N0603N
N-channel MOSFET
60 V, 100 A, 4.6 mΩ

Features
- Low on-state resistance : R_DS(on) = 4.6 mΩ MAX. (V_GS = 10 V, I_D = 50 A)
- Low Ciss : Ciss = 7730 pF TYP. (V_DS = 25 V, V_GS = 0 V)
- High current : I_D(DC) = ±100 A
- RoHS Compliant
- Quality Grade : Standard
- Applications : For high current switching

Ordering Information

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Package</th>
<th>Packing</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0603N-S23-AY</td>
<td>TO-262, Pb-free</td>
<td>50 pcs / Magazine (Tube)</td>
</tr>
</tbody>
</table>

Note: 1. Pb-free means that this product does not contain lead in the external electrode.

Absolute Maximum Ratings (TA = 25°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to Source Voltage (V_GS = 0 V)</td>
<td>V_DSS</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>Gate to Source Voltage (V_DS = 0 V)</td>
<td>V_GSS</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Drain Current (DC) (T_C = 25°C)</td>
<td>I_D(DC)</td>
<td>±100</td>
<td>A</td>
</tr>
<tr>
<td>Drain Current (pulse) Note2</td>
<td>I_D(pulse)</td>
<td>±400</td>
<td>A</td>
</tr>
<tr>
<td>Total Power Dissipation (T_C = 25°C)</td>
<td>P_T1</td>
<td>156</td>
<td>W</td>
</tr>
<tr>
<td>Total Power Dissipation (T_A = 25°C)</td>
<td>P_T2</td>
<td>1.5</td>
<td>W</td>
</tr>
<tr>
<td>Channel Temperature</td>
<td>T_ch</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_stg</td>
<td>−55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Single Avalanche Current Note3</td>
<td>I_AS</td>
<td>55</td>
<td>A</td>
</tr>
<tr>
<td>Single Avalanche Energy Note3</td>
<td>E_AS</td>
<td>300</td>
<td>mJ</td>
</tr>
</tbody>
</table>

Notes: 2. PW ≤ 10 µs, Duty Cycle ≤ 1%
3. Starting T_ch = 25°C, R_g = 25 Ω, V_DD = 30 V, V_GS = 20 → 0 V, L = 100 µH

