

M16C/65C グループ

ルネサスマイクロコンピュータ

R01DS0015JJ0110 Rev.1.10 2012.03.16

1. 概要

1.1 特長

M16C/65C グループは、M16C/60 シリーズ CPU コアを搭載したフラッシュメモリ内蔵マイクロコンピュータです。M16C/60シリーズ CPU コアは、高機能命令を持ちながら高い命令効率を持ち、1 Mバイトのアドレス空間(4Mバイトに拡張可能)と、命令を高速に実行する能力を備え、さらに、乗算器があるため高速な演算処理が可能です。

また、消費電力が少ない上、動作モードによるパワーコントロールが可能であり、ノイズ対策機構により不要輻射ノイズは小さく、ノイズ耐量は大きく設計されています。

多機能タイマ、シリアルインタフェースなど、多彩な周辺機能を内蔵しており、システムの部品点数を少なくできます。

1.1.1 用途

オーディオ、カメラ、TV、家電、事務機器、通信機器、携帯機器、産業機器、他

1.2 仕様概要

M16C/65Cグループには128ピン版、100ピン版があります。表 1.1~表 1.4に仕様概要を示します。

表 1.1 仕様概要(128ピン版)(1/2)

分類	機能	説明					
CPU	中央演算処理装置	M16C/60 シリーズコア(乗算器: 16 ビット×16 ビット→ 32 ビット、					
		積和演算命令: 16ビット×16ビット+32ビット→ 32ビット)					
		● 基本命令数: 91					
		●最小命令実行時間: 31.25ns (f(BCLK)=32MHz、VCC1=VCC2=2.7~5.5V)					
		動作モード: シングルチップ、メモリ拡張、マイクロプロセッサ					
7 = 11	DOM DAM = 5						
メモリ	ROM、RAM、データ	「表 1.5 製品一覧表 (Nバージョン) ~表 1.6 製品一覧表 (Dバージョン) 」を					
電圧投山	フラッシュ 電圧検出回路	照してください • パワーオンリセット					
電圧検出	电压快压凹路						
		•電圧検出3点 (電圧検出0、電圧検出1は検出レベル選択可能)					
クロック	クロック発生回路	●5回路					
		メインクロック、サブクロック、低速オンチップオシレータ (125kHz)、高					
		速オンチップオシレータ (40MHz±5%)、PLL周波数シンセサイザ					
		• 発振停止検出: メインクロック発振停止、再発振検出機能					
		● 周波数分周回路: 1, 2, 4, 8, 16 分周選択					
		● 低消費電力機構: ウェイトモード、ストップモード					
外部バス拡張	バス	● リアルタイムクロックあり ー ボース マロー・バイー					
クトロレハヘが立て	メモリ拡張機能	●アドレス空間: 1Mバイト					
	プログラムコ以1成形	●外部バスインタフェース: 0~8ウェイト挿入可、チップセレクト4出力、					
		メモリ空間拡張機能(4Mバイトまで拡張可)、3V、5Vインタフェース					
		•バス形式:セパレートバス/マルチプレクスバス切り替え可、					
		データバス幅切り替え可(8ビット/16ビット)、					
		アドレスバス本数切り替え可(12本/16本/20本)					
1/0ポート	プログラマブル入出力	• CMOS 入出力: 111 (プルアップ抵抗設定可能)					
	ポート	•Nチャネルオープンドレインポート: 3					
割り込み		割り込みベクタ数: 70					
a., /,		外部割り込み入力: 13 (NMI、INT×8、キー入力×4)					
		割り込み優先レベル: 7レベル					
ウォッチドック	ブタイマ	15 ビット×1(プリスケーラ付)					
,,,,,,,,,		リセットスタート機能選択可能					
DMA	DMAC	• 4チャネル、サイクルスチール方式					
		● 起動要因数: 43					
		●転送モード: 2 (単転送、リピート転送)					
タイマ	タイマA	16ビットタイマ×5					
		タイマモード、イベントカウンタモード、ワンショットタイマモード、パ					
		ルス幅変調(PWM)モード					
		イベントカウンタニ相パルス信号処理 (二相エンコーダ入力)x3					
		プログラマブル出力モード×3					
	タイマB	16ビットタイマ×6					
		タイマモード、イベントカウンタモード、パルス周期測定モード、パルス 幅測定モード					
	三相モータ制御用タイ	三相インバータ制御 (タイマ A1、タイマ A2、タイマ A4、タイマ B2 使用)					
	マ機能	短絡防止タイマ内蔵					
	リアルタイムクロック	秒、分、時、曜日をカウント					
	PWM機能	8ビット×2					
	リモコン信号受信機能	•2回路					
		 • 4パターン波形マッチング(ヘッダ、データ0、データ1、特殊データ判別					
		`					
		●受信バッファ 6バイト(1回路のみ)					
		• 32kHz 動作					

表 1.2 仕様概要(128ピン版)(2/2)

分類	機能	説明
シリアルインタ	UART0~UART2、	クロック同期/非同期兼用×6チャネル
フェース	UART5~UART7	I ² C-bus、IEBus 、特殊モード2
		SIM (UART2)
	SI/O3、SI/O4	クロック同期専用×2チャネル
マルチマスタI ² C	-busインタフェース	1チャネル
CEC機能(注2)		CEC送受信、アービトレーションロスト検出、ACK自動送出、32kHz動作
A/Dコンバータ		分解能10ビット×26チャネル サンプル&ホールドあり 変換時間1.72μs
D/A コンバータ		分解能8ビット×2
CRC演算回路		CRC-CCITT (X ¹⁶ + X ¹² + X ⁵ + 1)、CRC-16 (X ¹⁶ + X ¹⁵ + X ² + 1)に準拠
フラッシュメモリ	J	● プログラム、イレーズ電圧: 2.7V~5.5V
		● プログラム、イレーズ回数: 1,000回(プログラムROM1、プログラム
		ROM2)、10,000回(データフラッシュ)
		● プログラムセキュリティ: ROMコードプロテクト、IDコードチェック
デバッグ機能		オンチップデバッグ機能、オンボードフラッシュ書き換え機能、アドレスー
		致割り込み×4
動作周波数/電源	電圧	32MHz/VCC1=2.7~5.5V、VCC2=2.7V~VCC1
消費電流		電気的特性に記載
動作周囲温度		-20°C~85°C、-40°C~85°C(注1)
パッケージ		128ピンLQFP: PLQP0128KB-A(旧パッケージコード: 128P6Q-A)

- 注1. 動作周囲温度は、「表 1.5 製品一覧表 (Nバージョン)~表 1.6 製品一覧表 (Dバージョン)」を参照してください。
- 注2. CEC機能は、HDMI (High-Definition Multimedia Interface) で規格化されているCEC信号の送受信に対応した回路です。HDMI及びHigh-Definition Multimedia Interfaceは、HDMI Licensing, LLCの商標または登録商標です。

表 1.3 仕様概要(100ピン版)(1/2)

分類	機能	説明
CPU	中央演算処理装置	M16C/60シリーズコア(乗算器: 16ビット×16ビット→ 32ビット、
		積和演算命令: 16ビット×16ビット+32ビット→ 32ビット)
		●基本命令数: 91
		●最小命令実行時間: 31.25ns (f(BCLK)=32MHz、VCC1=VCC2=2.7~5.5V)
		● 動作モード: シングルチップ、メモリ拡張、マイクロプロセッサ
メモリ	ROM、RAM、データ	「表 1.5 製品一覧表 (Nバージョン) ~表 1.6 製品一覧表 (Dバージョン)」を参
	フラッシュ	照してください
電圧検出	電圧検出回路	•パワーオンリセット
		●電圧検出3点 (電圧検出0、電圧検出1は検出レベル選択可能)
クロック	クロック発生回路	●5回路
		メインクロック、サブクロック、低速オンチップオシレータ (125kHz)、高
		速オンチップオシレータ (40MHz±5%)、PLL周波数シンセサイザ
		• 発振停止検出: メインクロック発振停止、再発振検出機能
		● 周波数分周回路: 1, 2, 4, 8, 16分周選択
		 ●低消費電力機構: ウェイトモード、ストップモード
		リアルタイムクロックあり
外部バス拡張	バス	● アドレス空間: 1Mバイト
	メモリ拡張機能	● 外部バスインタフェース: 0~8ウェイト挿入可、チップセレクト4出力、
		メモリ空間拡張機能(4Mバイトまで拡張可)、3V、5Vインタフェース
		・バス形式: セパレートバス/マルチプレクスバス切り替え可、
		データバス幅切り替え可(8ビット/16ビット)、
		アドレスバス本数切り替え可(12本/16本/20本)
1/0ポート	プログラマブル入出力	
	ポート	●Nチャネルオープンドレインポート: 3
割り込み		割り込みベクタ数: 70
		外部割り込み入力: 13 (NMI、INT×8、キー入力×4)
		割り込み優先レベル:7レベル
ウォッチドック	ブタイマ	15ビット×1(プリスケーラ付)
DMA	IDMAC	リセットスタート機能選択可能
DIVIA	DIVIAC	●4チャネル、サイクルスチール方式
		● 起動要因数: 43
		● 転送モード: 2 (単転送、リピート転送)

表 1.4 仕様概要(100ピン版)(2/2)

分類	機能	説明
タイマ	タイマA	16ビットタイマ×5
		タイマモード、イベントカウンタモード、ワンショットタイマモード、パ
		ルス幅変調(PWM)モード
		イベントカウンタニ相パルス信号処理 (二相エンコーダ入力)×3
		プログラマブル出力モード×3
	タイマB	16ビットタイマ×6
		タイマモード、イベントカウンタモード、パルス周期測定モード、パルス 幅測定モード
		三相インバータ制御 (タイマA1、タイマA2、タイマA4、タイマB2使用)
	イマ機能	短絡防止タイマ内蔵
		秒、分、時、曜日をカウント
	ク PWM機能	8ビット×2
		·
	リモコン信号受信機 能	
	HE	●4パターン波形マッチング(ヘッダ、データ0、データ1、特殊データ判別)
		●受信バッファ 6バイト(1回路のみ)
		● 32kHz 動作
	UART0~UART2、	クロック同期/非同期兼用×6チャネル
フェース	UART5~UART7	I ² C-bus、IEBus 、特殊モード2
	01/02 01/04	SIM (UART2)
	SI/O3、SI/O4	クロック同期専用×2チャネル
	-busインタフェース	
CEC機能(注2)		CEC送受信、アービトレーションロスト検出、ACK自動送出、32kHz動作
A/Dコンバータ		分解能10ビット×26チャネル サンプル&ホールドあり 変換時間1.72μs
D/A コンバータ		分解能8ビット×2
CRC演算回路		CRC-CCITT (X ¹⁶ + X ¹² + X ⁵ + 1)、CRC-16 (X ¹⁶ + X ¹⁵ + X ² + 1)に準拠
フラッシュメモ!	J	プログラム、イレーズ電圧: 2.7V~5.5V
		●プログラム、イレーズ回数: 1,000回(プログラムROM1、プログラム
		ROM2)、10,000回(データフラッシュ)
		• プログラムセキュリティ : ROMコードプロテクト、IDコードチェック
デバッグ機能		オンチップデバッグ機能、オンボードフラッシュ書き換え機能、アドレスー 致割り込み×4
動作周波数/電源	電圧	32MHz/VCC1=2.7~5.5V、VCC2=2.7V~VCC1
消費電流		電気的特性に記載
動作周囲温度		-20℃~85℃、-40℃~85℃(注1)
パッケージ		100ピンQFP: PRQP0100JD-B(旧パッケージコード: 100P6F-A)
		100ピンLQFP: PLQP0100KB-A(旧パッケージコード: 100P6Q-A)

- 注1. 動作周囲温度は、「表 1.5 製品一覧表 (Nバージョン)~表 1.6 製品一覧表 (Dバージョン)」を参照してください。
- 注2. CEC機能は、HDMI (High-Definition Multimedia Interface) で規格化されているCEC信号の送受信に対応した回路です。HDMI及びHigh-Definition Multimedia Interfaceは、HDMI Licensing, LLCの商標または登録商標です。

1.3 製品一覧

表 1.5~表 1.6 に製品一覧表、図 1.1 に型名とメモリサイズ・パッケージ、図 1.2 にフラッシュメモリ版のマーキング図(上面図)を示します。

表 1.5 製品一覧表 (Nバージョン)

2012年3月現在

		ROM容量				
型名	プログラム	プログラム	データ	RAM容量	パッケージ	備考
	ROM1	ROM2	フラッシュ			
R5F36506CNFA	128Kバイト	16Kバイト	4Kバイト	12Kバイト	PRQP0100JD-B	動作周囲温度
R5F36506CNFB			×2ブロック		PLQP0100KB-A	-20°C~85°C
R5F3651ECNFC	256Kバイト	16Kバイト	4Kバイト	20Kバイト	PLQP0128KB-A	
R5F3650ECNFA			×2ブロック		PRQP0100JD-B	
R5F3650ECNFB					PLQP0100KB-A	
R5F3651KCNFC	384Kバイト	16Kバイト	4Kバイト	31Kバイト	PLQP0128KB-A	
R5F3650KCNFA			×2ブロック		PRQP0100JD-B	
R5F3650KCNFB					PLQP0100KB-A	
R5F3651MCNFC	512Kバイト	16Kバイト	4Kバイト	31Kバイト	PLQP0128KB-A	
R5F3650MCNFA			×2ブロック		PRQP0100JD-B	
R5F3650MCNFB					PLQP0100KB-A	
R5F3651NCNFC	512Kバイト	16Kバイト	4Kバイト	47Kバイト	PLQP0128KB-A	
R5F3650NCNFA			×2ブロック		PRQP0100JD-B	
R5F3650NCNFB					PLQP0100KB-A	

(開):開発中 (計):計画中

各パッケージの旧パッケージコードは以下のとおりです。

PLQP0128KB-A: 128P6Q-A、PRQP0100JD-B: 100P6F-A、PLQP0100KB-A: 100P6Q-A

表 1.6 製品一覧表 (Dバージョン)

2012年3月現在

		ROM容量				
型名	プログラム ROM1	プログラム ROM2	データ フラッシュ	RAM容量	パッケージ	備考
R5F36506CDFA	128Kバイト	16Kバイト	4Kバイト	12Kバイト	PRQP0100JD-B	動作周囲温度
R5F36506CDFB			×2ブロック		PLQP0100KB-A	-40°C~85°C
R5F3651ECDFC	256Kバイト	16Kバイト	4Kバイト	20Kバイト	PLQP0128KB-A	
R5F3650ECDFA			×2ブロック		PRQP0100JD-B	
R5F3650ECDFB					PLQP0100KB-A	
R5F3651KCDFC	384Kバイト	16Kバイト	4Kバイト	31Kバイト	PLQP0128KB-A	
R5F3650KCDFA			×2ブロック		PRQP0100JD-B	
R5F3650KCDFB					PLQP0100KB-A	
R5F3651MCDFC	512Kバイト	16Kバイト	4Kバイト	31Kバイト	PLQP0128KB-A	
R5F3650MCDFA			×2ブロック		PRQP0100JD-B	
R5F3650MCDFB					PLQP0100KB-A	
R5F3651NCDFC	512Kバイト	16Kバイト	4Kバイト	47Kバイト	PLQP0128KB-A	
R5F3650NCDFA			×2ブロック		PRQP0100JD-B	
R5F3650NCDFB					PLQP0100KB-A	

(開):開発中 (計):計画中

各パッケージの旧パッケージコードは以下のとおりです。

PLQP0128KB-A: 128P6Q-A、PRQP0100JD-B: 100P6F-A、PLQP0100KB-A: 100P6Q-A

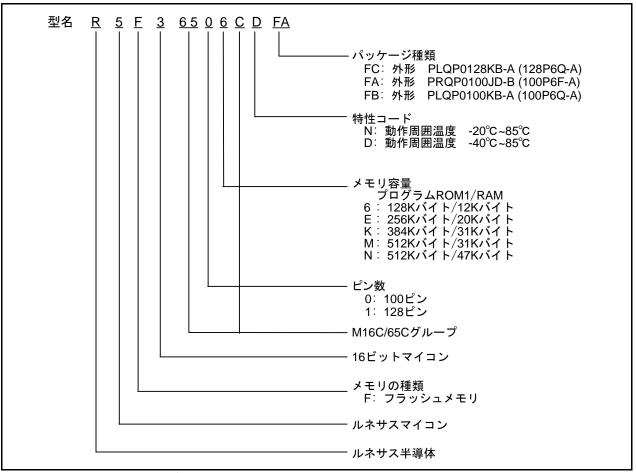


図 1.1 型名とメモリサイズ・パッケージ

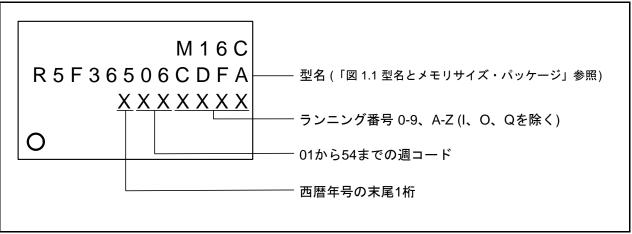


図 1.2 フラッシュメモリ版のマーキング図(上面図)

