

Product Discontinuance Notice – Last Time Buy Expires on (12/7/2013)

DATASHEET

The MPC9993 is a PLL clock driver designed specifically for redundant clock tree designs. The device receives two differential LVPECL clock signals from which it generates 5 new differential LVPECL clock outputs. Two of the output pairs regenerate the input signals frequency and phase while the other three pairs generate 2x, phase aligned clock outputs.

### Features

- Fully Integrated PLL
- Intelligent Dynamic Clock Switch
- LVPECL Clock Outputs
- LVCMS Control I/O
- 3.3 V Operation
- 32-Lead LQFP Packaging
- 32-Lead Pb-Free Package Available

### Functional Description

The MPC9993 Intelligent Dynamic Clock Switch (IDCS) circuit continuously monitors both input CLK signals. Upon detection of a failure (CLK stuck HIGH or LOW for at least 1 period), the INP\_BAD for that CLK will be latched (H). If that CLK is the primary clock, the IDCS will switch to the good secondary clock and phase/frequency alignment will occur with minimal output phase disturbance. The typical phase bump caused by a failed clock is eliminated. (See Application Information section).

MPC9993

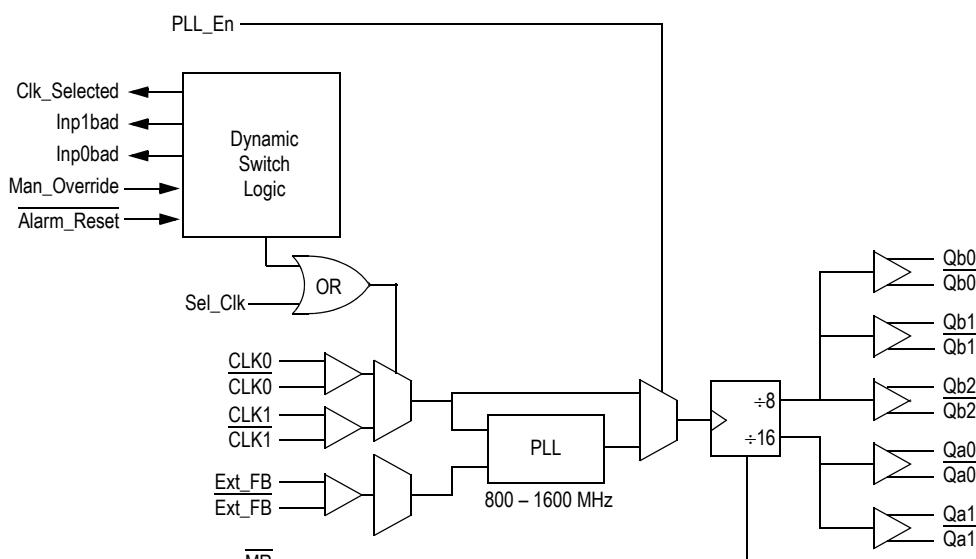

INTELLIGENT DYNAMIC  
CLOCK SWITCH  
PLL CLOCK DRIVERFA SUFFIX  
32-LEAD LQFP PACKAGE  
CASE 873A-04AC SUFFIX  
32-LEAD LQFP PACKAGE  
Pb-FREE PACKAGE  
CASE 873A-04

