Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

R8C/12 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

1. Overview

This MCU is built using the high-performance silicon gate CMOS process using a R8C Tiny Series CPU core and is packaged in a 32-pin plastic molded LQFP. This MCU operates using sophisticated instructions featuring a high level of instruction efficiency. With 1M bytes of address space, it is capable of executing instructions at high speed.

The data flash ROM (2 KB X 2 blocks) is embedded.

1.1 Applications

Electric household appliance, office equipment, housing equipment (sensor, security), general industrial equipment, audio, etc.

1.2 Performance Overview

Table 1.1. lists the performance outline of this MCU.

Table 1.1	Performance	outline
-----------	-------------	---------

	Item	Performance		
CPU	Number of basic instructions			
	Minimum instruction execution time	62.5 ns (f(XIN) = 16 MHz, VCC = 3.0 to 5.5 V)		
		100 ns (f(XIN) = 10 MHz, Vcc = 2.7 to 5.5 V)		
	Operating mode	Single-chip		
	Address space	1M bytes		
	Memory capacity	See Table 1.2 "Product List"		
Peripheral	Port	Input/Output: 22 (including LED drive port), Input: 2		
function	LED drive port	I/O port: 8		
	Timer	Timer X: 8 bits x 1 channel, Timer Y: 8 bits x 1 channel,		
		Timer Z: 8 bits x 1 channel		
		(Each timer equipped with 8-bit prescaler)		
		Timer C: 16 bits x 1 channel		
		(Input capture circuit)		
	Serial Interface	•1 channel		
		Clock synchronous, UART		
		•1 channel		
		UART		
	A/D converter	10-bit A/D converter: 1 circuit, 8 channels		
	Watchdog timer	15 bits x 1 (with prescaler)		
		Reset start function selectable Internal: 9 factors, External: 5 factors,		
	Interrupt			
		Software: 4 factors, Priority level: 7 levels		
	Clock generation circuit	2 circuits		
		•Main clock generation circuit (Equipped with a built-in		
		feedback resistor)		
		•On-chip oscillator		
	Oscillation stop detection function	Main clock oscillation stop detection function		
Electrical	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 16 MHZ)		
characteristics		Vcc = 2.7 to 5.5 V (f(XIN) = 10 MHz)		
	Power consumption	Typ.8mA (Vcc = 5.0 V (f(XIN) = 16 MHz)		
		Typ.5mA (Vcc = 3.0 V, (f(XIN) = 10 MHz)		
		Typ.35µA (Vcc = 3.0 V, Wait mode, peripheral clock stops)		
		Typ.0.7µA (Vcc = 3.0 V, Stop mode)		
Flash memory	Program/erase supply voltage	Vcc = 2.7 to 5.5 V		
	Program/erase endurance	10,000 times (Data flash)		
		1,000 times (Program ROM)		
Operating aml	bient temperature	-20 to 85 °C		
		-40 to 85 °C (D-version)		
Package		32-pin plastic mold LQFP		

1.3 Block Diagram

Figure 1.1. shows this MCU block diagram.

Figure 1.1 Block Diagram

1.4 Product Information

Table 1.2 lists the product information.

Table 1.2 Product Information

Table 1.2 Product Information As of January 2006								
	ROM	capacity		Dealeage ture	Bomorko			
Type No.	Program ROM	Data flash	RAM capacity	Package type	Remarks			
R5F21122FP	8K bytes	2K bytes x 2	512 bytes	PLQP0032GB-A	Flash memory version			
R5F21123FP	12K bytes	2K bytes x 2	768 bytes	PLQP0032GB-A				
R5F21124FP	16K bytes	2K bytes x 2	1K bytes	PLQP0032GB-A				
R5F21122DFP	8K bytes	2K bytes x 2	512 bytes	PLQP0032GB-A	D version			
R5F21123DFP	12K bytes	2K bytes x 2	768 bytes	PLQP0032GB-A				
R5F21124DFP	16K bytes	2K bytes x 2	1K bytes	PLQP0032GB-A				

Figure 1.2 Type No., Memory Size, and Package

1.5 Pin Assignments

Figure 1.3 shows the pin configuration (top view).

1.6 Pin Description

Table 1.3 shows the pin description

Table 1.3 Pin description

Signal name	Pin name	I/O type	Function
Power supply	Vcc,	1	Apply 2.7 V to 5.5 V to the Vcc pin. Apply 0 V to the
input	Vss		Vss pin.
IVcc	IVcc	0	This pin is to stabilize internal power supply.
			Connect this pin to Vss via a capacitor (0.1 μ F).
			Do not connect to Vcc.
Analog power	AVcc,	1	Power supply input pins for A/D converter. Connect the
supply input	AVss		AVcc pin to Vcc. Connect the AVss pin to Vss. Connect a
			capacitor between pins AVcc and AVss.
Reset input	RESET	1	Input "L" on this pin resets the MCU.
CNVss	CNVss	1	Connect this pin to Vss via a resistor.
MODE	MODE	I	Connect this pin to Vcc via a resistor.
Main clock input	XIN	1	These pins are provided for the main clock generat-
			ing circuit I/O. Connect a ceramic resonator or a crys-
Main clock output	Χουτ	0	tal oscillator between the XIN and XOUT pins. To use
			an externally derived clock, input it to the XIN pin and
			leave the XOUT pin open.
INT interrupt input	INTo to INT3	1	INT interrupt input pins.
Key input interrupt	KI0 to KI3	1	Key input interrupt pins.
Timer X	CNTR 0	I/O	Timer X I/O pin
	CNTR 0	0	Timer X output pin
Timer Y	CNTR1	I/O	Timer Y I/O pin
Timer Z	ΤΖΟυτ	0	Timer Z output pin
Timer C	TCIN	I	Timer C input pin
Serial interface	CLK0	I/O	Transfer clock I/O pin.
	RxD0, RxD1	I	Serial data input pins.
	TxD0, TxD10,	0	Serial data output pins.
	TxD11		
Reference voltage	Vref	1	Reference voltage input pin for A/sD converter. Con-
input			nect the VREF pin to Vcc.
A/D converter	AN0 to AN7	I	Analog input pins for A/D converter
I/O port	P00 to P07,	I/O	These are 8-bit CMOS I/O ports. Each port has an
	P10 to P17,		input/output select direction register, allowing each
	P30 to P33, P37,		pin in that port to be directed for input or output indi-
	P45		vidually.
			Any port set to input can select whether to use a pull-
			up resistor or not by program.
			P10 to P17 also function as LED drive ports.
Input port	P46, P47	1	Port for input-only.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1 and FB comprise a register bank. Two sets of register banks are provided.

