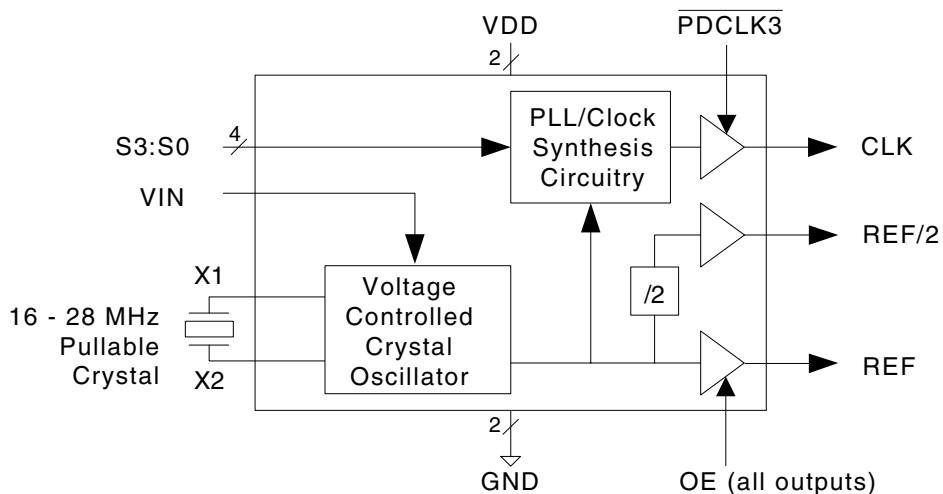
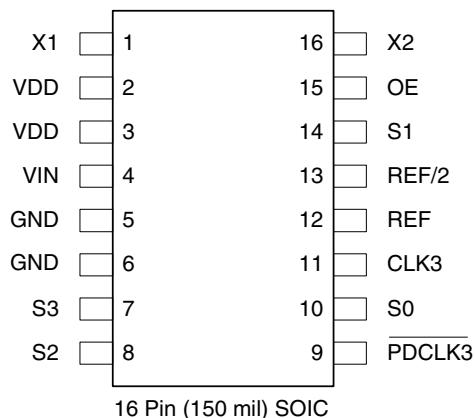


Description


The MK3732-10 is a low cost, low jitter, high performance VCXO and PLL clock synthesizer designed to replace expensive discrete VCXOs and multipliers. The patented on-chip Voltage Controlled Crystal Oscillator accepts a 0 to 3.3 V input voltage to cause the output clocks to vary by ± 115 ppm. Using IDT's analog/digital Phase-Locked Loop (PLL) techniques, the device uses an inexpensive 27 MHz pullable crystal to produce three output clocks.

IDT manufactures the largest variety of MPEG clock synthesizers for all applications. Consult IDT to eliminate VCXOs, crystals, and oscillators from your board.


Features

- Packaged in 16 pin SOIC
- Replaces a VCXO and oscillator
- Contains popular multiplier values
- Uses an inexpensive 27 MHz pullable crystal
- Includes popular audio frequencies from 27 MHz
- On-chip patented VCXO with pull range of 230 ppm (± 115 ppm) minimum
- VCXO tuning voltage of 0 to 3.3 V
- Advanced, low power, sub-micron CMOS process
- Operating voltage of 3.3 V

Block Diagram

Pin Assignment

Clock Select Table

S3	S2	S1	S0	Input	CLK1	CLK2	CLK3	Multiplier
0	0	0	0	16 - 28	REF/2	REF	20 - 35	x1.25
0	0	0	1	16 - 28	REF/2	REF	21 - 37.5	x1.333
0	0	1	0	16 - 28	REF/2	REF	24 - 42	x1.5
0	0	1	1	16 - 28	REF/2	REF	32 - 56	x2
0	1	0	0	16 - 28	REF/2	REF	40 - 70	x2.5
0	1	0	1	16 - 28	REF/2	REF	42 - 75	x2.667
0	1	1	0	16 - 28	REF/2	REF	48 - 84	x3
0	1	1	1			TEST		
1	0	0	0	16 - 28	REF/2	REF	64 - 112	x4
1	0	0	1	16 - 28	REF/2	REF	80 - 140	x5
1	0	1	0	16 - 28	REF/2	REF	85 - 150	x5.333
1	0	1	1	16 - 27	REF/2	REF	96 - 162	x6
1	1	0	0	27	13.5	27	11.289	N/A
1	1	0	1	27	13.5	27	12.288	N/A
1	1	1	0	27	13.5	27	8.192	N/A
1	1	1	1	27	13.5	27	24.576	N/A