Figure 1. Block Diagram

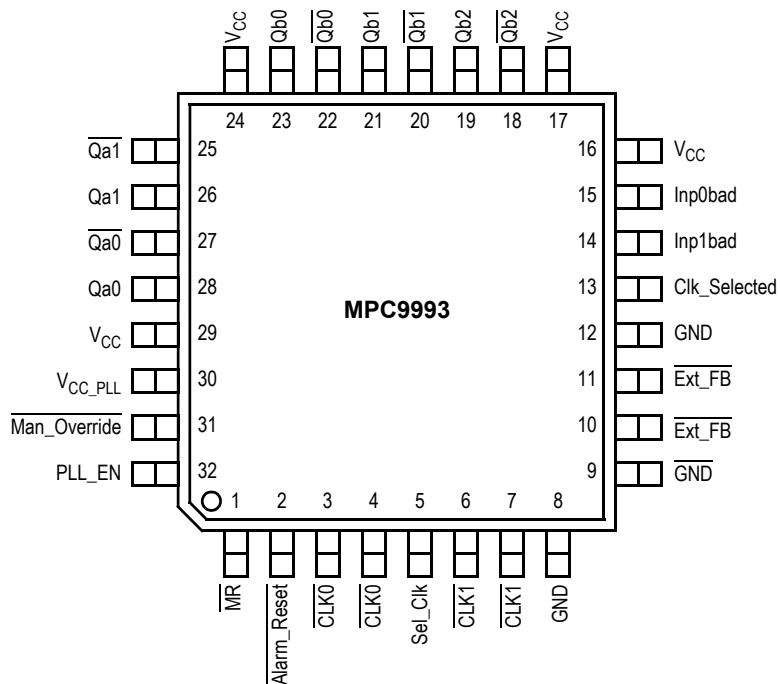



Figure 2. 32-Lead Pinout (Top View)

Table 1. Pin Descriptions

| Pin Name                               | I/O                          | Pin Definition                                                                                                                                                             |
|----------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLK0, <u>CLK0</u><br>CLK1, <u>CLK1</u> | LVPECL Input<br>LVPECL Input | Differential PLL clock reference (CLK0 pulldown, <u>CLK0</u> pullup)<br>Differential PLL clock reference (CLK1 pulldown, <u>CLK1</u> pullup)                               |
| Ext_FB, <u>Ext_F</u><br><u>Ext_F</u>   | LVPECL Input                 | Differential PLL feedback clock (Ext_FB pulldown, <u>Ext_F</u> pullup)                                                                                                     |
| Qa0:1, <u>Qa0:1</u>                    | LVPECL Output                | Differential 1x output pairs                                                                                                                                               |
| Qb0:2, <u>Qb0:2</u>                    | LVPECL Output                | Differential 2x output pairs                                                                                                                                               |
| Inp0bad                                | LVCMOS Output                | Indicates detection of a bad input reference clock 0 with respect to the feedback signal. The output is active HIGH and will remain HIGH until the alarm reset is asserted |
| Inp1bad                                | LVCMOS Output                | Indicates detection of a bad input reference clock 1 with respect to the feedback signal. The output is active HIGH and will remain HIGH until the alarm reset is asserted |
| Clk_Selected                           | LVCMOS Output                | '0' if clock 0 is selected, '1' if clock 1 is selected                                                                                                                     |
| Alarm_Reset                            | LVCMOS Input                 | '0' will reset the input bad flags and align Clk_Selected with Sel_Clk. The input is "one-shotted" (50 kΩ pullup)                                                          |
| Sel_Clk                                | LVCMOS Input                 | '0' selects CLK0, '1' selects CLK1 (50 kΩ pulldown)                                                                                                                        |
| Manual_Override                        | LVCMOS Input                 | '1' disables internal clock switch circuitry (50 kΩ pulldown)                                                                                                              |
| PLL_En                                 | LVCMOS Input                 | '0' bypasses selected input reference around the phase-locked loop (50 kΩ pullup)                                                                                          |
| MR                                     | LVCMOS Input                 | '0' resets the internal dividers forcing Q outputs LOW. Asynchronous to the clock (50 kΩ pullup)                                                                           |
| V <sub>CCA</sub>                       | Power Supply                 | PLL power supply                                                                                                                                                           |
| V <sub>CC</sub>                        | Power Supply                 | Digital power supply                                                                                                                                                       |
| GND <sub>A</sub>                       | Power Supply                 | PLL ground                                                                                                                                                                 |
| GND                                    | Power Supply                 | Digital ground                                                                                                                                                             |

**Table 2. Absolute Maximum Ratings<sup>(1)</sup>**

| Symbol    | Characteristics     | Min  | Max          | Unit | Condition |
|-----------|---------------------|------|--------------|------|-----------|
| $V_{CC}$  | Supply Voltage      | -0.3 | 3.9          | V    |           |
| $V_{IN}$  | DC Input Voltage    | -0.3 | $V_{CC}+0.3$ | V    |           |
| $V_{OUT}$ | DC Output Voltage   | -0.3 | $V_{CC}+0.3$ | V    |           |
| $I_{IN}$  | DC Input Current    |      | $\pm 20$     | mA   |           |
| $I_{OUT}$ | DC Output Current   |      | $\pm 50$     | mA   |           |
| $T_S$     | Storage Temperature | -65  | 125          | °C   |           |

1. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not implied.