1.4 ブロック図

図 1.3~図 1.4にブロック図を示します。

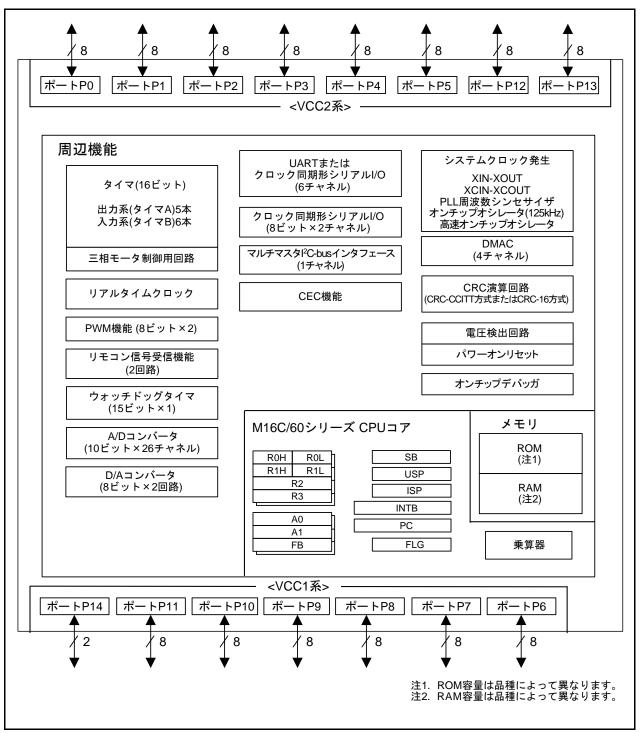


図 1.3 ブロック図(128ピン版)

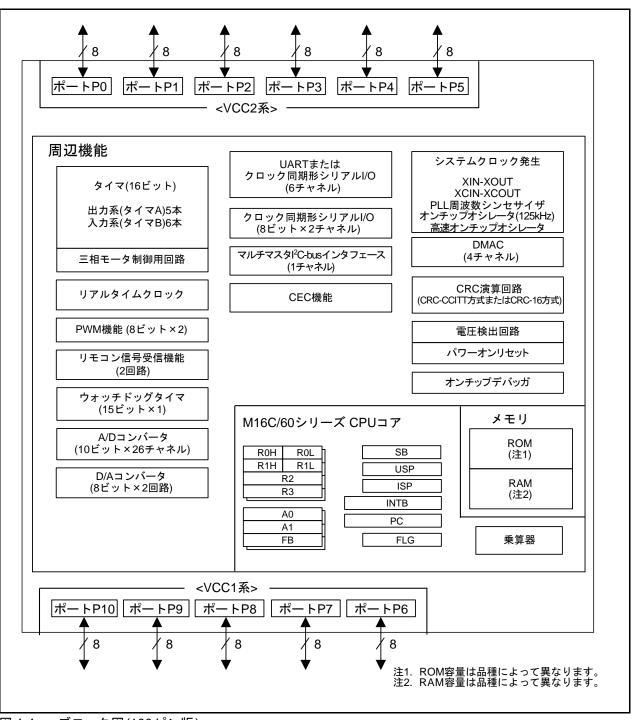


図 1.4 ブロック図(100ピン版)

1.5 ピン配置図

図 1.5~図 1.7にピン配置図(上面図)を示します。また、表 1.7~表 1.11に端子名一覧表を示します。

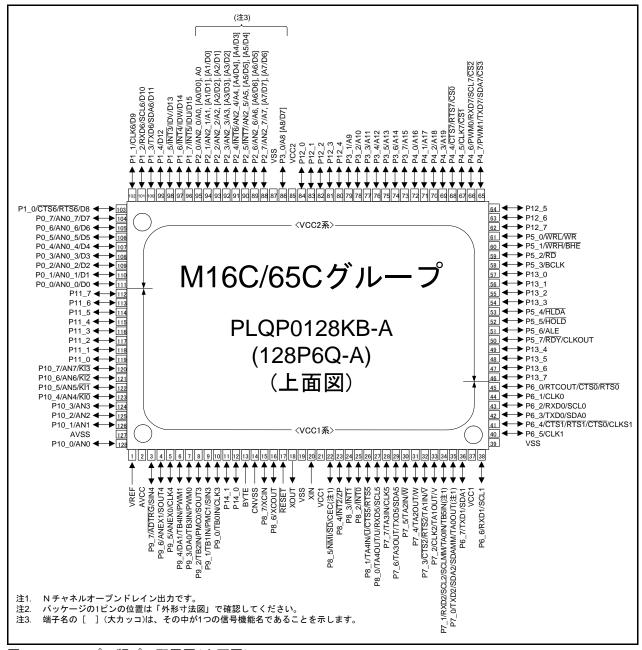


図 1.5 128ピン版ピン配置図(上面図)

表 1.7 128ピン版端子名一覧表 (1/3)

	制御端子			周辺機能の入出力端子					
Pin No.		ポート	割り込み	タイマ	シリアルインタフェース	A/Dコンバータ D/Aコンバータ	バス制御端子		
1	VREF								
2	AVCC								
3		P9_7			SIN4	ADTRG			
4		P9_6			SOUT4	ANEX1			
5		P9_5			CLK4	ANEX0			
6		P9_4		TB4IN/PWM1		DA1			
7		P9_3		TB3IN/PWM0		DA0			
8		P9_2		TB2IN/PMC0	SOUT3	27.0			
9		P9_1		TB1IN/PMC1	SIN3				
10		P9_0		TB0IN	CLK3				
11		P14_1		TEONY	O L NO				
12		P14_0							
13	BYTE	1 14_0							
14	CNVSS								
15	XCIN	P8_7							
16	XCOUT	P8_6							
17	RESET	1 0_0							
18	XOUT								
19	VSS								
	XIN								
20									
21	VCC1	D0 5	N IN AT	00	050				
22		P8_5	NMI	SD	CEC				
23		P8_4	INT2	ZP					
24		P8_3	INT1						
25		P8_2	INT0						
26		P8_1		TA4IN/Ū	CTS5/RTS5				
27		P8_0		TA4OUT/U	RXD5/SCL5				
28		P7_7		TA3IN	CLK5				
29		P7_6		TA3OUT	TXD5/SDA5				
30		P7_5		TA2IN/W					
31		P7_4		TA2OUT/W					
32		P7_3		TA1IN/V	CTS2/RTS2				
33		P7_2		TA1OUT/V	CLK2				
34		P7_1		TA0IN/TB5IN	RXD2/SCL2/SCLMM				
35		P7_0		TA0OUT	TXD2/SDA2/SDAMM				
36		P6_7			TXD1/SDA1				
37	VCC1								
38		P6_6			RXD1/SCL1				
39	VSS	<u> </u>							
40		P6_5			CLK1				
41		P6_4			CTS1/RTS1/CTS0/CLKS1				
42		P6_3			TXD0/SDA0				
43		P6_2			RXD0/SCL0				
44		P6_1			CLK0				
45		P6_0		RTCOUT	CTS0/RTS0				
46		P13_7							
47		P13_6							
48		P13_5							
49		P13_4							
50	CLKOUT	P5_7					RDY		

表 1.8 128ピン版端子名一覧表 (2/3)

制御端子			<u> </u>				
Pin No.		ポート	割り込み		周辺機能の入出力端子	A/Dコンバータ	バス制御端子
			割り込み	タイマ	シリアルインタフェース	D/A コンバータ	
51		P5_6					ALE
52		P5_5					HOLD
53		P5_4					HLDA
54		P13_3					
55		P13_2					
56		P13_1					
57		P13_0					
58		P5_3					BCLK
59		P5_2					RD
60		P5_1					WRH/BHE
61		P5_0					WRL/WR
62		P12_7					VVIII.
63		P12_6					
64		P12_5					
65		P4_7		PWM1	TXD7/SDA7		CS3
66		P4_7	<u> </u>	PWM0	RXD7/SCL7		CS2
67		P4_6 P4_5	-	I VVIVIU	CLK7		CS1
					CTS7/RTS7		CS0
68		P4_4			CISI/NISI		A19
69		P4_3					
70		P4_2					A18
71		P4_1					A17
72		P4_0					A16
73		P3_7					A15
74		P3_6					A14
75		P3_5					A13
76		P3_4					A12
77		P3_3					A11
78		P3_2					A10
79		P3_1					A9
80		P12_4					
81		P12_3					
82		P12_2					
83		P12_1					
84		P12_0					
85	VCC2						
86		P3_0					A8, [A8/D7]
87	VSS						
88		P2_7				AN2_7	A7, [A7/D7], [A7/D6
89		P2_6				AN2_6	A6, [A6/D6], [A6/D5
90		P2_5	INT7			AN2_5	A5, [A5/D5], [A5/D4
91		P2_4	INT6			AN2_4	A4[A4/D4], [A4/D3]
92		P2_3				AN2_3	A3, [A3/D3], [A3/D2
93		P2_2				AN2_2	A2, [A2/D2], [A2/D1
94		P2_1				AN2_1	A1, [A1/D1], [A1/D0
95		P2_0				AN2_0	A0, [A0/D0], A0
96		P1_7	INT5	IDU			D15
97		P1_6	ĪNT4	IDW			D14
98		P1_5	INT3	IDV			D13
99		P1_4					D12
100		P1_3			TXD6/SDA6		D11

表 1.9 128ピン版端子名一覧表 (3/3)

	制御端子	端子		周辺	型機能の入出力端子		
Pin No.		ポート	割り込み	タイマ	シリアルインタフェース	A/Dコンバータ D/Aコンバータ	バス制御端子
101		P1_2			RXD6/SCL6		D10
102		P1_1			CLK6		D9
103		P1_0			CTS6/RTS6		D8
104		P0_7				AN0_7	D7
105		P0_6				AN0_6	D6
106		P0_5				AN0_5	D5
107		P0_4				AN0_4	D4
108		P0_3				AN0_3	D3
109		P0_2				AN0_2	D2
110		P0_1				AN0_1	D1
111		P0_0				AN0_0	D0
112		P11_7					
113		P11_6					
114		P11_5					
115		P11_4					
116		P11_3					
117		P11_2					
118		P11_1					
119		P11_0					
120		P10_7	KI3			AN7	
121		P10_6	KI2			AN6	
122		P10_5	KI1			AN5	
123		P10_4	KI0			AN4	
124		P10_3				AN3	
125		P10_2				AN2	
126		P10_1				AN1	
127	AVSS						
128		P10_0				AN0	

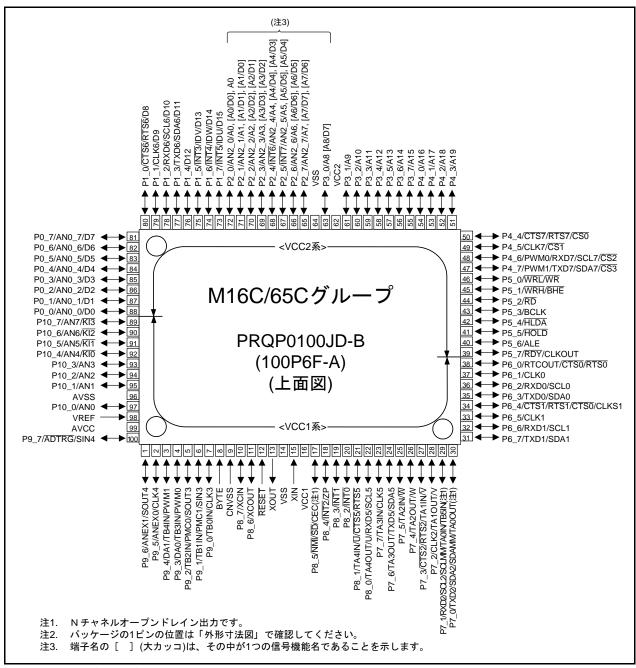


図 1.6 100ピン版ピン配置図(上面図)

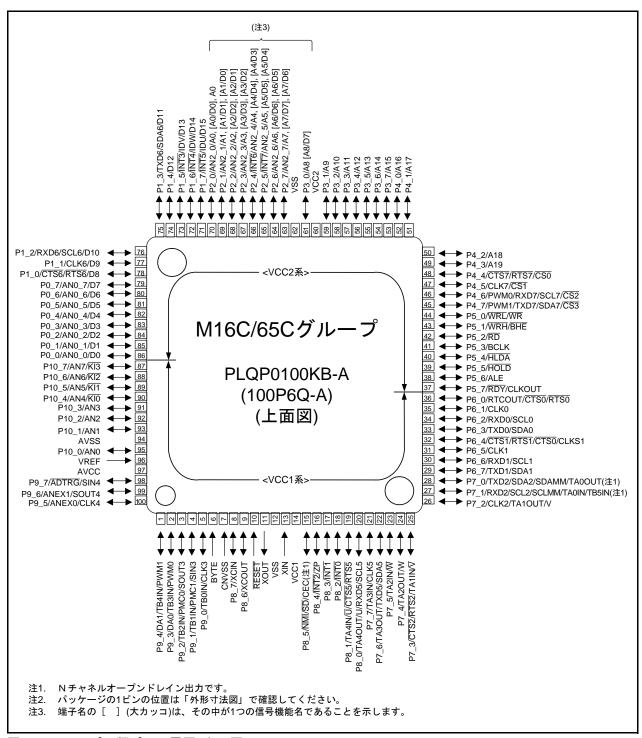


図 1.7 100ピン版ピン配置図(上面図)

表 1.10 100ピン版端子名一覧表 (1/2)

	Pin No.							
		制御端子	ポート		/PJ X	21成形の人田 万型 1	A/Dコンバータ	バス制御端子
FA	FB	mi 1mi mi _1	/N- P	割り込み	タイマ	シリアルインタフェース	D/Aコンバータ	八人即呼叫丁
1	99		P9_6			SOUT4	ANEX1	
2	100		P9_5			CLK4	ANEXO	
3	1		P9_4		TB4IN/PWM1	CLI(4	DA1	
4	2		P9_3		TB3IN/PWM0		DA0	
5	3		P9_2		TB2IN/PMC0	SOUT3	DAU	
	4				TB1IN/PMC1			
6 7	5		P9_1		TB0IN	SIN3		
8	6	BYTE	P9_0		I BUIN	CLK3		
9	7	CNVSS						
			D0 7					
10	8	XCIN XCOUT	P8_7					
11			P8_6					
12	10	RESET						
13		XOUT						
14	12	VSS						
15		XIN						
16	14	VCC1	Do -	N. 12. C.		0=0		
17	15		P8_5		SD	CEC		
18	16		P8_4	ĪNT2	ZP			
19	17		P8_3	INT1				
20	18		P8_2	ĪNT0				
21	19		P8_1		TA4IN/Ū	CTS5/RTS5		
22	20		P8_0		TA4OUT/U	RXD5/SCL5		
23	21		P7_7		TA3IN	CLK5		
24	22		P7_6		TA3OUT	TXD5/SDA5		
25	23		P7_5		TA2IN/W			
26	24		P7_4		TA2OUT/W			
27	25		P7_3		TA1IN/V	CTS2/RTS2		
28	26		P7_2		TA1OUT/V	CLK2		
29	27		P7_1		TA0IN/TB5IN	RXD2/SCL2/SCLMM		
30	28		P7_0		TA0OUT	TXD2/SDA2/SDAMM		
31	29		P6_7			TXD1/SDA1		
32	30		P6_6			RXD1/SCL1		
33	31		P6_5			CLK1		
34	32		P6_4			CTS1/RTS1/CTS0/ CLKS1		
35	33		P6_3			TXD0/SDA0		
36	34		P6_2			RXD0/SCL0		
37	35		P6_1			CLK0		
38	36		P6_0		RTCOUT	CTS0/RTS0		
39	37	CLKOUT	P5_7					RDY
40	38		P5_6					ALE
41	39		P5_5					HOLD
42	40		P5_4					HLDA
43	41		P5_3					BCLK
44	42		P5_2					RD
45	43		P5_1					WRH/BHE
46	44		P5_0					WRL/WR
46	45		P5_0 P4_7		PWM1	TXD7/SDA7		CS3
47	46		P4_7 P4_6		PWM0	RXD7/SCL7		CS2
					L AAIAIO	_		CS2 CS1
49	47		P4_5			CLK7 CTS7/RTS7		CS1 CS0
50	48		P4_4			C191/R191		U3U

表 1.11 100ピン版端子名一覧表 (2/2)

