Data Sheet

PS9031
2.5 A OUTPUT CURRENT, HIGH CMR, IGBT GATE DRIVE,
5-PIN SOP (LSO5 With 8mm CREEPAGE DISTANCE) PHOTOCOUPLER

DESCRIPTION

The PS9031 is an optically coupled isolator containing a GaAlAs LED on the input side and a photodiode, a signal processing circuit and power MOSFETs on the output side on one chip.

FEATURES

- Long creepage distance (8 mm MIN.)
- Large peak output current (2.5 A MAX., 2.0 A MIN.)
- High speed switching (tPLH, tPHL = 175 ns MAX.)
- UVLO (Under Voltage Lock Out) protection with hysteresis
- High common mode transient immunity (CMH, CML = ±50 kV/µs MIN.)
- Operating Ambient Temperature (125 °C MAX.)
- Embossed tape product : PS9031-F3 : 3000 pcs/reel
- Pb-Free product
- Safety standards
 - UL approved: UL1577, Double protection
 - CSA approved: CA5A, CAN/CSA-C22.2 No.60065, CAN/CSA-C22.2 No.60950-1, Reinforced insulation
 - VDE approved: DIN EN 60747-5-5 (Option)

APPLICATIONS

- IGBT, Power MOS FET Gate Driver
- Industrial inverter
- AC Servo
Weight: 0.119g (typ.)

PHOTOCOUPLER CONSTRUCTION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Distance</td>
<td>8.0 mm</td>
</tr>
<tr>
<td>Outer Creepage Distance</td>
<td>8.0 mm</td>
</tr>
<tr>
<td>Isolation Distance</td>
<td>0.15 mm</td>
</tr>
</tbody>
</table>
BLOCK DIAGRAM

<table>
<thead>
<tr>
<th>Input</th>
<th>LED</th>
<th>Tr. 1</th>
<th>Tr. 2</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>L</td>
</tr>
</tbody>
</table>

MARKING EXAMPLE

- **R**
 - An initial of “Renesas”
- **9031**
 - Product Part Number
- ○
 - No.1 pin Mark, Anode Mark
- **N340**
 - Rank Code
- **340**
 - Assembly Lot
- 3
 - Last one-digit of Assembly Year
- 40
 - Weekly Serial Code
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Order Number</th>
<th>Solder Plating Specification</th>
<th>Packing Style</th>
<th>Safety Standard Approval</th>
<th>Application Part Number*1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS9031</td>
<td>PS9031-Y-AX</td>
<td>Pb-Free and Halogen Free (Ni/Pd/Au)</td>
<td>20 pcs (Tape 20 pcs cut)</td>
<td>Standard products (UL,CSA approved)</td>
<td>PS9031</td>
</tr>
<tr>
<td>PS9031-F3</td>
<td>PS9031-Y-F3-AX</td>
<td></td>
<td>Embossed Tape 3 000 pcs/reel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS9031-V</td>
<td>PS9031-Y-V-AX</td>
<td></td>
<td>20 pcs (Tape 20 pcs cut)</td>
<td>UL,CSA approved DIN EN 60747-5-5 (VDE 0884-5): 2011-11 approved (Option)</td>
<td></td>
</tr>
<tr>
<td>PS9031-V-F3</td>
<td>PS9031-Y-V-F3-AX</td>
<td></td>
<td>Embossed Tape 3 000 pcs/reel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: *1. For the application of the Safety Standard, following part number should be used.

