

The MPC940L is a 1:18 low voltage clock distribution chip with 2.5 V or 3.3 V LVC MOS output capabilities. The device features the capability to select either a differential LVPECL or an LVC MOS compatible input. The 18 outputs are 2.5 V or 3.3 V LVC MOS compatible and feature the drive strength to drive 50 Ω series or parallel terminated transmission lines. With output-to-output skews of 150 ps, the MPC940L is ideal as a clock distribution chip for the most demanding of synchronous systems. The 2.5 V outputs also make the device ideal for supplying clocks for a high performance microprocessor based design. For a similar device at a lower price/performance point, the reader is referred to the MPC9109.

- LVPECL or LVC MOS Clock Input
- 2.5 V LVC MOS Outputs for Pentium II Microprocessor Support
- 150 ps Maximum Output-to-Output Skew
- Maximum Output Frequency of 250 MHz
- 32-Lead LQFP Packaging, Pb-Free
- Dual or Single Supply Device:
 - Dual V_{CC} Supply Voltage, 3.3 V Core and 2.5 V Output
 - Single 3.3 V V_{CC} Supply Voltage for 3.3 V Outputs
 - Single 2.5 V V_{CC} Supply Voltage for 2.5 V I/O
- For drop in replacement use 83940DYL

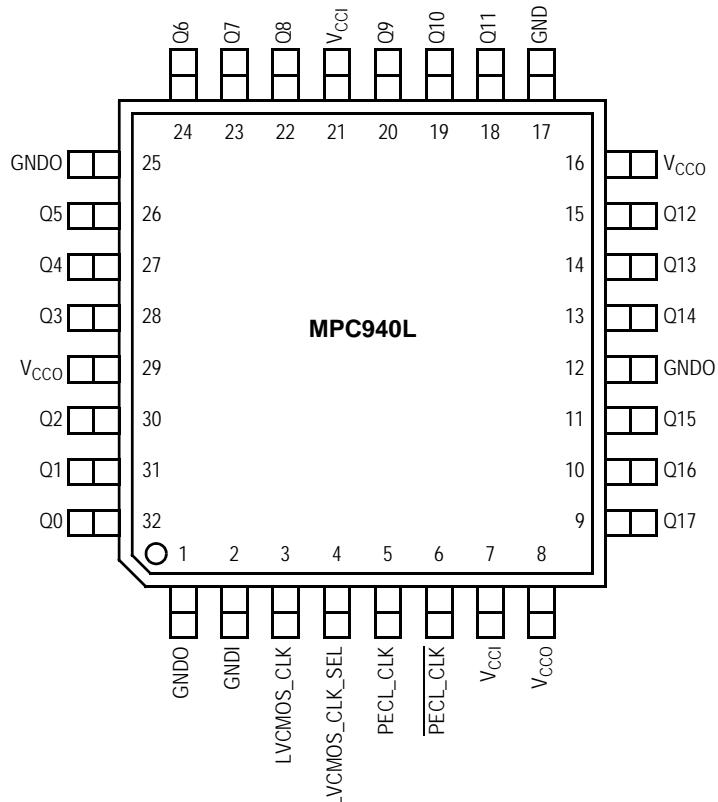
With a low output impedance ($\approx 20 \Omega$), in both the HIGH and LOW logic states, the output buffers of the MPC940L are ideal for driving series terminated transmission lines. With a 20Ω output impedance the 940L has the capability of driving two series terminated lines from each output. This gives the device an effective fanout of 1:36. If a lower output impedance is desired please see the MPC942 data sheet.

The differential LVPECL inputs of the MPC940L allow the device to interface directly with a LVPECL fanout buffer like the MC100EP111 to build very wide clock fanout trees or to couple to a high frequency clock source. The LVC MOS input provides a more standard interface for applications requiring only a single clock distribution chip at relatively low frequencies. In addition, the two clock sources can be used to provide for a test clock interface as well as the primary system clock. A logic HIGH on the LVC MOS_CLK_SEL pin will select the LVC MOS level clock input. All inputs of the MPC940L have internal pullup/pulldown resistors so they can be left open if unused.

The MPC940L is a single or dual supply device. The device power supply offers a high degree of flexibility. The device can operate with a 3.3 V core and 3.3 V output, a 3.3 V core and 2.5 V outputs as well as a 2.5 V core and 2.5 V outputs. The 32-lead LQFP package was chosen to optimize performance, board space and cost of the device. The 32-lead LQFP has a 7x7 mm body size with a conservative 0.8 mm pin spacing.

