/AGTIO1/AGTWIO1/GTETRGA/IRQ5_A	Hi-Z	[AGTIO1/AGTWIO1 output selected] AGTIO1/AGTWIO1 output ^{*2} [Other than the above] Keep-O ^{*1}	
P502/SEG30/SCK3/RSPCKA_A/AGTIO2/AGTWO1/GTETRGB/GTIOC9A_A/ IRQ6_A	Hi-Z	[AGTIO2/AGTWO1 output selected] AGTIO2/AGTWO1 output ^{*2} [Other than the above] Keep-O ^{*1}	
P503/SEG31/CTS3_RTS3/SS3/SSLA0_A/AGTIO3/AGTWOA1/GTIOC9B_A/ IRQ7_A	Hi-Z	[AGTIO3/AGTWOA1 output selected AGTIO3/AGTWOA1 output ^{*2} [Other than the above] Keep-O ^{*1}	
P504/SEG32/SCK1/MOSIA_A/AGTIO4/AGTWOB1	Hi-Z	[AGTIO4/AGTWOB1 output selected] AGTIO4/AGTWOB1 output ^{*2} [Other than the above] Keep-O	
P505/SEG33/CTS1_RTS1/SS1/MISOA_A/AGTIO5	Hi-Z	[AGTIO5 output selected] AGTIO5 output ^{*2} [Other than the above] Keep-O	

Table 1.1 Port states in each processing mode (4 of 4)

Port name	Reset	Software Standby Mode
P506/SEG34/TXD1/MOSI1/SDA1/AGTIO6/IRQ0_A		[AGTIO6 output selected] AGTIO6 output ^{*2} [Other than the above] Keep-O ^{*1}
P600	L output	Кеер-О

Note: Hi-Z: High-impedance

Keep-O. Output pins retain their previous values. Input pins become high-impedance.

Retains LCD output when the LCD controller/driver pin functions (COM0 to COM7 and SEG0 to SEG44) are set and LOCO or SOSC is selected in the SLCDSCKCR.LCDSCKSEL[2:0] bits.

Note 1. Input is enabled if the pin is specified as the Software Standby canceling source while it is used as an external interrupt pin.

Note 2. AGTIO output is enabled while LOCO or SOSC is selected as a count source.

Appendix 2. Package Dimensions

Information on the latest version of the package dimensions or mountings is displayed in "Packages" on the Renesas Electronics Corporation website.

Figure 2.3 LQFP 64-pin

Appendix 3. I/O Registers

This appendix describes I/O register addresses, access cycles, and reset values by function.

3.1 Peripheral Base Addresses

This section provides the base addresses for peripherals described in this manual.

Table 3.1 shows the name, description, and the base address of each peripheral.

Name	Description	Base address
MPU	Memory Protection Unit	0x4000_0000
MMF	Memory Mirror Function	0x4000_1000
SRAM	SRAM Control	0x4000_2000
BUS	BUS Control	0x4000_3000
DTC	Data Transfer Controller	0x4000_5400
ICU	Interrupt Controller	0x4000_6000
DBG	Debug Function	0x4001_B000
SYSC	System Control	0x4001_E000
PORT0	Port 0 Control Registers	0x4004_0000
PORT1	Port 1 Control Registers	0x4004_0020
PORT2	Port 2 Control Registers	0x4004_0040
PORT3	Port 3 Control Registers	0x4004_0060
PORT4	Port 4 Control Registers	0x4004_0080
PORT5	Port 5 Control Registers	0x4004_00A0
PORT6	Port 6 Control Registers	0x4004_00C0
PFS	Pmn Pin Function Control Register	0x4004_0800
ELC	Event Link Controller	0x4004_1000
POEG	Port Output Enable Module for GPT	0x4004_2000
RTC	Realtime Clock	0x4004_4000
WDT	Watchdog Timer	0x4004_4200
IWDT	Independent Watchdog Timer	0x4004_4400
CAC	Clock Frequency Accuracy Measurement Circuit	0x4004_4600
MSTP	Module Stop Control A, B, C, D	0x4004_7000
IIC0	Inter-Integrated Circuit 0	0x4005_3000
IICOWU	Inter-Integrated Circuit 0 Wakeup Unit	0x4005_3014
IIC1	Inter-Integrated Circuit 1	0x4005_3100
DOC	Data Operation Circuit	0x4005_4100
ADC12	12-bit A/D Converter	0x4005_C000
SCI0	Serial Communication Interface 0	0x4007_0000
SCI1	Serial Communication Interface 1	0x4007_0020
SCI2	Serial Communication Interface 2	0x4007_0040
SCI3	Serial Communication Interface 3	0x4007_0060
SCI9	Serial Communication Interface 9	0x4007_0120
SPI0	Serial Peripheral Interface 0	0x4007_2000
CRC	CRC Calculator	0x4007_4000