ABSOLUTE MAXIMUM RATINGS \((T_A = 25^\circ C, \text{ unless otherwise specified})\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode Forward Current</td>
<td>(I_F)</td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>Diode Peak Transient Forward Current (Pulse Width (< 1 \mu s))</td>
<td>(I_{F(TRAN)})</td>
<td>1.0</td>
<td>A</td>
</tr>
<tr>
<td>Diode Reverse Voltage</td>
<td>(V_R)</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Diode Power Dissipation*1</td>
<td>(P_D)</td>
<td>45</td>
<td>mW</td>
</tr>
<tr>
<td>Detector High Level Peak Output Current*2</td>
<td>(I_{OH(PEAK)})</td>
<td>2.5</td>
<td>A</td>
</tr>
<tr>
<td>Detector Low Level Peak Output Current*2</td>
<td>(I_{OL(PEAK)})</td>
<td>2.5</td>
<td>A</td>
</tr>
<tr>
<td>Supply Voltage ((V_{CC} - V_{EE}))</td>
<td>(V_O)</td>
<td>0 to 35</td>
<td>V</td>
</tr>
<tr>
<td>Isolation Voltage*4</td>
<td>(B_V)</td>
<td>5 000</td>
<td>Vr.m.s.</td>
</tr>
<tr>
<td>Operating Frequency</td>
<td>(f)</td>
<td>200</td>
<td>kHz</td>
</tr>
<tr>
<td>Operating Ambient Temperature</td>
<td>(T_A)</td>
<td>-40 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>(T_{stg})</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes: *1. Reduced to 1.2 mW/°C at \(T_A = 110^\circ C\) or more.
*2. Maximum pulse width = 10 \(\mu s\), Maximum duty cycle = 0.2%
*3. Reduced to 3.9 mW/°C at \(T_A = 90^\circ C\) or more.
*4. AC voltage for 1 minute at \(T_A = 25^\circ C\), RH = 60% between input and output.
 Pins 1-2 shorted together, 3-5 shorted together.

RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage ((V_{CC} - V_{EE}))</td>
<td>(I_{F(ON)})</td>
<td>15</td>
<td>30</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Forward Current (ON)</td>
<td>(V_{F(OFF)})</td>
<td>-2</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Forward Voltage (OFF)</td>
<td>(T_A)</td>
<td>-40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

REPRESENTATIVE APPLICATION

Figure 2

- Pin 1: Ground
- Pin 2: Output
- Pin 3: Input
- Pin 4: Power Supply (VCC)
- Pin 5: Power Supply (VEE)

Figure 3

- Input: \(I_{in}\)
- Output: \(V_{out}\)
- Power Supply: \(V_{CC}\)
- Ground: \(GND\)

Figure 4

- Circuit Diagram
- Schematic Diagram
- Connection Diagram

Figure 5

- Battery Connection
- Transformer Connection
- DC Power Supply Connection

Figure 6

- PCB Layout
- Component Placement
- Wire Routing

Figure 7

- Test Setup
- Measurement Equipment
- Data Capturing System

Figure 8

- Waveform Diagram
- Frequency Response
- Gain vs Frequency

Figure 9

- Power Dissipation
- Efficiency
- Thermal Impedance

Figure 10

- Reliability Test
- Accelerated Life Test
- Shock Test

Figure 11

- Environmental Conditions
- Temperature Range
- Humidity Range
- Storage Conditions

Figure 12

- Printed Circuit Board
- Component List
- Bill of Materials

Figure 13

- Assembly Instructions
- Precautions
- Maintenance
- Disposal

Figure 14

- Regulatory Compliance
- Certification Marks
- CE Marking
- RoHS Compliance

Figure 15

- Specification Sheet
- Data Sheet
- Data Book
- Handbook

Figure 16

- Design Guide
- Development Tools
- Software Support
- Firmware Updates

Figure 17

- Technical Support
- Customer Support
- Support Contact Information
- Technical Forums

Figure 18

- Product Brochure
- Data Sheet
- Application Notes
- Case Study

Figure 19

- User Manual
- Installation Guide
- Operation Guide
- Troubleshooting Guide

Figure 20

- Safety Instructions
- Warning Signs
- Precautions
- Emergency Procedures

Figure 21

- Quality Assurance
- ISO Certification
- QS9000 Compliance
- JIS Certification

Figure 22

- vendor's website
- suppliers' website
- distributors' website
- resellers' website

Figure 23

- Supply Chain Management
- Inventory Management
- Ordering Information
- Logistic Support

Figure 24

- Safety Data Sheet
- Material Safety Data Sheet
- Environmental Information
- Recycling Information

Figure 25

- Environmental Impact
- Recycling Programs
- Disposal Methods
- Compliance Information

Figure 26

- ESD Protection
- Package Handling
- Assembly Guidelines
- Storage Conditions

Figure 27

- Regulatory Compliance
- FCC Rules
- CE Marking
- RoHS Compliance

Figure 28

- Supplier Information
- Distributor Information
- Reseller Information
- Benchmark Information