MPC940L


LOW VOLTAGE
1:18 CLOCK
DISTRIBUTION CHIP


AC SUFFIX
32-LEAD LQFP PACKAGE
Pb-FREE PACKAGE
CASE 873A-04

Pentium II is a trademark of Intel Corporation.

LOGIC DIAGRAM

Pinout: 32-Lead LQFP (Top View)

FUNCTION TABLE

LVCMS_CLK_SEL	Input
0	PECL_CLK
1	LVCMS_CLK

POWER SUPPLY VOLTAGES

Supply Pin	Voltage Level
V _{CCO}	2.5 V or 3.3 V \pm 5%
V _{COO}	2.5 V or 3.3 V \pm 5%

Table 1. Pin Configurations

Pin	I/O	Type	Function
PECL_CLK	Input	LVPECL	Reference Clock Input
<u>PECL_CLK</u>			
LVCMS_CLK	Input	LVCMS	Alternative Reference Clock Input
LVCMS_CLK_SEL	Input	LVCMS	Selects Clock Source
Q0-Q17	Output	LVCMS	Clock Outputs
V _{CCO}		Supply	Output Positive Power Supply
V _{COO}		Supply	Core Positive Power Supply
GND		Supply	Output Negative Power Supply
GNDI		Supply	Core Negative Power Supply

Table 2. Absolute Maximum Ratings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
V_{CC}	Supply Voltage	-0.3	3.6	V
V_I	Input Voltage	-0.3	$V_{DD} + 0.3$	V
I_{IN}	Input Current		± 20	mA
T_{Stor}	Storage Temperature Range	-40	125	°C

1. Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

Table 3. DC Characteristics ($T_A = 0^\circ$ to 70°C , $V_{CCI} = 3.3\text{ V} \pm 5\%$; $V_{CCO} = 3.3\text{ V} \pm 5\%$)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
V_{IH}	Input HIGH Voltage CMOS_CLK	2.4		V_{CCI}	V	
V_{IL}	Input LOW Voltage CMOS_CLK			0.8	V	
V_{PP}	Peak-to-Peak Input Voltage PECL_CLK	500		1000	mV	
V_{CMR}	Common Mode Range PECL_CLK	$V_{CCI} - 1.4$		$V_{CCI} - 0.6$	V	
V_{OH}	Output HIGH Voltage	2.4			V	$I_{OH} = -20\text{ mA}$
V_{OL}	Output LOW Voltage			0.5	V	$I_{OL} = 20\text{ mA}$
I_{IN}	Input Current			± 200	μA	
C_{IN}	Input Capacitance		4.0		pF	
C_{pd}	Power Dissipation Capacitance		10		pF	per output
Z_{OUT}	Output Impedance	18	23	28	Ω	
I_{CC}	Maximum Quiescent Supply Current		0.5	1.0	mA	

Table 4. AC Characteristics ($T_A = 0^\circ$ to 70°C , $V_{CCI} = 3.3\text{ V} \pm 5\%$; $V_{CCO} = 3.3\text{ V} \pm 5\%$)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
F_{max}	Maximum Input Frequency			250	MHz	
t_{PLH}	Propagation Delay PECL_CLK $\leq 150\text{ MHz}$ CMOS_CLK $\leq 150\text{ MHz}$	2.0 1.8	2.7 2.5	3.4 3.0	ns	
t_{PLH}	Propagation Delay PECL_CLK $> 150\text{ MHz}$ CMOS_CLK $> 150\text{ MHz}$	2.0 1.8	2.9 2.4	3.7 3.2	ns	
$t_{sk(0)}$	Output-to-Output Skew PECL_CLK CMOS_CLK			150 150	ps	
$t_{sk(pp)}$	Part-to-Part Skew PECL_CLK $\leq 150\text{ MHz}$ CMOS_CLK $\leq 150\text{ MHz}$			1.4 1.2	ns	Note ⁽¹⁾
$t_{sk(pp)}$	Part-to-Part Skew PECL_CLK $> 150\text{ MHz}$ CMOS_CLK $> 150\text{ MHz}$			1.7 1.4	ns	Note ⁽¹⁾
$t_{sk(pp)}$	Part-to-Part Skew PECL_CLK CMOS_CLK			850 750	ps	Note ⁽²⁾
DC	Output Duty Cycle $f_{CLK} < 134\text{ MHz}$ $f_{CLK} \leq 250\text{ MHz}$	45 40	50 50	55 60	% %	Input DC = 50% Input DC = 50%
t_r, t_f	Output Rise/Fall Time	0.3		1.1	ns	0.5 – 2.4 V