Thermal Resistance

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Max. Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel to Case Thermal Resistance</td>
<td>R_h(c-h)</td>
<td>0.80</td>
<td>°C/W</td>
</tr>
<tr>
<td>Channel to Ambient Thermal Resistance</td>
<td>R_h(c-A)</td>
<td>83.3</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Notes: 4. This data is the designed target maximum value on Renesas’s measurement condition. (Not tested)
Electrical Characteristics (TA = 25°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_DSS</td>
<td>1</td>
<td></td>
<td></td>
<td>µA</td>
<td>V_{DS} = 60 V, V_{GS} = 0 V</td>
</tr>
<tr>
<td>Gate Leakage Current</td>
<td>I_GSS</td>
<td>±100</td>
<td></td>
<td></td>
<td>nA</td>
<td>V_{GS} = 20 V, V_{DS} = 0 V</td>
</tr>
<tr>
<td>Gate to Source Cut-off Voltage</td>
<td>V_{GS(off)}</td>
<td>2.0</td>
<td>4.0</td>
<td></td>
<td>V</td>
<td>V_{DS} = 10 V, I_D = 1 mA</td>
</tr>
<tr>
<td>Forward Transfer Admittance (^\text{Note}5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Drain to Source On-state Resistance (^\text{Note}5)</td>
<td>R_{DS(on)}</td>
<td>3.7</td>
<td>4.6</td>
<td></td>
<td>mΩ</td>
<td>V_{GS} = 10 V, I_D = 50 A</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>Ciss</td>
<td>7730</td>
<td></td>
<td></td>
<td>pF</td>
<td>V_{DS} = 25 V,</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>Coss</td>
<td>560</td>
<td></td>
<td></td>
<td>pF</td>
<td>V_{GS} = 0 V,</td>
</tr>
<tr>
<td>Reverse Transfer Capacitance</td>
<td>Crss</td>
<td>290</td>
<td></td>
<td></td>
<td>pF</td>
<td>f = 1 MHz</td>
</tr>
<tr>
<td>Turn-on Delay Time</td>
<td>t_{on}</td>
<td>35</td>
<td></td>
<td></td>
<td>ns</td>
<td>VDD = 30 V, I_D = 50 A,</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_r</td>
<td>12</td>
<td></td>
<td></td>
<td>ns</td>
<td>VGS = 10 V,</td>
</tr>
<tr>
<td>Turn-off Delay Time</td>
<td>t_{off}</td>
<td>76</td>
<td></td>
<td></td>
<td>ns</td>
<td>R_G = 0 Ω</td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_f</td>
<td>14</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Total Gate Charge</td>
<td>Q_G</td>
<td>133</td>
<td></td>
<td></td>
<td>nC</td>
<td>VDD = 48 V,</td>
</tr>
<tr>
<td>Gate to Source Charge</td>
<td>Q_GS</td>
<td>38</td>
<td></td>
<td></td>
<td>nC</td>
<td>VGS = 10 V,</td>
</tr>
<tr>
<td>Gate to Drain Charge</td>
<td>Q_GD</td>
<td>38</td>
<td></td>
<td></td>
<td>nC</td>
<td>I_D = 100 A</td>
</tr>
<tr>
<td>Body Diode Forward Voltage (^\text{Note}5)</td>
<td>V_{F(S-D)}</td>
<td>1.5</td>
<td></td>
<td></td>
<td>V</td>
<td>I_F = 100 A, V_{GS} = 0 V</td>
</tr>
<tr>
<td>Reverse Recovery Time</td>
<td>t_{rr}</td>
<td>44</td>
<td></td>
<td></td>
<td>ns</td>
<td>I_F = 50 A, V_{GS} = 0 V,</td>
</tr>
<tr>
<td>Reverse Recovery Charge</td>
<td>Q_{rr}</td>
<td>61</td>
<td></td>
<td></td>
<td>nC</td>
<td>di/dt = 100 A/µs</td>
</tr>
<tr>
<td>Notes: 5. Pulsed test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TEST CIRCUIT 1 AVALANCHE CAPABILITY

- V_{GS} = 20 to 0 V
- B_{Vos} = V_{GS} – I_{DSS} * R_{D}

TEST CIRCUIT 2 SWITCHING TIME

- V_{os}:
 - 10%: V_{DS} Wave Form
 - 90%: V_{DS} Wave Form
- t:
 - 1 µs
 - Duty Cycle ≤ 1%

TEST CIRCUIT 3 GATE CHARGE

- V_{gs}:
 - 10%: V_{DS} Wave Form
 - 90%: V_{DS} Wave Form
- t:
 - t_{on}:
 - for
 - t_{off}:
 - for
Typical Characteristics

DERATING FACTOR OF FORWARD BIAS SAFE OPERATING AREA

TOTAL POWER DISSIPATION vs. CASE TEMPERATURE

FORWARD BIAS SAFE OPERATING AREA

TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH

Notes:
6. Designed target value on Renesas measurement condition. (Tc = 25°C, unless otherwise specified)
7. This data is the designed value on Renesas's measurement condition. Renesas recommends that operating conditions are designed according to a document “Power MOSFET/IGBT Attention of Handling Semiconductor Devices (R07ZZ0010)“.
8. This data is the designed target maximum value on Renesas's measurement condition.
DRAIN CURRENT vs. DRAIN TO SOURCE VOLTAGE

