N0603N
N-channel MOSFET
60 V, 100 A, 4.6 mΩ

Features
- Low on-state resistance : $R_{DS(on)} = 4.6 \text{ mΩ MAX. \ (} V_{GS} = 10 \text{ V, } I_D = 50 \text{ A})$
- Low C_{iss} : $C_{iss} = 7730 \text{ pF TYP. \ (} V_{DS} = 25 \text{ V, } V_{GS} = 0 \text{ V})$
- High current : $I_{D(DC)} = \pm 100 \text{ A}$
- RoHS Compliant
- Quality Grade : Standard
- Applications : For high current switching

Ordering Information

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Package</th>
<th>Packing</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0603N-S23-AY</td>
<td>TO-262, Pb-free 1</td>
<td>50 pcs / Magazine (Tube)</td>
</tr>
</tbody>
</table>

Note: 1. Pb-free means that this product does not contain lead in the external electrode.

Absolute Maximum Ratings ($T_A = 25°C$)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to Source Voltage ($V_{GS} = 0 \text{ V}$)</td>
<td>V_{DSS}</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>Gate to Source Voltage ($V_{DS} = 0 \text{ V}$)</td>
<td>V_{GSS}</td>
<td>± 20</td>
<td>V</td>
</tr>
<tr>
<td>Drain Current (DC) ($T_C = 25°C$)</td>
<td>$I_{D(DC)}$</td>
<td>± 100</td>
<td>A</td>
</tr>
<tr>
<td>Drain Current (pulse) Note2</td>
<td>$I_{D(pulse)}$</td>
<td>± 400</td>
<td>A</td>
</tr>
<tr>
<td>Total Power Dissipation ($T_C = 25°C$)</td>
<td>P_{T1}</td>
<td>156</td>
<td>W</td>
</tr>
<tr>
<td>Total Power Dissipation ($T_A = 25°C$)</td>
<td>P_{T2}</td>
<td>1.5</td>
<td>W</td>
</tr>
<tr>
<td>Channel Temperature</td>
<td>T_{ch}</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td>$-55 \text{ to } +150$</td>
<td>°C</td>
</tr>
<tr>
<td>Single Avalanche Current Note3</td>
<td>I_{AS}</td>
<td>55</td>
<td>A</td>
</tr>
<tr>
<td>Single Avalanche Energy Note3</td>
<td>E_{AS}</td>
<td>300</td>
<td>mJ</td>
</tr>
</tbody>
</table>

Note: Continuous heavy condition (e.g. high temperature/voltage/current or high variation of temperature) may affect a reliability even if it is within the absolute maximum ratings. Please consider derating condition for appropriate reliability in reference Renesas Semiconductor Reliability Handbook (Recommendation for Handling and Usage of Semiconductor Devices) and individual reliability data.

Notes: 2. $PW \leq 10 \mu s$, Duty Cycle $\leq 1%$
3. Starting $T_{ch} = 25°C$, $R_G = 25 \Omega$, $V_{DD} = 30 \text{ V, } V_{GS} = 20 \rightarrow 0 \text{ V, } L = 100 \mu H$