1. Across temperature and voltage ranges. Includes output skew.

2. For specific temperature and voltage. Includes output skew.

Table 5. DC Characteristics ($T_A = 0^\circ$ to 70°C , $V_{CCI} = 3.3\text{ V} \pm 5\%$; $V_{CCO} = 2.5\text{ V} \pm 5\%$)

Symbol	Characteristic		Min	Typ	Max	Unit	Condition
V_{IH}	Input HIGH Voltage	CMOS_CLK	2.4		V_{CCI}	V	
V_{IL}	Input LOW Voltage	CMOS_CLK			0.8	V	
V_{PP}	Peak-to-Peak Input Voltage	PECL_CLK	500		1000	mV	
V_{CMR}	Common Mode Range	PECL_CLK	$V_{CCI} - 1.4$		$V_{CCI} - 0.6$	V	
V_{OH}	Output HIGH Voltage		1.8			V	$I_{OH} = -12\text{ mA}$
V_{OL}	Output LOW Voltage				0.5	V	$I_{OL} = 12\text{ mA}$
I_{IN}	Input Current				± 200	μA	
C_{IN}	Input Capacitance			4.0		pF	
C_{pd}	Power Dissipation Capacitance			10		pF	per output
Z_{OUT}	Output Impedance			23		Ω	
I_{CC}	Maximum Quiescent Supply Current			0.5	1.0	mA	

Table 6. AC Characteristics ($T_A = 0^\circ$ to 70°C , $V_{CCI} = 3.3\text{ V} \pm 5\%$; $V_{CCO} = 2.5\text{ V} \pm 5\%$)

Symbol	Characteristic		Min	Typ	Max	Unit	Condition
f_{max}	Maximum Input Frequency				250	MHz	
t_{PLH}	Propagation Delay	PECL_CLK $\leq 150\text{ MHz}$ CMOS_CLK $\leq 150\text{ MHz}$	2.0 1.7	2.8 2.5	3.5 3.0	ns	
t_{PLH}	Propagation Delay	PECL_CLK $> 150\text{ MHz}$ CMOS_CLK $> 150\text{ MHz}$	2.0 1.8	2.9 2.5	3.8 3.3	ns	
$t_{sk(o)}$	Output-to-Output Skew	PECL_CLK CMOS_CLK			150 150	ps	
$t_{sk(pp)}$	Part-to-Part Skew	PECL_CLK $\leq 150\text{ MHz}$ CMOS_CLK $\leq 150\text{ MHz}$			1.5 1.3	ns	Note ⁽¹⁾
$t_{sk(pp)}$	Part-to-Part Skew	PECL_CLK $> 150\text{ MHz}$ CMOS_CLK $> 150\text{ MHz}$			1.8 1.5	ns	Note ⁽¹⁾
$t_{sk(pp)}$	Part-to-Part Skew	PECL_CLK CMOS_CLK			850 750	ps	Note ⁽²⁾
DC	Output Duty Cycle	$f_{CLK} < 134\text{ MHz}$ $f_{CLK} \leq 250\text{ MHz}$	45 40	50 50	55 60	% %	Input DC = 50% Input DC = 50%
t_r, t_f	Output Rise/Fall Time		0.3		1.2	ns	0.5 – 1.8 V

1. Across temperature and voltage ranges. Includes output skew.

2. For specific temperature and voltage. Includes output skew.

Table 7. DC Characteristics ($T_A = 0^\circ$ to 70°C , $V_{CCI} = 2.5\text{ V} \pm 5\%$; $V_{CCO} = 2.5\text{ V} \pm 5\%$)