Pin				`	<u>, </u>	周辺機能の入出力端子		
FA	FB	制御端子	ポート	割り込み		シリアルインタフェース	A/Dコンバータ	バス制御端子
51	49		P4_3				D/A コンバータ	A19
52	50		P4_2					A18
53	51		P4_1					A17
54	52		P4_0					A16
55	53		P3_7					A15
56	54		P3_6					A14
57	55		P3_5					A13
58	56		P3_4					A12
59	57		P3_3					A11
60	58		P3_2					A10
61	59		P3_1					A9
62	60	VCC2	1 3_1					A9
63	61	VCC2	P3_0					A8, [A8/D7]
64	62	VSS	1 3_0					A0, [A0/D7]
65	63	V 33	P2_7				AN2_7	A7, [A7/D7], [A7/D6]
66	64		P2_ <i>1</i>				AN2_6	A6, [A6/D6], [A6/D5]
67	65		P2_6 P2_5	ĪNT7				A5, [A5/D5], [A5/D4]
							AN2_5	
68	66		P2_4	ĪNT6			AN2_4	A4, [A4/D4], [A4/D3]
69	67		P2_3				AN2_3	A3, [A3/D3], [A3/D2]
70	68		P2_2				AN2_2	A2, [A2/D2], [A2/D1]
71	69		P2_1				AN2_1	A1, [A1/D1], [A1/D0]
72	70		P2_0				AN2_0	A0, [A0/D0], A0
73	71		P1_7	INT5	IDU			D15
74	72		P1_6	INT4	IDW			D14
75	73		P1_5	ĪNT3	IDV			D13
76	74		P1_4			T)/D0/0D40		D12
77	75		P1_3			TXD6/SDA6		D11
78	76		P1_2			RXD6/SCL6		D10
79	77		P1_1			CLK6		D9
80	78		P1_0			CTS6/RTS6		D8
81	79		P0_7				AN0_7	D7
82	80		P0_6				AN0_6	D6
83	81		P0_5				AN0_5	D5
84	82		P0_4				AN0_4	D4
85	83		P0_3				AN0_3	D3
86	84		P0_2				AN0_2	D2
87	85		P0_1				AN0_1	D1
88	86		P0_0				AN0_0	D0
89	87		P10_7	KI3			AN7	
90	88		P10_6	KI2			AN6	
91	89		P10_5	KI1			AN5	
92	90		P10_4	KI0			AN4	
93	91		P10_3				AN3	
94	92		P10_2				AN2	
95	93		P10_1				AN1	
96	94	AVSS						
97	95		P10_0				AN0	
98	96	VREF						
99	97	AVCC						
100	98		P9_7			SIN4	ADTRG	

1.6 端子機能の説明

表 1.12 端子機能の説明(128ピン版) (1/3)

分類	端子名	入出力	電源系統	機能
電源入力	VCC1、	入力	_	VCC1、VCC2端子には、2.7V~5.5V を入力してください。
	VCC2			入力条件はVCC1≧VCC2です。
	VSS			VSS端子には、0Vを入力してください。
アナログ電源入力	AVCC	入力	VCC1	A/Dコンバータ、D/Aコンバータの電源入力です。AVCC
	AVSS			端子はVCC1に接続してください。AVSS端子はVSSに接
				続してください。
リセット入力	RESET	入力	VCC1	この端子に"L"を入力すると、マイクロコンピュータはリ
				セット状態になります。
CNVSS	CNVSS	入力	VCC1	プロセッサモードを切り替えるための端子です。リセット
				後、シングルチップモードで動作を開始する場合、抵抗を
				介してVSSに接続してください。マイクロプロセッサ
				モードで動作を開始する場合VCC1に接続してください。
外部データバス幅	BYTE	入力	VCC1	外部領域のデータバスを切り替えるための端子です。この
切り替え入力				端子が"L"の場合16ビット、"H"の場合8ビットになりま
				す。どちらかに固定してください。シングルチップモード
> - 4:1/4:1111 →	D0 D7	7 1	1/000	では、VSSに接続してください。
バス制御端子	D0~D7	入出力	VCC2	セパレートバスを選択している領域をアクセスしたとき
	D0 D45	7 11 4	1/000	データ (D0~D7) の入出力を行います。
	D8~D15	入出力	VCC2	外部データバスが16ビットでセパレートバスを選択して
				いる領域をアクセスしたときデータ (D8~D15) の入出力を
	A0~A19	出力	VCC2	行います。 アドレス A0~A19 を出力します。
				_ 1 11 2 1 2
	A0/D0~ A7/D7	入出力	VCC2	外部データバスが8ビットでマルチプレクスバスを選択している。2017年11月1日
	AIIDI			ている領域をアクセスしたときデータ(D0~D7)の入出力
	A 4 /D 0		\/OO0	と、アドレス (A0~A7) の出力を時分割で行います。
	A1/D0~	入出力	VCC2	外部データバスが16ビットでマルチプレクスバスを選択
	A8/D7			している領域をアクセスしたときデータ(D0~D7)の入出力
		.	1/000	と、アドレス (A1~A8) の出力を時分割で行います。
	CS0~CS3	出力	VCC2	チップセレクト信号でアクセス空間の指定に使用します。
	WRL/WR WRH/BHE	出力	VCC2	WRL、WRH、(WR、BHE)、RD信号を出力します。プロ
	RD			グラムでWRL、WRHまたは、BHE、WRを切り替えられ
				ます。 ・WRL、WRH、RD選択時
				・WRL、WRII、RD選択時 外部データバスが16ビットの場合、WRL信号が"L"のとき
				は偶数番地に、WRH信号が"L"のときは奇数番地に書きま
				す。RD信号が"L"のとき読み出します。
				・WR、BHE、RD選択時
				WR信号が"L"のとき書き込みます。RD信号が"L"のとき
				読み出します。BHE信号が"L"のとき奇数番地をアクセス
				します。外部データバスが8ビットのとき、このモードを
				使用してください。
	ALE	出力	VCC2	アドレスをラッチするための信号です。
	HOLD	入力	VCC2	HOLD入力は使用できません。HOLD端子は抵抗を介して
	==			VCC2に接続(プルアップ)してください。
	HLDA	出力	VCC2	ホールド状態の期間、"L"を出力します。
	RDY	入力	VCC2	入力が"L"の期間、マイクロコンピュータのバスはウェイ
				ト状態になります。

電源系統: 外部バス関連の端子の電源系統を分けVCC2系としました。このため、VCC1系とは異なる電圧でインタフェースできます。

表 1.13 端子機能の説明(128ピン版)(2/3)

分類	端子名	入出力	電源系統	
メインクロック入力	XIN	入力	VCC1	メインクロック発振回路の入出力です。XIN端子と
メインクロック出力	XOUT	出力	VCC1	XOUT端子の間にはセラミック共振子、または水晶角
				振子を接続してください(注1)。外部で生成したク
				ロックを入力する場合は、XIN端子からクロックを入
				カし、XOUT端子は開放にしてください。
サブクロック入力	XCIN	入力	VCC1	サブクロック発振回路の入出力です。XCIN端子と
サブクロック出力	XCOUT	出力	VCC1	XCOUT端子の間には水晶発振子を接続してください
				(注1)。外部で生成したクロックを入力する場合は、
				XCIN端子からクロックを入力し、XCOUT端子は開放
				にしてください。
BCLK出力	BCLK	出力	VCC2	BCLK信号を出力します。
<u></u> クロック出力	CLKOUT	出力	VCC2	fC、f1、f8、またはf32と同じ周期のクロックを出力します
INT割り込み入力	INT0~INT2	入力	VCC1	INT割り込みの入力です。
	INT3~INT7	入力	VCC2	, <u>, , , , , , , , , , , , , , , , </u>
 NMI割り込み入力	NMI	入力	VCC1	 NMI割り込みの入力です。
NIMI 割り込み入力 キー入力割り込み入力	KI0~KI3	入力	VCC1	キー入力割り込みの入力です。
タイマA	TA0OUT~	入り	VCC1	ヤー人力割り込みの人力です。 タイマA0~A4の入出力です(ただし、TA0OUTの出力
31 YA	TA4OUT	人出力	VCC1	· ·
	TA0IN~TA4IN	3 A	VCC1	はNチャネルオープンドレイン)。
	ZP	入力	VCC1	タイマA0~A4の入力です。
5 / - D	TB0IN~TB5IN	入力	VCC1	Z相の入力です。
タイマB		入力	VCC1	タイマB0~B5の入力です。
三相モータ制御用	$\overline{U}, \overline{U}, V, \overline{V}, W, \overline{W}$	出力		三相モータ制御用タイマの出力です。
タイマ	SD	入力	VCC1	強制遮断入力です。
	IDU, IDV IDW	入力	VCC2	位置データの入力です。
リアルタイムクロック出力	RTCOUT	出力	VCC1	リアルタイムクロックの出力です。
PWM出力	PWM0, PWM1	出力	VCC1,	PWM出力です。
		7	VCC2 VCC1	
リモコン信号受信入力	PMC0, PMC1	入力		リモコン信号受信機能の入力です。
シリアルインタフェース UART0~UART2,	CTS0~CTS2, CTS5	入力	VCC1	送信制御用入力です。
UART5~UART7	CTS6, CTS7	入力	VCC2	
	RTS0~RTS2,	出力	VCC1	受信制御用出力です。
	RTS5			
	RTS6, RTS7	出力	VCC2	
	CLK0~CLK2,	入出力	VCC1	送受信クロック入出力です。
	CLK5			
	CLK6, CLK7	入出力	VCC2	
	RXD0~RXD2,	入力	VCC1	シリアルデータ入力です。
	RXD5	L	1,000	
	RXD6, RXD7	入力	VCC2	
	TXD0~TXD2,	出力	VCC1	シリアルデータ出力です。(注2)
	TXD5	111.4	VCC2	
	TXD6, TXD7	出力	VCC2	
ΙΙΛΟΤΟ ΙΙΛΟΤΟ	CLKS1 SDA0~SDA2,	出力	VCC1	送受信クロック複数端子出力機能の出力です。
UART0~UART2, UART5~UART7	SDA0~SDA2, SDA5	入出力	VCC1	シリアルデータ入出力です。
UART5~UART7 I ² Cモード	SDA5 SDA6, SDA7	入出力	VCC2	-
1-U-T-P	SCL0~SCL2,		VCC2	
	SCL0~SCL2,	入出力	V 00 1	送受信クロック入出力です。
	SCL6, SCL7	入出力	VCC2	1
シリアルインタフェース	CLK3, CLK4	入出力	VCC2	 送受信クロック入出力です。
シリアルインダフェース SI/O3, SI/O4			VCC1	
51, 55, 51, 5 1	SIN3, SIN4	入力		シリアルデータ入力です。
	SOUT3, SOUT4	出力	VCC1	シリアルデータ出力です。

発振特性は発振子メーカに問い合わせてください。 TXD2, SDA2, SCL2の出力は N チャネルオープンドレインです。TXDi (i=0, 1, 5~7)、SDAi, SCLiの出力はCMOS 出力で、プログラムでNチャネルオープンドレイン出力に変更できます。

表 1.14 端子機能の説明(128ピン版)(3/3)

分類	端子名	入出力	電源系統	機能
マルチマスタ I ² C-bus	SDAMM	入出力	VCC1	シリアルデータ入出力です。(出力はNチャネルオープンドレイン)
インタフェース	SCLMM	入出力	VCC1	送受信クロック入出力です。(出力はNチャネルオープンドレイン)
CEC入出力	CEC	入出力	VCC1	CEC入出力です。(出力はNチャネルオープンドレイン)
基準電圧入力	VREF	入力	VCC1	A/DコンバータとD/Aコンバータの基準電圧入力です。
A/Dコンバータ	AN0~AN7	入力	VCC1	アナログ入力です。
	AN0_0~AN0_7 AN2_0~AN2_7	入力	VCC2	
	ADTRG	入力	VCC1	外部トリガ入力です。
	ANEX0, ANEX1	入力	VCC1	拡張アナログ入力です。
D/A コンバータ	DA0,DA1	出力	VCC1	D/Aコンバータの出力です。
入出力ポート	P0_0~P0_7 P1_0~P1_7 P2_0~P2_7 P3_0~P3_7 P4_0~P4_7 P5_0~P5_7 P12_0~12_7 P13_0~P13_7	入出力	VCC2	CMOSの8ビット入出力ポートです。入出力を選択するための方向レジスタを持ち、1端子ごとに入力ポート、または出力ポートにできます。 入力ポートは、4ビット単位でプルアップ抵抗の有無を選択できます。
	P6_0~P6_7 P7_0~P7_7 P8_0~P8_7 P9_0~P9_7 P10_0~P10_7 P11_0~P11_7	入出力	VCC1	P0と同等の機能を持つ8ビット入出力ポートです。ただし、P7_0, P7_1, P8_5の出力はNチャネルオープンドレイン出力。プルアップはありません。P8_5は、NMIと端子を共用しています。NMIの入力レベルを確認できます。
	P14_0、P14_1	入出力	VCC1	P0と同等の機能を持つ入出力ポートです。

表 1.15 端子機能の説明(100ピン版)(1/3)

分類	端子名	入出力	電源系統	機能
電源入力	VCC1,	入力	_	VCC1、VCC2端子には、2.7V~5.5Vを入力してください。
	VCC2			入力条件はVCC1≧VCC2です。
	VSS			VSS端子には、OVを入力してください。
アナログ電源入力	AVCC	入力	VCC1	A/Dコンバータ、D/Aコンバータの電源入力です。AVCC端
	AVSS			子はVCC1に接続してください。AVSS端子はVSSに接続
				してください。
リセット入力	RESET	入力	VCC1	この端子に"L"を入力すると、マイクロコンピュータはリ
				セット状態になります。
CNVSS	CNVSS	入力	VCC1	プロセッサモードを切り替えるための端子です。リセット
				後、シングルチップモードで動作を開始する場合、抵抗を
				介してVSSに接続してください。マイクロプロセッサモー
				ドで動作を開始する場合VCC1に接続してください。
外部データバス幅	BYTE	入力	VCC1	外部領域のデータバスを切り替えるための端子です。この
切り替え入力				端子が"L"の場合16ビット、"H"の場合8ビットになりま
				す。どちらかに固定してください。シングルチップモード
	D0 D7		1,000	では、VSSに接続してください。
バス制御端子	D0~D7	入出力	VCC2	セパレートバスを選択している領域をアクセスしたとき
				データ (D0~D7) の入出力を行います。
	D8~D15	入出力	VCC2	外部データバスが16ビットでセパレートバスを選択してい
				る領域をアクセスしたときデータ (D8~D15) の入出力を行
	10.110	 	1,000	います。
	A0~A19	出力	VCC2	アドレス A0~A19を出力します。
	A0/D0~	入出力	VCC2	外部データバスが8ビットでマルチプレクスバスを選択し
	A7/D7			ている領域をアクセスしたときデータ(D0~D7)の入出力
				と、アドレス (A0~A7) の出力を時分割で行います。
	A1/D0~	入出力	VCC2	外部データバスが16ビットでマルチプレクスバスを選択し
	A8/D7			ている領域をアクセスしたときデータ(D0~D7)の入出力
				と、アドレス(A1~A8)の出力を時分割で行います。
	CS0~CS3	出力	VCC2	チップセレクト信号でアクセス空間の指定に使用します。
	WRL/WR	出力	VCC2	WRL、WRH、(WR、BHE)、RD信号を出力します。プロ
	WRH/BHE			グラムでWRL、WRHまたは、BHE、WRを切り替えられ
	RD			ます。
				・WRL、WRH、RD選択時
				外部データバス <u>が16</u> ビットの場合、WRL信号が"L"のとき
				は偶数番地に、WRH信号が"L"のときは奇数番地に書きま
				す。RD信号が"L"のとき読み出します。
				<u>· WR、BHE、RD</u> 選択時
				WR信号が"L"のとき書き込みます。RD信号が"L"のとき読
				み出します。BHE信号が"L"のとき奇数番地をアクセスし
				ます。外部データバスが8ビットのとき、このモードを使
	A1 E	1111	\/CC2	用してください。
	ALE	出力	VCC2	アドレスをラッチするための信号です。
	HOLD	入力	VCC2	HOLD 入力は使用できません。HOLD 端子は抵抗を介して
		1.	14000	VCC2に接続(プルアップ)してください。
	HLDA	出力	VCC2	ホールド状態の期間、"L"を出力します。
	RDY	入力	VCC2	入力が"L"の期間、マイクロコンピュータのバスはウェイ
				ト状態になります。

電源系統: 外部バス関連の端子の電源系統を分けVCC2系としました。このため、VCC1系とは異なる電圧でインタフェースできます。

表 1.16 端子機能の説明(100ピン版)(2/3)

