
Description

The MK2771-16 is a low-cost, low-jitter, high-performance VCXO and clock synthesizer designed for set-top boxes. The on-chip Voltage Controlled Crystal Oscillator accepts a 0 to 3 V input voltage to cause the output clocks to vary by ± 100 ppm. Using IDT's patented VCXO and analog Phase-Locked Loop (PLL) techniques, the device uses an inexpensive 13.5 MHz pullable crystal input to produce multiple output clocks including two selectable processor clocks, a selectable audio clock, two communications clocks, a 13.5 MHz clock, and three 27 MHz clocks. All clocks are frequency locked to the 27 MHz output (and to each other) with zero ppm error, so any output can be used as the VCXO output.

Features

- Packaged in 28-pin QSOP
- RoHS 5 (green) or RoHS 6 (green and lead free) compliant package
- On-chip patented VCXO with pull range of 200 ppm
- VCXO tuning voltage of 0 to 3 V
- Processor frequencies include 16.66, 20, 25, 32, 40, and 50 MHz
- Audio clocks support 32 kHz, 44.1 kHz, 48 kHz, and 96 kHz sampling rates
- Zero ppm synthesis error in all clocks (all exactly track 27 MHz VCXO)
- Uses an inexpensive 13.5 MHz pullable crystal
- Full CMOS output swings with 25 mA output drive capability at TTL levels
- Advanced, low-power, sub-micron CMOS process
- 5 V operating voltage with 3.3 V capable I/O

Block Diagram

Pin Assignment

PS0	1	28	AS1
X2	2	27	AS0
GND	3	26	CS0
X1	4	25	27M
VDD5	5	24	GND
VIN	6	23	27M
VDDIO	7	22	VDD5
VDD5	8	21	AS2
CS1	9	20	GND
GND	10	19	GND
GND	11	18	27M
PCLK	12	17	CCLK1
CCLK2	13	16	PS1
ACLK	14	15	13.5M

28-pin QSOP

Processor Clock Select Table (MHz)

PS1	PS0	PCLK
0	0	50
0	1	16.667
M	0	25
M	1	32
1	0	40
1	1	20

Audio Clock Table (MHz)

AS2	AS1	AS0	ACLK
0	0	0	8.192
0	0	1	11.2896
0	1	0	12.288
0	1	1	5.6448
1	0	0	18.432
1	0	1	16.9344
1	1	0	49.152
1	1	1	21.576

Communications Clock Table (MHz)

CS1	CS0	CCLK1	CCLK2
0	0	Low	33.333
0	1	Low	24.576
1	0	11.0592	18.432
1	1	11.0592	3.6864

0 = connect directly to ground

1 = connect directly to VDDIO

M = leave floating or unconnected

Pin Descriptions

Pin Number	Pin Name	Pin Type	Pin Description
1	PS0	Input	Processor clock select 0. Selects PCLK frequency. See table above. Internal pull-up resistor.
2	X2	XO	Crystal connection. Connect to a 13.5 MHz fundamental mode pullable crystal.
3, 10, 11	GND	Power	Connect to ground.
4	X1	XI	Crystal connection. Connect to a 13.5 MHz fundamental mode pullable crystal.
5, 8, 22	VDD5	Power	Connect to +5 V.
6	VIN	Input	Voltage input to VCXO. Zero to 3 V signal which controls the frequency of the VCXO.
7	VDDIO	Power	Connect to +3.3 V or +5 V. Amplitude of inputs and outputs will match this.
9	CS1	Input	Communications clock select pin 1. Selects CCLK 1 and 2 per table above. Internal pull-up.
12	PCLK	Output	Processor clock output. Determined by status of PS1, PS0.
13	CCLK2	Output	Communications clock output 2 determined by status of CS1, CS0 per table above.
14	ACLK	Output	Audio clock output. Determined by status of AS2:0 per table above.
15	13.5M	Output	13.5 MHz VCXO clock output.
16	PS1	Tri-level Input	Processor Clock Select 1. Selects PCLK frequency. See table above. Self-biased to M.
17	CCLK1	Output	Communications clock output 1 determined by status of CS1, CS0 per table above.
18, 23, 25	27M	Output	27 MHz VCXO clock output.
19, 20, 24	GND	Power	Connect to ground.
21	AS2	Input	Audio clock select 2. Selects ACLK on pin 14. See table above. Internal pull-up resistor.
26	CS0	Input	Communications clock select pin 0. Selects CCLK 1 and 2 per table above. Internal pull-up.
27	AS0	Input	Audio clock select 0. Selects ACLK on pin 14. See table above. Internal pull-up resistor.
28	AS1	Input	Audio clock select 1. Selects ACLK on pin 14. See table above. Internal pull-up resistor.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the MK2771-16. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDD (referenced to GND)	7 V
Inputs and Clock Outputs (referenced to GND)	-0.5 V to VDD+0.5 V
Ambient Operating Temperature	0 to +70°C
Storage Temperature	-65 to +150°C
Junction Temperature	125°C
Soldering Temperature	260°C

