PRELIMINARY DATA SHEET

MOS INTEGRATED CIRCUIT

µPD16F15A

8-BIT SINGLE-CHIP MICROCONTROLLER

Description

The μ PD16F15A is a member of the 78K/0 series microcontrollers. Besides a high speed, high performance CPU, these microcontrollers have on-chip ROM, RAM, I/O ports, 8-bit resolution A/D converter, timer, VAN-interface, serial interface, interrupt control, LCD-controller/driver and various other peripheral hardware.

The μ PD16F15A device includes a FLASH EEPROM which can operate in the same power supply voltage range as the mask ROM version.

The details of the functions are described in the following user manuals. Be sure to read it before starting design.

μPD71615A, Subseries User's Manual : U14993EE 78K/0 Series User's Manual - Instructions : U12326EJ

Features

• Internal high capacity ROM and RAM

Item	Program		Data Memor		
Part Number	Memory (ROM)	Internal High-Speed RAM	LCD Display RAM	Internal Expansion RAM	Package
μPD16F15A	60K bytes	1024 bytes	40 bytes	1024 bytes	80-pin plastic QFP (fine pitch)

- Instruction execution time can be changed from high speed (0.25 µs) to ultra low speed
- I/O ports: 57
- 8-bit resolution A/D converter : 4 channels
- Sound generator
- LCD-controller / driver

- VAN-Interface
- Serial interface : 2 channels
 - 3-wire mode : 1 channel
 - UART mode : 1 channel
- Timer : 5 channels
- Supply voltage : VDD = 4.0 to 5.5 V

Application

Multifunction display, steering control, climate control etc.

Ordering Information

PartNumber

Package

µPD16F15AGC-8BT

80-pin plastic QFP (14 x 14 mm, resin thickness 1.4 mm)

78K/0 Series Development

These products are a further development in the 78K/0 Series. The designations appearing inside the boxes are subseries names.

Overview of Functions

	Part Number	μPD16F15A
Item		·
	ROM	60 Kbytes
Internal	Internal high-speed RAM	1024 bytes
memory	LCD Display RAM	40 bytes
	Internal Expansion RAM	1024 bytes
Memory sp	bace	64 Kbytes
General re	gisters	8 bits x 32 registers (8 bits x 8 registers x 4 banks)
Instruction	cycle	On-chip instruction execution time selective function
	When main system clock selected	0.25 μs/0.5 μs/1 μs/2 μs/4 μs (at 8 MHz)
	When subsystem clock selected	122 μs (approx. 32 KHz)
Instruction	set	 16-bit operation Multiplication/division (8 bits x 8 bits, 16 bits ÷ 8 bits) Bit manipulation (set, reset, test, boolean operation) BCD adjustment, etc.
I/O ports		Total : 57 • CMOS input : 4 • CMOS I/O : 53
A/D converter		• 8 bit resolution x 4 channels
Serial Inter	face	 3-wire mode : 1 channel UART mode : 1 channel
Timer		 16 bit timer / event counter : 1 channel 8 bit timer / event counter : 2 channels Watch timer : 1 channel Watchdog timer : 1 channel
Timer outp	out	2 (8-bit PWM output x 2)
Clock outp	ut	62.5 KHz, 125 KHz, 250 KHz, 500 KHz, 1 MHz, 2 MHz, 4 MHz, 8 MHz (at main system clock of 8.0 MHz)
Sound Ger	nerator	1 channel (as separate or composed output)
LCD Contr	oller/driver	40 seg. x 4 COM
VAN		1 channel
Vectored	Maskable interrupts	Internal : 15 External : 3
interrupts	Non-maskable interrupts	Internal : 1
-	Software interrupts	Internal : 1
Supply vol	tage	V _{DD} = 4.0 V to 5.5 V
Package		80-pin plastic QFP (14 mm x 14 mm)

Contents

1.	Pin Configuration (Top View)	5
2.	Block Diagram	7
3.	Pin Functions	
3.1	Normal Operating Mode Pins	
3.2	Non-port Pins	
3.3	Pin I/O Circuits and Recommended Connection of Unused Pins	10
4.	Flash Memory Programming	
4.1	Selection of Transmission Method	
4.2	Flash Memory Programming Functions	
4.3	Connection of Flash Programmer	15
5.	Memory Space	17
6.	Peripheral Hardware Functions	
6.1	Ports	
6.2	Clock Generator	
6.3	Main System Clock Oscillator	
6.4	Subsystem Clock Oscillator	
6.5	Timer/Event Counter	
6.6	Clock Output Control Circuit	
6.7	Sound Generator	
6.8	A/D Converter	
	Power Fail Detector	
	Serial Interfaces	
	VAN-Bus Interface	
6.12	LCD Controller/Driver	31
7.	Interrupt Functions and Test Functions	33
7.1	Interrupt Functions	33
7.2	Interrupts	34
8.	Standby Function	36
9.	Reset Function	36
10.	Instruction Set	37
11.	Electrical Specifications	40
12.	Package Drawings	55
13.	Recommended Soldering Conditions	56
Арр	endix A. Development Tools	57
Арр	endix B. Related Documents	58

1. Pin Configuration (Top View)

80-pin plastic QFP (14 x 14 mm)

µPD16F15AGC-8BT

Figure 1-1: Pin Configuration

Cautions: 1. Connect VPP pin directly to Vss.

- 2. AVss pin should be connected to Vss.
- 3. AVDD pin should be connected to VDD.

Pin Identifications

P00 to P02, P06, P07 P10 to P13 P40 to P47 P80 to P87 P90 to P97 P100 to P107	 Port0 Port1 Port4 Port8 Port9 Port10
P120 to P127 INTP0 to INTP2	: Port12 : External Interrupts
TI00, TI01, TI50, TI51 TO0 , TO51, TO52	•
Rx0VAN, Rx1VAN,	
Rx2VAN	: VAN Receive Data
TxVAN	: VAN Transmit Data
SO3	: Serial Output
SI3	: Serial Input
SCK3	: Serial Clock

RxD0	:	Receive Data
TxD0	:	Transmit Data
SGO	:	Sound Generator Output
SGOA	:	Sound Generator Amplitude
SGOF	:	Sound Generator Frequency
PCL	:	Programmable Clock Output
S0 to S39	:	Segment Output
COM0 to COM	3:	Common Output
VLC0 to VLC2	:	LCD output voltage pins
X1, X2	:	Crystal (Main System
		Clock)
CL1, CL2	:	RC (Subsystem Clock)
RESET	:	Reset
ANI0 to ANI3	:	Analog Input
AVss	:	Analog Ground
AVDD/ AV REF	:	Analog Power Supply and
		Reference Voltage
Vddo, Vdd1	:	Power Supply
Vpp	:	Programming Power supply
Vsso, Vss1	:	Ground

