Data Sheet

N0439N
N-channel MOSFET
40 V, 90 A, 3.3 mΩ

Features
- Low on-state resistance : \(R_{DS(on)} = 3.3 \, \text{mΩ} \, \text{MAX.} \) (\(V_{GS} = 10 \, \text{V}, \, I_D = 45 \, \text{A} \))
- Low \(C_{iss} \) : \(C_{iss} = 3900 \, \text{pF TYP.} \) (\(V_{DS} = 25 \, \text{V}, \, V_{GS} = 0 \, \text{V} \))
- High current : \(I(D(\text{DC}) = \pm 90 \, \text{A} \))
- RoHS Compliant
- Quality Grade : Standard
- Applications : For high current switching

Ordering Information

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Package</th>
<th>Packing</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0439N-S19-AY</td>
<td>TO-220AB, Pb-free Note1</td>
<td>50 pcs / Magazine (Tube)</td>
</tr>
</tbody>
</table>

Note: 1. Pb-free means that this product does not contain lead in the external electrode.

Absolute Maximum Ratings (\(T_A = 25^°C \))

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to Source Voltage ((V_{GS} = 0 , \text{V}))</td>
<td>(V_{DSS})</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Gate to Source Voltage ((V_{DS} = 0 , \text{V}))</td>
<td>(V_{GSS})</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Drain Current (DC) ((T_C = 25^°C))</td>
<td>(I_D(\text{DC}))</td>
<td>±90</td>
<td>A</td>
</tr>
<tr>
<td>Drain Current (pulse) Note2</td>
<td>(I_D(\text{pulse}))</td>
<td>±360</td>
<td>A</td>
</tr>
<tr>
<td>Total Power Dissipation ((T_C = 25^°C))</td>
<td>(P_{T1})</td>
<td>147</td>
<td>W</td>
</tr>
<tr>
<td>Total Power Dissipation ((T_A = 25^°C))</td>
<td>(P_{T2})</td>
<td>1.8</td>
<td>W</td>
</tr>
<tr>
<td>Channel Temperature</td>
<td>(T_{ch})</td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>(T_{stg})</td>
<td>-55 to 175</td>
<td>°C</td>
</tr>
<tr>
<td>Single Avalanche Current Note3</td>
<td>(I_{AS})</td>
<td>37</td>
<td>A</td>
</tr>
<tr>
<td>Single Avalanche Energy Note3</td>
<td>(E_{AS})</td>
<td>136</td>
<td>mJ</td>
</tr>
</tbody>
</table>

Note: Continuous heavy condition (e.g. high temperature/voltage/current or high variation of temperature) may affect a reliability even if it is within the absolute maximum ratings. Please consider derating condition for appropriate reliability in reference Renesas Semiconductor Reliability Handbook (Recommendation for Handling and Usage of Semiconductor Devices) and individual reliability data.

Notes: 2. \(T_C=25^°C, \, P_{w} \leq 10 \, \mu\text{s} \), Duty Cycle \(\leq 1\% \)
3. Starting \(T_{ch} = 25^°C, \, R_G = 25 \, \Omega, \, V_{DD} = 25 \, \text{V}, \, V_{GS} = 20 \rightarrow 0 \, \text{V}, \, L = 100 \, \mu\text{H} \)

Thermal Resistance

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Max. Value Note4</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel to Case Thermal Resistance</td>
<td>(R_{(ch-C)})</td>
<td>1.02</td>
<td>°C/W</td>
</tr>
<tr>
<td>Channel to Ambient Thermal Resistance</td>
<td>(R_{(ch-A)})</td>
<td>83.3</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Notes: 4. This data is the designed target maximum value on Renesas's measurement condition. (Not tested)
Electrical Characteristics (\(T_A = 25^\circ C\))