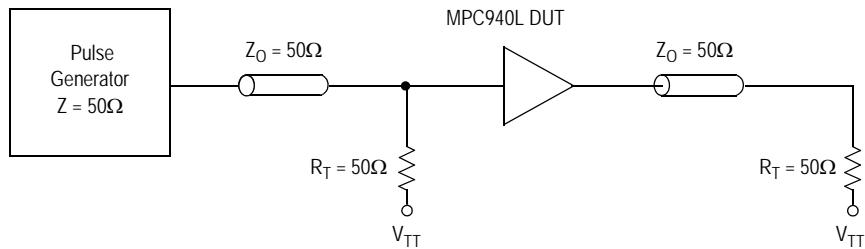
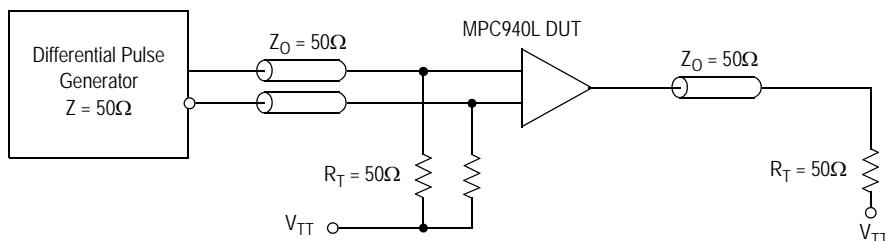
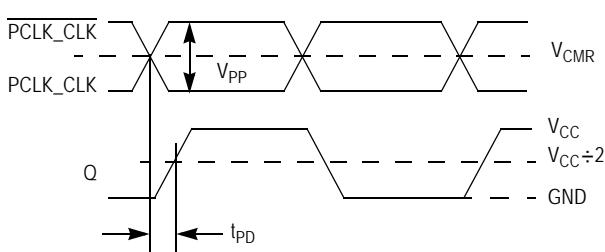
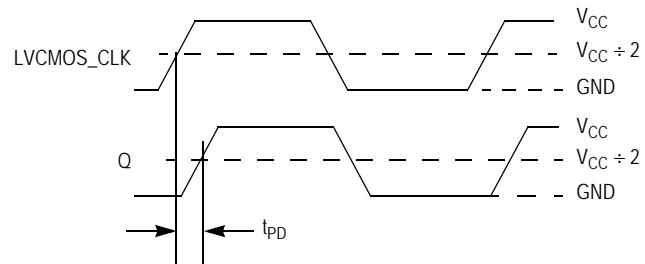
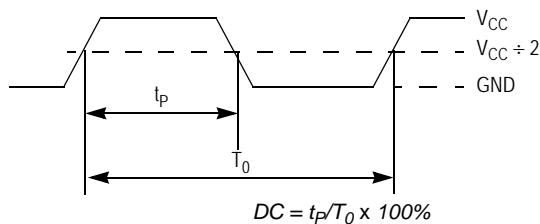
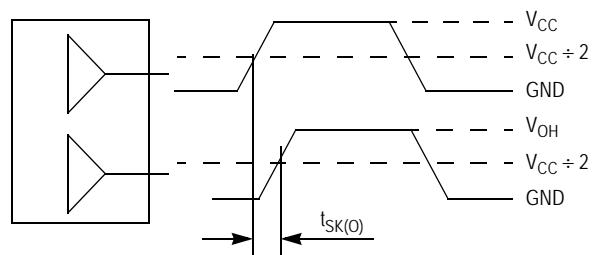





Symbol	Characteristic		Min	Typ	Max	Unit	Condition
V_{IH}	Input HIGH Voltage	CMOS_CLK	2.0		V_{CCI}	V	
V_{IL}	Input LOW Voltage	CMOS_CLK			0.8	V	
V_{PP}	Peak-to-Peak Input Voltage	PECL_CLK	500		1000	mV	
V_{CMR}	Common Mode Range	PECL_CLK	$V_{CCI} - 1.0$		$V_{CCI} - 0.6$	V	
V_{OH}	Output HIGH Voltage		1.8			V	$I_{OH} = -12\text{ mA}$
V_{OL}	Output LOW Voltage				0.5	V	$I_{OL} = 12\text{ mA}$
I_{IN}	Input Current				± 200	μA	
C_{IN}	Input Capacitance			4.0		pF	
C_{pd}	Power Dissipation Capacitance			10		pF	per output
Z_{OUT}	Output Impedance		18	23	28	Ω	
I_{CC}	Maximum Quiescent Supply Current			0.5	1.0	mA	

Table 8. AC Characteristics ($T_A = 0^\circ$ to 70°C , $V_{CCI} = 2.5\text{ V} \pm 5\%$; $V_{CCO} = 2.5\text{ V} \pm 5\%$)