**Table 3. General Specifications**

| Symbol        | Characteristics                                                                               | Min  | Typ          | Max  | Unit | Condition                      |
|---------------|-----------------------------------------------------------------------------------------------|------|--------------|------|------|--------------------------------|
| $V_{TT}$      | Output termination voltage                                                                    |      | $V_{CC} - 2$ |      | V    |                                |
| MM            | ESD Protection (Machine model)                                                                | 175  |              |      | V    |                                |
| HBM           | ESD Protection (Human body model)                                                             | 1500 |              |      | V    |                                |
| CDM           | ESD Protection (Charged device model)                                                         | 1000 |              |      | V    |                                |
| LU            | Latch-up Immunity                                                                             | 100  |              |      | mA   |                                |
| $C_{IN}$      | Input Capacitance                                                                             |      | 4.0          |      | pF   | Inputs                         |
| $\theta_{JA}$ | Thermal Resistance Junction to Ambient<br>JESD 51-3, single layer test board                  |      | 83.1         | 86.0 | °C/W | Natural convection             |
|               |                                                                                               |      | 73.3         | 75.4 | °C/W | 100 ft/min                     |
|               |                                                                                               |      | 68.9         | 70.9 | °C/W | 200 ft/min                     |
|               |                                                                                               |      | 63.8         | 65.3 | °C/W | 400 ft/min                     |
|               |                                                                                               |      | 57.4         | 59.6 | °C/W | 800 ft/min                     |
|               | JESD 51-6, 2S2P multilayer test board                                                         |      | 59.0         | 60.6 | °C/W | Natural convection             |
|               |                                                                                               |      | 54.4         | 55.7 | °C/W | 100 ft/min                     |
|               |                                                                                               |      | 52.5         | 53.8 | °C/W | 200 ft/min                     |
|               |                                                                                               |      | 50.4         | 51.5 | °C/W | 400 ft/min                     |
|               |                                                                                               |      | 47.8         | 48.8 | °C/W | 800 ft/min                     |
| $\theta_{JC}$ | Thermal Resistance Junction to Case                                                           |      | 23.0         | 26.3 | °C/W | MIL-SPEC 883E<br>Method 1012.1 |
| $T_J$         | Operating Junction Temperature <sup>(1)</sup><br>(continuous operation)      MTBF = 9.1 years |      |              | 110  | °C   |                                |

1. Operating junction temperature impacts device life time. Maximum continuous operating junction temperature should be selected according to the application life time requirements (See application note AN1545 for more information). The device AC and DC parameters are specified up to 110°C junction temperature allowing the MPC9993 to be used in applications requiring industrial temperature range. It is recommended that users of the MPC9993 employ thermal modeling analysis to assist in applying the junction temperature specifications to their particular application.