2.1 Data Registers (R0, R1, R2 and R3)

R0 is a 16-bit register for transfer, arithmetic and logic operations. The same applies to R1 to R3. The R0 can be split into high-order bit (R0H) and low-order bit (R0L) to be used separately as 8-bit data registers. The same applies to R1H and R1L as R0H and R0L. R2 can be combined with R0 to be used as a 32-bit data register (R2R0). The same applies to R3R1 as R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. They also are used for transfer, arithmetic and logic operations. The same applies to A1 as A0. A0 can be combined with A0 to be used as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC, 20 bits wide, indicates the address of an instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointer (SP), USP and ISP, are 16 bits wide each. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is a 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic logic unit.

2.8.2 Debug Flag (D)

The D flag is for debug only. Set to "0".

2.8.3 Zero Flag (Z)

The Z flag is set to "1" when an arithmetic operation resulted in 0; otherwise, "0".

2.8.4 Sign Flag (S)

The S flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, "0".

2.8.5 Register Bank Select Flag (B)

The register bank 0 is selected when the B flag is "0". The register bank 1 is selected when this flag is set to "1".

2.8.6 Overflow Flag (O)

The O flag is set to "1" when the operation resulted in an overflow; otherwise, "0".

2.8.7 Interrupt Enable Flag (I)

The I flag enables a maskable interrupt.

An interrupt is disabled when the I flag is set to "0", and are enabled when the I flag is set to "1". The I flag is set to "0" when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to "0", USP is selected when the U flag is set to "1".

The U flag is set to "0" when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL, 3 bits wide, assigns processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has greater priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

When write to this bit, set to "0". When read, its content is indeterminate.

3. Memory

Figure 3.1 is a memory map of this MCU. This MCU provides 1-Mbyte address space from addresses 0000016 to FFFF16.

The internal ROM (program ROM) is allocated lower addresses beginning with address 0FFF16. For example, a 16-Kbyte internal ROM is allocated addresses from 0C00016 to 0FFF16.

The fixed interrupt vector table is allocated addresses 0FFDC16 to 0FFFF16. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses from 0200016 to 02FFF16.

The internal RAM is allocated higher addresses beginning with address 0040016. For example, a 1-Kbyte internal RAM is allocated addresses 0040016 to 007FF16. The internal RAM is used not only for storing data, but for calling subroutines and stacks when interrupt request is acknowledged.

Special function registers (SFR) are allocated addresses 0000016 to 002FF16. The peripheral function control registers are located them. All addresses, which have nothing allocated within the SFR, are reserved area and cannot be accessed by users.

Figure 3.1 Memory Map

4. Special Function Register (SFR)

SFR(Special Function Register) is the control register of peripheral functions. Tables 4.1 to 4.4 list the SFR information

Table 4.1 SFR Information(1)⁽¹⁾

Address	Register	Symbol	After reset
000016			
000116			
000216			
000316			
000416	Processor mode register 0	PM0	XXXX0X002
000516	Processor mode register 1	PM1	00XXX0X02
000616	System clock control register 0	CM0	011010002
000716	System clock control register 1	CM1	001000002
000816			
000916	Address match interrupt enable register	AIER	XXXXXX002
000A16	Protect register	PRCR	00XXX0002
000B16	Ossillation atom datastian register	000	000001000
000C16 000D16	Oscillation stop detection register Watchdog timer reset register	OCD WDTR	000001002 XX16
000D16	Watchdog timer start register	WDTK	XX16
000E16	Watchdog timer control register	WD13	000111112
001016	Address match interrupt register 0	RMADO	0016
001116	Address match interrupt register 0	RIVIADO	0016
001216			X016
001316			7010
001416	Address match interrupt register 1	RMAD1	0016
001516	· •		0016
001616			X016
001716			
001816			
001916			
001A16			
001B16			
001C16			
001D16			
001E16	INTO input filter select register	INTOF	XXXXX0002
001F16			
002016 002116			
002116			
002216			
002416			
002516			
002616			
002716			
002816			
002916			
002A16			
002B16			
002C16			
002D16			
002E16			
002F16			
003016			
003116			
003216			
003316			
003416			
003516 003616			
003616			
003716			
003816			
003916 003A16			
003A16			
003D16			
003C16			
003E16			
003F16			

NOTES : 1. Blank spaces are reserved. No access is allowed.