分類	端子名	入出力	電源系統	機能
メインクロック入力	XIN	入力	VCC1	メインクロック発振回路の入出力です。XIN端子と
メインクロック出力	XOUT	出力	VCC1	XOUT端子の間にはセラミック共振子、または水晶発
				振子を接続してください(注1)。外部で生成したク
				ロックを入力する場合は、XIN端子からクロックを入
				カし、XOUT端子は開放にしてください。
サブクロック入力	XCIN	入力	VCC1	サブクロック発振回路の入出力です。XCIN端子とXCOUT
サブクロック出力	XCOUT	出力	VCC1	端子の間には水晶発振子を接続してください(注1)。外部
				で生成したクロックを入力する場合は、XCIN端子からク
				ロックを入力し、XCOUT端子は開放にしてください。
BCLK出力	BCLK	出力	VCC2	BCLK信号を出力します。
クロック出力	CLKOUT	出力	VCC2	fC、f1、f8、またはf32と同じ周期のクロックを出力します。
INT割り込み入力	INT0~INT2	入力	VCC1	INT割り込みの入力です。
	INT3~INT7	入力	VCC2	
NMI割り込み入力	NMI	入力	VCC1	NMI割り込みの入力です。
キー入力割り込み入力	KI0~KI3	入力	VCC1	十一入力割り込みの入力です。
タイマA	TA0OUT~	入出力	VCC1	タイマA0~A4の入出力です(ただし、TA0OUTの出力
	TA4OUT	,,,,,,		はNチャネルオープンドレイン)。
	TA0IN~TA4IN	入力	VCC1	タイマA0~A4の入力です。
	ZP	入力	VCC1	Z相の入力です。
タイマB	TB0IN~TB5IN	入力	VCC1	タイマB0~B5の入力です。
三相モータ制御用	U, Ū, V, V, W, W	出力	VCC1	三相モータ制御用タイマの出力です。
タイマ	SD	入力	VCC1	強制遮断入力です。
	IDU, IDV IDW	入力	VCC2	位置データの入力です。
リアルタイムクロック出力	,	出力	VCC1	リアルタイムクロックの出力です。
PWM出力	PWM0, PWM1	出力	VCC1,	PWM出力です。
רל דו ייייוייי	*************************************	шл	VCC2	I WINIED C 9 °
リモコン信号受信入力	PMC0, PMC1	入力	VCC1	リモコン信号受信機能の入力です。
シリアルインタフェース	CTS0~CTS2,	入力	VCC4	送信制御用入力です。
UART0~UART2,	CTS5		VCC1	
UART5~UART7	CTS6, CTS7	入力	VCC2	
	RTS0~RTS2,	出力	VCC1	受信制御用出力です。
	RTS5			
	RTS6, RTS7	出力	VCC2	
	CLK0~CLK2,	入出力	VCC1	送受信クロック入出力です。
	CLK5			
	CLK6, CLK7	入出力	VCC2	
	RXD0~RXD2,	入力	VCC1	シリアルデータ入力です。
	RXD5			
	RXD6, RXD7	入力	VCC2	
	TXD0~TXD2,	出力	VCC1	シリアルデータ出力です。(注2)
	TXD5	1	1/000	
	TXD6, TXD7	出力	VCC2	
LIADTO LIADTO	CLKS1	出力	VCC1	送受信クロック複数端子出力機能の出力です。
UART0~UART2, UART5~UART7	SDA0~SDA2, SDA5	入出力	VCC1	シリアルデータ入出力です。
I ² Cモード	SDA6, SDA7	入出力	VCC2	
トしてート	SCL0~SCL2,	入出力	VCC2	 送受信クロック入出力です。
	SCL5	八山刀	1001	区文信プロック人正刀です。
	SCL6, SCL7	入出力	VCC2	
シリアルインタフェース	CLK3, CLK4	入出力	VCC1	│ │送受信クロック入出力です。
SI/O3, SI/O4	SIN3, SIN4	入力	VCC1	シリアルデータ入力です。
, - · - ·	SOUT3, SOUT4		VCC1	シリアルデータ出力です。
	30013,30014			/ / / / / / ДИЛ СУ°

- 注1. 発振特性は発振子メーカに問い合わせてください。
- 注2. TXD2, SDA2, SCL2の出力は N チャネルオープンドレインです。TXDi (i=0, 1, 5~7)、SDAi, SCLiの出力はCMOS 出力で、プログラムでNチャネルオープンドレイン出力に変更できます。

表 1.17 端子機能の説明(100ピン版)(3/3)

分類	端子名	入出力	電源系統	機能
マルチマスタ I ² C-bus	SDAMM	入出力	VCC1	シリアルデータ入出力です。(出力はNチャネルオープン ドレイン)
インタフェース	SCLMM	入出力	VCC1	送受信クロック入出力です。(出力はNチャネルオープンドレイン)
CEC入出力	CEC	入出力	VCC1	CEC入出力です。(出力はNチャネルオープンドレイン)
基準電圧入力	VREF	入力	VCC1	A/Dコンバータと D/A コンバータの基準電圧入力です。
A/Dコンバータ	AN0~AN7	入力	VCC1	アナログ入力です。
	AN0_0~AN0_7 AN2_0~AN2_7	入力	VCC2	
	ADTRG	入力	VCC1	外部トリガ入力です。
	ANEX0, ANEX1	入力	VCC1	拡張アナログ入力です。
D/A コンバータ	DA0,DA1	出力	VCC1	D/A コンバータの出力です。
入出力ポート	P0_0~P0_7 P1_0~P1_7 P2_0~P2_7 P3_0~P3_7 P4_0~P4_7 P5_0~P5_7	入出力	VCC2	CMOSの8ビット入出力ポートです。入出力を選択するための方向レジスタを持ち、1端子ごとに入力ポート、または出力ポートにできます。 入力ポートは、4ビット単位でプルアップ抵抗の有無を選択できます。
	P6_0~P6_7 P7_0~P7_7 P8_0~P8_7 P9_0~P9_7 P10_0~P10_7	入出力	VCC1	POと同等の機能を持つ8ビット入出力ポートです。ただし、P7_0, P7_1, P8_5の出力はNチャネルオープンドレイン出力。プルアップはありません。P8_5は、NMIと端子を共用しています。NMIの入力レベルを確認できます。

M16C/65C グループ 2. 中央演算処理装置

2. 中央演算処理装置

図2.1にCPUのレジスタを示します。CPUには13個のレジスタがあります。これらのうち、R0、R1、R2、R3、A0、A1、FBはレジスタバンクを構成しています。レジスタバンクは2セットあります。

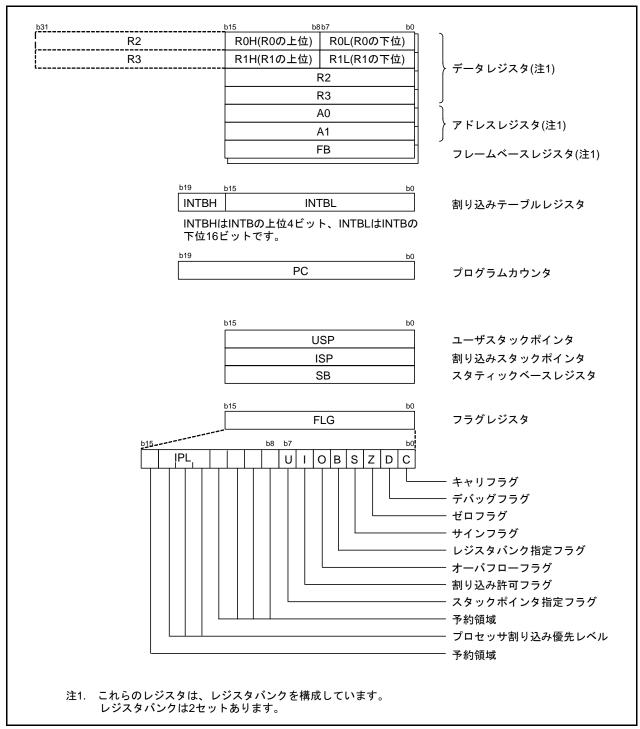


図2.1 CPUのレジスタ

M16C/65C グループ 2. 中央演算処理装置

2.1 データレジスタ(R0、R1、R2、R3)

R0は16ビットで構成されており、主に転送や算術、論理演算に使用します。R1~R3はR0と同様です。R0は、上位(R0H)と下位(R0L)を別々に8ビットのデータレジスタとして使用できます。R1H、R1LはR0H、R0Lと同様です。R2とR0を組み合わせて32ビットのデータレジスタ(R2R0)として使用できます。R3R1はR2R0と同様です。

2.2 アドレスレジスタ(A0、A1)

A0は16ビットで構成されており、アドレスレジスタ間接アドレッシング、アドレスレジスタ相対アドレッシングに使用します。また、転送や算術、論理演算に使用します。A1はA0と同様です。 A1とA0を組み合わせて32ビットのアドレスレジスタ(A1A0)として使用できます。

2.3 フレームベースレジスタ(FB)

FBは16ビットで構成されており、FB相対アドレッシングに使用します。

2.4 割り込みテーブルレジスタ (INTB)

INTBは20ビットで構成されており、可変割り込みベクタテーブルの先頭番地を示します。

2.5 プログラムカウンタ (PC)

PCは20ビットで構成されており、次に実行する命令の番地を示します。

2.6 ユーザスタックポインタ (USP)、割り込みスタックポインタ (ISP)

スタックポインタ(SP)は、USPとISPの2種類あり、ともに16ビットで構成されています。 USPとISPはFLGのUフラグで切り替えられます。

2.7 スタティックベースレジスタ(SB)

SBは16ビットで構成されており、SB相対アドレッシングに使用します。

2.8 フラグレジスタ(FLG)

FLGは11ビットで構成されており、CPUの状態を示します。

2.8.1 キャリフラグ(Cフラグ)

算術論理ユニットで発生したキャリ、ボロー、シフトアウトしたビットなどを保持します。

2.8.2 デバッグフラグ(Dフラグ)

Dフラグはデバッグ専用です。"0"にしてください。

2.8.3 ゼロフラグ(Zフラグ)

演算の結果が0のとき"1"になり、それ以外のとき"0"になります。

2.8.4 サインフラグ(Sフラグ)

演算の結果が負のとき"1"になり、それ以外のとき"0"になります。

2.8.5 レジスタバンク指定フラグ(Bフラグ)

Bフラグが"0"の場合、レジスタバンク0が指定され、"1"の場合、レジスタバンク1が指定されます。

M16C/65C グループ 2. 中央演算処理装置

2.8.6 オーバフローフラグ(Oフラグ)

演算の結果がオーバフローしたときに"1"になります。それ以外では"0"になります。

2.8.7 割り込み許可フラグ(Iフラグ)

マスカブル割り込みを許可するフラグです。 Iフラグが"0"の場合、マスカブル割り込みは禁止され、"1"の場合、許可されます。 割り込み要求を受け付けると、Iフラグは"0"になります。

2.8.8 スタックポインタ指定フラグ(Uフラグ)

Uフラグが"0"の場合、ISPが指定され、"1"の場合、USPが指定されます。

ハードウェア割り込み要求を受け付けたとき、またはソフトウェア割り込み番号 0~31 の INT 命令を実行したとき、Uフラグは"0"になります。

2.8.9 プロセッサ割り込み優先レベル(IPL)

IPLは3ビットで構成されており、レベル0~7までの8段階のプロセッサ割り込み優先レベルを指定します。

要求があった割り込みの優先レベルが、IPLより大きい場合、その割り込み要求は許可されます。

2.8.10 予約領域

書く場合、"0"を書いてください。読んだ場合、その値は不定。

M16C/65C グループ 3. アドレス空間

3. アドレス空間

3.1 アドレス空間

アドレス空間は00000h番地からFFFFFh番地までの1Mバイトあります。また、メモリ空間拡張機能を用いてアドレス空間を4Mバイトに拡張できます。この場合、40000h番地からBFFFFh番地がバンク0からバンク7の外部領域として使用できます。図3.1にアドレス空間を示します。アクセスできる領域は、プロセッサモードや、各制御ビットの状態によって違います。

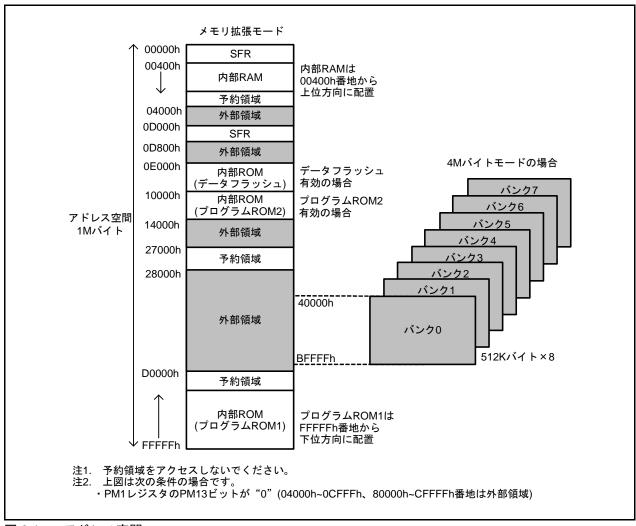


図 3.1 アドレス空間

M16C/65C グループ 3. アドレス空間

3.2 メモリ配置

SFR は、00000h 番地から 003FFh 番地と、0D000h 番地から 0D7FFh 番地に配置されています。ここには周辺機能の制御レジスタが配置されています。SFR のうち何も配置されていない領域はすべて予約領域のため、アクセスしないでください。

内部 RAM は 00400h 番地から上位方向に配置されます。たとえば 10K バイトの内部 RAM は、00400h 番地から 02BFFh 番地に配置されます。内部 RAM はデータ格納以外に、サブルーチン呼び出しや割り込み時のスタックとしても使用します。

内部ROMはフラッシュメモリです。内部ROMにはデータフラッシュ、プログラムROM1、プログラムROM2があります。

データフラッシュは、0E000h番地から0FFFFh番地に配置されます。この領域は主にデータ格納用ですが、プログラムを格納することもできます。

プログラムROM2は、10000h番地から13FFFh番地に配置されます。プログラムROM1は、FFFFFh番地から下位方向に配置されます。たとえば64KバイトのプログラムROM1は、F0000h番地からFFFFFh番地に配置されます。

スペシャルページベクタテーブルはFFE00h番地からFFFD7h番地に配置されます。このベクタはJMPS 命令またはJSRS 命令で使用します(「M16C/60、M16C/20、M16C/Tiny シリーズソフトウェアマニュアル」参照)。

割り込みの固定ベクタテーブルはFFFDCh番地からFFFFFh番地に配置されます。割り込みの可変ベクタテーブルは、INTBレジスタに設定された先頭番地から256バイトの領域に配置されます。

図3.2にメモリ配置を示します。

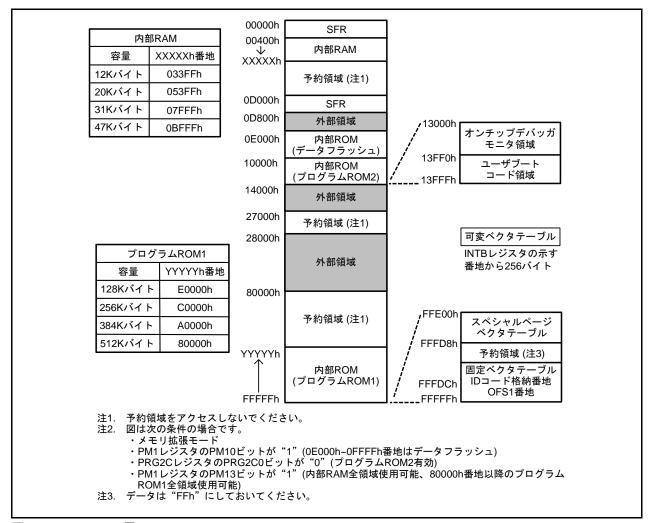
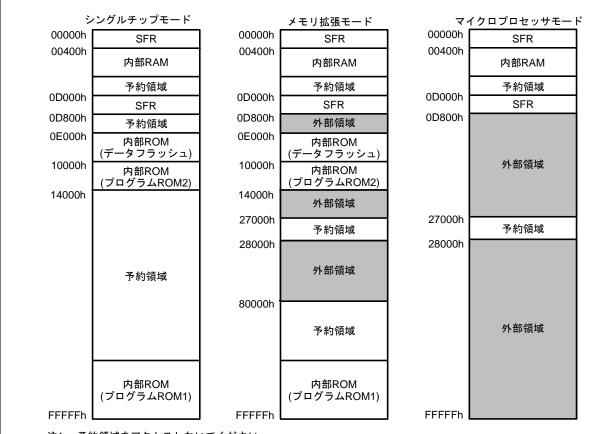