Symbol	Characteristic		Min	Typ	Max	Unit	Condition
f_{max}	Maximum Input Frequency				200	MHz	
t_{PLH}	Propagation Delay	PECL_CLK $\leq 150\text{ MHz}$ CMOS_CLK $\leq 150\text{ MHz}$	2.6 2.3	4.0 3.1	5.2 4.0	ns	
t_{PLH}	Propagation Delay	PECL_CLK $> 150\text{ MHz}$ CMOS_CLK $> 150\text{ MHz}$	2.8 2.3	3.8 3.1	5.0 4.0	ns	
$t_{sk(o)}$	Output-to-Output Skew	PECL_CLK CMOS_CLK			200 200	ps	
$t_{sk(pp)}$	Part-to-Part Skew	PECL_CLK $\leq 150\text{ MHz}$ CMOS_CLK $\leq 150\text{ MHz}$			2.6 1.7	ns	Note ⁽¹⁾
$t_{sk(pp)}$	Part-to-Part Skew	PECL_CLK $> 150\text{ MHz}$ CMOS_CLK $> 150\text{ MHz}$			2.2 1.7	ns	Note ⁽¹⁾
$t_{sk(pp)}$	Part-to-Part Skew	PECL_CLK CMOS_CLK			1.2 1.0	ns	Note ⁽²⁾
DC	Output Duty Cycle	$f_{CLK} < 134\text{ MHz}$ $f_{CLK} \leq 200\text{ MHz}$	45 40	50 50	55 60	% %	Input DC = 50% Input DC = 50%
t_r, t_f	Output Rise/Fall Time		0.3		1.2	ns	0.5 - 1.8 V


1. Across temperature and voltage ranges. Includes output skew.

2. For specific temperature and voltage. Includes output skew.

Figure 1. LVCMOS_CLK MPC940L AC Test Reference for $V_{CC} = 3.3\text{ V}$ and $V_{CC} = 2.5\text{ V}$ Figure 2. PECL_CLK MPC940L AC Test Reference for $V_{CC} = 3.3\text{ V}$ and $V_{CC} = 2.5\text{ V}$ Figure 3. Propagation Delay (t_{PD}) Test ReferenceFigure 4. LVCMOS Propagation Delay (t_{PD}) Test Reference

The time from the PLL controlled edge to the non controlled edge, divided by the time between PLL controlled edges, expressed as a percentage.

Figure 5. Output Duty Cycle (DC)

The pin-to-pin skew is defined as the worst case difference in propagation delay between any two similar delay paths within a single device.