X : Undefined

Address	Register	Symbol After reset			
004016					
004116					
004216 004316					
004316					
004416					
004616					
004716					
004816					
004916					
004A16					
004B16 004C16					
004C16 004D16	Key input interrupt control register	KUPIC	XXXXX0002		
004D16	AD conversion interrupt control register	ADIC	XXXXX0002		
004F16	Ab conversion interrupt control register	ABIO	///////////////////////////////////////		
005016					
005116	UART0 transmit interrupt control register	SOTIC	XXXXX0002		
005216	UART0 receive interrupt control register	SORIC	XXXXX0002		
005316	UART1 transmit interrupt control register	S1TIC	XXXXX0002		
005416	UART1 receive interrupt control register	S1RIC	XXXXX0002		
005516	INT2 interrupt control register	INT2IC	XXXXX0002		
005616 005716	Timer X interrupt control register Timer Y interrupt control register	TXIC TYIC	XXXXX0002 XXXXX0002		
005716	Timer Z interrupt control register	TZIC	XXXXX0002 XXXXX0002		
005916	INT1 interrupt control register	INT1IC	XXXXX0002		
005A16	INT3 interrupt control register	INT3IC	XXXXX0002		
005B16	Timer C interrupt control register	TCIC	XXXXX0002		
005C16					
005D16	INT0 interrupt control register	INTOIC	XX00X0002		
005E16					
005F16					
006016					
006116					
006316					
006416					
006516					
006616					
006716					
006816					
006916					
006A16 006B16					
006B16					
006D16					
006E16					
006F16					
007016					
007116					
007216					
007316					
007416 007516					
007516					
007716					
007816					
007916					
007A16					
007B16					
007C16					
007D16					
007E16					
007F16			L		

Table 4.2 SFR Information(2)⁽¹⁾

NOTES : 1. Blank spaces are reserved. No access is allowed.

X : Undefined

Table 4.3 SFR Information(3)⁽¹⁾

10.010			
Address	Register	Symbol	After reset
008016	Timer Y, Z mode register	TYZMR	0016
008116	Prescaler Y register	PREY	FF16
008216	Timer Y secondary register	TYSC	FF16
008316	Timer Y primary register	TYPR	FF16
008416	Timer Y, Z waveform output control register	PUM	0016
008516	Prescaler Z register	PREZ	FF16
008616	Timer Z secondary register	TZSC	FF16
008716	Timer Z primary register	TZPR	FF16
008816			
008916			
	Timer V. 7 output control register	TV700	0040
008A16	Timer Y, Z output control register	TYZOC	0016
008B16	Timer X mode register	TXMR	0016
008C16	Prescaler X register	PREX	FF16
008D16	Timer X register	TX	FF16
008E16	Timer count source setting register	TCSS	0016
008F16			
	Timer C register	тс	0016
009016	Timer C register		0016
009116			0016
009216			4
009316			
009416			
009516			
009616	External input enable register	INTEN	0016
009016			
	Key input enable register	KIEN	0016
009816	Key input enable register		0010
009916			
009A16	Timer C control register 0	TCC0	0016
009B16	Timer C control register 1	TCC1	0016
009C16	Capture register	TM0	0016
009D16			0016
		+	
009E16		-	+
009F16			0010
00A016	UART0 transmit/receive mode register	U0MR	0016
00A116	UART0 bit rate register	U0BRG	XX16
00A216	UART0 transmit buffer register	U0TB	XX16
00A316	5		XX16
00A416	UART0 transmit/receive control register 0	U0C0	000010002
00A516	UART0 transmit/receive control register 1	U0C1	000000102
L			
00A616	UART0 receive buffer register	U0RB	XX16
00A716			XX16
00A816	UART1 transmit/receive mode register	U1MR	0016
00A916	UART1 bit rate generator	U1BRG	XX16
00AA16	UART1 transmit buffer register	U1TB	XX16
00AB16			XX16
00AC16	UART1 transmit/receive control register 0	U1C0	000040000
00AC18 00AD16	UART1 transmit/receive control register 1	U1C1	000010002
	UART1 transmit/receive control register 1		
00AE16	UART1 receive buffer register	U1RB	XX16
00AF16			XX16
00B016	UART transmit/receive control register 2	UCON	0016
00B116			1
00B216			
00B316			1
00B316 00B416			+
00B516			1
00B616			
00B716			
00B816		1	1
00B816 00B916			
00B916			
00B916 00BA16			
00B916 00BA16 00BB16			
00B916 00BA16			
00B916 00BA16 00BB16			
00B916 00BA16 00BB16 00BC16			
00B916 00BA16 00BB16 00BC16 00BD16			

NOTES : 1. Blank spaces are reserved. No access is allowed.

X: Undefined

ddress	Register	Symbol	After rese
00C016	AD register	AD	XXXXXXXX2
00C116			XXXXXXXX2
00C216 00C316			
00C316 00C416			
00C516			
00C616			
00C716			
00C816			
00C916			
00CA16			
00CB16			
00CC16			
00CD16			
00CE16			
00CF16 00D016			
00D018			
00D116			+
00D216			
00D416	AD control register 2	ADCON2	0016
00D516			
00D616	AD control register 0	ADCON0	00000XXX2
00D716	AD control register 1	ADCON1	0016
00D816			
00D916			
00DA16			
00DB16			
00DC16 00DD16			
00DD16 00DE16			
00DE16 00DF16			
00E016	Port P0 register	P0	XX16
00E016	Port P1 register	P1	XX16
00E216	Port P0 direction register	PD0	0016
00E316	Port P1 direction register	PD1	0016
00E416			
00E516	Port P3 register	P3	XX16
00E616			
00E716	Port P3 direction register	PD3	0016
00E816	Port P4 register	P4	XX16
00E916	Dant D4 direction register	DD4	0010
00EA16 00EB16	Port P4 direction register	PD4	0016
00ED16			
00EC16			
00EE16			
00EF16			
00F016		1	1
00F116		1	
00F216			
00F316			
00F416			
00F516			
00F616			
00F716			
00F816			
00F916 03FA16			
03FA16 00FB16			+
00FD16	Pull-up control register 0	PUR0	00XX00002
00FD16	Pull-up control register 1	PUR1	XXXXXX0X2
00FE16	Port P1 drive capacity control register	DRR	0016
00FF16			
01B316	Flash memory control register 4	FMR4	01000002
01B416			
01B516	Flash memory control register 1	FMR1	100000X2
01B616			
01B716	Flash memory control register 0	FMR0	00000012
· · · · · · · · · · · · · · · · · · ·	Option function select register ⁽²⁾	OFS	