Table 3.1Peripheral base address (1 of 2)

Name	Description	Base address
GPT164	General PWM Timer 4 (16-bit)	0x4007_8400
GPT165	General PWM Timer 5 (16-bit)	0x4007_8500
GPT166	General PWM Timer 6 (16-bit)	0x4007_8600
GPT167	General PWM Timer 7 (16-bit)	0x4007_8700
GPT168	General PWM Timer 8 (16-bit)	0x4007_8800
GPT169	General PWM Timer 9 (16-bit)	0x4007_8900
GPT_OPS	Output Phase Switching Controller	0x4007_8FF0
SLCDC ^{*1}	Segment LCD Controller/Driver	0x4008_2000
AGTW0	32-bit Low Power Asynchronous General Purpose Timer 0	0x4008_4000
AGTW1	32-bit Low Power Asynchronous General Purpose Timer 1	0x4008_4100
AGT0	16-bit Low Power Asynchronous General Purpose Timer 0	0x4008_4200
AGT1	16-bit Low Power Asynchronous General Purpose Timer 1	0x4008_4300
AGT2	16-bit Low Power Asynchronous General Purpose Timer 2	0x4008_4400
AGT3	16-bit Low Power Asynchronous General Purpose Timer 3	0x4008_4500
AGT4	16-bit Low Power Asynchronous General Purpose Timer 4	0x4008_4600
AGT5	16-bit Low Power Asynchronous General Purpose Timer 5	0x4008_4700
AGT6	16-bit Low Power Asynchronous General Purpose Timer 6	0x4008_4800
AGT7	16-bit Low Power Asynchronous General Purpose Timer 7	0x4008_4900
SDADC24_B	24-Bit Sigma-Delta A/D Converter	0x4009_C000
MACL	32-bit Multiply-Accumulator	0x400A_0000
FLCN	Flash I/O Registers	0x407E_C000

Table 3.1 Peripheral base address (2 of 2)

Name = Peripheral name Description = Peripheral functionality

Base address = Lowest reserved address or address used by the peripheral

Note 1. The LCD Display Data registers are mapped from 0x4008_2100.

3.2 Access Cycles

This section provides access cycle information for the I/O registers described in this manual.

The following information applies to Table 3.2:

- Registers are grouped by associated module.
- The number of access cycles indicates the number of cycles based on the specified reference clock.
- In the internal I/O area, reserved addresses that are not allocated to registers must not be accessed, otherwise operations cannot be guaranteed.
- The number of I/O access cycles depends on bus cycles of the internal peripheral bus, divided clock synchronization cycles, and wait cycles of each module. Divided clock synchronization cycles differ depending on the frequency ratio between ICLK and PCLK.
- When the frequency of ICLK is equal to that of PCLK, the number of divided clock synchronization cycles is always constant.
- When the frequency of ICLK is greater than that of PCLK, at least 1 PCLK cycle is added to the number of divided clock synchronization cycles.
- Note: This applies to the number of cycles when access from the CPU does not conflict with the instruction fetching to the external memory or bus access from other bus master such as DTC.

Table 3.2 shows the register access cycles for non-GPT modules.

Table 3.2	Access	cycles	for non-GPT	modules
-----------	--------	--------	-------------	---------