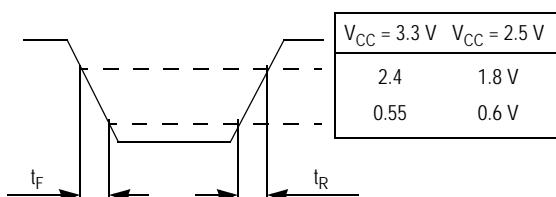

Figure 6. Output-to-Output Skew $T_{SK(O)}$

Figure 7. Output Transition Time Test Reference

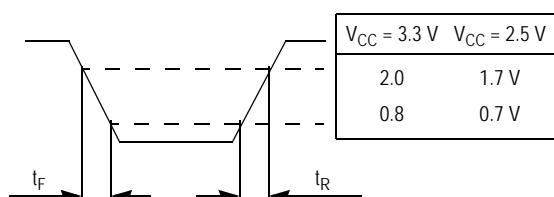
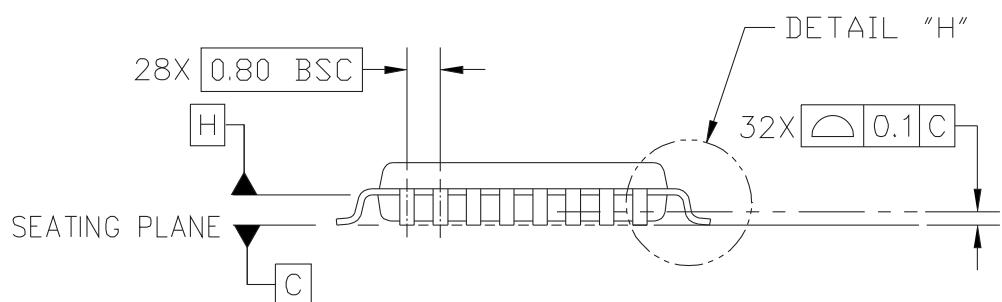
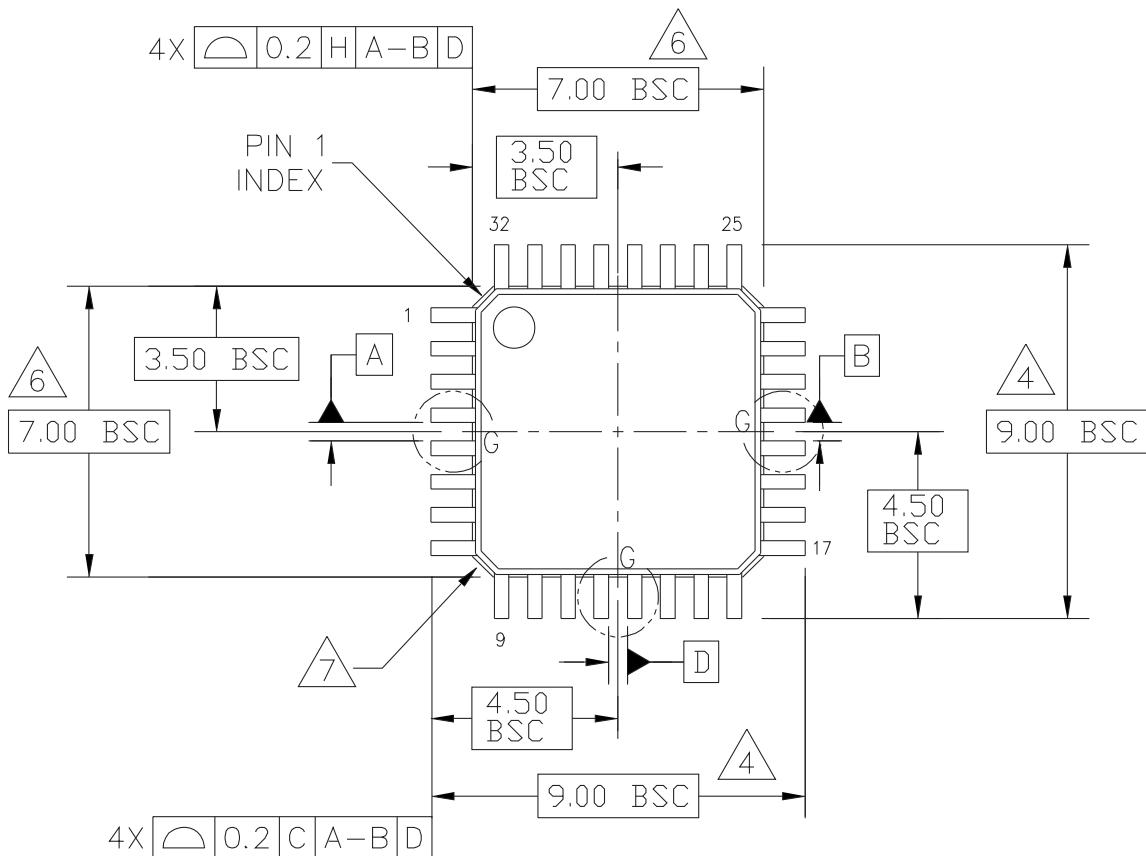
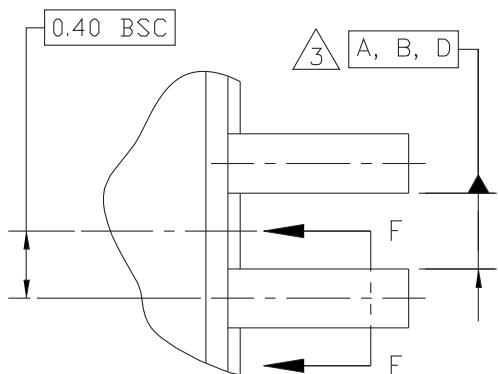
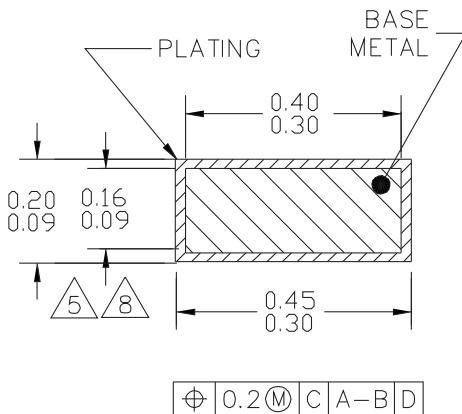
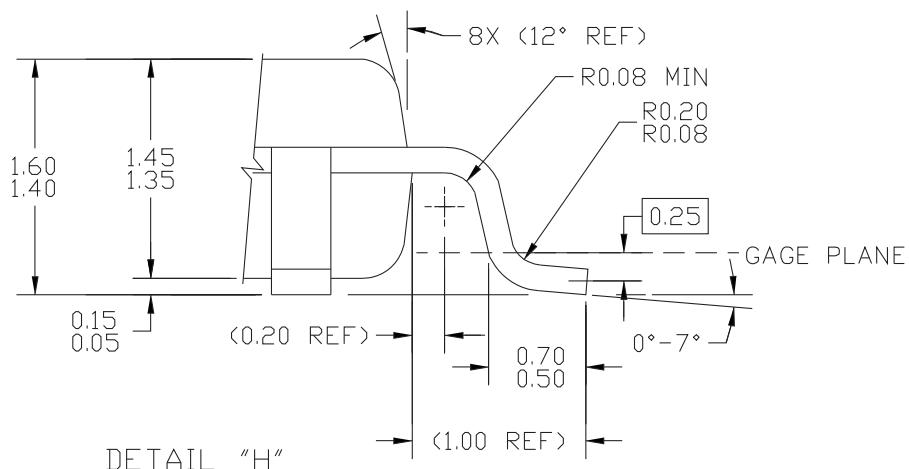