Table 4.4 SFR Information(4)⁽¹⁾

1. Blank columns, 010016 to 01B216 and 01B816 to 02FF16 are all reserved. No access is allowed. 2. The watchdog timer control bit is assigned. Refer to "Figure11.2 OFS, WDC, WDTR and WDTS registers" for the OFS register details X : Undefined

5. Electrical Characteristics

Symbol	Parameter	Condition	Rated value	Unit
Vcc	Supply voltage	Vcc=AVcc	-0.3 to 6.5	V
AVcc	Analog supply voltage	Vcc=AVcc	-0.3 to 6.5	V
Vi	Input voltage		-0.3 to Vcc+0.3	V
Vo	Output voltage		-0.3 to Vcc+0.3	V
Pd	Power dissipation	Topr=25 °C	300	mW
Topr	Operating ambient temperature		-20 to 85 / -40 to 85 (D version)	°C
Tstg	Storage temperature		-65 to 150	°C

Table 5.1 Absolute Maximum Ratings

Table 5.2 Recommended Operating Conditions

	_		Conditions		Standar	b	
Symbol	Parame	ter	Conditions	Min.		Max.	Unit
Vcc	Supply voltage			2.7		5.5	V
AVcc	Analog supply v	voltage			Vcc ⁽³⁾		V
Vss	Supply voltage				0		V
AVss	Analog supply v	voltage			0		V
Vih	"H" input voltag	e		0.8Vcc		Vcc	V
VIL	"L" input voltage			0		0.2Vcc	V
I _{OH (sum)}	"H" peak all output currents	Sum of all pins' IOH (peak)				-60.0	mA
IOH (peak)	"H" peak output	current				-10.0	mA
IOH (avg)	"H" average output current					-5.0	mA
I _{OL (sum)}	"L" peak all output currents	Sum of all pins' IOL (peak)				60	mA
IOL (peak)	"L" peak output	Except P10 to P17				10	mA
	current	P10 to P17	Drive ability HIGH			30	mA
			Drive ability LOW			10	mA
IOL (avg)	"L" average	Except P10 to P17				5	mA
· OL (avg)	output current	P10 to P17	Drive ability HIGH			15	mA
			Drive ability LOW			5	mA
f (XIN)	Main clock inpu	t oscillation frequency	$3.0V \le Vcc \le 5.5V$	0		16	MHz
			$2.7V \leq Vcc < 3.0V$	0		10	MHz

NOTES:

1. Vcc = AVcc = 2.7 to 5.5V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified. 2. The typical values when average output current is 100ms. 3. Hold Vcc=AVcc.

Cumhal	Parameter		Moasuring condition	S	Standard			
Symbol	Pa	Irameter		Measuring condition	Min.	Тур.	Max.	Unit
-	Resolution			Vref =VCC		—	10	Bit
-	Absolute			øAD=10 MHz, Vref=Vcc=5.0V	_	_	±3	LSB
	accuracy	8	oit mode	øAD=10 MHz, Vref=Vcc=5.0V	_		±2	LSB
		10	oit mode	øAD=10 MHz, Vref=Vcc=3.3V ⁽³⁾	_	_	±5	LSB
		8 k	oit mode	øAD=10 MHz, Vref=Vcc=3.3V ⁽³⁾			±2	LSB
RLADDER	Ladder resistance	-		VREF=VCC	10		40	kΩ
t CONV	Conversion time		10 bit mode	øAD=10 MHz, Vref=Vcc=5.0V	3.3			μs
			8 bit mode	øAD=10 MHz, Vref=Vcc=5.0V	2.8			μs
Vref	Reference voltage				Vcc ⁽⁴⁾	—	V	
Via	Analog input voltage			0		Vref	V	
_	A/D operating		ample & hold		0.25	—	10	MHz
	clock frequency ⁽²⁾	With sar	mple & hold		1.0		10	MHz

Table 5.3 A/D Conversion Characteristics

NOTES:

Vcc=AVcc=2.7 to 5.5V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.
 If fAD exceeds 10 MHz, divide the fAD and hold A/D operating clock frequency (ØAD) 10 MHz or below.

3. If the AVcc is less than 4.2V, divide the fAD and hold A/D operating clock frequency (ØAD) fAD/2 or below.

4. Hold Vcc=Vref.

Figure 5.1 Port P0 to P4 measurement circuit

Symbol	Parameter	Measuring condition	Standard			
Cymbol	Faranieter	Measuring condition	Min.	Тур.	Max	Unit
-	Program/Erase endurance ⁽²⁾		1,000 ⁽³⁾		_	times
-	Byte program time			50		μs
-	Block erase time		_	0.4	—	S
td(SR-ES)	Time delay from Suspend Request until Erase Suspend			—	8	ms
-	Erase Suspend Request Interval		10	_	_	ms
-	Program, Erase Voltage		2.7	—	5.5	V
-	Read Voltage		2.7		5.5	V
-	Program, Erase Temperature		0		60	°C
-	Data hold time ⁽⁷⁾	Ambient temperature = 55 °C	20			year

Table 5.4 Flash Memory (Program ROM) Electrical Characteristics

NOTES:

1. Vcc=AVcc=2.7 to 5.5V at Topr = 0 to 60 °C, unless otherwise specified.

2. Definition of Program/Erase

The endurance of Program/Erase shows a time for each block.