2. Block Diagram

Figure 2-1: Block Diagram

3. Pin Functions

3.1 Normal Operating Mode Pins / Pin Input/Output Types

Input / Output	Pin Name	Function	Alternate Function	After Reset	
Capar	P00		INTP0	Input	
	P01	Port 0	INTP1	Input	
Input /	P02	5 bit input / output port	INTP2	Input	
Output	P06	Input / output mode can be specified bit-wise	TI50/TO50	Input	
	P07		TI51/TO51	Input	
Input	P10-P13	Port 1 4 bit input port Input mode can be specified bit-wise	ANIO-ANI3	Input	
	P40		-	Input	
	P41		-	Input	
	P42		-	Input	
Input /	P43	Port 4	-	Input	
Output	P44	8 bit input/output port Input / output mode can be specified bit-wise	-	Input	
	P45		-	Input	
	P46		SG0A	Input	
	P47		SG0/SG0F	Input	
Input/ Output	P80-P87	Port 8 8 bit input / output port Input / output mode can be specified bit-wise This port can be used as segment signal output port or an I/O port in 1-bit units by setting port function register	S39 - S32	Input	
Input/ Output	P90-P97	Port 9 8 bit input / output port Input / output mode can be specified bit-wise This port can be used as segment signal output port or an I/O port in 1-bit units by setting port function register	S31 - S24	Input	
Input/ Output	P100- P107	Port 10 8 bit input / output port Input / output mode can be specified bit-wise This port can be used as segment signal output port or an I/O port in 1-bit units by setting port function register	S23 - S16	Input	
Input/ Output	P110- P117	Port 11 8 bit input / output port Input / output mode can be specified bit-wise This port can be used as segment signal output port or an I/O port in 1-bit units by setting port function register	S15 - S8	Input	
	P120		PCL/S7		
	P121		TI00/TO0/S6		
	P122	Port 12	TI01/S5]	
Input/	P123	8 bit input / output port Input / output mode can be specified bit-wise	RxD0/S4	Innt	
Output	P124	This port can be used as segment signal output port	TxD0/S3	Input	
	P125	or an I/O port in 1-bit units by setting port function register	SCK3/S2	1	
	P126		SO3/S1		
	P127		SI3/S0		

Table 3-1: Pin Input/Output Types

3.2 Non-Port Pins

Table 3-2: Non-Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function Pin	
INTP0			nesei	P00	
INTP1	Input	External interrupts with specifiable valid edges (rising edge, falling edge, both rising and falling	Input	P01	
INTP2		edges)		P02	
SI3	Input	Serial interface serial data input	Input	P127/S0	
SO3	Output	Serial interface serial data output	Input	P126/S1	
SCK3	Input/ Output	Serial interface serial clock input / output	Input	P125/S2	
RxD0	Input	Asynchronous serial interface data input	Input	P123/S4	
TxD0	Output	Asynchronous serial interface data output	Input	P124/S3	
Rx0VAN, Rx1VAN, Rx2VAN	Input	VAN serial data input	Input	-	
TxVAN	Output	VAN serial data output	Output	-	
TI00				P121/TO0/S6	
TI01	1	External count clock input to 16-bit timer (TM0)	land	P122/S5	
TI50	Input	External count clock input to 8-bit timer (TM50)	- Input	P06/TO50	
TI51		External count clock input to 8-bit timer (TM51)		P07/TO51	
TO0		16-bit timer output		P121/TI00/S6	
TO50	Output	8-bit timer output (also used for PWM output)	Input	P06/TI50	
TO51		8-bit timer output (also used for PWM output)		P07/TI51	
PCL	Output	Clock output	Input	P120/S7	
S0 to S7				P127 to P120	
S8 to S15				P117 to P110	
S16 to S23 Output		Segment signal output of LCD controller / driver	Input	P107 to P100	
S24 to S31				P97 to P90	
S32 to S39				P87 to P80	
COM0-COM3	Output	Common signal output of LCD controller/driver	Output	-	
VLC0 to V LC2	-	LCD drive voltage	-	-	
SGO	Output	Sound generator output	Input	P47/SGOF	
SGOA	Output	Sound generator amplitude output	Input	P46	
SGOF	Output	Sound generator frequency output	Input	P47/SGO	
ANI0 to ANI3	Input	A/D Converter analog input	Input	P10 P13	
AVDD/ AVREF	-	A/D Converter reference voltage input and power supply	-	-	
AVss	-	A/D Converter ground potential. Connect to Vss.	-	-	
RESET	Input	System reset input	-	-	
X1	-	Connection for main system clock	-	-	
X2	-	Connection for main system clock	-	-	
CL1	Input	RC connection for subsystem clock	-	-	
CL2	-	RC connection for subsystem clock	-		
VDD1, VDD2	-	Positive power supply	-	-	
Vss1, Vss2	-	Ground potential	-	-	
Vpp	-	High voltage supply for flash programming (only flash version)	-	-	

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in the following table.

For the input/output circuit configuration of each type, see table.

Table 2.2.	Turner		In most (Outrout	0:0000	(1(0)
Table 3-3:	Types	or Pin	Input/Output	Circuits	(1/2)

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection for Unused Pins		
P00/INTP0					
P01/INTP1		I/O			
P02/INTP2	8		Connect to VDD or VSS via a resistor individually		
P06/TI50/TO50					
P07/TI51/TO51					
P10/ANI0					
P11/ANI1	9		Connect directly to Ver. or Ver.		
P12/ANI2	9		Connect directly to VDD or Vss		
P13/ANI3					
P40					
P41					
P42					
P43] _	1/0			
P44	5	I/O	Connect to VDD or VSS via a resistor individually		
P45					
P46/SGOA					
P47/SGO/SGOF					
P80/S39					
P81/S38					
P82/S37					
P83/S36	17	I/O	Connect to Map or Map via a register individually		
P84/S35		1/0	Connect to VDD or VSS via a resistor individually		
P85/S34					
P86/S33					
P87/S32					
P90/S31					
P91/S30]				
P92/S29					
P93/S28] 17		Connect to Vap or Vap via a register individually		
P94/S27	17	I/O	Connect to VDD or Vss via a resistor individually		
P95/S26]				
P96/S25	1				
P97/S24					