FORWARD TRANSFER CHARACTERISTICS

GATE TO SOURCE CUT-OFF VOLTAGE vs. CHANNEL TEMPERATURE

FORWARD TRANSFER ADMITTANCE vs. DRAIN CURRENT

DRAIN TO SOURCE ON-STATE RESISTANCE vs. DRAIN CURRENT

DRAIN TO SOURCE ON-STATE RESISTANCE vs. GATE TO SOURCE VOLTAGE
DRAIN TO SOURCE ON-STATE RESISTANCE

\(R_{\text{DS(on)}} \) vs. CHANNEL TEMPERATURE

\(V_{GS} = 10 \text{ V} \)
\(I_{D} = 50 \text{ A} \)
Pulsed

CAPACITANCE vs. DRAIN TO SOURCE VOLTAGE

\(C_{iss}, C_{oss}, C_{rss} \) - Capacitance - pF

SWITCHING CHARACTERISTICS

\(t_{\text{on}}, t_{\text{off}}, t_{\text{r}}, t_{\text{off}} \) - Switching Time - ns

\(V_{DD} = 30 \text{ V} \)
\(V_{GS} = 10 \text{ V} \)
\(R_{G} = 0 \Omega \)

DYNAMIC INPUT CHARACTERISTICS

\(V_{GS} \) - Gate to Source Voltage - V

SOURCE TO DRAIN DIODE FORWARD VOLTAGE

\(V_{F(S-D)} \) - Source to Drain Voltage - V

REVERSE RECOVERY TIME vs. DIODE FORWARD CURRENT

\(t_{\text{rr}} \) - Reverse Recovery Time - ns

\(V_{GS} = 0 \text{ V} \)
di/dt = 100 A/\mu s

\(I_{F} \) - Diode Forward Current - A
Package Drawing (Unit: mm)

<table>
<thead>
<tr>
<th>Package Name</th>
<th>JEITA Package Code</th>
<th>RENESAS Code</th>
<th>Previous Code</th>
<th>MASS (Typ) [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO-262</td>
<td>—</td>
<td>PRSS0004AR-A</td>
<td>TO-262A</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Unit: mm

Equivalent Circuit

![Equivalent Circuit Diagram]
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the design and use of the circuits, software, and information in the design of your product system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

6. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of body injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to, redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain conditions. Renesas Electronics disclaims any and all liability for any losses or damages resulting from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, or any other party who distributes, of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and functions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party of any nonconformance with applicable laws and regulations.

SALES OFFICES

Reneses Electronics Corporation
www.renesas.com

Referred to “http://www.renesas.com” for the latest and detailed information.

Reneses Electronics Hong Kong Limited
Unit 1921-1922, 19/F, Tower 2, Grand Century Place, 93 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2365-8688, Fax: +852-2369-9522

Reneses Electronics Taiwan Co., Ltd.
No.3F, 375, Xindian Road, New Taipei City, Taiwan
Tel: +886-2-2308-8988, Fax: +886-2-2308-8977

Reneses Electronics Malaysia Sdn.Bhd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-79-6675-9600, Fax: +91-79-6675-9670

Reneses Electronics India Pvt. Ltd.
B-17 F, 1st Floor, Plot No. 2301, Sector 62, Noida, Uttar Pradesh, 201301, India
Tel: +91-120-6528060, Fax: +91-120-6528061

Reneses Electronics (China) Co., Ltd.
Unit 310, Tower A, Central Towers, 353 Lengshui Road, Pudong New Area, Shanghai, 200333, China
Tel: +86-21-2205-0688, Fax: +86-21-2205-0699

Reneses Electronics (Thai) Co., Ltd.
Unit 11, 7th Floor, 11th Tower, 7, Thonsap Road, Bang Khun Thian, Bangkok 10200, Thailand
Tel: +66-2-2235-111, Fax: +66-2-2235-2777

Reneses Electronics (Philippines) Inc.
Dasmariñas Village, Makati, Metro Manila, Philippines
Tel: +63-2-8842-0000, Fax: +63-2-8842-0999

Reneses Electronics (Korea) Co., Ltd.
118-114, Youngho-ro, Yongsan-gu, Gangnam-gu, Seoul, 06395 Korea
Tel: +82-2-525-7717, Fax: +82-2-525-5338

Colophon 9.0

© 2020 Reneses Electronics Corporation. All rights reserved.