**Table 4. DC Characteristics** ( $V_{CC} = 3.3\text{ V} \pm 5\%$ ,  $T_A = -40^\circ\text{ to }+85^\circ\text{C}$ )

| Symbol                                                                 | Characteristics                                 | Min             | Typ             | Max             | Unit          | Condition                                  |
|------------------------------------------------------------------------|-------------------------------------------------|-----------------|-----------------|-----------------|---------------|--------------------------------------------|
| LVCMOS control inputs (MR, PLL_En, Sel_Clk, Man_Override, Alarm_Reset) |                                                 |                 |                 |                 |               |                                            |
| $V_{IH}$                                                               | Input High Voltage                              | 2.0             |                 | $V_{CC} + 0.3$  | V             |                                            |
| $V_{IL}$                                                               | Input Low Voltage                               |                 |                 | 0.8             | V             |                                            |
| $I_{IN}$                                                               | Input Current <sup>(1)</sup>                    |                 |                 | $\pm 100$       | $\mu\text{A}$ | $V_{IN} = V_{CC}$ or GND                   |
| LVCMOS control outputs (Clk_selected, Inp0bad, Inp1bad)                |                                                 |                 |                 |                 |               |                                            |
| $V_{OH}$                                                               | Output High Voltage                             | 2.0             |                 |                 | V             | $I_{OH} = -24\text{ mA}$                   |
| $V_{OL}$                                                               | Output Low Voltage                              |                 |                 | 0.55            | V             | $I_{OL} = 24\text{ mA}$                    |
| LVPECL clock inputs (CLK0, CLK1, Ext_FB) <sup>(2)</sup>                |                                                 |                 |                 |                 |               |                                            |
| $V_{PP}$                                                               | DC Differential Input Voltage <sup>(3)</sup>    | 0.1             |                 | 1.3             | V             | Differential operation                     |
| $V_{CMR}$                                                              | Differential Cross Point Voltage <sup>(4)</sup> | $V_{CC} - 1.8$  |                 | $V_{CC} - 0.3$  | V             | Differential operation                     |
| $I_{IN}$                                                               | Input Current <sup>(1)</sup>                    |                 |                 | $\pm 100$       | $\mu\text{A}$ | $V_{IN} = V_{CC}$ or GND                   |
| LVPECL clock outputs (QA[1:0], QB[2:0])                                |                                                 |                 |                 |                 |               |                                            |
| $V_{OH}$                                                               | Output High Voltage                             | $V_{CC} - 1.20$ | $V_{CC} - 0.95$ | $V_{CC} - 0.70$ | V             | Termination $50\text{ }\Omega$ to $V_{TT}$ |
| $V_{OL}$                                                               | Output Low Voltage                              | $V_{CC} - 1.90$ | $V_{CC} - 1.75$ | $V_{CC} - 1.45$ | V             | Termination $50\text{ }\Omega$ to $V_{TT}$ |
| Supply Current                                                         |                                                 |                 |                 |                 |               |                                            |
| $I_{GND}$                                                              | Maximum Power Supply Current                    |                 |                 | 180             | mA            | GND Pins                                   |
| $I_{CC\_PLL}$                                                          | Maximum PLL Supply Current                      |                 |                 | 15              | mA            | $V_{CC\_PLL}$ Pin                          |

1. Inputs have internal pull-up/pull-down resistors affecting the input current.
2. Clock inputs driven by differential LVPECL compatible signals.
3.  $V_{PP}$  is the minimum differential input voltage swing required to maintain AC characteristics.
4.  $V_{CMR}$  (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the  $V_{CMR}$  (DC) range and the input swing lies within the  $V_{PP}$  (DC) specification.

**Table 5. AC Characteristics** ( $V_{CC} = 3.3 \text{ V} \pm 5\%$ ,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ )<sup>(1)</sup>

| Symbol               | Characteristics                                                                                                                  | Min          | Typ                    | Max                    | Unit                 | Condition            |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------|------------------------|----------------------|----------------------|
| $f_{ref}$            | Input Reference Frequency $\div 16$ feedback                                                                                     | 50           |                        | 100                    | MHz                  | PLL locked           |
| $f_{VCO}$            | VCO Frequency Range <sup>(2)</sup> $\div 16$ feedback                                                                            | 800          |                        | 1600                   | MHz                  |                      |
| $f_{MAX}$            | Output Frequency<br>QA[1:0]<br>QB[2:0]                                                                                           | 50<br>100    |                        | 100<br>200             | MHz<br>MHz           | PLL locked           |
| $f_{refDC}$          | Reference Input Duty Cycle                                                                                                       | 25           |                        | 75                     | %                    |                      |
| $t_{(\emptyset)}$    | Propagation Delay<br>SPO, static phase offset <sup>(3)</sup><br>CLK0, CLK1 to any Q                                              | -2.0<br>0.9  |                        | +2.0<br>1.8            | ns<br>ns             | PLL_EN=1<br>PLL_EN=0 |
| $V_{PP}$             | Differential Input Voltage <sup>(4)</sup> (peak-to-peak)                                                                         | 0.25         |                        | 1.3                    | V                    |                      |
| $V_{CMR}$            | Differential Input Crosspoint Voltage <sup>(5)</sup>                                                                             | $V_{CC}-1.7$ |                        | $V_{CC}-0.3$           | V                    |                      |
| $t_{sk(O)}$          | Output-to-Output Skew<br>within QA[2:0] or QB[1:0]<br>within device                                                              |              |                        | 50<br>80               | ps<br>ps             |                      |
| $\Delta_{per/cycle}$ | Rate of Change of Period<br>QA[1:0] <sup>(6)</sup><br>QB[2:0] <sup>(6)</sup><br>QA[1:0] <sup>(7)</sup><br>QB[2:0] <sup>(7)</sup> |              | 20<br>10<br>200<br>100 | 50<br>25<br>400<br>200 | ps<br>ps<br>ps<br>ps |                      |
| DC                   | Output Duty Cycle                                                                                                                | 45           | 50                     | 55                     | %                    |                      |
| $t_{JIT(CC)}$        | Cycle-to-Cycle Jitter<br>RMS (1 $\sigma$ )                                                                                       |              |                        | 47                     | ps                   |                      |
| $t_{LOCK}$           | Maximum PLL Lock Time                                                                                                            |              |                        | 10                     | ms                   |                      |
| $t_r, t_f$           | Output Rise/Fall Time                                                                                                            | 0.05         |                        | 0.70                   | ns                   | 20% to 80%           |