Pin Descriptions

Pin Number	Pin Name	Pin Type	Pin Description
1	XI	XI	Crystal connection. Connect to a pullable of 16 to 28 MHz crystal.
2 - 3	VDD	Power	Connect to +3.3 V.
4	VIN	Input	Voltage input to VCXO. Zero to 3.3V signal which controls the VCXO frequency.
5 - 6	GND	Power	Connect to ground.
7	S3	Input	Select input #3. Selects outputs per table above. Internal pull-up resistor.
8	S2	Input	Select input #2. Selects outputs per table above. Internal pull-up resistor.
9	PDCLK3	Input	Power down for CLK3.
10	S0	Input	Select input #0. Selects outputs per table above. Internal pull-up resistor.
11	CLK3	Output	PLL output clock that is either a multiple of the input or an audio clock. See table above.
12	REF	Output	Buffered VCXO reference clock output. Matches crystal frequency.
13	REF/2	Output	Reference clock output divided by two.
14	S1	Input	Select input #1. Selects outputs per table above. Internal pull-up resistor.
15	OE	Input	Output enable. Tri-states outputs when low. Internal pull-up resistor.
16	X2	XO	Crystal connection. Connect to a pullable 16 to 28 MHz crystal.

Pin Descriptions

The MK3732-10 requires a minimum number of external components for proper operation.

Decoupling Capacitors

Decoupling capacitors of $0.01\mu\text{F}$ should be connected between VDD and GND on pins 2 and 5 and pins 3 and 6, as close to the MK3732-10 as possible. For optimum device performance, the decoupling capacitors should be mounted on the component side of the PCB. Avoid the use of vias in the decoupling circuit.

Series Termination Resistor

When the PCB traces between the clock outputs (CLK, pin 5) and the loads are over 1 inch, series termination should be used. To series terminate a 50Ω trace (a commonly used trace impedance) place a 33Ω resistor in series with the clock line, as close to the clock output pin as possible. The nominal impedance of the clock output is 20Ω .

Quartz Crystal

The MK3732-10 VCXO function consists of the external

crystal and the integrated VCXO oscillator circuit. To assure the best system performance (frequency pull range) and reliability, a crystal device with the recommended parameters (shown below) must be used, and the layout guidelines discussed in the following section must be followed.

The frequency of oscillation of a quartz crystal is determined by its “cut” and by the load capacitors connected to it. The MK3732-10 incorporates on-chip variable load capacitors that “pull” (change) the frequency of the crystal. The crystal specified for use with the MK3732-10 is designed to have zero frequency error when the total of on-chip + stray capacitance is 14pF .

Recommended Crystal Parameters:

Initial Accuracy at 25°C

$\pm 20\text{ ppm}$

Temperature Stability

$\pm 30\text{ ppm}$

Aging	± 20 ppm
Load Capacitance	14 pF
Shunt Capacitance, C0	7 pF Max
C0/C1 Ratio	250 Max
Equivalent Series Resistance	35 Ω Max

The external crystal must be connected as close to the chip as possible and should be on the same side of the PCB as the MK3732-10. There should be no via's between the crystal pins and the X1 and X2 device pins. There should be no signal traces underneath or close to the crystal. **See application note MAN05.**

Crystal Tuning Load Capacitors

The crystal traces should include pads for small fixed capacitors, one between X1 and ground, and another between X2 and ground. Stuffing of these capacitors on the PCB is optional. The need for these capacitors is determined at system prototype evaluation, and is influenced by the particular crystal used (manufacture and frequency) and by PCB layout. The typical required capacitor value is 1 to 4 pF.

The procedure for determining the value of these capacitors can be found in application note MAN05.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the MK3732-10. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDD	7V
All Inputs and Outputs	-0.5V to VDD+0.5V
Ambient Operating Temperature	0 to +70°C
Storage Temperature	-65 to +150°C
Soldering Temperature	260°C

Recommended Operation Conditions

Parameter	Min.	Typ.	Max.	Units
Ambient Operating Temperature	0		+70	°C
Power Supply Voltage (measured in respect to GND)	+3.15	3.3	+3.45	V
Reference crystal parameters	Refer to pages 3 - 4			