If the program/erase number is "n" (n = 1,000, 10,000), "n" times erase can be performed for each block.

For example, if performing one-byte write to the distinct addresses on Block A of 2K-byte block 2048 times and then erasing that block, the number of Program/Erase cycles is one time.

However, performing multiple writes to the same address before an erase operation is prohibited (overwriting prohibited). 3. Numbers of Program/Erase cycles for which all electrical characteristics is guaranteed.

4. To reduce the number of Program/Erase cycles, a block erase should ideally be performed after writing in series as many distinct addresses (only one time each) as possible. If programming a set of 16 bytes, write up to 128 sets and then erase them one time. This will result in ideally reducing the number of Program/Erase cycles. Additionally, averaging the number of Program/Erase cycles for Block A and B will be more effective. It is important to track the total number of block erases and restrict the number.

5. If error occurs during block erase, attempt to execute the clear status register command, then the block erase command at least three times until the erase error disappears.

6. Customers desiring Program/Erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Deremeter	Measuring condition	St	andard		
Gymbol	Parameter	measuring condition	Min.	Тур.	Max	Unit
-	Program/Erase endurance ⁽²⁾		10000 ⁽³⁾	_		times
-	Byte program time(program/erase endurance ≤1000 times)		_	50	400	μs
-	Byte program time(program/erase endurance >1000 times)			65		μs
-	Block erase time(program/erase endurance ≤1000 times)		_	0.2	9	S
-	Block erase time(program/erase endurance >1000 times)			0.3		s
td(SR-ES)	Time delay from Suspend Request until E	rase Suspend	—	_	8	ms
-	Erase Suspend Request Interval		10	_	_	ms
-	Program, Erase Voltage		2.7		5.5	V
-	Read Voltage		2.7		5.5	V
_	Program/Erase Temperature		-20(-40) ⁽⁸⁾		85	°C
_	Data hold time ⁽⁹⁾	Ambient temperature = 55 °C	20			year

Table 5.5 Flash Memory (Data flash Block A, Block B) Electrical Characteristics⁽⁴⁾

NOTES:

1. Referenced to Vcc=AVcc=2.7 to 5.5V at Topr = -20 to 85 °C / -40 to 85 °C unless otherwise specified.

2. Definition of Program/Erase

The endurance of Program/Erase shows a time for each block.

If the program/erase number is "n" (n = 1,000, 10,000), "n" times erase can be performed for each block.

For example, if performing one-byte write to the distinct addresses on Block A of 2K-byte block 2048 times and then erasing that block, the number of Program/Erase cycles is one time.

However, performing multiple writes to the same address before an erase operation is prohibited (overwriting prohibited).

3. Numbers of Program/Erase cycles for which all electrical characteristics is guaranteed.

4. Table 16.5 applies for Block A or B when the Program/Erase cycles are more than 1000. The byte program time up to 1000 cvcles are the same as that of the program area (see Table 5.4).

5. To reduce the number of Program/Erase cycles, a block erase should ideally be performed after writing in series as many distinct addresses (only one time each) as possible. If programming a set of 16 bytes, write up to 128 sets and then erase them one time. This will result in ideally reducing the number of Program/Erase cycles. Additionally, averaging the number of Program/Erase cycles for Block A and B will be more effective. It is important to track the total number of block erases and restrict the number.

6. If error occurs during block erase, attempt to execute the clear status register command, then the block erase command at least three times until the erase error disappears.

7. Customers desiring Program/Erase failure rate information should contact their Renesas technical support representa-tive. 8. -40 °C for D version.

9. The data hold time includes time that the power supply is off or the clock is not supplied.

Figure 5.2 Time delay from Suspend Request until Erase Suspend

Table 5.6 Power Circuit Timing Characteristics

Symbol	Parameter	Measuring condition		Standard		Linit
		inedealing condition	Min.	Тур.	Max.	Unit
td(P-R)	Time for internal power supply stabilization during powering-on ⁽²⁾		1		2000	μs
td(R-S)	STOP release time ⁽³⁾		—	—	150	μs

1. The measuring condition is Vcc=AVcc=2.7 to 5.5 V and Topr=25 °C.

This shows the waiting time until the internal power supply generating circuit is stabilized during powering-on.
 This shows the time until BCLK starts from the interrupt acknowledgement to cancel stop mode.

Symbol		Parameter	Measuring	g condition		Standard		
Symbol	r i	Falameter	Measuring	g contaition	Min.	Typ.	Max.	Unit
	"H" output voltage	Except Xout	Iон=-5mA		Vcc-2.0	—	Vcc	V
Vон			Іон=-200µА		Vcc-0.3	—	Vcc	V
		Xout	Drive capacity HIGH	Iон=-1 mA	Vcc-2.0		Vcc	V
			Drive capacity LOW	Іон=-500µА	Vcc-2.0	_	Vcc	V
	"L" output voltage	Except P10 to P17,	IoL= 5 mA			_	2.0	V
Vol		Хоит	IoL= 200 μA		_		0.45	V
		P10 to P17	Drive capacity HIGH	IOL= 15 mA	_		2.0	V
			Drive capacity LOW	IOL= 5 mA	—	_	2.0	V
			Drive capacity LOW	IoL= 200 μA	-	_	0.45	V
		Хоит	Drive capacity HIGH	IoL= 1 mA	—	_	2.0	V
			Drive capacity LOW	IoL=500 μA	—		2.0	V
VT+-VT-	Hysteresis	INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, CNTR0, CNTR1, TCIN, RxD0, RxD1, P45			0.2	_	1.0	V
		RESET			0.2	_	2.2	V
Ін	"H" input current	·	VI=5V		_	_	5.0	μA
liL	"L" input current		VI=0V		_	—	-5.0	μA
RPULLUP	Pull-up resistance		VI=0V		30	50	167	kΩ
Rfxin	Feedback resistance	XIN			-	1.0	_	MΩ
fring-s	Low-speed on-chip oscillator free	quency			40	125	250	kHz
VRAM	RAM retention voltage		At stop mode		2.0	—	_	V