1. AC characteristics apply for parallel output termination of  $50 \Omega$  to  $V_{CC} - 2 \text{ V}$ .
2. The input reference frequency must match the VCO lock range divided by the feedback divider ratio (FB):  $f_{ref} = f_{VCO} \div \text{FB}$ .
3. CLK0, CLK1 to Ext\_FB.
4.  $V_{PP}$  is the minimum differential input voltage swing required to maintain AC characteristics including SPO and device-to-device skew. Applicable to CLK0, CLK1 and Ext\_FB.
5.  $V_{CMR}$  (AC) is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the  $V_{CMR}$  (AC) range and the input swing lies within the  $V_{PP}$  (AC) specification. Violation of  $V_{CMR}$  (AC) or  $V_{PP}$  (AC) impacts the SPO, device and part-to-part skew. Applicable to CLK0, CLK1 and Ext\_FB.
6. Specification holds for a clock switch between two input signals (CLK0, CLK1) no greater than 400 ps out of phase. Delta period change per cycle is averaged over the clock switch excursion.
7. Specification holds for a clock switch between two input signals (CLK0, CLK1) at any phase difference ( $\pm 180^\circ$ ). Delta period change per cycle is averaged over the clock switch excursion.

## APPLICATIONS INFORMATION

The MPC9993 is a dual clock PLL with on-chip Intelligent Dynamic Clock Switch (IDCS) circuitry.

### Definitions

**primary clock:** The input CLK selected by Sel\_Clk.

**secondary clock:** The input CLK NOT selected by Sel\_Clk.

**PLL reference signal:** The CLK selected as the PLL reference signal by Sel\_Clk or IDCS. (IDCS can override Sel\_Clk).

### Status Functions

**Clk\_Selected:** Clk\_Selected (L) indicates CLK0 is selected as the PLL reference signal. Clk\_Selected (H) indicates CLK1 is selected as the PLL reference signal.

**INP\_BAD:** Latched (H) when it's CLK is stuck (H) or (L) for at least one Ext\_FB period (Pos to Pos or Neg to Neg). Cleared (L) on assertion of Alarm\_Reset.

### Control Functions

**Sel\_Clk:** Sel\_Clk (L) selects CLK0 as the primary clock. Sel\_Clk (H) selects CLK1 as the primary clock.

**Alarm\_Reset:** Asserted by a negative edge. Generates a one-shot reset pulse that clears INPUT\_BAD latches and Clk\_Selected latch.

**PLL\_En:** While (L), the PLL reference signal is substituted for the VCO output.

**MR:** While (L), internal dividers are held in reset which holds all Q outputs LOW.

### Man Override (H)

(IDCS is disabled, PLL functions normally). PLL reference signal (as indicated by Clk\_Selected) will always be the CLK selected by Sel\_Clk. The status function INP\_BAD is active in Man Override (H) and (L).