図 3.2 メモリ配置

M16C/65C グループ 3. アドレス空間


プロセッサモードによる違い 3.3

アクセスできる領域は、プロセッサモードや、各制御ビットの状態によって違います。図 3.3 にプロ セッサモードによる違いを示します。

シングルチップモードでは、SFR、内部RAM、内部ROMがアクセスできます。

メモリ拡張モードでは、SFR、内部RAM、内部ROM、外部領域がアクセスできます。また、メモリ空 間拡張機能を用いてアドレス空間を4Mバイトに拡張できます。

マイクロプロセッサモードでは、SFR、内部 RAM、外部領域がアクセスできます。また、メモリ空間 拡張機能を用いてアドレス空間を4Mバイトに拡張できます。なお、固定ベクタテーブルに当たるFFFDCh 番地からFFFFFh番地にはROMを配置してください。

注1. 予約領域をアクセスしないでください。

- 上図は次の条件の場合です。
 - シングルチップモード、
 - ングルチップモード、メモリ拡張モード ・PM1レジスタのPM10ビットが"1"(0E000h~0FFFFh番地はデータフラッシュ)

 - PRG2CレジスタのPRG2C0ビットが "0" (プログラムROM2有効)
 PM1レジスタのPM13ビットが "1" (内部RAM全領域使用可能、80000h番地以降のプログラムROM1 全領域使用可能)
 - マイクロプロセッサモード
 - ・PM10ビットが"0"(0E000h~0FFFFhはCS2領域) ・PRG2C0ビットが"1"(プログラムROM2無効)

プロセッサモードによる違い 図 3.3

4. SFR

4.1 SFR

SFR (Special Function Register)は、周辺機能の制御レジスタです。

表 4.1 SFR一覧(1)(注1)

番地	レジスタ	シンボル	リセット後の値
0000h			
0001h			
0002h			
0003h			
0004h	プロセッサモードレジスタ 0	PM0	0000 0000b (CNVSS端子が"L") 0000 0011b (CNVSS端子が"H") (注2)
0005h	プロセッサモードレジスタ1	PM1	0000 1000b
0006h	システムクロック制御レジスタ0	CM0	0100 1000b
0007h	システムクロック制御レジスタ1	CM1	0010 0000b
0008h	チップセレクト制御レジスタ	CSR	01h
0009h	外部領域リカバリサイクル制御レジスタ	EWR	XXXX XX00b
000Ah	プロテクトレジスタ	PRCR	00h
000Bh	データバンクレジスタ	DBR	00h
000Ch	発振停止検出レジスタ	CM2	0X00 0010b(注3)
000Dh			
000Eh			
000Fh			
0010h	プログラム2領域制御レジスタ	PRG2C	XXXX XX00b
0011h	外部領域ウェイト制御拡張レジスタ	EWC	00h
0012h	周辺クロック選択レジスタ	PCLKR	0000 0011b
0013h			
0014h			
0015h	時計用プリスケーラリセットフラグ	CPSRF	0XXX XXXXb
0016h	周辺クロック停止レジスタ1	PCLKSTP1	0XXX XX00b
0017h			
0018h	リセット要因判別レジスタ	RSTFR	XX00 001Xb (ハードウェアリセット) (注4)
0019h	電圧検出2回路フラグレジスタ	VCR1	0000 1000b (注5)
001Ah	電圧検出回路動作許可レジスタ	VCR2	00h (注5)
001Bh	チップセレクト拡張制御レジスタ	CSE	00h
001Ch	PLL制御レジスタ0	PLC0	0X01 X010b
001Dh			
001Eh	プロセッサモードレジスタ2	PM2	XX00 0X01b
001Fh			

X: 不定です。

- 注1. 空欄は予約領域です。アクセスしないでください。
- 注2. 次のビットは、ソフトウェアリセット、ウォッチドッグタイマリセット、発振停止検出リセット、電圧監視 1 リセット、電圧監視 2 リセット時は変化しません。 PM0 レジスタの PM00、 PM01 ビット
- 注3. CM20、CM21、CM27ビットは発振停止検出リセット時は変化しません。
- 注4. RSTFR レジスタの各ビットは、リセットの種類によって状態が異なります。
- 注5. ハードウェアリセットの場合です。詳細は各レジスタの説明を参照してください。

SFR一覧(2)(注1) 表 4.2

番地	レジスタ	シンボル	リセット後の値
0020h			
0021h			
0022h	40MHzオンチップオシレータ制御レジスタ 0	FRA0	XXXX XX00b
0023h			
0024h			
0025h			
0026h	電圧監視機能選択レジスタ	VWCE	00h
0027h			
0028h	電圧検出1レベル選択レジスタ	VD1LS	0000 1010b (注2)
0029h			
002Ah	電圧監視0回路制御レジスタ	VW0C	1000 XX10b (注2)
002Bh	電圧監視1回路制御レジスタ	VW1C	1000 1010b (注2)
002Ch	電圧監視2回路制御レジスタ	VW2C	1000 0X10b (注2)
002Dh			
002Eh			
002Fh			
0030h			
0031h			
0032h			
0033h			
0034h			
0035h			
0036h			
0037h			
0038h			
0039h			
003Ah			
003Bh			
003Ch			
003Dh			
003Eh			
003Fh			

X: 不定です。

- 注1. 空欄は予約領域です。アクセスしないでください。 注2. ハードウェアリセットの場合です。詳細は各レジスタの説明を参照してください

表 4.3 SFR一覧(3)(注1)

番地	レジスタ	シンボル	リセット後の値
0040h			
0041h			
0042h	INT7割り込み制御レジスタ	INT7IC	XX00 X000b
0043h	INT6割り込み制御レジスタ	INT6IC	XX00 X000b
0044h	INT3割り込み制御レジスタ	INT3IC	XX00 X000b
0045h	タイマB5割り込み制御レジスタ	TB5IC	XXXX X000b
0046h	タイマB4割り込み制御レジスタ	TB4IC	XXXX X000b
	UART1バス衝突検出割り込み制御レジスタ	U1BCNIC	
0047h	タイマB3割り込み制御レジスタ	TB3IC	XXXX X000b
	UARTOバス衝突検出割り込み制御レジスタ	U0BCNIC	
0048h	SI/O4割り込み制御レジスタ	S4IC	XX00 X000b
	INT5割り込み制御レジスタ	INT5IC	100000000000000000000000000000000000000
0049h	SI/O3割り込み制御レジスタ	S3IC	XX00 X000b
00441	INT4割り込み制御レジスタ	INT4IC	N000/ N000
004Ah	UART2バス衝突検出割り込み制御レジスタ	BCNIC	XXXX X000b
004Bh	DMAO割り込み制御レジスタ	DM0IC	XXXX X000b
004Ch	DMA1割り込み制御レジスタ	DM1IC	XXXX X000b
004Dh	キー入力割り込み制御レジスタ 	KUPIC	XXXX X000b
004Eh	A/D変換割り込み制御レジスタ	ADIC	XXXX X000b
004Fh	UART2送信割り込み制御レジスタ	S2TIC	XXXX X000b
0050h	UART2受信割り込み制御レジスタ	S2RIC	XXXX X000b
0051h	UARTO送信割り込み制御レジスタ	S0TIC	XXXX X000b
0052h	UART0受信割り込み制御レジスタ	SORIC	XXXX X000b
0053h	UART1送信割り込み制御レジスタ	S1TIC	XXXX X000b
0054h	UART1受信割り込み制御レジスタ	S1RIC	XXXX X000b
0055h	タイマAO割り込み制御レジスタ	TA0IC	XXXX X000b
0056h	タイマA1割り込み制御レジスタ	TA1IC	XXXX X000b
0057h	タイマA2割り込み制御レジスタ	TA2IC	XXXX X000b
0058h	タイマA3割り込み制御レジスタ	TA3IC	XXXX X000b
0059h	タイマA4割り込み制御レジスタ	TA4IC	XXXX X000b
005Ah	タイマB0割り込み制御レジスタ	TB0IC	XXXX X000b
005Bh	タイマB1割り込み制御レジスタ	TB1IC	XXXX X000b
005Ch	タイマB2割り込み制御レジスタ	TB2IC	XXXX X000b
005Dh	INTO割り込み制御レジスタ	INT0IC	XX00 X000b
005Eh	INT1割り込み制御レジスタ	INT1IC	XX00 X000b
005Fh	INT2割り込み制御レジスタ	INT2IC	XX00 X000b

X: 不定です。

表 4.4 SFR一覧(4)(注1)

番地	レジスタ	シンボル	リセット後の値
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h	DMA2割り込み制御レジスタ	DM2IC	XXXX X000b
006Ah	DMA3割り込み制御レジスタ	DM3IC	XXXX X000b
006Bh	UART5バス衝突検出割り込み制御レジスタ	U5BCNIC	XXXX X000b
	CEC1割り込み制御レジスタ	CEC1IC	
006Ch	UART5送信割り込み制御レジスタ	S5TIC	XXXX X000b
	CEC2割り込み制御レジスタ	CEC2IC	
006Dh	UART5受信割り込み制御レジスタ	S5RIC	XXXX X000b
006Eh	UART6バス衝突検出割り込み制御レジスタ	U6BCNIC	XXXX X000b
	リアルタイムクロック周期割り込み制御レジスタ	RTCTIC	
006Fh	UART6送信割り込み制御レジスタ	S6TIC	XXXX X000b
	リアルタイムクロックコンペア割り込み制御レジスタ	RTCCIC	
0070h	UART6受信割り込み制御レジスタ	S6RIC	XXXX X000b
0071h	UART7バス衝突検出割り込み制御レジスタ	U7BCNIC	XXXX X000b
	リモコン信号受信機能0割り込み制御レジスタ	PMC0IC	
0072h	UART7送信割り込み制御レジスタ	S7TIC	XXXX X000b
007211	リモコン信号受信機能1割り込み制御レジスタ	PMC1IC	700000
0073h	UART7受信割り込み制御レジスタ	S7RIC	XXXX X000b
0073h 0074h	UART7 支信割り込み削削レンスタ	STRIC	XXXX X000D
007411 0075h			
0076h			
0077h			
0077H			
0079h			
007Ah			
007Bh	I2C-busインタフェース割り込み制御レジスタ	IICIC	XXXX X000b
007Ch	SCL/SDA割り込み制御レジスタ	SCLDAIC	XXXX X000b
007Dh	COL CONTROL PROPERTY OF THE PR		
007Eh			
007En			
0080h~			
017Fh			

X: 不定です。

表 4.5 SFR一覧(5)(注1)

番地	レジスタ	シンボル	リセット後の値
)180h	DMA0ソースポインタ	SAR0	XXh
0181h			XXh
)182h			0Xh
)183h			
0184h	DMA0ディスティネーションポインタ	DAR0	XXh
0185h			XXh
0186h			0Xh
0187h			
)188h	DMA0 転送カウンタ	TCR0	XXh
0189h			XXh
018Ah			
018Bh			
018Ch	DMA0制御レジスタ	DM0CON	0000 0X00b
018Dh			
)18Eh			
018Fh			
0190h	DMA1 ソースポインタ	SAR1	XXh
0191h	1		XXh
0192h			0Xh
0193h			
0194h	DMA1 ディスティネーションポインタ	DAR1	XXh
0195h			XXh
0196h			0Xh
0197h			07411
0198h	 DMA1 転送カウンタ	TCR1	XXh
0199h		1.5	XXh
019Ah			77/11
019Bh			
019Ch	DMA1制御レジスタ	DM1CON	0000 0X00b
019Dh		5	0000 071000
019Eh			
019Fh			
01A0h	DMA2 ソースポインタ	SAR2	XXh
01A1h		0, ii t2	XXh
01A2h	-		0Xh
01A3h			
01A4h	DMA2ディスティネーションポインタ	DAR2	XXh
01A5h		DAILE	XXh
01A6h	-		0Xh
01A611 01A7h			UAII
01A8h	DMA2転送もウンタ	TCR2	XXh
	DMA2転送カウンタ	ICKZ	XXh
01A9h			AAII
)1AAh			
01ABh	DAMA O HILITITA Nº 7 F	DMOCON	0000 0000
01ACh	DMA2制御レジスタ	DM2CON	0000 0X00b
01ADh			
01AEh			
01AFh			X: 不定で

X: 不定です。

表 4.6 SFR一覧(6)(注1)

衣 4.6	SFR一見(b) (注1)	5.5.420	リカット後のは
番地 01B0h	レジスタ DMA3ソースポインタ	シンボル SAR3	リセット後の値 XXh
01B0H		OANO	XXh
01B1II	_		0Xh
01B2H			UAII
01B3h	DMA3ディスティネーションポインタ	DAR3	XXh
01B4h		DANG	XXh
01B6h	_		0Xh
01B0II 01B7h			UAII
01B/II	 DMA3転送カウンタ	TCR3	XXh
01B9h	- DIMAS #A 区 ガ・ノ フ・ダ	TORO	XXh
01BAh			AAII
01BBh			
01BCh	DMA3制御レジスタ	DM3CON	0000 0X00b
01BDh	DIVING 申引車 レンスメ	Divideort	0000 07(000
01BEh			
01BEh			
01C0h	タイマB0-1レジスタ	TB01	XXh
01C1h	37 4 80-1 0 2 2 3	1001	XXh
01C1h	タイマB1-1 レジスタ	TB11	XXh
01C2h	37 4 61-1 0 0 2 3	IBII	XXh
01C3fi	タイマB2-1 レジスタ	TB21	XXh
01C4II	31 4 B2-1 D D X 3	1021	XXh
01C5h		PPWFS1	XXXX X000b
01C6H	パルス周期/幅測定モード機能選択レジスタ1	FFWF31	^^^ ^000D
01C7H	タイマBカウントソース選択レジスタ0	TBCS0	00h
01C8h		TBCS0	X0h
01C9fi 01CAh	タイマBカウントソース選択レジスタ1	10001	AUII
	A A D A D A D A D A D A D A D A D A D A	TOKEN (OC	0000 2000
01CBh	タイマAB分周制御レジスタ 0	TCKDIVC0	0000 X000b
01CCh 01CDh			
01CDh 01CEh			
01CEII			
01D0h	タイマAカウントソース選択レジスタ0	TACS0	00h
01D0H		TACS1	00h
	タイマAカウントソース選択レジスタ1		
01D2h	タイマAカウントソース選択レジスタ2	TACS2	X0h
01D3h		DWMEC	0770 70074
01D4h	16ビットパルス幅変調モード機能選択レジスタ	PWMFS	0XX0 X00Xb
01D5h	タイマA波形出力機能選択レジスタ	TAPOFS	XXX0 0000b
01D6h			
01D7h		TA 0147	VVVQ VQQV(
01D8h	タイマA出力波形変更許可レジスタ	TAOW	XXX0 X00Xb
01D9h		TESS	
01DAh	三相プロテクト制御レジスタ	TPRC	00h
01DBh			
01DCh			
01DDh			
01DEh			
01DFh			X· 不定です

X: 不定です。

表 4.7 SFR一覧(7)(注1)

番地	レジスタ	シンボル	リセット後の値
01E0h	タイマB3-1レジスタ	TB31	XXh
01E1h			XXh
01E2h	タイマB4-1 レジスタ	TB41	XXh
01E3h			XXh
01E4h	タイマB5-1 レジスタ	TB51	XXh
01E5h			XXh
01E6h	パルス周期/幅測定モード機能選択レジスタ2	PPWFS2	XXXX X000b
01E7h			
01E8h	タイマBカウントソース選択レジスタ2	TBCS2	00h
01E9h	タイマBカウントソース選択レジスタ3	TBCS3	X0h
01EAh			
01EBh			
01ECh			
01EDh			
01EEh			
01EFh			
01F0h	PMC0機能選択レジスタ 0	PMC0CON0	00h
01F1h	PMC0機能選択レジスタ1	PMC0CON1	00XX 0000b
01F2h	PMC0機能選択レジスタ2	PMC0CON2	0000 00X0b
01F3h	PMC0機能選択レジスタ3	PMC0CON3	00h
01F4h	PMC0ステータスレジスタ	PMC0STS	00h
01F5h	PMC0割り込み要因レジスタ	PMC0INT	00h
01F6h	PMC0コンペア制御レジスタ	PMC0CPC	XXX0 X000b
01F7h	PMC0コンペア値設定レジスタ	PMC0CPD	00h
01F8h	PMC1機能選択レジスタ 0	PMC1CON0	XXX0 X000b
01F9h	PMC1機能選択レジスタ1	PMC1CON1	XXXX 0X00b
01FAh	PMC1機能選択レジスタ2	PMC1CON2	0000 00X0b
01FBh	PMC1機能選択レジスタ3	PMC1CON3	00h
01FCh	PMC1ステータスレジスタ	PMC1STS	X000 X00Xb
01FDh	PMC1割り込み要因レジスタ	PMC1INT	X000 X00Xb
01FEh			
01FFh			
0200h			
0201h			
0202h			
0203h			
0204h			
0205h	割り込み要因選択レジスタ3	IFSR3A	00h
0206h	割り込み要因選択レジスタ2	IFSR2A	00h
0207h	割り込み要因選択レジスタ	IFSR	00h
0208h			
0209h			
020Ah			
020Bh 020Ch			
020Ch 020Dh			
020Dn 020Eh	 アドレス一致割り込み許可レジスタ	AIER	XXXX XX00b
020En	アドレス一致割り込み許可レジスタ2	AIER2	XXXX XX00b
020111	/ ドレヘー以前り心の計りレンヘブ 2	/ ILIX	マン 不完 なさ