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection for Unused Pins	
P100/S23				
P101/S22				
P102/S21				
P103/S20	17	1/0	Connect to Vez ex Vez via a register individually	
P104/S19	17	"0	Connect to VDD or VSS via a resistor individually	
P105/S18				
P106/S17				
P107/S16				
P110/S15				
P111/S14				
P112/S13				
P113/S12	17			
P114/S11	17	I/O	Connect to VDD or VSS via a resistor individually	
P115/S10				
P116/S9				
P117/S8				
P120/S7/PCL	17			
P121/S6/TI00/TO0	17-C			
P122/S5/TI01	17-C			
P123/S4/RxD0	17-C			
P124/S3/TxD0	17	I/O	Connect to VDD or VSS via a resistor individually	
P125/S2/SCK3	17-C			
P126/S1/SO3	17			
P127/S0/SI3	17-C			
COM0 COM3	18	0	Leave open	
VLC0 VLC2	-	-	Connect to VDD	
Rx0VAN, Rx1VAN, Rx2VAN	2	I	-	
TxVAN	19	0	-	
CL1	-	I	Connect to VDD or Vss via a resistor individually	
CL2	-	-	Leave open	
RESET	2	I	-	
AVDD/AVREF	-	Ι	Connect directly to VDD	
AVss	-	-	Connect directly to Vss	
Vpp	1	-	Connect directly to Vss (except for flash programming)	
X1, X2	-	-	-	

Table 3-3:	Types	of Pin	Input/Output	Circuits	(2/2)
	1		1		· · /

Figure 3-1: Pin Input/Output Circuits (1/2)

Figure 3-1: Pin Input/Output Circuits (2/2)

4. Flash Memory Programming

Writing to the flash memory can be performed without removing the memory from the target system. Writing is performed connecting a dedicated flash programmer to the host machine and the target system.

4.1 Selection of Transmission Method

Writing to flash memory is performed using a flash programmer with a serial transmission method. The transmission method is selected from those listed in Table 4-1 to perform write operation. Figure 4-1 shows the format to select the transmission mode. Each transmission method is selected according to the number of VPP pulses shown in Table 4-1.

Transmission Method	Number of Channels	Pins	Number of VPP Pulses
3-Wire Mode	1	SI3/P127, SO3/P126, SCK3/P125	0
UART Mode	1	RxD0/P123, TxD0/P124	8
		(Serial SI input)/P42	
Pseudo 3-Wire Mode Note	1	(Serial SO output)/P41	12
		(Serial SCK input)/P40	

Table 4-1: List of Transmission Methods

- **Note:** Serial transmission is performed by controlling ports with software.
- Caution: Always select the transmission method according to the number of VPP pulses shown in Table 4-1.

4.2. Flash Memory Programming Functions

Operations such as writing to flash memory are performed by various commands/data transmission and reception operations according to the selected transmission method. Table 4-2 shows major functions of flash memory programming.

Function	Description
Reset	Detects write stop and transmission synchronisation.
Batch verify	Compares entire memory contents and input data.
Batch delete	Deletes the entire memory contents.
Batch blank check	Checks the deletion status of the entire memory.
High-speed write	Performs writing to flash memory according to write start address and umber of write data (bytes).
Continuous write	Performs successive write operations using the data input with high speed operation.
Status	Checks the current operation mode and operation end.
Oscillation frequency setting	Inputs the resonator oscillation frequency information.
Delete time setting	Inputs the memory delete time.
Baud rate setting	Sets the transmission rate when the UART method is used.
Silicon signature read	Outputs the device name, memory capacity, and device block information.

Table 4-2: Major Functions of Flash Memory Programming

4.3 Connection of the flash programmer

The connection of the flash programmer and the μ PD16F15A differs according to the transmission method. The connection for each transission method is shown in Figures 4-1, 4-2, and 4-3, respectively.

Figure 4-2:	Connection	of 3-Wire	Method	(SI030)
-------------	------------	-----------	--------	---------

Figure 4-3: Connection of UART Method (UART)

Figure 4-4: Connection of Pseudo 3-Wire Method (Port)

5. Memory Space

The memory map of the $\mu\text{PD16F15A}$ is shown in Figure 5-1.

FFFFH	Special Function Registers			
FF20H FF1FH	(SFRs) 256 x 8 bits			
FF00H FEFFH				
	General Registers			
FEE0H FEDFH	32 x 8 bits Internal High-speed RAM			
ĥ	1024 x 8 bits	5		
FE20H FB00H				
FB00H FAFFH	Not usable			
FA28H	Not usable			
FA27H	LCD Display RAM			
FA00H	40 x 4 bits			
F9FFH			EFFFH	
F900H	Not usable	/	☆	Program Area 🛛 🛱
F8FFH	VAN UDL RAM	/	1000H 0FFFH	
F800H F7FFH				CALLF Entry Area $lpha$
	Internal Expansion RAM	/	0800Н	
F400H	1024 x 8 bits	/	07FFH	
F3FFH			*	Program Area 🛛 😽
	Not usable		0080H	
F000H			007FH	
EFFFH		/	0040H	CALLT Table Area
	J Internal ROM	U	004011 003FH	
ſ	61440 x 8 bits	~		Vector Table Area
0000Н			0000Н	

Figure 5-1: Memory Map

6. Peripheral Hardware Function

6.1 Ports

Input/output ports are classified into three types.

 CMOS input 	t/output (Port 0, Port 4, Port 8 to Port 12)	: 53
 Input 	(P10 to P14)	: 4
Total		: 57

Port Name	Pin Name	Function
Port 0	P00 to P02 P06, P07	Input/output port, input/output can be specified bit-wise.
Port 1	P10 to P13	Input port.
Port 4	P40 to P47	Input/output port, input/output can be specified bit-wise.
Port 8	P80 to P87	Input/output port, input/output can be specified bit-wise. When used as an input port, port function can be specified by software.
Port 9	P90 to P97	Input/output port, input/output can be specified bit-wise. When used as an input port, port function can be specified by software.
Port 10	P100 to P 107	Input/output port, input/output can be specified bit-wise. When used as an input port, port function can be specified by software.
Port 11	P110 to P 117	Input/output port, input/output can be specified bit-wise. When used as an input port, port function can be specified by software.
Port 12	P120 to P127	Input/output port, input/output can be specified bit-wise. When used as an input port, port function can be specified by software.

Table 6-1: Functions of Ports

6.2 Clock Generator

There are two kinds of clock generators: main system and subsystem clock generators.

It is possible to change the instruction execution time.

- 0.25 $\mu s/0.5~\mu s/1~\mu s/2~\mu s/4~\mu s$ (at main system clock frequency of 8.0 MHz)
- 122 µs (at subsystem clock frequency of approx. 32 KHz)

Figure 6-1: Clock Generator Block Diagram

6.3 Main system clock oscillator

The main system clock oscillator oscillates with a crystal or a ceramic resonator connected to the X1 and X2 pins.

Figure 6-2: Oscillator Circuit

(a) Crystal and ceramic oscillation

(b) External clock

6.4 Subsystem Clock Oscillator

Subsystem clock oscillator is for RC oscillation with low frequency.