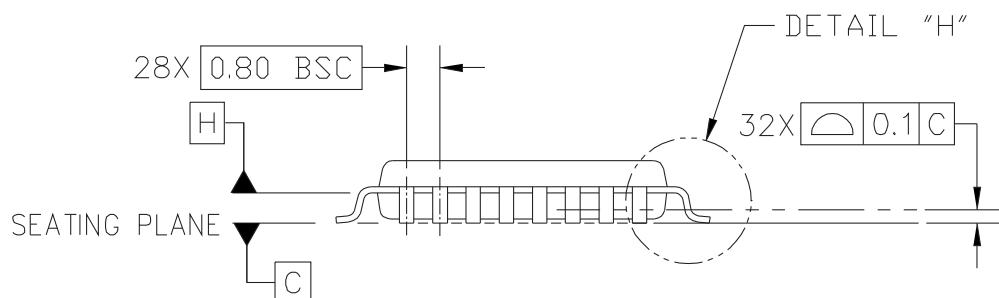
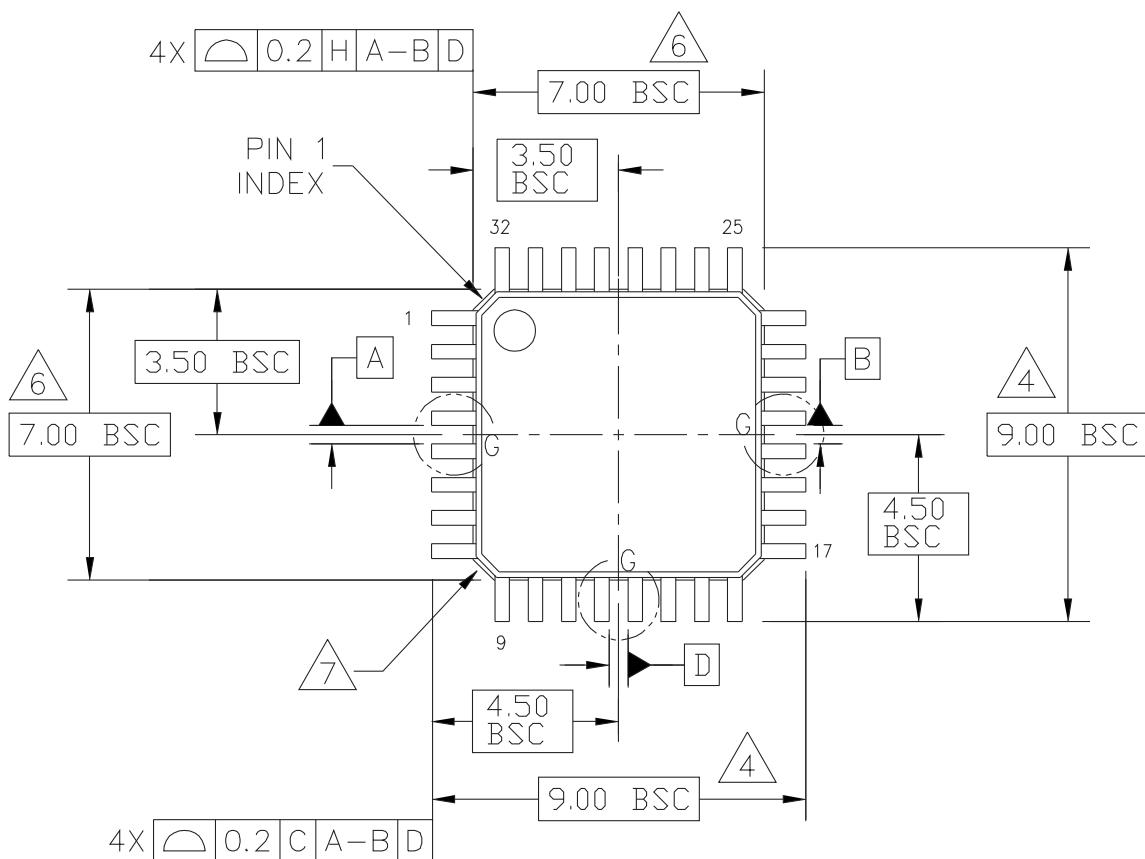
### Man Override (L)