Figure 29

- Competitive Analysis
- Market Trends
- Industry News
- Technology Updates

Figure 30

- Patent Information
- Intellectual Property
- Trademark Information
- Copyright Information

Figure 31

- Customer Testimonials
- Customer Reviews
- Customer Feedback
- Customer Satisfaction Survey
ELECTRICAL CHARACTERISTICS

(at RECOMMENDED OPERATING CONDITIONS, VEE=GND, unless otherwise Specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>MIN.</th>
<th>TYP. *1</th>
<th>MAX.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Voltage</td>
<td>V_F</td>
<td>I_F = 10 mA, T_A = 25°C</td>
<td>1.35</td>
<td>1.56</td>
<td>1.75</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Current</td>
<td>I_R</td>
<td>V_R = 3 V, T_A = 25°C</td>
<td>10</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>C_IN</td>
<td>f = 1 MHz, V_F = 0 V</td>
<td>30</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Detector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Level Output Current</td>
<td>I_OH</td>
<td>V_O = (V_CC – 4 V)^2</td>
<td>0.5</td>
<td>2.2</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_O = (V_CC – 15 V)^3</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Level Output Current</td>
<td>I_OL</td>
<td>V_O = (V_EE + 2.5 V)^2</td>
<td>0.5</td>
<td>2.4</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_O = (V_EE + 15 V)^3</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Level Output Voltage</td>
<td>V_OH</td>
<td>I_O = -100 mA ^4</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Low Level Output Voltage</td>
<td>V_OL</td>
<td>I_O = 100 mA</td>
<td>0.2</td>
<td>0.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>High Level Supply Current</td>
<td>I_CH</td>
<td>V_O = Open, I_F = 10 mA</td>
<td>1.7</td>
<td>2.2</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Low Level Supply Current</td>
<td>I_CL</td>
<td>V_O = Open, V_F = 0 to 0.8V</td>
<td>1.7</td>
<td>2.2</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>UVLO Threshold</td>
<td>V_UVLO+</td>
<td>V_O > 5 V, I_O = 10 mA</td>
<td>10.8</td>
<td>12.3</td>
<td>13.4</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V_UVLO-</td>
<td></td>
<td>9.5</td>
<td>11.0</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>UVLO Hysteresis</td>
<td>UVLO_HYS</td>
<td>V_O > 5 V, I_O = 10 mA</td>
<td>0.4</td>
<td>1.3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Coupled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold Input Current</td>
<td>I_FLH</td>
<td>I_O = 0 mA, V_O > 5 V</td>
<td>1.7</td>
<td>4.0</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(L → H)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold Input Voltage</td>
<td>V_FHL</td>
<td>I_O = 0 mA, V_O < 5 V</td>
<td>0.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Notes: *1. Typical values at T_A = 25°C, V_CC – V_EE = 30 V.
*2. Maximum pulse width = 50 µs, Maximum duty cycle = 0.5%.
*3. Maximum pulse width = 10 µs, Maximum duty cycle = 0.2%.
*4. V_OH is measured with the DC load current in this testing (Maximum pulse width = 2 ms, Maximum duty cycle = 20%).

SWITCHING CHARACTERISTICS

(at RECOMMENDED OPERATING CONDITIONS, VEE=GND, unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>MIN.</th>
<th>TYP. *1</th>
<th>MAX.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propagation Delay Time (L → H)</td>
<td>t_PHL</td>
<td>R_D = 10 Ω, C_s = 10 nF,</td>
<td>80</td>
<td>175</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f = 10 kHz,</td>
<td>105</td>
<td>175</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Pulse Width Distortion (PWD)</td>
<td>t_PHL–t_PHH</td>
<td>Duty Cycle = 50%,</td>
<td>25</td>
<td>75</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Propagation Delay Time (Difference Between Any Two Products)</td>
<td>t_PHL–t_PHH</td>
<td>I_F = 10 mA</td>
<td>-90</td>
<td>90</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_r</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_f</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Common Mode Transient Immunity at High Level Output</td>
<td>[CM_H]</td>
<td>T_A = 25°C, I_F = 10 mA,</td>
<td>50</td>
<td></td>
<td></td>
<td>kV/µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_CC = 30 V, V_CM = 1.5 kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Mode Transient Immunity at Low Level Output</td>
<td>[CM_L]</td>
<td>T_A = 25°C, I_F = 0 mA,</td>
<td>50</td>
<td></td>
<td></td>
<td>kV/µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_CC = 30 V, V_CM = 1.5 kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: *1. Typical values at T_A = 25°C, V_CC–V_EE = 30 V.
TEST CIRCUIT