Thermal Resistance

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Max. Value Note4</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel to Case Thermal Resistance</td>
<td>$R_{th(ch-C)}$</td>
<td>0.80</td>
<td>°C/W</td>
</tr>
<tr>
<td>Channel to Ambient Thermal Resistance</td>
<td>$R_{th(ch-A)}$</td>
<td>83.3</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Notes: 4. This data is the designed target maximum value on Renesas’s measurement condition. (Not tested)
Electrical Characteristics (TA = 25°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_DSS</td>
<td>1</td>
<td>µA</td>
<td></td>
<td></td>
<td>V_DSS = 60 V, V_GS = 0 V</td>
</tr>
<tr>
<td>Gate Leakage Current</td>
<td>I_GSS</td>
<td>±100</td>
<td>nA</td>
<td></td>
<td></td>
<td>V_GS = ±20 V, V_DSS = 0 V</td>
</tr>
<tr>
<td>Gate to Source Cut-off Voltage</td>
<td>V_GS(off)</td>
<td>2.0</td>
<td>4.0</td>
<td></td>
<td>V</td>
<td>V_DSS = 10 V, I_D = 1 mA</td>
</tr>
<tr>
<td>Forward Transfer Admittance Note5</td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>mS</td>
<td>V_DSS = 10 V, I_D = 50 A</td>
</tr>
<tr>
<td>Drain to Source On-state Resistance Note5</td>
<td>R_DSS(on)</td>
<td>3.7</td>
<td>4.6</td>
<td></td>
<td>mΩ</td>
<td>V_DSS = 10 V, I_D = 50 A</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>Ciss</td>
<td>7730</td>
<td>pF</td>
<td></td>
<td></td>
<td>V_DSS = 25 V,</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>Coss</td>
<td>560</td>
<td>pF</td>
<td></td>
<td></td>
<td>V_GS = 0 V,</td>
</tr>
<tr>
<td>Reverse Transfer Capacitance</td>
<td>Crss</td>
<td>290</td>
<td>pF</td>
<td></td>
<td>f = 1 MHz</td>
<td></td>
</tr>
<tr>
<td>Turn-on Delay Time</td>
<td>t_d(on)</td>
<td>35</td>
<td>ns</td>
<td></td>
<td></td>
<td>V_DD = 30 V, I_D = 50 A,</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_r</td>
<td>12</td>
<td>ns</td>
<td></td>
<td></td>
<td>V_GS = 10 V,</td>
</tr>
<tr>
<td>Turn-off Delay Time</td>
<td>t_d(off)</td>
<td>76</td>
<td>ns</td>
<td></td>
<td></td>
<td>R_G = 0 Ω</td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_f</td>
<td>14</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Gate Charge</td>
<td>Q_G</td>
<td>133</td>
<td>nC</td>
<td></td>
<td></td>
<td>V_DD = 48 V,</td>
</tr>
<tr>
<td>Gate to Source Charge</td>
<td>Q_GS</td>
<td>38</td>
<td>nC</td>
<td></td>
<td></td>
<td>V_GS = 10 V,</td>
</tr>
<tr>
<td>Gate to Drain Charge</td>
<td>Q_GD</td>
<td>38</td>
<td>nC</td>
<td></td>
<td></td>
<td>I_GS = 100 A</td>
</tr>
<tr>
<td>Body Diode Forward Voltage Note5</td>
<td>V_F(S-D)</td>
<td>1.5</td>
<td>V</td>
<td></td>
<td></td>
<td>I_F = 100 A, V_GS = 0 V</td>
</tr>
<tr>
<td>Reverse Recovery Time</td>
<td>t_rr</td>
<td>44</td>
<td>ns</td>
<td></td>
<td></td>
<td>I_F = 50 A, V_GS = 0 V</td>
</tr>
<tr>
<td>Reverse Recovery Charge</td>
<td>Q_rr</td>
<td>61</td>
<td>nC</td>
<td></td>
<td></td>
<td>di/dt = 100 A/µs</td>
</tr>
</tbody>
</table>

Notes: 5. Pulsed test

TEST CIRCUIT 1 AVALANCHE CAPABILITY

- DUT: Device Under Test
- PG: Power Ground
- V_DSS: Drain to Source Voltage
- I_D: Drain Current
- R_G: Gate Resistance
- L: Inductance
- V_GS: Gate to Source Voltage
- V_D: Drain Voltage

TEST CIRCUIT 2 SWITCHING TIME

- DUT: Device Under Test
- PG: Power Ground
- V_DSS: Drain to Source Voltage
- I_D: Drain Current
- V_GS: Gate to Source Voltage
- V_D: Drain Voltage
- R_G: Gate Resistance

TEST CIRCUIT 3 GATE CHARGE

- DUT: Device Under Test
- PG: Power Ground
- V_DSS: Drain to Source Voltage
- I_G: Gate Current
- V_GS: Gate to Source Voltage
- V_D: Drain Voltage
- R_G: Gate Resistance
Typical Characteristics

DERATING FACTOR OF FORWARD BIAS SAFE OPERATING AREA

- \(dT\) - Percentage of Rated Power - %
- 0 20 40 60 80 100 120 140

- 0 25 50 75 100 125 150 175

TOTAL POWER DISSIPATION vs. CASE TEMPERATURE

- \(P_T\) - Total Power Dissipation - W
- 0 25 50 75 100 125 150 175

- 0 25 50 75 100 125 150 175

FORWARD BIAS SAFE OPERATING AREA

- \(I_D\) - Drain Current - A
- 0.1 1 10 100 1000

- 0.1 1 10 100

TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH

- \(R_{th(t)}\) - Transient Thermal Resistance - °C/W
- 0.01 0.1 1 10 100

- 0.01 0.1 1 10 100

Notes:

6. Designed target value on Renesas measurement condition. \((T_C = 25°C, \text{ unless otherwise specified})\)

7. This data is the designed value on Renesas’s measurement condition. Renesas recommends that operating conditions are designed according to a document “Power MOSFET/IGBT Attention of Handling Semiconductor Devices (R07ZZ0010)”.

8. This data is the designed target maximum value on Renesas’s measurement condition.
DRAIN CURRENT vs. DRAIN TO SOURCE VOLTAGE

![Graph showing DRAIN CURRENT vs. DRAIN TO SOURCE VOLTAGE]

- **V_DGS** - Drain to Source Voltage - V
- **I_D** - Drain Current - A
- **V_GS = 10 V**
- **Pulsed**

FORWARD TRANSFER CHARACTERISTICS

![Graph showing FORWARD TRANSFER CHARACTERISTICS]

- **V_GS** - Gate to Source Voltage - V
- **I_D** - Drain Current - A
- **V_DGS = 10 V**
- **Pulsed**

GATE TO SOURCE CUT-OFF VOLTAGE vs. CHANNEL TEMPERATURE

![Graph showing GATE TO SOURCE CUT-OFF VOLTAGE vs. CHANNEL TEMPERATURE]