Table 5.7 Electrical Characteristics (1) [Vcc=5V]

NOTES: 1. Referenced to Vcc = AVcc = 4.2 to 5.5V at Topr = -20 to 85 °C / -40 to 85 °C, f(XIN)=20MHz unless otherwise specified.

Table 5.8 Electrical Characteristics (2) [Vcc=5V]

Symbol	Para	ameter	Me	asuring condition		Standard		1.1.4.14
Cymbol	i uic		WiC.	Min.	Тур.	Max.	Unit	
			High-speed mode	Xi№=16 MHz (square wave) On-chip oscillator on=125 kHz No division		8	14	mA
				Xi№=10 MHz (square wave) On-chip oscillator on=125 kHz No division	_	5	_	mA
			Medium-speed mode	Xi№=16 MHz (square wave) On-chip oscillator on=125 kHz Division by 8	_	3	_	mA
Icc	Power supply current (Vcc=3.3 to 5.5V) In single-chip mode, the output			XIN=10 MHz (square wave) On-chip oscillator on=125 kHz Division by 8	_	2	_	mA
	pins are open and other pins are Vss		On-chip oscillator mode	Main clock off On-chip oscillator on=125 kHz Division by 8	_	470	900	μA
			Wait mode	Main clock off On-chip oscillator on=125 kHz When a WAIT instruction is executed ⁽¹⁾ Peripheral clock operation	_	40	80	μA
			Wait mode	Main clock off On-chip oscillator on=125 kHz When a WAIT instruction is executed ⁽¹⁾ Peripheral clock off		38	76	μA
			Stop mode	Main clock off, Topr = 25 °C On-chip oscillator off CM10="1" Peripheral clock off	_	0.8	3.0	μA

NOTES: 1. Timer Y is operated with timer mode. 2. Referenced to Vcc = AVcc = 4.2 to 5.5V at Topr = -20 to 85 °C / -40 to 85 °C, f(XiN)=20MHz unless otherwise specified.

Timing requirements (Unless otherwise noted: Vcc = 5V, Vss = 0V at Topr = 25 °C) [Vcc=5V]

Table 5.9 XIN input

Symbol	Parameter	Stan	dard	Unit
		Min.	Max.	
tC(XIN)	XIN input cycle time	62.5	_	ns
twh(Xin)	XIN input HIGH pulse width	30	-	ns
twl(Xin)	XIN input LOW pulse width	30	-	ns

Table 5.10 CNTR0 input, CNTR1 input, INT2 input

Symbol	Parameter	Stan	dard	Unit
		Min.	Max.	
tC(CNTR0)	CNTR0 input cycle time	100	—	ns
tWH(CNTR0)	CNTR0 input HIGH pulse width	40	_	ns
tWL(CNTR0)	CNTR0 input LOW pulse width	40	_	ns

Table 5.11 TCIN input, INT3 input

Symbol	Parameter	Stan	dard	Unit
		Min.	Max.	
tC(TCIN)	TCIN input cycle time	400 ⁽¹⁾	—	ns
twh(TCIN)	TCIN input HIGH pulse width	200 ⁽²⁾	-	ns
tWL(TCIN)	TCIN input LOW pulse width	200 ⁽²⁾	-	ns

NOTES:

- 1. When using the Timer C capture function, adjust the cycle time above (1/ Timer C count source frequency x 3).
- 2. When using the Timer C capture function, adjust the pulse width above (1/ Timer C count source frequency x 1.5).

Table 5.12 Serial Interface

Symbol	Parameter	Star	ndard	Unit
		Min.	Max.	
tC(CK)	CLKi input cycle time	200	—	ns
tw(CKH)	CLKi input HIGH pulse width	100	-	ns
tW(CKL)	CLKi input LOW pulse width	100	_	ns
td(C-Q)	TxDi output delay time	_	80	ns
th(C-Q)	TxDi hold time	0	—	ns
tsu(D-C)	RxDi input setup time	35	-	ns
th(C-D)	RxDi input hold time	90	-	ns

Table 5.13 External interrupt INT0 input

Symbol	Parameter	Stan	dard	Unit
		Min.	Max.	
tw(INH)	INT0 input HIGH pulse width	250 ⁽¹⁾	—	ns
tw(INL)	INT0 input LOW pulse width	250 ⁽²⁾	_	ns

NOTES:

1. When selecting the digital filter by the INTO input filter select bit, use the INTO input HIGH pulse width to the greater value, either (1/ digital filter clock frequency x 3) or the minimum value of standard.

2. When selecting the digital filter by the INTO input filter select bit, use the INTO input LOW pusle width to the greater value, either (1/ digital filter clock frequency x 3) or the minimum value of standard.