Fig. 1 IOH Test Circuit

Fig. 2 IOL Test Circuit

Fig. 3 VOH Test Circuit

Fig. 4 VOL Test Circuit

Fig. 5 ICCH/ICCL Test Circuit

Fig. 6 UVLO Test Circuit
Fig. 7 IFLH Test Circuit

Fig. 8 tPLH, tPHL, tr, tf Test Circuit and Wave Forms

Fig. 9 CMR Test Circuit and Wave Forms
TYPICAL CHARACTERISTICS (T_A = 25°C, unless otherwise specified)

Remark The graphs indicate nominal characteristics.
Remark The graphs indicate nominal characteristics.
Remark The graphs indicate nominal characteristics.
Remark The graphs indicate nominal characteristics.
TAPING SPECIFICATIONS (UNIT: mm)

Outline and Dimensions (Taps)

Outline and Dimensions (Reel)

Packing: 3000 pcs/reel
RECOMMENDED MOUNT PAD DIMENSIONS (UNIT: mm)

Remark All dimensions in this figure must be evaluated before use.
NOTES ON HANDLING

1. Recommended soldering conditions
 (1) Infrared reflow soldering
 • Peak reflow temperature: 260°C or below (package surface temperature)
 • Time of peak reflow temperature: 10 seconds or less
 • Time of temperature higher than 220°C: 60 seconds or less
 • Time to preheat temperature from 120 to 180°C: 120±30 s
 • Number of refloows: Three
 • Flux: Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2 Wt% is recommended.)

 (2) Wave soldering
 • Temperature: 260°C or below (molten solder temperature)
 • Time: 10 seconds or less
 • Preheating conditions: 120°C or below (package surface temperature)
 • Number of times: One (Allowed to be dipped in solder including plastic mold portion.)
 • Flux: Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2 Wt% is recommended.)

 (3) Soldering by Soldering Iron
 • Peak Temperature (lead part temperature): 350°C or below
 • Time (each pins): 3 seconds or less
 • Flux: Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2 Wt% is recommended.)

 (a) Soldering of leads should be made at the point 1.5 to 2.0 mm from the root of the lead

 (4) Cautions
 • Fluxes: Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

2. Cautions regarding noise
 Be aware that when voltage is applied suddenly between the photocoupler’s input and output at startup, the output transistor may enter the on state, even if the voltage is within the absolute maximum ratings.
USAGE CAUTIONS

1. This product is weak for static electricity by designed with high-speed integrated circuit so protect against static electricity when handling.

2. Board designing
 (1) By-pass capacitor of more than 1.0 \(\mu\)F is used between VCC and GND near device. Also, ensure that the distance between the leads of the photocoupler and capacitor is no more than 10 mm.
 (2) When designing the printed wiring board, ensure that the pattern of the IGBT collectors/emitters is not too close to the input block pattern of the photocoupler.
 If the pattern is too close to the input block and coupling occurs, a sudden fluctuation in the voltage on the IGBT output side might affect the photocoupler’s LED input, leading to malfunction or degradation of characteristics.
 (If the pattern needs to be close to the input block, to prevent the LED from lighting during the off state due to the abovementioned coupling, design the input-side circuit so that the bias of the LED is reversed, within the range of the recommended operating conditions, and be sure to thoroughly evaluate operation.)