- **V_GS** - Gate to Source Voltage - V
- **I_D = 1.0 mA**
- **V_DGS = 10 V**
- **T_{ch} = 125°C**
- **T_{ch} = 75°C**
- **T_{ch} = 25°C**
- **T_{ch} = -25°C**

FORWARD TRANSFER ADMITTANCE vs. DRAIN CURRENT

![Graph showing FORWARD TRANSFER ADMITTANCE vs. DRAIN CURRENT]

- **|y_{fs}|** - Forward Transfer Admittance - S
- **I_D - Drain Current - A**
- **V_DGS = 10 V**
- **Pulsed**

DRAIN TO SOURCE ON-STATE RESISTANCE vs. DRAIN CURRENT

![Graph showing DRAIN TO SOURCE ON-STATE RESISTANCE vs. DRAIN CURRENT]

- **R_{DSON}** - Drain to Source On-state Resistance - mΩ
- **V_GS = 10 V**
- **Pulsed**

DRAIN TO SOURCE ON-STATE RESISTANCE vs. GATE TO SOURCE VOLTAGE

![Graph showing DRAIN TO SOURCE ON-STATE RESISTANCE vs. GATE TO SOURCE VOLTAGE]

- **R_{DSON}** - Drain to Source On-state Resistance - mΩ
- **I_D = 50 A**
- **Pulsed**
DRAIN TO SOURCE ON-STATE RESISTANCE

\[R_{\text{DS(on)}} \] - Drain to Source On-state Resistance - mΩ

\[V_{\text{GS}} = 10 \text{ V} \]
\[I_0 = 50 \text{ A} \]
Pulsed

\[T_{\text{ch}} - \text{Channel Temperature} - ^{\circ}\text{C} \]

CAPACITANCE vs. DRAIN TO SOURCE VOLTAGE

\[C_{\text{iss}}, C_{\text{oss}}, C_{\text{rss}} - \text{Capacitance} - \text{pF} \]

\[V_{\text{GS}} = 0 \text{ V} \]
\[f = 1.0 \text{ MHz} \]

SWITCHING CHARACTERISTICS

\[t_{\text{on}}, t_{\text{off}}, t_{\text{rise}}, t_{\text{fall}} - \text{Switching Time} - \text{ns} \]

\[I_0 - \text{Drain Current} - \text{A} \]

DYNAMIC INPUT CHARACTERISTICS

\[V_{\text{DD}} = 30 \text{ V} \]
\[V_{\text{GS}} = 10 \text{ V} \]
\[R_G = 0 \text{ Ω} \]

SOURCE TO DRAIN DIODE FORWARD VOLTAGE

\[V_{\text{F(S-D)}} - \text{Source to Drain Voltage} - \text{V} \]

\[I_{\text{F}} - \text{Diode Forward Current} - \text{A} \]

\[V_{\text{GS}} = 10 \text{ V} \]
\[0 \text{ V} \]

REVERSE RECOVERY TIME vs. DIODE FORWARD CURRENT

\[t_{\text{rr}} - \text{Reverse Recovery Time} - \text{ns} \]

\[I_{\text{F}} - \text{Diode Forward Current} - \text{A} \]

\[V_{\text{GS}} = 0 \text{ V} \]
\[\frac{di}{dt} = 100 \text{ A/µs} \]
Package Drawing (Unit: mm)

<table>
<thead>
<tr>
<th>Package Name</th>
<th>JEITA Package Code</th>
<th>RENESAS Code</th>
<th>Previous Code</th>
<th>MASS (Typ) [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO-262</td>
<td>—</td>
<td>PRSS0004AR-A</td>
<td>TO-262A</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Unit: mm

Equivalent Circuit
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the use of the circuits, software, and information in the design or product of your system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part, Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

<table>
<thead>
<tr>
<th>Quality Grade</th>
<th>Applications</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Industrial</td>
<td>No use of electronics in critical applications (e.g., quality grades of audio, automobile, office equipment, communications equipment, audio and visual equipment, home appliances, machine tools, personal computer equipment, industrial robots, etc.).</td>
</tr>
<tr>
<td>High Quality</td>
<td>Industrial</td>
<td>Use of electronics in critical applications (e.g., quality grades of audio, automobile, office equipment, communications equipment, audio and visual equipment, home appliances, machine tools, personal computer equipment, industrial robots, etc.).</td>
</tr>
</tbody>
</table>

6. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantation devices, etc.), or may cause serious property damage (space systems, underwater repeaters, nuclear power generation systems, aircraft control systems, key plant systems, military equipment, etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

7. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.) and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any damages, failures or accidents occurring as a result of the use of Renesas Electronics products outside of such specified ranges.

8. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with all applicable export control laws and regulations promulgated and administered by the governments of any countries exercising jurisdiction over the parties or transactions.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with all applicable export control laws and regulations promulgated and administered by the governments of any countries exercising jurisdiction over the parties or transactions.

10. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.) and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any damages, failures or accidents occurring as a result of the use of Renesas Electronics products outside of such specified ranges.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.