X: 不定です。

表 4.8 SFR一覧(8)(注1)

双 4.0	うれ 見(0) (左1)	2.2.42.0	11 b 1 36 o lt
番地 0210h	レジスタ アドレスー致割り込みレジスタ 0	シンボル RMAD0	リセット後の値 00h
0210H	アトレス一致割り込みレンスタ0 	KIVIADO	
			00h
0212h			X0h
0213h	- 12 Tidul 12 12 1	DMADA	004
0214h	アドレスー致割り込みレジスタ1	RMAD1	00h
0215h			00h
0216h			X0h
0217h			
0218h	アドレス一致割り込みレジスタ2	RMAD2	00h
0219h			00h
021Ah			X0h
021Bh			
021Ch	アドレスー致割り込みレジスタ3	RMAD3	00h
021Dh			00h
021Eh			X0h
021Fh			
0220h	フラッシュメモリ制御レジスタ0	FMR0	0000 0001b (ユーザブー トモード以外) 0010 0001b (ユーザブー トモード)
0221h	フラッシュメモリ制御レジスタ1	FMR1	00X0 XX0Xb
0222h	フラッシュメモリ制御レジスタ2	FMR2	XXXX 0000b
0223h	フラッシュメモリ制御レジスタ3	FMR3	XXXX 0000b
0224h			
0225h			
0226h			
0227h			
0228h			
0229h			
022Ah			
022Bh			
022Ch			
022Dh			
022Eh			
022Fh			
0230h	フラッシュメモリ制御レジスタ6	FMR6	XX0X XX00b
0231h			
0232h			
0233h			
0234h			
0235h			
0236h			
0237h			
0238h			
0239h			
023Ah			
023Bh			
023Ch			
023Dh			
023Eh			
023Fh			

X: 不定です。

表 4.9 SFR一覧(9)(注1)

番地	レジスタ	シンボル	リセット後の値
0240h			
0241h			
0242h			
0243h			
0244h	UART0特殊モードレジスタ4	U0SMR4	00h
0245h	UART0特殊モードレジスタ3	U0SMR3	000X 0X0Xb
0246h	UART0特殊モードレジスタ2	U0SMR2	X000 0000b
0247h	UART0特殊モードレジスタ	U0SMR	X000 0000b
0248h	UART0送受信モードレジスタ	U0MR	00h
0249h	UART0 ビットレートレジスタ	U0BRG	XXh
024Ah	UART0送信バッファレジスタ	U0TB	XXh
024Bh			XXh
024Ch	UART0送受信制御レジスタ0	U0C0	0000 1000b
024Dh	UART0送受信制御レジスタ1	U0C1	00XX 0010b
024Eh	UART0受信バッファレジスタ	U0RB	XXh
024Fh			XXh
0250h	UART送受信制御レジスタ2	UCON	X000 0000b
0251h			
0252h	UARTクロック選択レジスタ	UCLKSEL0	X0h
0253h			
0254h	UART1特殊モードレジスタ4	U1SMR4	00h
0255h	UART1特殊モードレジスタ3	U1SMR3	000X 0X0Xb
0256h	UART1特殊モードレジスタ2	U1SMR2	X000 0000b
0257h	UART1特殊モードレジスタ	U1SMR	X000 0000b
0258h	UART1送受信モードレジスタ	U1MR	00h
0259h	UART1 ビットレートレジスタ	U1BRG	XXh
025Ah	UART1送信バッファレジスタ	U1TB	XXh
025Bh			XXh
025Ch	UART1送受信制御レジスタ0	U1C0	0000 1000b
025Dh	UART1送受信制御レジスタ1	U1C1	00XX 0010b
025Eh	UART1 受信バッファレジスタ	U1RB	XXh
025Fh			XXh
0260h			
0261h			
0262h			
0263h	LIADTO 44 T4 = 181 X8 = 5	LIOOMDA	004
0264h	UART2特殊モードレジスタ4	U2SMR4	00h
0265h	UART2特殊モードレジスタ3	U2SMR3	000X 0X0Xb
0266h	UART2特殊モードレジスタ2	U2SMR2	X000 0000b
0267h	UART2特殊モードレジスタ	U2SMR	X000 0000b
0268h	UART2送受信モードレジスタ	U2MR	00h
0269h	UART2ビットレートレジスタ	U2BRG	XXh
026Ah	UART2送信バッファレジスタ	U2TB	XXh
026Bh			XXh
026Ch	UART2送受信制御レジスタ 0	U2C0	0000 1000b
026Dh	UART2送受信制御レジスタ1	U2C1	0000 0010b
026Eh	UART2受信バッファレジスタ	U2RB	XXh
026Fh			XXh

X: 不定です。

表 4.10 SFR一覧(10)(注1)

番地	レジスタ	シンボル	リセット後の値
0270h	SI/O3送受信レジスタ	S3TRR	XXh
)271h			
)272h	SI/O3制御レジスタ	S3C	0100 0000b
)273h	SI/O3ビットレートレジスタ	S3BRG	XXh
)274h	SI/O4送受信レジスタ	S4TRR	XXh
0275h			
0276h	SI/O4制御レジスタ	S4C	0100 0000b
0277h	SI/O4ビットレートレジスタ	S4BRG	XXh
)278h	SI/O3、4制御レジスタ2	S34C2	00XX X0X0b
0279h			
)27Ah			
027Bh			
)27Ch			
027Dh			
027Eh			
027Fh			
0280h			
0281h			
0282h			
0283h			
0284h	UART5特殊モードレジスタ4	U5SMR4	00h
0285h	UART5特殊モードレジスタ3	U5SMR3	000X 0X0Xb
0286h	UART5特殊モードレジスタ2	U5SMR2	X000 0000b
0287h	UART5特殊モードレジスタ	U5SMR	X000 0000b
0288h	UART5送受信モードレジスタ	U5MR	00h
0289h	UART5ビットレートレジスタ	U5BRG	XXh
028Ah	UART5送信バッファレジスタ	U5TB	XXh
028Bh			XXh
028Ch	UART5送受信制御レジスタ 0	U5C0	0000 1000b
028Dh	UART5送受信制御レジスタ1	U5C1	0000 0010b
028Eh	UART5受信バッファレジスタ	U5RB	XXh
028Fh			XXh
0290h			
)291h			
0292h			
0293h			
)294h	UART6特殊モードレジスタ4	U6SMR4	00h
0295h	UART6特殊モードレジスタ3	U6SMR3	000X 0X0Xb
0296h	UART6特殊モードレジスタ2	U6SMR2	X000 0000b
0297h	UART6特殊モードレジスタ	U6SMR	X000 0000b
)298h	UART6送受信モードレジスタ	U6MR	00h
)299h	UART6ビットレートレジスタ	U6BRG	XXh
029Ah	UART6送信バッファレジスタ	U6TB	XXh
029Bh	·		XXh
029Ch	UART6送受信制御レジスタ0	U6C0	0000 1000b
)29Dh	UART6送受信制御レジスタ1	U6C1	0000 0010b
029Eh	UART6受信バッファレジスタ	U6RB	XXh
		00110	XXh

X: 不定です。

表 4.11 SFR一覧(11)(注1)

番地	レジスタ	シンボル	リセット後の値
02A0h			
02A1h			
02A2h			
02A3h			
02A4h	UART7特殊モードレジスタ4	U7SMR4	00h
02A5h	UART7特殊モードレジスタ3	U7SMR3	000X 0X0Xb
02A6h	UART7特殊モードレジスタ2	U7SMR2	X000 0000b
02A7h	UART7特殊モードレジスタ	U7SMR	X000 0000b
02A8h	UART7送受信モードレジスタ	U7MR	00h
02A9h	UART7 ビットレートレジスタ	U7BRG	XXh
02AAh	UART7送信バッファレジスタ	U7TB	XXh
02ABh			XXh
02ACh	UART7送受信制御レジスタ0	U7C0	0000 1000b
02ADh	UART7送受信制御レジスタ1	U7C1	0000 0010b
02AEh	UART7受信バッファレジスタ	U7RB	XXh
02AFh			XXh
02B0h	12C0データシフトレジスタ	S00	XXh
02B1h			
02B2h	12C0アドレスレジスタ0	S0D0	0000 000Xb
02B3h	I2C0制御レジスタ0	S1D0	00h
02B4h	I2C0クロック制御レジスタ	S20	00h
02B5h	I2C0スタート/ストップコンディション制御レジスタ	S2D0	0001 1010b
02B6h	I2C0制御レジスタ1	S3D0	0011 0000b
02B7h	I2C0制御レジスタ2	S4D0	00h
02B8h	I2C0ステータスレジスタ0	S10	0001 000Xb
02B9h	I2C0ステータスレジスタ1	S11	XXXX X000b
02BAh	l2C0アドレスレジスタ1	S0D1	0000 000Xb
02BBh	12C0アドレスレジスタ2	S0D2	0000 000Xb
02BCh			
02BDh			
02BEh			
02BFh			
02C0h~			
02FFh			

X: 不定です。

表 4.12 SFR一覧(12)(注1)

番地	レジスタ	シンボル	リセット後の値
0300h	タイマB3, 4, 5カウント開始フラグ	TBSR	000X XXXXb
0301h			
0302h	タイマA1-1 レジスタ	TA11	XXh
0303h			XXh
0304h	タイマA2-1 レジスタ	TA21	XXh
0305h			XXh
0306h	タイマA4-1 レジスタ	TA41	XXh
0307h			XXh
0308h	三相PWM制御レジスタ0	INVC0	00h
0309h	三相PWM制御レジスタ1	INVC1	00h
030Ah	三相出力バッファレジスタ0	IDB0	XX11 1111b
030Bh	三相出力バッファレジスタ1	IDB1	XX11 1111b
030Ch	短絡防止タイマ	DTT	XXh
030Dh	タイマB2割り込み発生頻度設定カウンタ	ICTB2	XXh
030Eh	位置データ保持機能制御レジスタ	PDRF	XXXX 0000b
030Fh			
0310h	タイマB3レジスタ	TB3	XXh
0311h	1, 1, 1, 20, 1, 1, 1,		XXh
0312h	タイマB4レジスタ	TB4	XXh
0313h	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		XXh
0314h	タイマB5レジスタ	TB5	XXh
0315h	1, 1, 1, 20, 2, 1, 1,		XXh
0316h			
0317h			
0318h	ポート機能制御レジスタ	PFCR	0011 1111b
0319h	1 MANAGARITE CO. C.		
031Ah			
031Bh	タイマB3モードレジスタ	TB3MR	00XX 0000b
031Ch	タイマB4モードレジスタ	TB4MR	00XX 0000b
031Dh	タイマB5モードレジスタ	TB5MR	00XX 0000b
031Eh			
031Fh			
0320h	カウント開始フラグ	TABSR	00h
0321h			
0322h	ワンショット開始フラグ	ONSF	00h
0323h	トリガ選択レジスタ	TRGSR	00h
0324h	アップダウンフラグ	UDF	00h
0325h			
0326h	タイマA0レジスタ	TA0	XXh
0327h			XXh
0328h	タイマA1 レジスタ	TA1	XXh
0329h			XXh
032Ah	タイマA2レジスタ	TA2	XXh
032Bh			XXh
032Ch	タイマA3レジスタ	TA3	XXh
032Dh			XXh
)32Eh	タイマA4レジスタ	TA4	XXh
032Fh	╡		XXh

X: 不定です。

表 4.13 SFR一覧(13)(注1)

番地	レジスタ	シンボル	リセット後の値
0330h	タイマB0レジスタ	TB0	XXh
0331h			XXh
)332h	タイマB1 レジスタ	TB1	XXh
0333h			XXh
0334h	タイマB2レジスタ	TB2	XXh
0335h			XXh
0336h	タイマA0モードレジスタ	TA0MR	00h
0337h	タイマA1モードレジスタ	TA1MR	00h
)338h	タイマA2モードレジスタ	TA2MR	00h
0339h	タイマA3モードレジスタ	TA3MR	00h
033Ah	タイマA4モードレジスタ	TA4MR	00h
033Bh	タイマB0モードレジスタ	TB0MR	00XX 0000b
033Ch	タイマB1モードレジスタ	TB1MR	00XX 0000b
033Dh	タイマB2モードレジスタ	TB2MR	00XX 0000b
033Eh	タイマB2特殊モードレジスタ	TB2SC	X000 0000b
033Fh	,		
0340h	リアルタイムクロック秒データレジスタ	RTCSEC	00h
0341h	リアルタイムクロック分データレジスタ	RTCMIN	X000 0000b
0342h	リアルタイムクロック時データレジスタ	RTCHR	XX00 0000b
0343h	リアルタイムクロック日データレジスタ	RTCWK	XXXX X000b
0344h	リアルタイムクロック制御レジスタ1	RTCCR1	0000 X00Xb
0345h	リアルタイムクロック制御レジスタ2	RTCCR2	X000 0000b
0346h	リアルタイムクロックカウントソース選択レジスタ	RTCCSR	XXX0 0000b
0347h	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	KIOOK	70000
0348h	リアルタイムクロック秒コンペアデータレジスタ	RTCCSEC	X000 0000b
0349h	リアルタイムクロック分コンペアデータレジスタ	RTCCMIN	X000 0000b
034Ah	リアルタイムクロック時コンペアデータレジスタ	RTCCHR	X000 0000b
034Bh			11000 0000
034Ch			
034Dh			
034Eh			
034Fh			
0350h	CEC機能制御レジスタ1	CECC1	XXXX X000b
0351h	CEC機能制御レジスタ2	CECC2	00h
0352h	CEC機能制御レジスタ3	CECC3	XXXX 0000b
0353h	CEC機能制御レジスタ4	CECC4	00h
0354h	CEC フラグレジスタ	CECFLG	00h
0355h	CEC割り込み要因選択レジスタ	CISEL	00h
0356h	CEC 送信バッファレジスタ1	CCTB1	00h
0357h	CEC 送信バッファレジスタ 2	CCTB2	XXXX XX00b
0358h	CEC 受信バッファレジスタ1	CCRB1	00h
0359h	CEC 受信バッファレジスタ 2	CCRB2	XXXX X000b
035Ah	CEC 受信 Follower アドレス設定 レジスタ1	CRADRI1	00h
035Bh	CEC 受信 Follower アドレス設定 レジスタ 2	CRADRI2	00h
035Ch			
035Dh			
035Eh			
035Fh			

X: 不定です。

表 4.14 SFR 一覧(14)(注1)

番地	レジスタ	シンボル	リセット後の値
0360h	プルアップ制御レジスタ0	PUR0	00h
0361h	プルアップ制御レジスタ1	PUR1	0000 0000b
			(注2)
			0000 0010b
0362h	プルアップ制御レジスタ2	PUR2	00h
0363h	プルアップ制御レジスタ3	PUR3	00h
0364h			
0365h			
0366h	ポート制御レジスタ	PCR	0000 0XX0b
0367h			
0368h			
0369h	NMI/SD デジタルフィルタレジスタ	NMIDF	XXXX X000b
036Ah			
036Bh			
036Ch			
036Dh			
036Eh			
036Fh	DIAMA MILKOLL XX 7 to 0	DIMMAGGAIG	0.01
0370h	PWM制御レジスタ0	PWMCON0	00h
0371h 0372h	DIAMAG = 11 = 1 = =	DWADDEO	001
	PWM0プリスケーラ	PWMPRE0	00h
0373h	PWM0 レジスタ	PWMREG0	00h
0374h	PWM1 プリスケーラ	PWMPRE1	00h
0375h	PWM1 レジスタ	PWMREG1	00h
0376h	PWM制御レジスタ1	PWMCON1	00h
0377h			
0378h			
0379h 037Ah			
037An 037Bh			
037Ch	++>. >. > -	CSPR	00h
037CII	カウントソース保護モードレジスタ	COPK	(注3)
037Dh	 ウォッチドッグタイマリフレッシュレジスタ	WDTR	XXh
037Eh	ウォッチドッグダイマスタートレジスタ	WDTS	XXh
037Eh	ウォッチドッグライマステードレンスラ ウォッチドッグタイマ制御レジスタ	WDC	00XX XXXXb
0380h~	フカンティファティマ明四レンバテ		00.0170000
038Fh			

X: 不定です。

- 注1. 空欄は予約領域です。アクセスしないでください。
- 注2. ハードウェアリセット、パワーオンリセット、または電圧監視0リセットでは次のようになります。
 - •CNVSS端子に"L"を入力している場合、"0000 0000b"
 - •CNVSS端子に"H"を入力している場合、"0000 0010b"