3. Make sure the rise/fall time of the forward current is 0.5 \(\mu\)s or less.
4. In order to avoid malfunctions, make sure the rise/fall slope of the supply voltage is 3 V/\(\mu\)s or less.
5. Avoid storage at a high temperature and high humidity.
SPECIFICATION OF VDE MARKS LICENSE DOCUMENT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Spec.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climatic test class (IEC 60068-1/DIN EN 60068-1)</td>
<td></td>
<td>40/125/21</td>
<td></td>
</tr>
<tr>
<td>Dielectric strength</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maximum operating isolation voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test voltage (partial discharge test, procedure a for type test and random test)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U_{pr} = 1.6 \times U_{ORM}$, $P_d < 5 \text{ pC}$</td>
<td>U_{ORM}</td>
<td>1 130</td>
<td>V_{peak}</td>
</tr>
<tr>
<td>$U_{pr} = 1.875 \times U_{ORM}$, $P_d < 5 \text{ pC}$</td>
<td>U_{pr}</td>
<td>2 119</td>
<td>V_{peak}</td>
</tr>
<tr>
<td>Test voltage (partial discharge test, procedure b for all devices)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U_{pr} = 1.875 \times U_{ORM}$, $P_d < 5 \text{ pC}$</td>
<td>U_{pr}</td>
<td>1 130</td>
<td>V_{peak}</td>
</tr>
<tr>
<td>Highest permissible overvoltage</td>
<td>U_{OTM}</td>
<td>8 000</td>
<td>V_{peak}</td>
</tr>
<tr>
<td>Degree of pollution (DIN EN 60664-1 VDE0110 Part 1)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Comparative tracking index (IEC 60112/DIN EN 60112 (VDE 0303 Part 11))</td>
<td></td>
<td>CTI 400</td>
<td></td>
</tr>
<tr>
<td>Material group (DIN EN 60664-1 VDE0110 Part 1)</td>
<td></td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>T_{stg}</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>T_{A}</td>
<td>-40 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Isolation resistance, minimum value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{IO} = 500 \text{ V dc at } T_{A} = 25^\circ \text{C}$</td>
<td>R_{is MIN.}</td>
<td>10^{12}</td>
<td>Ω</td>
</tr>
<tr>
<td>$V_{IO} = 500 \text{ V dc at } T_{A \text{ MAX.}} \text{ at least } 100^\circ \text{C}$</td>
<td>R_{is MIN.}</td>
<td>10^{11}</td>
<td>Ω</td>
</tr>
<tr>
<td>Safety maximum ratings (maximum permissible in case of fault, see thermal derating curve)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package temperature</td>
<td>T_{si}</td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Current (input current I_{K}, $Psi = 0$)</td>
<td>Isi</td>
<td>400</td>
<td>mA</td>
</tr>
<tr>
<td>Power (output or total power dissipation)</td>
<td>Psi</td>
<td>700</td>
<td>mW</td>
</tr>
<tr>
<td>Isolation resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{IO} = 500 \text{ V dc at } T_{A} = T_{si}$</td>
<td>R_{is MIN.}</td>
<td>10^{9}</td>
<td>Ω</td>
</tr>
</tbody>
</table>

Dependence of maximum safety ratings with package temperature

![Graph showing the dependence of maximum safety ratings with package temperature]
Method A Destructive Test, Type and Sample test

\[V \]

\[U_{\text{IOTM}} = 8000V \]
\[U_{\text{PR}} = 1808V \]
\[U_{\text{FORM}} = 1130V \]

\[t_1, t_2 = 1 \text{ to } 10 \text{ sec} \]
\[t_3, t_4 = 1 \text{ sec} \]
\[t_{\text{m}} (\text{PARTIAL DISCHARGE}) = 10 \text{ sec} \]
\[t_{\text{test}} = 12 \text{ sec} \]
\[t_{\text{init}} = 60 \text{ sec} \]

Method b Non-destructive Test, 100% Production Test

\[V \]
\[U_{\text{PR}} = 2119V \]
\[U_{\text{FORM}} = 1130V \]

\[t_3, t_4 = 0.1 \text{ sec} \]
\[t_{\text{p}} (\text{PARTIAL DISCHARGE}) = 1.0 \text{ sec} \]
\[t_{\text{test}} = 1.2 \text{ sec} \]
<table>
<thead>
<tr>
<th>Caution</th>
<th>GaAs Products</th>
</tr>
</thead>
</table>

This product uses gallium arsenide (GaAs). GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
 1. Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or any intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No licenses, express, implied or otherwise, is granted hereby under any patents, copyrights, or other intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality." The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment, and industrial robots etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantation etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum ratings, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics products" means any product developed or manufactured by or for Renesas Electronics.