Figure 8. Input Transition Time Test Reference


PACKAGE DIMENSIONS



© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE	PRINT VERSION NOT TO SCALE
TITLE:	DOCUMENT NO: 98ASH70029A	REV: C
LOW PROFILE QUAD FLAT PACK (LQFP) 32 LEAD, 0.8 PITCH (7 X 7 X 1.4)	CASE NUMBER: 873A-04	01 APR 2005
	STANDARD: JEDEC MS-026 BBA	

**CASE 873A-04
ISSUE C
32-LEAD LQFP PACKAGE**

PACKAGE DIMENSIONS

DETAIL G

SECTION F-F
ROTATED 90°CW
32 PLACES

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE	PRINT VERSION NOT TO SCALE
TITLE: LOW PROFILE QUAD FLAT PACK (LQFP) 32 LEAD, 0.8 PITCH (7 X 7 X 1.4)	DOCUMENT NO: 98ASH70029A	REV: C
	CASE NUMBER: 873A-04	01 APR 2005
	STANDARD: JEDEC MS-026 BBA	

PAGE 2 OF 3

**CASE 873A-04
ISSUE C
32-LEAD LQFP PACKAGE**

PACKAGE DIMENSIONS

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5-1994.
3. DATUMS A, B, AND D TO BE DETERMINED AT DATUM PLANE H.
4. DIMENSIONS TO BE DETERMINED AT SEATING PLANE DATUM C.
5. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM DIMENSION BY MORE THAN 0.08 MM. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION: 0.07 MM.
6. DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 MM PER SIDE. DIMENSIONS ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.
7. EXACT SHAPE OF EACH CORNER IS OPTIONAL.
8. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 MM AND 0.25 MM FROM THE LEAD TIP.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE	PRINT VERSION NOT TO SCALE
TITLE: LOW PROFILE QUAD FLAT PACK (LQFP) 32 LEAD, 0.8 PITCH (7 X 7 X 1.4)	DOCUMENT NO: 98ASH70029A CASE NUMBER: 873A-04 STANDARD: JEDEC MS-026 BBA	REV: C 01 APR 2005

PAGE 3 OF 3

**CASE 873A-04
ISSUE C
32-LEAD LQFP PACKAGE**

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Termperture
MPC940LAC	MPC940LAC	Lead-Free, 32 Lead LQFP	Tray	0°C to 70°C
MPC940LACR2	MPC940LAC	Lead-Free, 32 Lead LQFP	2500 Tape & Reel	0°C to 70°C

Revision History Sheet

Rev	Table	Page	Description of Change	Date
8		1	NRND – Not Recommend for New Designs.	12/20/12
8		1	Product Discontinuation Notice - PDN CQ-15-02.	5/6/15
9		1	Obsolete per Product Discontinuation Notice - PDN CQ-15-02.	10/4/16

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.