電圧監視1リセット、電圧監視2リセット、ソフトウェアリセット、ウォッチドッグタイマリセット、または発振停止 検出リセットでは次のようになります。

- •PM0 レジスタのPM01~PM00 ビットが"00b" (シングルチップモード)の場合、"0000 0000b"
- •PM0 レジスタの PM01~PM00 ビットが "01b" (メモリ拡張モード) または "11b" (マイクロプロセッサモード) の場合、"0000 0010b"
- 注3. OFS1番地のCSPROINIビットが"0"の場合は"1000 0000b"になります。

表 4.15 SFR 一覧(15)(注1)

番地	レジスタ	シンボル	リセット後の値
0390h	DMA2要因選択レジスタ	DM2SL	00h
)391h			
)392h	DMA3要因選択レジスタ	DM3SL	00h
)393h			
)394h			
0395h			
0396h			
0397h			
)398h	DMA0要因選択レジスタ	DM0SL	00h
0399h			
039Ah	DMA1 要因選択レジスタ	DM1SL	00h
039Bh			
)39Ch			
039Dh			
039Eh			
039Fh			
03A0h			
03A1h			
03A2h	断線検知アシスト機能レジスタ	AINRST	XX00 XXXXb
03A3h	HINNESON S FOUR BANKE FOUR	7	70.0070.00
03A4h			
03A5h			
03A6h			
03A7h			
03A8h			
03A9h			
03AAh			
03ABh			
03ACh			
03ADh			
03AEh			
03AFh			
03B0h			
03B1h			
03B2h			
03B3h			
03B4h	SFR監視アドレスレジスタ	CRCSAR	XXXX XXXXb
03B5h			00XX XXXXb
03B6h	CRCモードレジスタ	CRCMR	0XXX XXX0b
03B7h			2
03B8h			
03B9h			
03BAh			
03BBh			
03BCh	CRC データレジスタ	CRCD	XXh
03BDh		ONOD	XXh
)3BEh	CRCインプットレジスタ	CRCIN	XXh
JULII	しれし インファトレンスプ	CICUIN	AAH

X: 不定です。

表 4.16 SFR一覧(16)(注1)

番地	レジスタ	シンボル	リセット後の値
03C0h	A/Dレジスタ0	AD0	XXXX XXXXb
)3C1h			0000 00XXb
)3C2h	A/D レジスタ 1	AD1	XXXX XXXXb
3C3h			0000 00XXb
)3C4h	A/Dレジスタ2	AD2	XXXX XXXXb
)3C5h			0000 00XXb
)3C6h	A/Dレジスタ3	AD3	XXXX XXXXb
)3C7h			0000 00XXb
)3C8h	A/D レジスタ 4	AD4	XXXX XXXXb
03C9h			0000 00XXb
3CAh	A/Dレジスタ5	AD5	XXXX XXXXb
3CBh			0000 00XXb
3CCh	A/D レジスタ 6	AD6	XXXX XXXXb
3CDh			0000 00XXb
3CEh	A/D レジスタ7	AD7	XXXX XXXXb
3CFh			0000 00XXb
)3D0h			
3D1h			
)3D2h			
)3D3h			0000 1/001/1
)3D4h	A/D制御レジスタ2	ADCON2	0000 X00Xb
)3D5h			0000 0000
)3D6h	A/D制御レジスタ0	ADCON0	0000 0XXXb
)3D7h	A/D制御レジスタ1	ADCON1	0000 X000b
)3D8h	D/A0 レジスタ	DA0	00h
)3D9h			
)3DAh	D/A1 レジスタ	DA1	00h
3DBh			
)3DCh	D/A制御レジスタ	DACON	00h
)3DDh			
3DEh			
)3DFh		200	100
3E0h	ポートP0 レジスタ	P0	XXh
)3E1h	ポートP1 レジスタ	P1	XXh
)3E2h	ポートP0方向レジスタ	PD0	00h
)3E3h	ポートP1方向レジスタ	PD1	00h
)3E4h	ポートP2レジスタ	P2	XXh
)3E5h	ポートP3レジスタ	P3	XXh
3E6h	ポートP2方向レジスタ	PD2	00h
)3E7h	ポートP3方向レジスタ	PD3	00h
3E8h	ポートP4レジスタ	P4	XXh
3E9h	ポートP5 レジスタ	P5	XXh
3EAh	ポートP4方向レジスタ	PD4	00h
3EBh	ポートP5方向レジスタ	PD5	00h
3ECh	ポートP6レジスタ	P6	XXh
)3EDh	ポートP7レジスタ	P7	XXh
03EEh	ポートP6方向レジスタ	PD6	00h
	しい ここりカリロノンスプ	טט ון	10011

X: 不定です。

表 4.17 SFR一覧(17)(注1)

番地	レジスタ	シンボル	リセット後の値
03F0h	ポートP8レジスタ	P8	XXh
03F1h	ポートP9レジスタ	P9	XXh
03F2h	ポートP8方向レジスタ	PD8	00h
03F3h	ポートP9方向レジスタ	PD9	00h
03F4h	ポートP10レジスタ	P10	XXh
03F5h	ポートP11 レジスタ	P11	XXh
03F6h	ポートP10方向レジスタ	PD10	00h
03F7h	ポートP11方向レジスタ	PD11	00h
03F8h	ポートP12レジスタ	P12	XXh
03F9h	ポートP13レジスタ	P13	XXh
03FAh	ポートP12方向レジスタ	PD12	00h
03FBh	ポートP13方向レジスタ	PD13	00h
03FCh	ポートP14 レジスタ	P14	XXh
03FDh			
03FEh	ポートP14方向レジスタ	PD14	XXXX XX00b
03FFh			

X: 不定です。

表 4.18 SFR一覧(18)(注1)

番地	レジスタ	シンボル	リセット後の値
D080h	PMC0ヘッダパターン設定レジスタ (MIN)	PMC0HDPMIN	0000 0000b
D081h			XXXX X000b
D082h	PMC0ヘッダパターン設定レジスタ (MAX)	PMC0HDPMAX	0000 0000b
D083h			XXXX X000b
D084h	PMC0データ0パターン設定レジスタ (MIN)	PMC0D0PMIN	00h
D085h	PMC0データ0パターン設定レジスタ (MAX)	PMC0D0PMAX	00h
D086h	PMC0データ1パターン設定レジスタ (MIN)	PMC0D1PMIN	00h
D087h	PMC0データ1パターン設定レジスタ (MAX)	PMC0D1PMAX	00h
D088h	PMC0測定結果レジスタ	PMC0TIM	00h
D089h			00h
D08Ah			
D08Bh			
D08Ch	PMC0受信データ格納レジスタ0	PMC0DAT0	00h
D08Dh	PMC0受信データ格納レジスタ1	PMC0DAT1	00h
D08Eh	PMC0受信データ格納レジスタ2	PMC0DAT2	00h
D08Fh	PMC0受信データ格納レジスタ3	PMC0DAT3	00h
D090h	PMC0受信データ格納レジスタ4	PMC0DAT4	00h
D091h	PMC0受信データ格納レジスタ5	PMC0DAT5	00h
D092h	PMC0受信ビット数レジスタ	PMC0RBIT	XX00 0000b
D093h			
D094h	PMC1 ヘッダパターン設定レジスタ (MIN)	PMC1HDPMIN	0000 0000b
D095h			XXXX X000b
D096h	PMC1 ヘッダパターン設定レジスタ (MAX)	PMC1HDPMAX	0000 0000b
D097h			XXXX X000b
D098h	PMC1 データ 0 パターン設定レジスタ (MIN)	PMC1D0PMIN	00h
D099h	PMC1 データ 0 パターン設定レジスタ (MAX)	PMC1D0PMAX	00h
D09Ah	PMC1 データ 1パターン設定レジスタ (MIN)	PMC1D1PMIN	00h
D09Bh	PMC1 データ 1パターン設定レジスタ (MAX)	PMC1D1PMAX	00h
D09Ch	PMC1 測定結果レジスタ	PMC1TIM	00h
D09Dh			00h
D09Eh			
D09Fh			

X: 不定です。

4.2 SFR使用上の注意事項

4.2.1 レジスタ設定時の注意事項

表 4.19 に書き込みのみ可能なビットを含むレジスタ、読み出しと書き込みで機能が異なるレジスタを示します。これらのレジスタには即値を設定してください(リードモディファイライト命令を使用しないでください)。前回の値を加工して次の値を決める場合は、レジスタに書く値をRAMにも書いておき、次の値はRAMの内容を変更した後、レジスタに転送してください。

なお、何も配置されていないビットは、リードモディファイライト命令が使用できます。

表 4.19 書き込みのみ可能なビットを含むレジスタ

アドレス	レジスタ名	シンボル
0249h	UART0ビットレートレジスタ	U0BRG
024Bh~024Ah	UART0送信バッファレジスタ	U0TB
0259h	UART1ビットレートレジスタ	U1BRG
025Bh~025Ah	UART1送信バッファレジスタ	U1TB
0269h	UART2ビットレートレジスタ	U2BRG
026Bh~026Ah	UART2送信バッファレジスタ	U2TB
0273h	SI/O3 ビットレートレジスタ	S3BRG
0277h	SI/O4ビットレートレジスタ	S4BRG
0289h	UART5ビットレートレジスタ	U5BRG
028Bh~028Ah	UART5送信バッファレジスタ	U5TB
0299h	UART6ビットレートレジスタ	U6BRG
029Bh~029Ah	UART6送信バッファレジスタ	U6ТВ
02A9h	UART7ビットレートレジスタ	U7BRG
02ABh~02AAh	UART7送信バッファレジスタ	U7TB
02B6h	I2C0制御レジスタ1	S3D0
02B8h	I2C0ステータスレジスタ0	S10
0303h~0302h	タイマA1-1 レジスタ	TA11
0305h~0304h	タイマA2-1レジスタ	TA21
0307h~0306h	タイマ A4-1 レジスタ	TA41
030Ah	三相出力バッファレジスタ0	IDB0
030Bh	三相出カバッファレジスタ1	IDB1
030Ch	短絡防止タイマ	DTT
030Dh	タイマB2割り込み発生頻度設定カウンタ	ICTB2
0327h~0326h	タイマA0レジスタ	TA0
0329h~0328h	タイマA1レジスタ	TA1
032Bh~032Ah	タイマA2レジスタ	TA2
032Dh~032Ch	タイマA3レジスタ	TA3
032Fh~032Eh	タイマ A4 レジスタ	TA4
037Dh	ウォッチドッグタイマリフレッシュレジスタ	WDTR
037Eh	ウォッチドッグタイマスタートレジスタ	WDTS

表 4.20 リードモディファイライト命令

機能	ニーモニック
転送	MOVDir
ビット処理	BCLR、BMCnd、BNOT、BSET、BTSTC、BTSTS
シフト	ROLC, RORC, ROT, SHA, SHL
算術演算	ABS, ADC, ADCF, ADD, DEC, DIV, DIVU, DIVX, EXTS, INC, MUL, MULU, NEG, SBB, SUB
10進演算	DADC, DADD, DSBB, DSUB
論理演算	AND, NOT, OR, XOR
ジャンプ	ADJNZ, SBJNZ

5. 電気的特性

5.1 電気的特性 (5V、3V共通事項)

5.1.1 絶対最大定格

表 5.1 絶対最大定格

記号		項目	条件	定格值	単位	
V _{CC1}	電源電圧		V _{CC1} =AV _{CC}	-0.3~6.5	V	
V_{CC2}	電源電圧		V _{CC1} =AV _{CC}	-0.3~V _{CC1} + 0.1 (注1)	V	
AV _{CC}	アナログ電源	電圧	V _{CC1} =AV _{CC}	-0.3~6.5	V	
V _{REF}	アナログ基準	電圧	V _{CC1} =AV _{CC}	-0.3~V _{CC1} + 0.1 (注1)	V	
VI	入力電圧	RESET, CNVSS, BYTE, P6_0~P6_7, P7_2~P7_7, P8_0~P8_4, P8_6, P8_7, P9_0~P9_7, P10_0~P10_7, P11_0~P11_7, P14_0~P14_1 XIN		-0.3~V _{CC1} + 0.3 (注1)	V	
		P0_0~P0_7, P1_0~P1_7, P2_0~P2_7, P3_0~P3_7, P4_0~P4_7, P5_0~P5_7, P12_0~P12_7, P13_0~P13_7		-0.3~V _{CC2} + 0.3 (注1)	V	
		P7_0, P7_1, P8_5		-0.3~6.5	V	
V _O	出力電圧	P6_0~P6_7, P7_2~P7_7, P8_0~P8_4, P8_6, P8_7, P9_0~P9_7, P10_0~P10_7, P11_0~P11_7, P14_0~P14_1 XOUT		-0.3~V _{CC1} + 0.3 (注1)	V	
		P0_0~P0_7, P1_0~P1_7, P2_0~P2_7, P3_0~P3_7, P4_0~P4_7, P5_0~P5_7, P12_0~P12_7, P13_0~P13_7		-0.3~V _{CC2} + 0.3 (注1)	V	
		P7_0, P7_1, P8_5		-0.3~6.5	V	
P_d	消費電力		-40°C < T _{opr} ≤ 85°C	300	mW	
T _{opr}	動作周囲温度	マイコン動作時		-20~85/-40~85		
		フラッシュ書き込み消去時	プログラム領域	0~60	°C	
			データ領域	-20~85/-40~85		
T _{stg}	保存温度			-65~150	°C	

注1. 最大6.5Vです。

5.1.2 推奨動作条件

表 5.2 推奨動作条件 (1/3)

指定のない場合は、 $V_{\rm CC1}$ = $V_{\rm CC2}$ =2.7~5.5V、 $T_{\rm opr}$ = -20~85 $^{\circ}$ C/-40~85 $^{\circ}$ Cです。

÷1 P	項目					単位		
記号			- 現日		最小	標準	最大	甲亚
V_{CC1} ,	電源電圧(V _C	_{CC1} ≧V	CC2)	EC機能未使用時	2.7	5.0	5.5	V
V_{CC2}			C	EC機能使用時	2.7		3.63	V
AV_{CC}	アナログ電流	原電圧	,			V _{CC1}		V
V_{SS}	電源電圧					0		V
AV _{SS}	アナログ電流	原電圧				0		V
V _{IH}	"H"入力電圧		P3_7, P4_0~P4_7, P5_0~P5_7,		0.8V _{CC2}		V _{CC2}	V
			~P12_7, P13_0~P13_7		0.01002		• 002	, v
			P0_7, P1_0~P1_7, P2_0~P2_7, P3	3_0	0.8V _{CC2}		V_{CC2}	V
			グルチップモード時) ·P0_7, P1_0~P1_7, P2_0~P2_7, P3	2.0				
		「0_0~F0_/,F1_0~F1_/,F2_0~F2_/,F3_0 (メモリ拡張、マイクロプロセッサモード時のデータ入力)		0.5V _{CC2}		V_{CC2}	V	
	(メモリ加強、マイクロプロセッリモート時のナーダスカ) P6_0~P6_7, P7_2~P7_7, P8_0~P8_4, P8_6, P8_7,							
		_	.P9_7, P10_0~P10_7, P11_0~P11_		0.8V _{CC1}		V _{CC1}	V
			ESET, CNVSS, BYTE					
		P7_0,	P7_1, P8_5		0.8V _{CC1}		6.5	V
		CEC			0.7V _{CC1}			V
V_{IL}	"L"入力電	_	P3_7, P4_0~P4_7, P5_0~P5_7,		0		0.2V _{CC2}	V
	<i>7</i> —		~P12_7, P13_0~P13_7		Ŭ		***************************************	
			·P0_7, P1_0~P1_7, P2_0~P2_7, P3 グルチップモード時)	3_0	0		0.2V _{CC2}	V
			フルチックモード時) ·P0_7, P1_0~P1_7, P2_0~P2_7, P3	3 0				
		_	リ拡張、マイクロプロセッサモード	_	0		0.16V _{CC2}	V
		`	P6_7, P7_0~P7_7, P8_0~P8_7,P9	,				
		P10_0	~P10_7, P11_0~P11_7, P14_0~P1		0		0.2V _{CC1}	V
	XIN, RESET, CNVSS, BYTE							
		CEC					0.26V _{CC1}	V
I _{OH(sum)}	"H"尖頭総出	力	P0_0~P0_7, P1_0~P1_7, P2_0~P2_7	u /			-40	mA
	電流		P3_0~P3_7, P4_0~P4_7, P5_0~P5_7	7, P12_0~P12_7,			-40	mA
			P13_0~P13_7のI _{OH(peak)} の総和				-40	1117
			P6_0~P6_7, P7_2~P7_7, P8_0~P8_4				-40	mA
			P8_6, P8_7, P9_0~P9_7, P10_0~P10)_7, P11_0~P11_7,			-40	mA
			P14_0~P14_1のI _{OH(peak)} の総和				-40	IIIA
I _{OH(peak)}	"H"尖頭出力	電流	P0_0~P0_7, P1_0~P1_7, P2_0~P2_7					
			P4_0~P4_7, P5_0~P5_7, P6_0~P6_7 P8_0~P8_4, P8_6, P8_7, P9_0~P9_7				-10.0	mA
			P11_0~P11_7, P12_0~P12_7, P13_0	. – – .			-10.0	IIIA
			P14_0~P14_1	1 10_7,				
I _{OH(avg)}	"H"平均出力	電流	P0_0~P0_7, P1_0~P1_7, P2_0~P2_7	<i> </i>				
	(注1)		P4_0~P4_7, P5_0~P5_7, P6_0~P6_7	. – – .				
			P8_0~P8_4, P8_6, P8_7, P9_0~P9_7	. – – .			-5.0	mA
			P11_0~P11_7, P12_0~P12_7, P13_0 P14_0~P14_1	~F I3_1,				
注 1 🗓			「ゼージ・ロゼー」 0cの期間内での平均値です		l			<u> </u>