6.5 Timer/Event Counter

There are the following seven timer/event counter channels:

- 16-bit timer/event counter : 1 channel
- 8-bit timer/event counter : 2 channels
- Watch timer : 1 channel
- Watchdog timer : 1 channel

Table 6-2: Types and Functions of Timer/Event Counters

		16-bit Timer/Event Counter	8-bit Timer/Event Counter	Watch Timer	Watchdog Timer
Туре	Interval timer	2 channels	2 channels	1 channel	1 channel
	External event counter	1 channel	2 channels		
	Timer output	1 output	2 outputs		
Function	PWM output	1 output	2 outputs		
	Pulse with measurement	2 inputs			
	Square wave output	1 output	2 outputs		
	Interrupt request	2	2	2	1

Figure 6-4: 16-bit Timer TM0

Figure 6-5: 8-Bit Timer/Event Counter 51 Block Diagram

Figure 6-7: Watch Timer Block Diagram

6.6 Clock Output Control Circuit

This circuit can output clocks of the following frequencies:

• 62.5 KHz/125 KHz/250 KHz/500 KHz/1 MHz/2 MHz/4 MHz/8 MHz (at main system clock frequency of 8.0 MHz)

Figure 6-9: Clock Output Control Circuit Block Diagram

6.7 Sound Generator

for volume control.

The sound generator output is selectable as separate frequency-/volume-output SGOF/SGOA or as composed signal SGO.

The output signal at the composed output has the following principle shape:

Figure 6-11: Composed Sound Generator Output SGO

6.8 A/D Converter

The A/D converter consists of four 8-bit resolution channels. A/D conversion can be started by software.

6.9 Power Fail Detector

The block diagram of the power fail detector is shown in figure 6-13.

Figure 6-13: Block Diagram Power Fail Detector

6.10 Serial Interfaces

There are the following three on-chip serial interface channels synchronous with the clock:

- Serial interface channel CSI
- Serial interface channel UART

Table 6-3:	Types and F	unctions of	Serial Interfaces
------------	-------------	-------------	-------------------

Function	Serial Interface Channel CSI	Serial Interface Channel UART
3-wire serial I/O mode	⊖(MSB first)	-
Asynchronous serial interface (UART) mode	-	(On-chip dedicated baud rate generator)

Figure 6-14: Serial Interface Channel CSI (SIO3) Block Diagram

Figure 6-15: Serial Interface UART Block Diagram

6.11 VAN-Bus Interface

Figure 6-16: VAN-Bus Interface

6.12 LCD Controller/Driver

Table 6-4:	Display Mode	Types and Maximum	Number of Display Pixels
------------	--------------	-------------------	--------------------------

Bias Method	Time Multiplexing	Common Signal used	Maximum Number of Display Pixels
1/3	4	COM0 to COM3	160 (40 segments x 4 commons)
1/3	3	COM0 to COM2	120 (40 segments x 3 commons)
1/2	3	COM0 to COM2	120 (40 segments x 3 commons)
1/2	2	COM0 to COM1	80 (40 segments x 2 commons)
-	static	COM0	40 (40 segments x 1 common)

Figure 6-17: LCD Controller/Driver Block Diagram

7. Interrupt Functions and Test Functions

7.1 Interrupt Functions

A total of 19 interrupt functions are provided, divided into the following three types.

- Non-maskable interrupt : 1
- Maskable interrupt : 17
- Software interrupt : 1

Table 7-1: Interrupt Vector Table

Interrupt type	Priority (default)		Interrupt request source		Basic struct ure type
Resetting	-	RESET	Reset input	0000H	
Non- maskable	-	INTWDT	Watchdog timer overflow (when non-maskable interrupt is selected)	0004H	(A)
	0	INTWDT	Watchdog timer overflow (when interval timer is selected)	000411	
	1	INTVE	INTVE \rightarrow VAN-End of Message	0006H	(B)
	2	INTVT	INTVT \rightarrow VAN-Emission	0008H	, ,
	3	INTVR	INTVR \rightarrow VAN-Reception	000AH	
	4	INTP0		000CH	
	5	INTP1	External interrupt pin input edge detection	000EH	(C)
	6	INTP2		0010H	
	7	INTTM00	Agreement between TM00 and CR000 (when compare register is specified) TI001 valid edge detection (when capture register is specified)	0012H	
Maskable	8	INTTM01	Agreement between TM00 and CR001 (when compare register is specified) TI000 valid edge detection (when capture register is specified)	0014H	
	9	INTTM50	Agreement between TM50 and CR50	0016H	
	10	INTTM51	Agreement between TM51 and CR51	0018H	(B)
	11	INTWTI	Watch timer interval interrupt	001AH	. ,
	12	INTWT	Watch interrupt	001CH	
	13	INTCSI3	SIO30 transfer completion	001EH	
	14	INTSER	UART0 reception error occurrence	0020H	
	15	INTSR	UART0 reception completion	0022H	
	16	INTST	UART0 transmission completion	0024H	
	17	INTAD	A/D conversion end	0026H	
Software	-	BRK	Execution of BRK instruction	003EH	(D)

- **Notes: 1.** Default priority is the priority order when several maskable interruptions are generated at the same time. 0 is the highest order and 20 is the lowest order.
 - 2. Basic structure types (A) to (D) correspond to (A) to (D) in Figure 7-1.

7.2 Interrupts

Figure 7-1: Interrupt Function Basic Configuration (1/2)

(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt

Figure 7-1: Interrupt Function Basic Configuration (2/2)

(D) Software interrupt

8. Standby Function

The standby function intends to reduce current consumption. It has the following two modes:

- HALT mode: In this mode, the CPU operation clock is stopped. The average current consumption can be reduced by intermittent operation by combining this mode with the normal operation mode.
- STOP mode: In this mode, oscillation of the main system clock is stopped. All the operations performed on the main system clock are suspended, and only the subsystem clock is used for extremely small power consumption.

Figure 8-1: Standby Function

- Note:Current consumption is reduced by shutting off the main system clock.If the CPU is operating on subsystem clock, shut off the main system clock by setting MCC.
- Caution: When switching back to the main system clock while the subsystem clock has been used and the main system clock has been stopped, be sure to provide enough time for the oscillator to be stable before resuming the program execution of the main system clock.

9. Reset Function

There are the following two reset methods.

- External reset input by RESET pin
- Internal reset by watchdog timer runaway time detection
10.Instruction Set

(1) 8-Bit Instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ.

2nd Operand										[HL+byte]			
L	#byte	А	r ^{Note}	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL + B]	\$addr16	1	None
1st Operand										[HL + C]			
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOVU	ROR ROL RORC ROLC	
r	MOV	MOV ADD SUB SUBC AND OR XOR CMP											INC DEC
r1											DBNZ		
sfr	MOV	MOV											
saddrMOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP										DBNZ		INC DEC
!addr16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]		MOV											
[HL]		MOV											ROR4 ROL4
[HL+byte] [HL + B] [HL + C]		MOV											
х													MULU
С													DIVUW

Table	10-1:	8-Bit	Instructions
		0 2	

Note: Except r = A

(2) 16-Bit Instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW.