(IDCS is enabled, PLL functions enhanced). The first CLK to fail will latch it's INP\_BAD (H) status flag and select the other input as the Clk\_Selected for the PLL reference clock. Once latched, the Clk\_Selected and INP\_BAD remain latched until assertion of Alarm\_Reset which clears all latches (INP\_BADs are cleared and Clk\_Selected = Sel\_Clk). NOTE: If both CLKs are bad when Alarm\_Reset is asserted,

both INP\_BADs will be latched (H) after one Ext\_FB period and Clk\_Selected will be latched (L) indicating CLK0 is the PLL reference signal. While neither INP\_BAD is latched (H), the Clk\_Selected can be freely changed with Sel\_Clk. Whenever a CLK switch occurs, (manually or by IDCS), following the next negative edge of the newly selected PLL reference signal, the next positive edge pair of Ext\_FB and the newly selected PLL reference signal will slew to alignment.

To calculate the overall uncertainty between the input CLKs and the outputs from multiple MPC9993's, the following procedure should be used. Assuming that the input CLKs to all MPC9993's are exactly in phase, the total uncertainty will be the sum of the static phase offset, max I/O jitter, and output to output skew.

During a dynamic switch, the output phase between two devices may be increased for a short period of time. If the two input CLKs are 400 ps out of phase, a dynamic switch of an MPC9993 will result in an instantaneous phase change of 400 ps to the PLL reference signal without a corresponding change in the output phase (due to the limited response of the PLL). As a result, the I/O phase of a device, undergoing this switch, will initially be 400 ps and diminish as the PLL slews to its new phase alignment. This transient timing issue should be considered when analyzing the overall skew budget of a system.

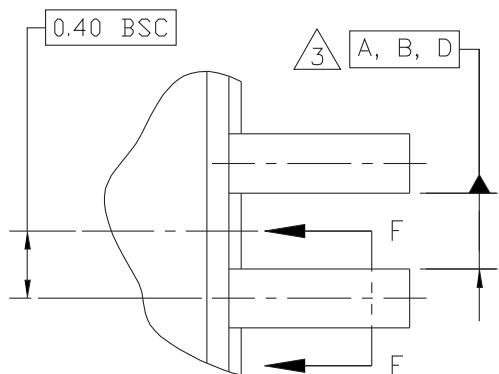


### Hot insertion and withdrawal

In PECL applications, a powered up driver will experience a low impedance path through an MPC9993 input to its powered down VCC pins. In this case, a 100 ohm series resistance should be used in front of the input pins to limit the driver current. The resistor will have minimal impact on the rise and fall times of the input signals.

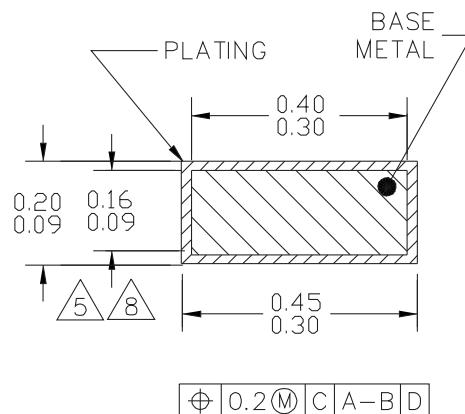
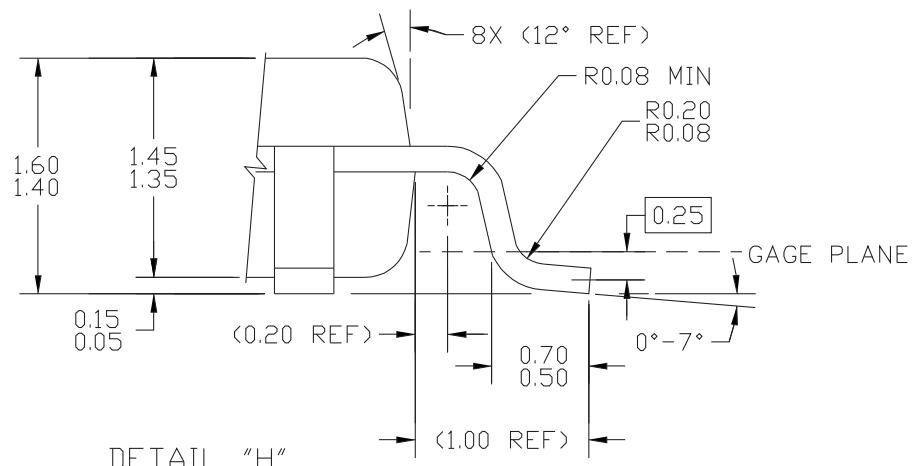
### Acquiring Frequency Lock

1. While the MPC9993 is receiving a valid CLK signal, assert Man\_OVERRIDE HIGH.
2. The PLL will phase and frequency lock within the specified lock time.
3. Apply a HIGH to LOW transition to Alarm\_Reset to reset Input Bad flags.
4. De-assert Man\_OVERRIDE LOW to enable Intelligent Dynamic Clock Switch mode.