DC Electrical Characteristics

Unless stated otherwise, **VDD = 5 V \pm 5%**, Ambient Temperature 0 to +70°C

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Operating Voltage	VDD		4.75		5.25	V
Operating Voltage	VDDIO	All inputs/outputs	3.00		5.25	V
Input High Voltage, X1 pin only	V _{IH}		3.5	2.5		V
Input Low Voltage, X1 pin only	V _{IL}			2.5	1.5	V
Input High Voltage (except PS1)	V _{IH}		2			V
Input Low Voltage (except PS1)	V _{IL}				0.8	V
Input High Voltage (PS1 only)	V _{IH}		VDD-0.5			V
Input Low Voltage (PS1 only)	V _{IL}				0.5	V
Output High Voltage	V _{OH}	I _{OH} = -25 mA	2.4			V
Output Low Voltage	V _{OL}	I _{OL} = 25 mA	—	—	0.4	V
Output High Voltage, CMOS Level	V _{OH}	I _{OH} = -8 mA	VDD-0.4			V
Operating Supply Current	IDD5	No load, Note 1		42		mA
Operating Supply Current	IDDIO	No load, VDDIO = 3.3 V		19		mA
Short Circuit Current	I _{OS}	Each output		\pm 100		mA
Input Capacitance, except X1	C _{IN}	Except X1, X2		7		pF
Frequency Synthesis Error		All clocks			0	ppm
V _{IN} , VCXO Control Voltage			0		3	V

AC Electrical Characteristics

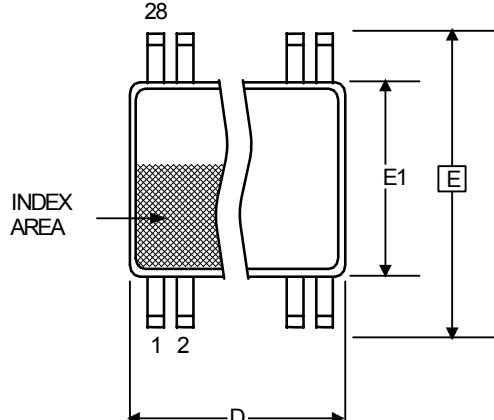
Unless stated otherwise, $VDD = 5 V \pm 5\%$, Ambient Temperature 0 to $+70^\circ C$

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Crystal Input Frequency				13.5		MHz
Output Clock Rise Time	t_{OR}	0.8 to 2.0 V		1.5		ns
Output Clock Fall Time	t_{OF}	2.0 to 0.8 V		1.5		ns
Output Clock Duty Cycle	t_{OD}	At 1.4 V	40		60	%
Maximum Absolute Jitter, short term	t_{ja}			300		ps
27 MHz Output Pullability		$0V \leq VIN \leq 3 V$, Note 3	± 100	± 140		ppm

Note 1: With all clocks at highest frequencies.

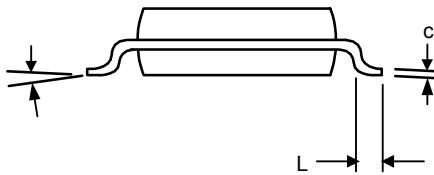
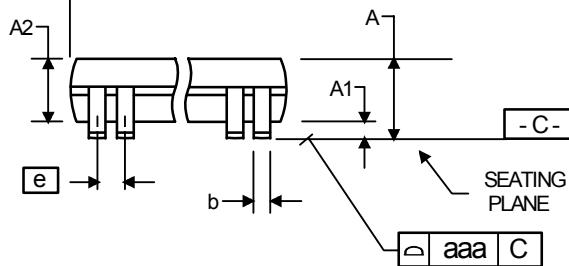
Note 2: With a pullable crystal that conforms to IDT's specifications.

Pullable Crystal Specifications


Frequency	13.500000 MHz
Correlation (load) Capacitance	14 pF
C0/C1	240 max.
ESR	25 Ω max.
Operating Temperature	0 to $70^\circ C$
Initial Accuracy	± 20 ppm
Temperature plus Aging Stability	± 50 ppm

External Components

The MK2771-16 requires a minimum number of external components for proper operation. Use a low inductance ground plane, connect all GNDs to this. Connect 0.01 μ F decoupling caps on pins 5, 7, 8 and 22 directly to the ground plane, as close to the MK2771-16 as possible. A series termination resistor of 33 Ω may be used for each clock output. The 13.500 MHz crystal must be connected as close to the chip as possible. The crystal should be a parallel mode, pullable, with load capacitance of 14 pF. Consult IDT full specifications. Please obey Application Note MAN05 for pullable crystal layout info except for the following: the MK2771-16 introduces a GND pin (pin #3) between the pullable crystal pins. This ground should be brought in straight from the right side underneath the device.



Package Outline and Package Dimensions (28-pin QSOP)

Package dimensions are kept current with JEDEC Publication No. 95

Symbol	Millimeters		Inches*	
	Min	Max	Min	Max
A	1.35	1.75	0.053	0.069
A1	0.10	0.25	0.004	0.010
A2	--	1.50	--	.059
b	0.20	0.30	0.008	0.012
c	0.18	0.25	0.007	0.010
D	9.80	10.00	0.386	0.394
E	5.80	6.20	0.228	0.244
E1	3.80	4.00	0.150	0.157
e	0.635 Basic		0.025 Basic	
L	0.40	1.27	0.016	0.050
α	0°		8°	

*For reference only. Controlling dimensions in mm.

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
MK2771-16RLF	MK2771-16RLF	Tubes	28-pin SSOP	0 to +70° C
MK2771-16RLFTR	MK2771-16RLF	Tape and Reel	28-pin SSOP	0 to +70° C

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

MK2771-16

VCXO AND SET-TOP CLOCK SOURCE

VCXO AND SYNTHESIZER

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.