2nd Operand	#word	AX	rp	sfrp	saddrp	!addr16	SP	None
1st Operand								
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVW						INCW, DECW PUSH, POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW ^{Note}						
SP	MOVW	MOVW						

Table 10-2: 16-Bit Instructions

Note: Only when rp = BC, DE, HL

(3) Bit Manipulation Instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR.

Table 10-3:	Bit Manipulation	Instructions
-------------	------------------	--------------

2nd Operand 1st Operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
СҮ	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

(4) Call instructions/Branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ.

Table 10-4: Call Instr	uctions/Branch Instructions
------------------------	-----------------------------

2nd Operand 1st Operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR, BC BNC BZ, BNZ
Compound instruction					BT, BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP.

11. Electrical Specifications

Absolute Maximum Ratings (T_A = 25° C)

Τέ	able	11-1:	Absolute	Maximum	Ratings	
----	------	-------	----------	---------	---------	--

Parameter	Symbol	Conditior	าร		Rating	Unit
	Vdd				-0.3 to +6.5	
Supply	Vpp				-0.3 to +11.0	
voltage	AVDD/AVREF				-0.3 to VDD +0.3	
	AVss				-0.3 to +0.3	
Input voltage	V	P00 to P02, P06, P07, P40 t P90 to P97, P100 to P107, F to P127, X1, X2, CL1, RESE	P110 to		-0.3 to VDD +0.3	V
Output voltage	V				-0.3 to VDD +0.3	
Analog input voltage	Van	P10 to P13	Analo	g input pin	AVss -0.3 to AVDD +0.3	
		1 pin (except P47)			-10	
High level		P47			-30	
output current	Юн	P00 to P02, P06, P07, P40 t P90 to P97, P100 to P107, F to P127	-30			
		P00 to P02, P06, P07, P40 t		Peak value	20	
		P46, P80 to P87, P90 to P97, P100 to P107, P110 to P117, P120 to P127 1 pin (except P47)		Effective value	10	
				Peak value	30	mA
Low level output	IOL Note	P47	-	Effective value	20	
Current				Peak value	30	
		TxVAN 1 pin		Effective value	15	
		P00 to P02, P06, P07, P40 t		Peak value	65	
		P46, P80 to P87, P90 to P97, P100 to P107, P110 to P117, P120 to P127 Total		Effective value	50	
Operating ambient temperature	Торт				-40 to +85	°C
Storage temperature	Тѕтс				-65 to +150	

Note: Effective value should be calculated as follows: [Effective value] = [Peak value] x \sqrt{duty}

- Caution: Product quality may suffer if the absolute maximum ratings are exceeded for even a single parameter or even momentarily. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.
- **Remark:** The characteristics of the dual-function pins are the same as those of the port pins unless otherwise specified.

Capacitance (TA = 25° C, vDD = Vss = 0 V)

Item	Symbol	(Condition			MAX.	Unit
Input capacity	Cin	f = 1 MHz Pins not measured = 0 V	RESET, P10 - P13, Rx0VAN, Rx1VAN, Rx2VAN			15	pF
Output capacity	Со	f = 1 MHz Pins not measured = 0 V	TxVAN			15	pF
Input/output capacity	Сю	f = 1 MHz Pins not measured = 0 V	P00 - P02, P06, P07, P40 - P46, P80 - P87, P90 - P97, P100 - P107, P110 - P117, P120 - P127			15	pF
			P47			30	pF

Table 11-2: Capacitance

Remark: The characteristics of the dual-function pins are the same as those of the port pins unless otherwise specified.

Main System Clock Oscillation Circuit Characteristics (TA = -40 to $+85^{\circ}$ C, V_{DD} = 4.0 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic	IC X2 X1	Oscillator frequency (fx) ^{Note 1}	VDD = 4.0 to 5.5 V	3.9	8.0	8.1	MHz
resonator		Oscillation stabilization time ^{Note2}	After VDD reaches oscillator voltage range MIN. 4.0 V			4	ms
Crystal	IC X2 X1	Oscillator frequency (fx) Note 1	V _{DD} = 4.0 to 5.5 V	3.9	8.0	.0 8.1	MHz
resonator		Oscillation stabilization time ^{Note2}	After VDD reaches oscillator voltage range MIN. 4.0 V			10	ms
External	X2 X1	X1 input frequency (fx) ^{Note 1}	VDD = 4.0 to 5.5 V	3.9	8.0	8. 1	MHz
clock	μ PD74HCU04	X1 input high/low-level width (txH, txL)	VDD = 4.0 to 5.5 V	58		125	ns

Table 11-3: Main System Clock Oscillation Circuit Characteristics

- **Notes: 1.** Indicates only oscillation circuit characteristics. Refer to "AC Characteristics" for instruction execution time.
 - 2. Time required to stabilize oscillation after reset or STOP mode release.
- Cautions: 1. When using the main system clock oscillation circuit, wiring in the area enclosed with the broken line should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - Wiring should be as short as possible.
 - Wiring should not cross other signal lines.
 - Wiring should not be placed close to a varying high current.
 - The potential of the oscillation circuit capacitor ground should always be the same as that of Vss.
 - Do not ground wiring to a ground pattern in which a high current flows.
 - Do not fetch a signal from the oscillation circuit.
 - 2. When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program.

Subsystem Clock Oscillation Circuit Characteristics (TA = -40 to $+85^{\circ}$ C, V_{DD} = 4.0 to 5.5 V)

Resonator	Recommended circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
RC osc.	CL1 CL2	Oscillator frequency (fxt)	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V \\ R = 518 \ k\Omega \\ C = 33 \ pF \end{array}$	32	40	50	KHz
	CL1 CL2	CL1 Input ^{Note} frequency (fxt)	$4.0~V \le V_{DD} \le 5.5~V$	32		50	KHz
External clock		CL1 Input high/low level width txTH, txTL)	$4.0 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	9		15.7	μs

Table 11-4: Subsystem Clock Oscillation Circuit Characteris

- **Note:** Only oscillator circuit characteristics are shown. Regarding instruction execute time, please refer to AC characteristics.
- Cautions: 1. When using the subsystem clock oscillation circuit, wiring in the area enclosed with the broken line should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - Wiring should be as short as possible.
 - Wiring should not cross other signal lines.
 - Wiring should not be placed close to a varying high current.
 - The potential of the oscillation circuit capacitor ground should always be the same as that of Vss.
 - Do not ground wiring to a ground pattern in which a high current flows.
 - Do not fetch a signal from the oscillation circuit.
 - 2. The subsystem clock oscillation circuit is designed to be a circuit with a low amplification level, for low power consumption more prone to misoperation due to noise than that of the main system clock. Therefore, when using the subsystem clock, take special cautions for wiring methods.