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>(I_{DSS})</td>
<td>1</td>
<td>(\mu A)</td>
<td></td>
<td></td>
<td>(V_{DS} = 40) V, (V_{GS} = 0) V</td>
</tr>
<tr>
<td>Gate Leakage Current</td>
<td>(I_{GSS})</td>
<td>±100</td>
<td>nA</td>
<td></td>
<td></td>
<td>(V_{GS} = \pm 20) V, (V_{DS} = 0) V</td>
</tr>
<tr>
<td>Gate to Source Threshold Voltage</td>
<td>(V_{GS(th)})</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td>V</td>
<td>(V_{GS} = V_{DS}, I_C = 250) (\mu A)</td>
</tr>
<tr>
<td>Forward Transfer Admittance Note(5)</td>
<td>(</td>
<td>y_{fs}</td>
<td>)</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain to Source On-state Resistance Note(5)</td>
<td>(R_{DSS(on)})</td>
<td>2.75</td>
<td>3.30</td>
<td>m(\Omega)</td>
<td></td>
<td>(V_{GS} = 10) V, (I_D = 45) A</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>(C_{iss})</td>
<td>3900</td>
<td>pF</td>
<td></td>
<td></td>
<td>(V_{DS} = 25) V, (I_D = 250) mA</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>(C_{oss})</td>
<td>530</td>
<td>pF</td>
<td></td>
<td></td>
<td>(V_{GS} = 0) V, (I_D = 250) mA</td>
</tr>
<tr>
<td>Reverse Transfer Capacitance</td>
<td>(C_{rss})</td>
<td>200</td>
<td>pF</td>
<td></td>
<td></td>
<td>(f = 1) MHz</td>
</tr>
<tr>
<td>Turn-on Delay Time</td>
<td>(t_{(on)})</td>
<td>25</td>
<td>ns</td>
<td></td>
<td></td>
<td>(V_{DD} = 20) V, (I_D = 45) A</td>
</tr>
<tr>
<td>Rise Time</td>
<td>(t_r)</td>
<td>12</td>
<td>ns</td>
<td></td>
<td></td>
<td>(V_{GS} = 10) V, (I_D = 45) A</td>
</tr>
<tr>
<td>Turn-off Delay Time</td>
<td>(t_{(off)})</td>
<td>65</td>
<td>ns</td>
<td></td>
<td></td>
<td>(R_G = 0) (\Omega)</td>
</tr>
<tr>
<td>Fall Time</td>
<td>(t_f)</td>
<td>8</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Gate Charge</td>
<td>(Q_G)</td>
<td>68</td>
<td>nC</td>
<td></td>
<td></td>
<td>(V_{DD} = 32) V, (I_D = 30) mA</td>
</tr>
<tr>
<td>Gate to Source Charge</td>
<td>(Q_{GS})</td>
<td>18</td>
<td>nC</td>
<td></td>
<td></td>
<td>(V_{GS} = 10) V, (I_D = 30) mA</td>
</tr>
<tr>
<td>Gate to Drain Charge</td>
<td>(Q_{GD})</td>
<td>18</td>
<td>nC</td>
<td></td>
<td></td>
<td>(I_D = 90) A</td>
</tr>
<tr>
<td>Body Diode Forward Voltage Note(5)</td>
<td>(V_{F(S-D)})</td>
<td>1.5</td>
<td>V</td>
<td></td>
<td></td>
<td>(I_D = 90) A, (V_{GS} = 0) V</td>
</tr>
<tr>
<td>Reverse Recovery Time</td>
<td>(t_{rr})</td>
<td>47</td>
<td>ns</td>
<td></td>
<td></td>
<td>(I_D = 90) A, (V_{GS} = 0) V</td>
</tr>
<tr>
<td>Reverse Recovery Charge</td>
<td>(Q_{rr})</td>
<td>68</td>
<td>nC</td>
<td></td>
<td></td>
<td>(dI/dt = 100) A/(\mu s)</td>
</tr>
</tbody>
</table>

Notes: 5. Pulsed test

TEST CIRCUIT 1 AVALANCHE CAPABILITY

TEST CIRCUIT 2 SWITCHING TIME

TEST CIRCUIT 3 GATE CHARGE
Typical Characteristics

DERATING FACTOR OF FORWARD BIAS SAFE OPERATING AREA

![Derating Factor Graph](attachment:image1)

TOTAL POWER DISSIPATION vs. CASE TEMPERATURE

![Total Power Dissipation Graph](attachment:image2)