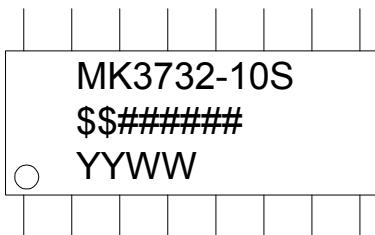
DC Electrical Characteristics

VDD=3.3V $\pm 5\%$, Ambient temperature 0 to +70°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Operating Voltage	VDD		3.15	3.3	3.45	V
Input High Voltage	V _{IH}	X1 pin, clock in Non VCXO mode	(VDD/2)+1			V
Input Low Voltage	V _{IL}	X1 pin, clock in Non VCXO mode			(VDD/2)-1	V
Input High Voltage	V _{IH}		2			V
Input Low Voltage	V _{IL}				0.8	V
Output High Voltage	V _{OH}	I _{OH} = -12 mA	2.4			V
Output Low Voltage	V _{OL}	I _{OL} = 12 mA			0.4	V
Output High Voltage (CMOS Level)	V _{OH}	I _{OH} = -4 mA	-0.5			V
Operating Supply Current	IDD	No Load		19		mA
Short Circuit Current		Each output		± 50		mA
Input Capacitance	C _{IN}	S2:S0, OE		5		pF
Frequency Synthesis Error		All clocks			0	ppm
VIN, VCXO Control Voltage	V _{IA}		0		3.3	V

AC Electrical Characteristics

VDD = 3.3V $\pm 5\%$, Ambient Temperature 0 to +70°C, unless stated otherwise

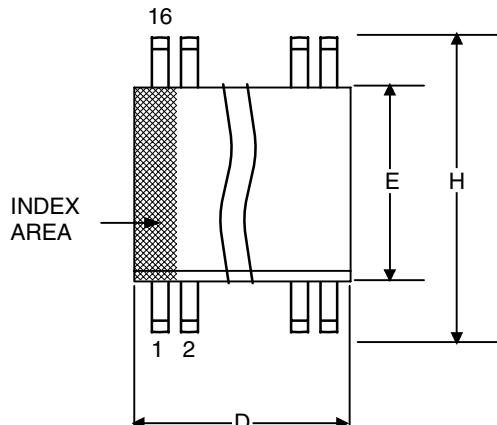

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Input Crystal Frequency	f _{IN}		16	27	28	MHz
Output Clock Frequency	f _{OUT}		8		162	MHz
Output Clock Rise Time		0.8 to 2.0V		1.5		ns
Output Clock Fall Time		2.0 to 0.8V		1.5		ns
Output Clock Duty Cycle		at VDD/2	40		60	%
Maximum Absolute Jitter				± 350		ps
Output pullability		0V < VIN < 3.3V, Note 1	± 115			ppm

Note 1: External crystal device must conform with Pullable Crystal Specifications listed on pages 3-4.

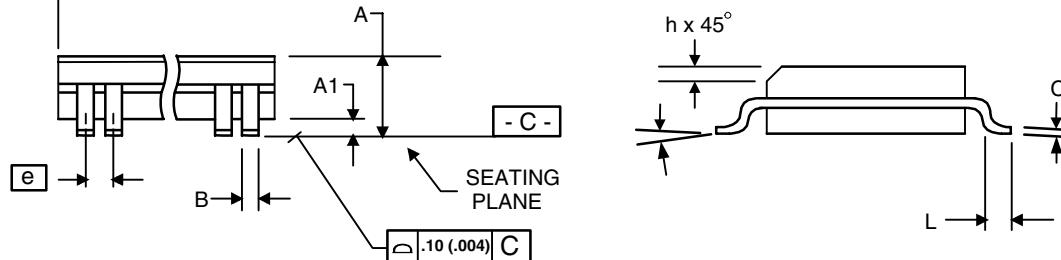
Thermal Characteristics

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Thermal Resistance Junction to Ambient	θ_{JA}	Still air		120		°C/W
	θ_{JA}	1 m/s air flow		115		°C/W
	θ_{JA}	3 m/s air flow		105		°C/W
Thermal Resistance Junction to Case	θ_{JC}			58		°C/W

Marking Diagram



Notes:


1. ##### is the lot number
2. YYWW is the last two digits of the year and the week number that the part was assembled

Package Outline and Package Dimensions (16 pin SOIC)

Package dimensions are kept current with JEDEC Publication No. 95

Symbol	Millimeters		Inches	
	Min	Max	Min	Max
A	1.35	1.75	.0532	.0688
A1	0.10	0.25	.0040	.0098
B	0.33	0.51	.013	.020
C	0.19	0.25	.0075	.0098
D	9.80	10.00	.3859	.3937
E	3.80	4.00	.1497	.1574
e	1.27 BASIC		0.050 BASIC	
H	5.80	6.20	.2284	.2440
h	0.25	0.50	.010	.020
L	0.40	1.27	.016	.050
α	0°	8°	0°	8°

Ordering Information

Part / Order Number	Marking	Shipping packaging	Package	Temperature
MK3732-10SLF	MK3732-10LF	Tubes	16 pin SOIC	0 to +70° C
MK3732-10SLFTR	MK3732-10LF	Tape and Reel	16 pin SOIC	0 to +70° C

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.