DC Characteristics (TA = -40 to +85° C, VDD = 4.0 to 5.5 V)

Item	Symbol		Conditions	MIN.	TYP	MAX.	Unit
High- level	VIH1	- P107, P1 Rx1VAN, F		0.7 Vdd			
input voltage	VIH2	RESET, PO P127	00 - P02, P06, P07, P121 - P123, P125,	0.8 Vdd		Vdd	
	Vінз	X1, X2, CL	1, CL2	Vdd - 0.5			
Low-level	VIL1	- P107, P1 Rx1VAN, F		0		0.3 Vdd	
input voltage	VIL2	RESET, PO P127	00 - P02, P06, P07, P121 - P123, P125,	0		0.2 Vdd	v
	VIL3	X1, X2, CL	1, CL2	0		0.4	
High-		$4.5 \text{ V} \leq \text{VD}$	⊃≤ 5.5 V, Iон = -1 mA	Vdd - 1.0			
level output	VOH1	Іон = -100	μΑ	Vdd - 0.5		Vdd	
voltage		P47	$4.5 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}, \text{ IOH} = -20 \text{ mA}$	Vdd - 0.5		Vdd	
	VOL1	TxVAN	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{ IOL} = 15 \text{ mA}$		0.4	2.0	
Low-level	Vol2	$4.5 \text{ V} \leq \text{VD}$	D≤ 5.5 V, IoL = 1.6 mA			0.4	
output voltage	Vol3	IOL = 400 μ			0.5		
renage	Vol4	P47	$4.5 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ IOH} = 20 \text{ mA}$			0.5	
High-	ILIH1		Except X1, X2, CL1 and CL2			3	
level input leakage current	ILIH2	Vin = Vdd	X1, X2, CL1, CL2			20	
Low-level	ILIL1		Except X1, X2, CL1 and CL2			-3	
input leakage current	ILIL2	VIN = 0 V	X1, X2, CL1, CL2			-20	μA
High- level output leakage current	Ісон1	Vout = Vde)			3	
Low-level output leakage current	Ilol	Vout = 0 V				-3	

Remark: The characteristics of the dual-function pins are the same as those of the port pins unless otherwise specified.

DC Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 4.0 to 5.5 V)

Flash ROM Version

Parameter	Symbol	Conditions			TYP	MAX	Unit
Power supply Note 1 current	IDD1	8.0 MHz crystal oscillation operating mode (PCC = 00H)	V DD = 5 V \pm 10%		11.5	28.5	mA
	IDD2	8.0 MHz crystal oscillation HALT mode	V DD = 5 V \pm 10%		1.6	4.8	mA
	Idd3	RC oscillation operating mode (fxT = 40 KHz)	V DD = 5 V \pm 10%		450	900	μA
	IDD4	RC oscillation HALT mode (fxT = 40 KHz)	V DD = 5 V \pm 10%		60	180	μA
	IDD5	STOP mode	$VDD = 5 V \pm 10\%$		1 Note 2	30 Note 2	μA

Table 11-6: DC Characteristics Flash ROM Version

Notes: 1. The AV_{DD}/AV_{REF} current, port current and the VAN UDL current are not included and PCC is set to 00h.

- 2. The subclock is not used.
- Remarks: 1. fx: Main system clock oscillator frequency.2. fxT: Subsystem clock oscillator frequency.

DC Characteristics (TA = -10 to $+85^{\circ}$ C, VDD = 4.0 to 5.5 V)

LCD C/D Static Method

Table 11-7:	DC Characteristics	Static Method	
-------------	--------------------	---------------	--

Parameter	Symbol	Те	MIN	TYP	MAX.	Unit	
LCD drive voltage	VLCD		3.0		Vdd	V	
LCD output voltage deviation ^{Note} (common)	Vodc	$IO = \pm 5 \ \mu A$	$3.0 V \leq VLCD \leq VDD$	0		±0.2	V
LCD output voltage deviation ^{Note} (segment)	Vods	$IO = \pm 1 \ \mu A$	$3.0 V \le VLCD \le VDD$ VLCD0 = VLCD	0		±0.2	V

Note: The voltage deviation is the difference from the output voltage corresponding to the ideal value of the segment and common outputs (V_{LCDN} ; n = 0, 1, 2).

µPD16F15A

LCD C/D 1/2 Bias Method

Parameter	Symbol	Τe	MIN	TYP	MAX.	Unit	
LCD drive voltage	VLCD			3.0		Vdd	V
LCD output voltage deviation ^{Note} (common)	Vodc	$IO = \pm 5 \ \mu A$	$3.0 V \le VLCD \le VDD$ VLCD0 = VLCD	0		±0.2	V
LCD output voltage deviation Note (segment)	Vods	$Io = \pm 1 \ \mu A$	$V_{LCD1} = V_{LCD} \times 1/2$ $V_{LCD2} = V_{LCD} \times 1/2$	0		±0.2	V

Table 11-8: DC Characteristics 1/2 Bias Method

Note: The voltage deviation is the difference from the output voltage corresponding to the ideal value of the segment and common outputs (V_{LCDN} ; n = 0, 1, 2).

LCD C/D 1/3 Bias Method

Table 11-9: DC Characteristics 1/3 Bias Method

Parameter	Symbol	Τe	MIN	TYP	MAX.	Unit	
LCD drive voltage	VLCD			3.0		Vdd	V
LCD output voltage deviation ^{Note} (common)	Vodc	lo = ± 5 μA	$3.0 V \le V_{LCD} \le V_{DD}$ $V_{LCD} = V_{LCD}$	0		±0.2	V
LCD output voltage deviation ^{Note} (segment)	Vods	$Io = \pm 1 \ \mu A$	$V_{LCD1} = V_{LCD} \times 2/3$ $V_{LCD2} = V_{LCD} \times 1/3$	0		±0.2	V

Note: The voltage deviation is the difference from the output voltage corresponding to the ideal value of the segment and common outputs (V_{LCDN} ; n = 0, 1, 2).