FORWARD BIAS SAFE OPERATING AREA

![Forward Bias Graph](attachment:image3)

DRAIN CURRENT(DC) vs. CASE TEMPERATURE

![Drain Current Graph](attachment:image4)

TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH

![Transient Thermal Resistance Graph](attachment:image5)

Notes:
6. Designed target value on Renesas measurement condition. (Tc = 25°C, unless otherwise specified)
7. This data is the designed value on Renesas’s measurement condition. Renesas recommends that operating conditions are designed according to a document “Power MOSFET/IGBT Attention of Handling Semiconductor Devices (R07ZZ0010)”.
8. This data is the designed target maximum value on Renesas’s measurement condition.
DRAIN TO SOURCE ON-STATE RESISTANCE vs. CHANNEL TEMPERATURE

\[R_{\text{ds(on)}} - \text{Drain to Source On-state Resistance} \quad \text{m} \Omega \]

\[T_{\text{ch}} - \text{Channel Temperature} \quad ^{\circ} \text{C} \]

\[V_{\text{GS}} = 10 \text{V} \]

\[I_{\text{D}} = 45 \text{A} \]

\[V_{\text{DS}} \]

CAPACITANCE vs. DRAIN TO SOURCE VOLTAGE

\[C_{\text{iss}}, C_{\text{oss}}, C_{\text{rss}} - \text{Capacitance} \quad \text{pF} \]

\[V_{\text{GS}} = 0 \text{V} \]

\[f = 1 \text{MHz} \]

SWITCHING CHARACTERISTICS

\[t_{\text{on}}, t_{\text{off}}, t_{\text{f}}, t_{\text{r}} - \text{Switching Time} \quad \text{ns} \]

\[V_{\text{DD}} = 20 \text{V} \]

\[V_{\text{GS}} = 10 \text{V} \]

\[R_{\text{G}} = 0 \Omega \]

\[I_{\text{D}} \]

DYNAMIC INPUT/OUTPUT CHARACTERISTICS

\[I_{\text{D}} - \text{Drain Current} \quad \text{A} \]

\[V_{\text{DD}} = 32 \text{V} \]

\[V_{\text{GS}} = 20 \text{V} \]

\[V_{\text{GS}} = 8 \text{V} \]

\[I_{\text{D}} = 90 \text{A} \]

QG - Gate Charge - nC

SOURCE TO DRAIN DIODE FORWARD VOLTAGE

\[I_{\text{F}} - \text{Diode Forward Current} \quad \text{A} \]

\[V_{\text{F(S-D)}} - \text{Source to Drain Voltage} \quad \text{V} \]

\[V_{\text{GS}} = 0 \text{V} \]

\[V_{\text{GS}} = 10 \text{V} \]

\[V_{\text{F(S-D)}} \]

REVERSE RECOVERY TIME vs. DRAIN CURRENT

\[t_{\text{rr}} - \text{Reverse Recovery Time} \quad \text{ns} \]

\[\frac{\text{di}}{\text{dt}} = 100 \text{A/} \mu\text{s} \]

\[V_{\text{DS}} = 0 \text{V} \]

\[I_{\text{F}} - \text{Drain Current} \quad \text{A} \]

\[\frac{\text{di}}{\text{dt}} = 100 \text{A/} \mu\text{s} \]

\[V_{\text{GS}} = 0 \text{V} \]
Package Drawings (Unit: mm)

<table>
<thead>
<tr>
<th>JEDEC Package Code</th>
<th>RENESAS Code</th>
<th>Previous Code</th>
<th>MASS (Typ) [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO-220AB</td>
<td>PRSS0004AU-A</td>
<td>TO-220ABB</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Unit: mm

Equivalent Circuit / Pin Assignment

- **Source**
- **Body**
- **Diode**
- **Gate**
- **Drain**
- **Source**

2, 4 Drain

1 Gate

3 Source
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the use of the circuits, software, and information in the design of your product. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, and algorithms, application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.) and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or damage to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to, redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that relate to the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. *No license, express, implied or otherwise, is granted hereby under any patents, copyrights, or other intellectual property rights of Renesas Electronics or others.*

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

Reprinted from: http://www.renesas.com/