			Number of access cycles					
	Address		ICLK =	PCLK	ICLK >	PCLK ^{*1}	Cycle	
Peripherals	From	То	Read	Write	Read	Write	unit	Related function
MPU, MMF, SRAM, BUS, DTC, ICU, DBG	0x4000_2000	0x4001_BFFF	3				ICLK	Memory Protection Unit, Memory Mirror Function, SRAM, Buses, Data Transfer Controller, Interrupt Controller, CPU, Flash Memory
SYSC	0x4001_E000	0x4001_E6FF	4				ICLK	Low Power Modes, Resets, Low Voltage Detection, Clock Generation Circuit, Register Write Protection
PORTn, PFS, ELC, POEG, RTC, WDT, IWDT, CAC, MSTP	0x4004_0000	0x4004_7FFF		3	2 to 3		PCLKB	I/O Ports, Event Link Controller, Port Output Enable for GPT, Realtime Clock, Watchdog Timer, Independent Watchdog Timer, Clock Frequency Accuracy Measurement Circuit, Module Stop Control
IICn (n = 0, 1), IIC0WU, DOC, ADC12	0x4005_3000	0x4005_CFFF		3 2 to 3		PCLKB	I ² C Bus Interface, Data Operation Circuit, 12-bit A/D Converter	
SCIn (n = 0 ^{*2} to 3, 9)	0x4007_0000	0x4007_0EFF		5	21	to 3	PCLKB	Serial Communications Interface
SPI0 ^{*3}	0x4007_2000	0x4007_2FFF		5	21	to 3	PCLKB	Serial Peripheral Interface
CRC	0x4007_4000	0x4007_4FFF		3	21	to 3	PCLKB	CRC Calculator
GPT16n (n = 4 to 9), GPT_OPS	0x4007_8000	0x4007_BFFF		See Ta	able 3.3.		PCLKB	General PWM Timer
SLCDC	0x4008_0000	0x4008_2FFF		2	11	to 2	PCLKB	Segment LCD Controller/Driver
AGTWn (n = 0 to 1), AGTn (n = 0 to 7)	0x4008_4000	0x4008_4FFF	3		21	to 3	PCLKB	Low Power Asynchronous General Purpose Timer
SDADC24	0x4009_C000	0x4009_CFFF	2		11	to 2	PCLKB	24-Bit Sigma-Delta A/D Converter
MACL	0x400A_0000	0x400A_0FFF		2		2	ICLK	32-bit Multiply-Accumulator
FLCN	0x407E_C000	0x407E_FFFF		7		7	ICLK	Data Flash, Temperature Sensor, Flash Control

Note 1. If the number of PCLK cycles is non-integer (for example 1.5), the minimum value is without the decimal point, and the maximum value is rounded up to the decimal point. For example, 1.5 to 2.5 is 1 to 3.
 Note 2. When accessing a 16-bit register (FTDRHL, FRDRHL, FCR, FDR, LSR, and CDR), access is 2 cycles more than the value shown in

Note 2. When accessing a 16-bit register (FTDRHL, FRDRHL, FCR, FDR, LSR, and CDR), access is 2 cycles more than the value shown in Table 3.2. When accessing an 8-bit register (FTDRH, FTDRL, FRDRH, and FRDRL), the access cycles are as shown in Table 3.2.
 Note 3. When accessing the 32-bit register (SPDR), access is 2 cycles more than the value in Table 3.2. When accessing an 8-bit or 16-bit register (SPDR_HA), the access cycles are as shown in Table 3.2.

Table 3.3 shows register access cycles for GPT modules.

Table 3.3 Access cycles for GPT modules	Table 3.3	Access cycles for GPT modules
---	-----------	-------------------------------

Frequency ratio between ICLK and PCLK	Number of access cycles		
	Read	Write	Cycle unit
ICLK > PCLKD = PCLKB	5 to 6	3 to 4	PCLKB
ICLK > PCLKD > PCLKB	3 to 4	2 to 3	PCLKB
PCLKD = ICLK = PCLKB	6	4	PCLKB
PCLKD = ICLK > PCLKB	2 to 3	1 to 2	PCLKB
PCLKD > ICLK = PCLKB	4	3	PCLKB
PCLKD > ICLK > PCLKB	2 to 3	1 to 2	PCLKB

Appendix 4. Peripheral Variant

Table 4.1 shows the correspondence between the module name used in this manual and the Peripheral Variant.

Table 4.1 Module name vs Peripheral Variant

Module name	Peripheral Variant
SDADC24	SDADC24_B

Revision History

Revision 1.00 — September 8, 2023

Initial release

Revision 1.10 — December 8, 2023

1. Overview:

• Removed NMI in Table1.16 Pin list.

2. Electrical Characteristics:

- ٠
- Changed Note 1 in Table 2.1 Absolute maximum ratings. Changed structure of Table 2.4 I/O Table 2.4 I/O VIH, VIL.
- Added Table 2.44 to Table 2.50. •

Appendix 3. I/O Registers:

• Changed from Module Stop Control B, C, D to Module Stop Control A, B, C, D.

Revision 1.20 — September 16, 2024

2. Electrical Characteristics:

- Added section 2.2.8 Thermal Characteristics.
- Updated Table 2.24 Timing of recovery from low power modes (2) and (3).

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.