AC Characteristics

(1) Basic Operation (TA = -40 to $+85^{\circ}$ C, VDD = 4.0. to 5.5 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Cycle time (min. instruction execution time)		$4.5~V \leq V \text{DD} \leq 5.5~V$	0.25		8	
	tCY	$4.0~V \leq V \text{DD} \leq 5.5~V$	0.5		8	μs
		During subsystem clock operation	80	100	125	
TI50, TI51 input frequency	fti5		0		4	MHz
TI50, TI51 input high/low level width	t⊤iн₅, t⊤i∟₅		100			ns
TI00, TI01 input high/low level width	tCAPH, tCAPL		2/ fSMP0 + 0.1 Note 1			μs
Interrupt input high/low level width	tinth, tint∟	INTP0-2	10			μs
RESET low level width	tRSL		10			μs

Table 11-10: AC Characteristics Basic Operation

Note: The sampling is performed when using the count clock selected by PRM01-00 (fSMP0 = fx/2, fx/8, fx/64). When the TI00 valid edge is selected for the count clock, fSMP0 is found by fSMP0 = fx/8.

- (3) Serial Interface (T_A = -40 to +85° C, V_{DD} = 4.0. to 5.5 V)
- (a) Serial Interface Channel SIO30

Table 11-11: 3-wire serial I/O mode (SCK3... Internal clock output)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCK3 cycle time	tKCY1		800		
SCK3 high/low-level width	tKH1, tKL1		tkcy1/2 - 50		
SI3 setup time (to SCK3) ↑	tsik1		100		ns
SI3 hold time (from SCK3) ↑	tKSI1		400		
SO3 output delay time (from $\overline{\text{SCK3}}$) \downarrow	tKSO1	$C = 100 \text{ pF}^{Note}$		300	

Note: C is the load capacitance of SO3, SCK3 output line

Table 11-12: 3-wire serial I/O mode (SCK3... External clock output)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCK3 cycle time	tKCY2		800		
SCK3 high/low-level width	tkh2, tkl2		400		
SI3 setup time (to SCK3) \uparrow	tsik2		100		ns
SI3 hold time (from $\overline{\text{SCK3}}$) \uparrow	tKSI2		400		
SO3 output delay time (from $\overline{\text{SCK3}}$) \downarrow	tKSO2	$C=100 \text{ pF}^{\text{Note}}$		300	

Note: C is the load capacitance of SO3, SCK3 output line.

(b) Serial Interface Channel UART0

Table 11-13: UART Mode (Dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP	MAX.	Unit
Transfer rate			260		125000	bps

Figure 11-2: AC Timing Test Points (excluding X1, CL1 inputs)

Figure 11-3: Clock Timing

Serial Transfer Timing

Figure 11-5: 3-wire serial I/O mode

```
Remark: m=1
```

A/D Converter Characteristics (TA = -40 to +85° C, VDD = AVDD/AVREF = 4.0 to 5.5 V, AVss = Vss =0 V, fx = 8 MHz)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error					± 0.6	%
Conversion time	tCONV		15		72	μs
Analog input voltage	VIAN		0		AVDD/AVREF	VREF
Reference voltage	AVDD/AVREF		Vdd - 0.3		VDD + 1.3	
AVDD/AVREF	4.00	ADC running		1.0	2.0	mA
current	IADD	ADC stopped		1.0	10	μA

Table 11-14:	A/D	Converter	Characteristics
--------------	-----	-----------	------------------------

Note:Overall error excluding quantization error (± 1/2 LSB). It is indicated as a ratio to the full-scale value.Remark:fx: Main system clock oscillation frequency

Data Memory Stop Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85° C)

Table 11-15: Data Memory Stop Mode Low Supply Voltage Data Retention Characteristics

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	Vdddr		2.0		5.5	V
Data retention power supply current	Idddr	VDDDR = $2.0 \text{ V}^{\text{Note 2}}$		0.1	10	μA
Release signal set time	tSREL		0			μS
		Release by RESET		2 ¹⁷ /fx		
Oscillation stabilization wait time	twait	Release by interrupt		Note 1		ms

Notes: 1. In combination with bits 0 to 2 (OSTS0 to OSTS2) of oscillation stabilization time select register, selection of 212/fx and 214/fx to 217/fx is possible.

2. fx:RC oscillator is not used.

Remark: fx: Main system clock oscillation frequency

Figure 11-7: Data Retention Timing (Standby release signal: STOP mode release by interrupt signal)

NEC

Figure 11-9: RESET Input Timing

Table 11-16: Flash EEPROM Programming Characteristics

(a) Basic characteristics

Item	Symbol	Condition	MIN.	TYP	MAX.	Unit
Operating frequency	fx		4.0		8.0	MHz
	Vdd		4.5		5.5	V
Power supply	Vppl	When VPP low level is detected	0		0.2 Vdd	V
voltage	Vpp	When VPP high level is detected	0.8 VDD	Vdd	1.2 Vdd	V
	Vpph	When VPP high voltage is detected	9.7	10.0	10.3	V
VDD power supply current	ldd				50	mA
VPP power supply current	Ірр	Vpp = 10.0 V			50	mA
Write time (per byte)	twrt		50		500	μs
Rewrite count	CWRT				20	times/h
Erasure time	terase			8 ^{Note}	20	S
Programming temperature *	t PRG		15		+ 40	°C

Note: The erase time (terase) is the internal erase time. The communication time and the firmware overhead is not included.

Remark: For the input/output voltage and input/output leak current, see the DC characteristic table.

(b) Serial write operation characteristics

Item	Symbol	Condition	MIN.	TYP	MAX.	Unit
VPP setting time	tpsron	VPP high voltage	1.0			μs
V _{DD} ↑ – V _{PP} ↑ setting time	tdrpsr	VPP high voltage	1.0			μs
V _{PP} ↑ - RESET↑ setting time	tpsrrf	VPP high voltage	1.0			μs
RESET ↑ – V _{PP} ↑ count start time	trfcf		1.0			μs
Count execution time	tcount				20.0	ms
VPP counter high and low level widths	tch, tcl		8.0			μs
VPP counter noise removal width	tnfw			40		ns

Remark: For the input/output voltage and input/output leak current, see the DC characteristic table.

12. Package Drawing

Figure 12-1: Package Drawing

80 PIN PLASTIC QFP (14×14)

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
А	17.20±0.20	0.677±0.008
В	14.00±0.20	0.551 +0.009 -0.008
С	14.00±0.20	$0.551\substack{+0.009\\-0.008}$
D	17.20±0.20	0.677±0.008
F	0.825	0.032
G	0.825	0.032
Н	0.32±0.06	$0.013\substack{+0.002\\-0.003}$
I	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
ĸ	1.60±0.20	0.063±0.008
L	0.80±0.20	$0.031^{+0.009}_{-0.008}$
М	$0.17 \substack{+0.03 \\ -0.07}$	$0.007\substack{+0.001\\-0.003}$
N	0.10	0.004
Р	1.40±0.10	0.055±0.004
Q	0.125±0.075	0.005±0.003
R	3°+7° -3°	3°+7° -3°
S	1.70 MAX.	0.067 MAX.
		P80GC-65-8BT

Remark: The shape and material of the ES product is the same as the mass produced product.