## PACKAGE DIMENSIONS




|                                                                       |                            |                            |
|-----------------------------------------------------------------------|----------------------------|----------------------------|
| © FREESCALE SEMICONDUCTOR, INC.<br>ALL RIGHTS RESERVED.               | MECHANICAL OUTLINE         | PRINT VERSION NOT TO SCALE |
| TITLE:                                                                | DOCUMENT NO: 98ASH70029A   | REV: C                     |
| LOW PROFILE QUAD FLAT PACK (LQFP)<br>32 LEAD, 0.8 PITCH (7 X 7 X 1.4) | CASE NUMBER: 873A-04       | 01 APR 2005                |
|                                                                       | STANDARD: JEDEC MS-026 BBA |                            |



PAGE 1 OF 3

**CASE 873A-04  
ISSUE C  
32-I FAD LOFP PACKAGE**

## PACKAGE DIMENSIONS



DETAIL G

SECTION F-F  
ROTATED 90°CW  
32 PLACES

| © FREESCALE SEMICONDUCTOR, INC.<br>ALL RIGHTS RESERVED.                         | MECHANICAL OUTLINE         | PRINT VERSION NOT TO SCALE |
|---------------------------------------------------------------------------------|----------------------------|----------------------------|
| TITLE:<br>LOW PROFILE QUAD FLAT PACK (LQFP)<br>32 LEAD, 0.8 PITCH (7 X 7 X 1.4) | DOCUMENT NO: 98ASH70029A   | REV: C                     |
|                                                                                 | CASE NUMBER: 873A-04       | 01 APR 2005                |
|                                                                                 | STANDARD: JEDEC MS-026 BBA |                            |

PAGE 2 OF 3

**CASE 873A-04  
ISSUE C  
32-LEAD LQFP PACKAGE**

## PACKAGE DIMENSIONS

## NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5-1994.
3. DATUMS A, B, AND D TO BE DETERMINED AT DATUM PLANE H.
4. DIMENSIONS TO BE DETERMINED AT SEATING PLANE DATUM C.
5. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM DIMENSION BY MORE THAN 0.08 MM. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION: 0.07 MM.
6. DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 MM PER SIDE. DIMENSIONS ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.
7. EXACT SHAPE OF EACH CORNER IS OPTIONAL.
8. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 MM AND 0.25 MM FROM THE LEAD TIP.

|                                                                                     |                                                                                        |                            |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------|
| © FREESCALE SEMICONDUCTOR, INC.<br>ALL RIGHTS RESERVED.                             | MECHANICAL OUTLINE                                                                     | PRINT VERSION NOT TO SCALE |
| TITLE:<br><br>LOW PROFILE QUAD FLAT PACK (LQFP)<br>32 LEAD, 0.8 PITCH (7 X 7 X 1.4) | DOCUMENT NO: 98ASH70029A<br><br>CASE NUMBER: 873A-04<br><br>STANDARD: JEDEC MS-026 BBA | REV: C<br><br>01 APR 2005  |

PAGE 3 OF 3

**CASE 873A-04  
ISSUE C  
32-LEAD LQFP PACKAGE**

## Revision History Sheet

| Rev | Table | Page | Description of Change                                                | Date    |
|-----|-------|------|----------------------------------------------------------------------|---------|
| 3   |       | 1    | Product Discontinuance Notice – Last Time Buy Expires on (12/7/2013) | 1/23/13 |
|     |       |      |                                                                      |         |



## IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

### Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
[www.renesas.com](http://www.renesas.com)

### Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

### Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit [www.renesas.com/contact-us/](http://www.renesas.com/contact-us/).