Figure 5.3 Vcc=5V timing diagram

Symbol		Parameter	Measuring	n condition		Standard		1.1.4.14
Symbol		Falameter	Modedning condition		Min.	Тур.	Max.	Unit
	"H" output voltage	Except Xout	Iон=-1mA		Vcc-0.5		Vcc	V
Vон		Хоит	Drive capacity HIGH	Iон=-0.1 mA	Vcc-0.5	_	Vcc	V
			IDH=-1mA IVID. IVID. IVID. Drive capacity HIGH IoH=-0.1 mA Vcc-0.5 — Vcc Drive capacity LOW IoH=-50 µA Vcc-0.5 — Vcc IoL= 1 mA — — 0.5 Drive capacity HIGH IoL= 2 mA — — 0.5 Drive capacity HIGH IoL= 2 mA — — 0.5 Drive capacity HIGH IoL= 0.1 mA — — 0.5 Drive capacity LOW IoL= 1 mA — — 0.5 Drive capacity HIGH IoL= 0.1 mA — — 0.5 Drive capacity LOW IoL=50 µA — — 0.5 T3, KT0, KT1, 0.2 — 0.8	V				
	"L" output voltage	Except P10 to P17, Xout	IoL= 1 mA				0.5	V
Vol		P10 to P17	Drive capacity HIGH	IOL= 2 mA	_		0.5	V
			Drive capacity LOW	IOL= 1 mA	_	—	0.5	V
		Хоит	Drive capacity HIGH	IoL= 0.1 mA	_	_	0.5	V
			Drive capacity LOW	Iol=50 μA	_	_	0.5	V
Vt+-Vt-	Hysteresis	INTo, INT1, INT2, INT3, KI0, KI1, KI2, KI3, CNTR0, CNTR1, TCIN, RxD0, RxD1, P45			0.2		0.8	V
		RESET			0.2	_	1.8	V
Ін	"H" input current	÷	VI=3V		_		4.0	μA
liL.	"L" input current		VI=0V		_		-4.0	μA
RPULLUP	Pull-up resistance		VI=0V		66	160	500	kΩ
RfXIN	Feedback resistance	XIN			_	3.0		MΩ
fring	On-chip oscillator frequence	у			40	125	250	kHz
VRAM	RAM retention voltage		At stop mode		2.0	—	_	V

Table 5.14 Electrical Characteristics (3) [Vcc=3V]

NOTES: 1. Referenced to Vcc=AVcc=2.7 to 3.3V at Topr = -20 to 85 °C / -40 to 85 °C, f(XiN)=10MHz unless otherwise specified.

Symbol	Parameter	Me	asuring condition		Standard		
Cymbol	i didificter	WIC .		Min.	Тур.	Max.	Uni
		High-speed mode	Xi№=16 MHz (square wave) On-chip oscillator on=125 kHz No division	_	7	12	mA
			X⊪=10 MHz (square wave) On-chip oscillator on=125 kHz No division	_	5	_	mA
	Power supply current mode	Medium-speed mode	Xi№=16 MHz (square wave) On-chip oscillator on=125 kHz Division by 8	_	2.5	_	mA
Icc	(Vcc1=2.7 to 3.3V) In single-chip mode, the output pins are open and other pins		Xi№=10 MHz (square wave) On-chip oscillator on=125 kHz Division by 8		1.6		mA
	are Vss	On-chip oscillator mode	Main clock off On-chip oscillator on=125 kHz Division by 8	_	420	800	μA
		Wait mode	Main clock off On-chip oscillator on=125 kHz When a WAIT instruction is executed ⁽¹⁾ Peripheral clock operation		37	74	μA
		Wait mode	Main clock off On-chip oscillator on=125 kHz When a WAIT instruction is executed ⁽¹⁾ Peripheral clock off		35	70	μA
		Stop mode	Main clock off, Topr = 25 °C On-chip oscillator off CM10="1" Peripheral clock off	_	0.7	3.0	μA

Table 5.15 Electrical Characteristics (4) [Vcc=3V]

NOTES: 1. Timer Y is operated with timer mode. 2. Referenced to Vcc=AVcc=2.7 to 3.3V at Topr = -20 to 85 °C / -40 to 85 °C, f(XIN)=10MHz unless otherwise specified.

Timing requirements (Unless otherwise noted: Vcc = 3V, Vss = 0V at Topr = 25 °C) [Vcc=3V]

Table 5.16 XIN input

Symbol	Parameter	Stan	dard	Unit
		Min.	Max.	
tC(XIN)	XIN input cycle time	100	_	ns
twh(Xin)	XIN input HIGH pulse width	40	_	ns
twl(Xin)	XIN input LOW pulse width	40	-	ns

Table 5.17 CNTR0 input, CNTR1 input, INT2 input

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tC(CNTR0)	CNTR0 input cycle time	300	_	ns
tWH(CNTR0)	CNTR0 input HIGH pulse width	120	_	ns
tWL(CNTR0)	CNTR0 input LOW pulse width	120	_	ns

Table 5.18 TCIN input, INT3 input

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tC(TCIN)	TCIN input cycle time	1200 ⁽¹⁾	-	ns
tWH(TCIN)	TCIN input HIGH pulse width	600 ⁽²⁾	_	ns
tWL(TCIN)	TCIN input LOW pulse width 600 ⁽²⁾ –			

NOTES:

- 1. When using the Timer C capture function, adjust the cycle time above (1/Timer C count source frequency x 3).
- 2. When using the Timer C capture function, adjust the pulse width above (1/ Timer C count source frequency x 1.5).

Table 5.19 Serial Interface

Symbol	Parameter	Stan	Standard		
		Min.	Max.		
tC(CK)	CLKi input cycle time	300	_	ns	
tW(CKH)	CLKi input HIGH pulse width	150	-	ns	
tW(CKL)	CLKi input LOW pulse width	150	_	ns	
td(C-Q)	TxDi output delay time	—	160	ns	
th(C-Q)	TxDi hold time	0	_	ns	
tsu(D-C)	RxDi input setup time	-	ns		
th(C-D)	RxDi input hold time 90 –				

Table 5.20 External interrupt INT0 input

Symbol	Parameter Standard			Unit
		Min.	Max.	
tw(INH)	INT0 input HIGH pulse width	380 ⁽¹⁾	_	ns
tW(INL)	INT0 input LOW pulse width	380 ⁽²⁾		ns

NOTES:

1. When selecting the digital filter by the INTO input filter select bit, use the INTO input HIGH pulse width to the greater value, either (1/ digital filter clock frequency x 3) or the minimum value of standard.