13. Recommended Soldering Conditions

The µPD16F15A should be soldered and mounted under the conditions in the table below. For detail of recommended soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual (IEI-1207)**.

For soldering methods and conditions other than those recommended below, consult our sales personnel.

µPD16F15A-8BT : 80-pin plastic QFP (14 x 14 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	 Package peak temperature: 235 °C, Duration: 30 sec. max. (at 210 °C or above). Number of times: twice max. <precautions></precautions> (1) The second reflow schold be started after the first reflow device temperature has returned to the ordinary state. (2) Flux washing must not be performed by the use of water after the first reflow. 	IR35-00-2
VPS	 Package peak temperature: 215 °C, Duration: 40 sec. max. (at 210 °C or above). Number of times: twice max. <precautions></precautions> (3) The second reflow schold be started after the first reflow device temperature has returned to the ordinary state. (4) Flux washing must not be performed by the use of water after the first reflow. 	VP15-00-2
Wave soldering	Soldering bath temperature: 260 °C max. Duration: 10 sec. max. Number of times: once, Preheating temperature: 120 °C max. (package surface temperature)	WS60-00-1
Pin part heating	Pin temperature: 300 °C max. Duration: 3 sec. max. (per device side).	-

 Table 13-1: Surface Mounting Type Soldering Conditions

Caution: Use of more than one soldering method should be avoided (exept in the case of pin part heating).

Appendix A. Development Tools

The following tools are available for system development using the μ PD16F15A.

Language Processing Software

NEC Software

RA78K0	Assembler package used in common for the 78K0 series
CC78K0	C compiler package used in common for the 78K0 series
DF1615A	Device file used for the µPD1615A Subseries
CC78K0-L	C compiler library source file used in common for the 78K0 series

IAR Software

A78000	Assembler package used for the 78K0 series
ICC78000	C compiler package used for the 78K0 series
XLINK	Linker package used for the 78K0 series

Flash EEPROM Writing Tools

<i>flash</i> MASTER	Dedicated flash writer for micro controllers with on-chip flash memory
FA-80GC-8BT	Programmer adapter connected to the <i>flash</i> MASTER

Debugging Tools

IE-78K0-NS-A	In-circuit emulator used in common for the 78K0 series
IE-70000-98-IF-C	Interface adapter when PC9800 series (except for notebooks) is used as host machine
IE-70000-PC-IF-C	Interface adapter when IBM PC/AT or its compatibles is used as host machine
IE-70000-PCI-IF-A	PCI Interface adapter when IBM PC/AT or its compatibles is used as host machine
IE-70000-CD-IF-A	PCI Interface adapter when IBM PC/AT or its compatibles is used as host machine
IE-78K0-NS-P04	Emulation board for the μPD1615A(A) Subseries
IE-1615-NS-EM4	Probe board for the μ PD1615A(A) Subseries
NP-80GC-TQ	Emulation probe used in common for the µPD1615A(A) Subseries
NQPACK080SB	Socket for soldering on the target
YQPACK080SB	Adapter socket for connecting the probe to the NQPACK080SB
HQPACK080SB	Lid socket for connecting the device to the NQPACK080SB
YQSOCKET080SBF	Height adapter between the YQPACK080SB and the probe
ID78K0-NS	Integrated debugger for the IE-78K0-NS-A
SM78K0	System simulator used in common for the 78K0 series
DF1615A	Device file used for the μ PD1615A(A) Subseries

Real-Time OS

RX78K0	Real-time OS used for the 78K0 series
MX78K0	OS used for the 78K0 series

Appendix B. Related Documents

Documents Related to Devices

Document	Document No.	
	Japanese	English
78K0 Series User s Manual-Instruction	IEU-849	IEU-1372
78K0 Series Instruction Table	IEM-5522	-
78K0 Series Instruction Set	IEM-5521	-
78K0 Series Application Note-Fundamental (III)	IEA-767	To be prepared

Documents on Development Tools (User's Manuals)

Document		Document No.	
		Japanese	English
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
	Language	EEU-815	EEU-1404
RA78K Series Structured Assembler Reprocessor		EEU-817	EEU-1402
CC78K Series C Compiler	Operation	EEU-656	EEU-1280
	Language	EEU-655	EEU-1284
CC78K0 C Compiler Application Note	Programming Know-how	EEU-618	To be prepared
CC78K Series Library Source File		EEU-777	-
IE-78K0-NS-A		TBD	TBD
IE-78K0-NS-P04 IE-1615-NS-EM4		-	U13359E
NP-80GC-TQ		-	-
SM78K0 System Simulator	Reference	-	U10181
IBM PC/AT (PC DOS) Base	External Port Specification	-	U10092
ID78K0-NS Integrated Debugger IBM PC/AT (PC DOS) Base		U14379	U14379

Caution: The above documents are subject to change without notice. Be sure to use the latest documents for design or for any other similar purpose.

Documents on Embeded Software (User's Manuals)

Document		Document No.	
		Japanese	English
78K0 Series Real-time OS	Basic	EEU-912	-
	Installation	EEU-911	-
	Technical	EEU-913	-
78K0 Series OS MX78K0	Fundamental	EEU-5010	-
Fuzzy Knowledge Data Creation Tool		EEU-829	EEU-1438
78K0, 78K/II, 87AD Series		EEA-862	EEU-1444
Fuzzy Inference Development Support System Translator			
78K0 Fuzzy Inference Development Support System Fuzzy Inference Module		EEU-858	EEU-1441
78K0 Fuzzy Inference Development Support System I	Euzzy Inference Debugger	EEU-921	EEU-1458

Other Documents

Document	Document No.	
	Japanese	English
Package Manual	IEI-635	IEI-1213
Semiconductor Device Mounting Technology Manual	IEI-616	IEI-1207
Quality Grade on NEC Semiconductor Devices	IEI-620	IEI-1209
NEC Semiconductor Device Reliability/Quality Control System	IEM-5068	-
Electrostatic Discharge (ESD) Test	MEM-539	-
Semiconductor Device Quality Assurance Guide	MEI-603	MEI-1202
Microcontroller-Related Product Guide - Third Party Products -	MEI-604	-

Caution: The above documents are subject to change without notice. Be sure to use the latest documents for design or for any other similar purpose.

Notes for CMOS Devices

(1) Precaution against ESD for Semiconductors

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) Handling of unused input pins for CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) Status before initialization of MOS devices

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l. Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99 NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130 Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

MS-DOS and MS-Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. PC/AT and PC DOS are trademarks of IBM Corp.

The related documents in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

The information in this document is current as of 15.11.2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information. No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document. NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others. Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. While NEC endeavours to enhance the guality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features. NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc.

If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

- **Notes:** (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
 - (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).