2. When selecting the digital filter by the INTO input filter select bit, use the INTO input LOW pusle width to the greater value, either (1/ digital filter clock frequency x 3) or the minimum value of standard.

Figure 5.4 Vcc=3V timing diagram

RENESAS

Package Dimensions

REVISION HISTORY

R8C/12 Group Datasheet

Rev.	Date		Description	
		Page	Summary	
0.10	Oct 28, 2003		First edition issued	
0.20	Dec05, 2003	16	Table 16.5 revised	
1.00	Sep30, 2004	All pages	Words standardized (on-chip oscillator, serial interface, A/D)	
		2	Table 1.1 revised	
		5	Figure 1.3, NOTES 3 added	
		6	Table 1.3 revised	
		9	Figure 3.1, NOTES added	
		10-13	One body sentence in chapter 4 added ; Titles of Table 4.1 to 4.4 added	
		12	Table 4.3 revised ; Table 4.4 revised	
		14	Table 5.2 revised	
		15	Table 5.3 revised	
		16	Table 5.4 and 5.5 revised	
		17	Table 5.7 revised	
		18	Table 5.8 revised	
		19	Table 5.13 revised	
		21	Table 5.14 revised	
		22	Table 5.15 revised	
		23	Table 5.17 revised	
1.10	Apr.27.2005	4	Table 1.2, Figure 1.2 package name revised	
		5	Figure 1.3 package name revised	
		10	Table 4.1 revised	
		12	Table 4.3 revised	
		15	Table 5.3 partly revised	
		16	Table 5.4, Table 5.5 partly added	
		17	Table 5.6, Table 5.7 partly revised	
		21	Table 5.14 partly revised	
		26	Package Dimensions revised	
1.20	Jan.27.2006	2	Table 1.1 Performance outline revised	
		3 4	Figure 1.1 Block diagram partly revised 1.4 Product Information, title of Table 1.2	
		4	"Product List" \rightarrow "Product Information" revised	
			ROM capacity; "Program area" \rightarrow "Program ROM",	
			"Data area" \rightarrow "Data flash" revised	
		6	Figure 1.2 Type No., Memory Size, and Package partly revised	
		6 7-8	Table 1.3 Pin description revised 2 Central Processing Unit (CPU) revised	
			Figure 2.1 CPU register revised	
		9	3 Memory, Figure 3.1 Memory Map;	
		10	"Program area" \rightarrow "Program ROM", "Data area" \rightarrow "Data flash" revised Table 4.1 SFR Information(1) NOTES:1 revised	

REVISION HISTORY

R8C/12 Group Datasheet

Rev.	Date		Description
		Page	Summary
1.20	Jan.27.2006	11 12	Table 4.2 SFR Information(2) NOTES:1 revisedTable 4.3 SFR Information(3); 0081_{16} : "Prescaler Y" \rightarrow "Prescaler Y Register" 0082_{16} : "Timer Y Secondary" \rightarrow "Timer Y Secondary Register" 0083_{16} : "Timer Y Primary" \rightarrow "Timer Y Primary Register" 0085_{16} : "Prescaler Z" \rightarrow "Prescaler Z Register" 0086_{16} : "Timer Z Secondary" \rightarrow "Timer Z Secondary Register" 0086_{16} : "Timer Z Primary" \rightarrow "Timer Z Primary Register" 0087_{16} : "Timer Z Primary" \rightarrow "Timer Z Primary Register"
		13 14 15	NOTES:1 revised Table 4.4 SFR Information(4) NOTES:1 revised Table 5.2 Recommended Operating Conditions; NOTES: 1, 2, 3 revised Table 5.3 A/D Conversion Characteristics; "A/D operation clock frequency" → "A/D operating clock frequency" revised NOTES: 1, 2, 3, 4 revised
		16	Table 5.4 Flash Memory (Program ROM) Electrical Characteristics; "Data retention duration" → "Data hold time" revised "Topr" → "Ambient temperature" NOTES: 1 to 7 added Measuring condition of byte program time and block erase time deleted
		17	Table 5.5 Flash Memory (Data flash Block A, Block B) Electrical characteristics "Data retention duration" → "Data hold time" revised "Topr" → "Ambient temperature" NOTES: 1, 3 revised, NOTES: 9 added
		18	Measuring condition of byte program time and block erase time deleted Table 5.7 Electrical Characteristics (1) [Vcc=5V]; "P1₀ to P1⁊ Except Xouт" → "Except P1₀ to P1⁊, Xouт" revised Table 5.8 Electrical Characteristics (2) [Vcc=5V]; Measuring condition Stop mode: "Topr = 25 °C" added NOTES: 1, 2 revised
		21 22	Table 5.14 Electrical Characteristics (3) [Vcc=3V] "P1o to P17 Except Xout" \rightarrow "Except P1o to P17, Xout" revised Table 5.15 Electrical Characteristics (4) [Vcc=3V]; Measuring condition Stop mode: "Topr = 25 °C" added NOTES: 1, 2 revised

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials
 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to

- Nonine page (intp://www.renessas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or ther loss resulting from the information contained herein.
 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 205, AZIA Center, No.133 Yincheng Rd (n), Pudong District, Shanghai 200120, China Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com