注1. 平均出力電流は100msの期間内での平均値です。

表 5.3 推奨動作条件 (2/3)

指定のない場合は、 $V_{\rm CC1}$ = $V_{\rm CC2}$ =2.7~5.5V、 $T_{\rm opr}$ = -20~85 $^{\circ}$ C/-40~85 $^{\circ}$ Cです。

=7.0		# D			規格値		** / T
記 号		項目		最小	標準	最大	単位
I _{OL(sum)}	"L"尖頭総出力 電流	P9_0~P9_7, P10_0	P0_0~P0_7, P1_0~P1_7, P2_0~P2_7, P8_6, P8_7, P9_0~P9_7, P10_0~P10_7, P11_0~P11_7, P14_0~P14_1のI _{OL(peak)} の総和			80.0	mA
		P3_0~P3_7, P4_0~ P6_0~P6_7, P7_0~	P4_7, P5_0~P5_7,			80.0	mA
I _{OL(peak)}	"L" 尖頭出力電流	P3_0~P3_7, P4_0~ P6_0~P6_7, P7_0~ P9_0~P9_7, P10_0	P0_0~P0_7, P1_0~P1_7, P2_0~P2_7, P3_0~P3_7, P4_0~P4_7, P5_0~P5_7, P6_0~P6_7, P7_0~P7_7, P8_0~P8_7, P9_0~P9_7, P10_0~P10_7, P11_0~P11_7, P12_0~P12_7, P13_0~P13_7, P14_0~P14_1			10.0	mA
I _{OL(avg)}	"L"平均出力電流 (注1)	P3_0~P3_7, P4_0~ P6_0~P6_7, P7_0~ P9_0~P9_7, P10_0	P0_0~P0_7, P1_0~P1_7, P2_0~P2_7, P3_0~P3_7, P4_0~P4_7, P5_0~P5_7, P6_0~P6_7, P7_0~P7_7, P8_0~P8_7, P9_0~P9_7, P10_0~P10_7, P11_0~P11_7, P12_0~P12_7, P13_0~P13_7, P14_0~P14_1			5.0	mA
f _(XIN)	メインクロック入力	発振周波数	V _{CC1} =2.7V~5.5V	2		20	MHz
f _(XCIN)	サブクロック発振周	皮数	-		32.768	50	kHz
f _(PLL)	PLLクロック発振周波	皮数	$V_{CC1} = 2.7V \sim 5.5V$	10		32	MHz
f _(BCLK)	CPU動作周波数	CPU動作周波数		2		32	MHz
t _{su(PLL)}	PLL周波数シンセサイ	イザ安定待ち時間	V _{CC1} = 5.0V			2	ms
			$V_{CC1} = 3.0V$			3	ms

注1. 平均出力電流は100msの期間内での平均値です。

表 5.4 推奨動作条件(3/3)

(指定のない場合は、 $V_{CC1}=2.7\sim5.5~V$ 、 $V_{SS}=0~V$ 、 $T_{opr}=-20\sim85~C$ /-40~85 $^{\circ}$ C)(注1) 電源リップルは V_r (V_{CC1})、 dV_r (V_{CC1})/dtのどちらか一方または両方を満たしてください。

= 1 ₽	吞口		規格値			# / +
記号	項目		最小	標準	最大	単位
$V_{r(VCC1)}$	許容電源リップル電圧	V _{CC1} =5.0V			0.5	Vp-p
		V _{CC1} =3.0V			0.3	Vp-p
dV _{r(VCC1)} /dt	電源リップル立ち下がり勾配	V _{CC1} =5.0V			0.3	V/ms
		V _{CC1} =3.0V			0.3	V/ms

注1. 推奨動作条件は、デバイスの動作を保証する範囲であり、この範囲を越えた場合、最大定格内であっても動作は保証されません。

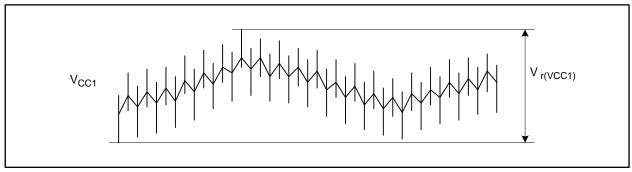


図 5.1 電源リップル波形

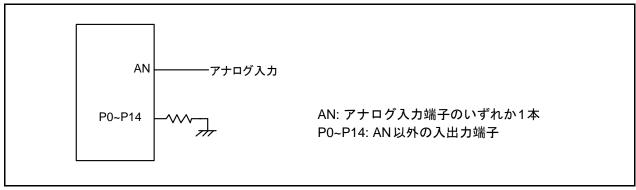

5.1.3 A/D変換特性

表 5.5 A/D変換特性(1/2)(注1)

指定のない場合は、 V_{CC1} =A V_{CC} =3.0~5.5V \geq V_{CC2} \geq V_{REF} 、 V_{SS} =A V_{SS} =0V、 T_{opr} = -20~85 $^{\circ}$ C/-40~85 $^{\circ}$ Cです。

記号	項目					規格値		単位
記方						標準	最大	中位
-	分解能		$AV_{CC} = V$	$V_{\text{CC1}} \ge V_{\text{CC2}} \ge V_{\text{REF}}$			10	Bits
I _{NL}	積分非直線性誤差	10bit	V _{CC1} = 5.0V	AN0~AN7入力 AN0_0~AN0_7入力 AN2_0~AN2_7入力 ANEX0、ANEX1入力 (注2)			±3	LSB
			V _{CC1} = 3.3V	AN0~AN7入力 AN0_0~AN0_7入力 AN2_0~AN2_7入力 ANEX0、ANEX1入力 (注2)			±3	LSB
			V _{CC1} = 3.0V	AN0~AN7入力 AN0_0~AN0_7入力 AN2_0~AN2_7入力 ANEX0、ANEX1入力 (注2)			±3	LSB
-	絶対精度	10bit	V _{CC1} = 5.0V	AN0~AN7入力 AN0_0~AN0_7入力 AN2_0~AN2_7入力 ANEX0、ANEX1入力 (注2)			±3	LSB
			V _{CC1} = 3.3V	AN0~AN7入力 AN0_0~AN0_7入力 AN2_0~AN2_7入力 ANEX0、ANEX1入力 (注2)			±3	LSB
			V _{CC1} = 3.0V	AN0~AN7入力 AN0_0~AN0_7入力 AN2_0~AN2_7入力 ANEX0、ANEX1入力 (注2)			±3	LSB

- 注1.
- $AV_{CC} = V_{CC1}$ で使用してください。 フラッシュメモリ書き換え禁止。測定するアナログ入力端子以外は入力ポートにして V_{SS} に接続。 注2. 「図 5.2 A/D精度測定回路」を参照してください。

A/D精度測定回路 図 5.2

表 5.6 A/D変換特性 (2/2) (注1)

指定のない場合は、 V_{CC1} =A V_{CC} =3.0~5.5V \geq V_{CC2} \geq V_{REF} 、 V_{SS} =A V_{SS} =0V、 T_{opr} = -20~85 $^{\circ}$ C/-40~85 $^{\circ}$ Cです。

記号	項目		測定条件		規格値		単位
記与	坦 日			最小	標準	最大	丰四
φAD	A/D動作クロック周波数	AN0~AN7入力、	4.0V ≦ V _{CC1} ≦ 5.5V	2		25	MHz
		ANEXO、ANEX1	3.2V ≦ V _{CC1} ≦ 4.0V	2		16	MHz
		入力 	3.0V ≦ V _{CC1} ≦ 3.2V	2		10	MHz
		AN0_0~AN0_7	$4.0V \le V_{CC2} \le 5.5V$	2		25	MHz
		AIN2_U~AIN2_/	$3.2V \le V_{CC2} \le 4.0V$	2		16	MHz
	入力	$3.0V \le V_{CC2} \le 3.2V$	2		10	MHz	
-	許容信号源インピーダンス				3		kΩ
D_NL	微分非直線性誤差		(注3)			±1	LSB
-	オフセット誤差		(注3)			±3	LSB
-	ゲイン誤差		(注3)			±3	LSB
t _{CONV}	変換時間(10bit)		V _{CC1} =5V、φAD=25MHz	1.60			μs
t _{SAMP}	サンプリング時間			0.60			μs
V_{REF}	基準電圧			3.0		V_{CC1}	V
V_{IA}	アナログ入力電圧(注2、4)			0		V_{REF}	V

- 注1. $AV_{CC} = V_{CC1}$ で使用してください。
- 注2. $V_{CC1} \ge V_{CC2}$ の場合、次のようにしてください。 アナログ入力電圧(AN0~AN7、ANEX0、ANEX1) $\le V_{CC1}$ アナログ入力電圧(AN0_0~AN0_7、AN2_0~AN2_7) $\le V_{CC2}$
- 注3. フラッシュメモリ書き換え禁止。測定するアナログ入力端子以外は入力ポートにしてV_{SS}に接続。「図 5.2 A/D精度測定回路」を参照してください。
- 注4. アナログ入力電圧が基準電圧を超えた場合、A/D変換結果は3FFhになります。

5.1.4 D/A 変換特性

表 5.7 D/A 変換特性

指定のない場合は、V_{CC1}=AV_{CC}=V_{REF}=3.0~5.5V、V_{SS} =AV_{SS}=0V、T_{opt}= -20~85℃/-40~85℃です。

記号	項目	測定条件			単位	
	人	州足木什	最小	標準	最大	+12
-	分解能				8	Bits
-	絶対精度				2.5	LSB
t _{su}	設定時間				3	μs
R _O	出力抵抗		5	6	8.2	kΩ
I _{VREF}	基準電源入力電流	(注1、2)			1.5	mA

- 注1. D/Aコンバータ1本使用、使用していないD/AコンバータのD/Aレジスタの値が"00h"の場合です。
- 注2. A/Dコンバータの電流消費分は除きます。また、ADCON1 レジスタのADSTBY ビットが"0" (A/D動作停止、スタンバイ) の場合でも、D/AコンバータのI_{VREF} は流れます。

5.1.5 フラッシュメモリの電気的特性

表 5.8 フラッシュメモリ動作時の CPU クロック (f_(BCLK))

指定のない場合は、V_{CC1}=2.7~5.5V、T_{opr}= -20~85℃/-40~85℃です。

記号	項目	測定条件		規格値		単位
記与		则 足未什	最小	標準	最大	中位
-	CPU書き換えモード				10 (注1)	MHz
f _(SLOW_R)	スローリードモード				5 (注3)	MHz
-	低消費電流リードモード			fC(32.768)	35	kHz
-	データフラッシュリード	$2.7V \le V_{\text{CC1}} \le 3.0V$			16 (注2)	MHz
		3.0V < V _{CC1} ≤ 5.5V			20 (注2)	MHz

- 注1. PM1 レジスタのPM17ビットは"1" (1 ウェイト)にしてください。
- 注2. この周波数を超える場合、またはFMR1 レジスタのFMR17 ビットを"0" (1 ウェイト) にするか、またはPM1 レジスタのPM17 ビットを"1" (1 ウェイト) にしてください。
- 注3. PM1 レジスタの PM17 ビットを"1" (1 ウェイト) にしてください。125kHz オンチップオシレータクロックまたは サブクロックが CPU クロックのクロック源の場合は、ウェイトは不要です。

表 5.9 フラッシュメモリ(プログラムROM1、2)の電気的特性

指定のない場合は、 V_{CC1} =2.7~5.5V、 T_{opr} =0 $^{\circ}$ C~60 $^{\circ}$ C (オプション: -40 $^{\circ}$ C~85 $^{\circ}$ C) です。

記号	項目	測定条件		規格値		単位
記与			最小	標準	最大	中世
-	プログラム、イレーズ回数(注1、3、4)	$V_{CC1}=3.3V$, $T_{opr}=25$ °C	1,000 (注2)			口
-	2ワードプログラム時間	V _{CC1} =3.3V, T _{opr} =25°C		150	4000	μs
	ロックビットプログラム時間	V _{CC1} =3.3V, T _{opr} =25°C		70	3000	μs
-	ブロックイレーズ時間	V _{CC1} =3.3V, T _{opr} =25°C		0.2	3.0	S
td _(SR-SUS)	サスペンドへの遷移時間				$5 + \frac{3}{f(BCLK)}$	ms
-	イレーズ開始または再開から次のサス ペンド要求までの間隔		0			μs
-	自動消去が終了するために必要なサスペンド間隔 (注7)		20			ms
-	サスペンドからイレーズの再開までの 時間				$30 + \frac{1}{f(BCLK)}$	μs
-	書き込み、消去電圧		2.7		5.5	V
-	読み出し電圧	T _{opr} = -20~85°C/-40~85°C	2.7		5.5	V
-	書き込み、消去時の温度		0		60	°C
t _{PS}	フラッシュメモリ回路安定待ち時間				50	μs
-	データ保持時間(注6)	周囲温度 = 55℃	20			年

注1. プログラム、イレーズ回数の定義

プログラム、イレーズ回数はブロックごとのイレーズ回数です。

プログラム、イレーズ回数がn回 (n=1,000) の場合、ブロックごとに、それぞれn 回ずつイレーズすることができます。たとえば、あるブロックについて、それぞれ異なる番地に2 ワード書き込みを16,384 回に分けて行った後に、そのブロックをイレーズした場合も、プログラム / イレーズ回数は1 回と数えます。ただし、イレーズ1 回に対して、同一番地に複数回の書き込みを行うことはできません(上書き禁止)。

- 注2. プログラム/イレーズ後のすべての電気的特性を保証する回数です。(保証は1~"最小"値の範囲です。)
- 注3. 多数回の書き換えを実施するシステムの場合は、実効的な書き換え回数を減少させる工夫として、書き込み番地を順にずらしていくなどして、ブランク領域ができるだけ残らないようにプログラム(書き込み)を実施した上で1回のイレーズを行ってください。ブロックごとに何回イレーズを実施したかを情報として残し、制限回数を設けていただくことをお勧めします。
- 注4. ブロックイレーズでイレーズエラーが発生した場合は、イレーズエラーが発生しなくなるまでクリアステータスレジスタコマンド→ブロックイレーズコマンドを少なくとも3回実行してください。
- 注5. 不良率につきましては、弊社営業窓口にお問い合わせください。
- 注6. 電源電圧またはクロックが印加されていない時間を含みます。
- 注7. イレーズ開始または再開から次のサスペンド要求まで、20ms以上の間隔をあけない場合はイレーズシーケンスが進みません。

表 5.10 フラッシュメモリ(データフラッシュ)の電気的特性

指定のない場合は、V_{CC1}=2.7~5.5V、T_{opr} = -20℃~85℃/-40℃~85℃です。

記号	項目	測定条件		規格値		単位
記写	惧	測 上米什	最小	標準	最大	甲亚
-	プログラム、イレーズ回数	V _{CC1} =3.3V,	10,000			
	(注1、3、4)	T _{opr} =25°C	(注2)			回
-	2ワードプログラム時間	V _{CC1} =3.3V,		300	4000	μs
		T _{opr} =25°C		300	4000	μδ
-	ロックビットプログラム時間	V _{CC1} =3.3V,		140	3000	μs
		T _{opr} =25°C		140	3000	μδ
-	ブロックイレーズ時間	V _{CC1} =3.3V,		0.2	3.0	s
		T _{opr} =25°C		0.2	3.0	3
td _(SR-SUS)	サスペンドへの遷移時間				$5 + \frac{3}{f(BCLK)}$	ms
-	イレーズ開始または再開から次のサス ペンド要求までの間隔		0			μs
-	自動消去が終了するために必要なサスペンド間隔 (注7)		20			ms
-	サスペンドからイレーズの再開までの 時間				$30 + \frac{1}{f(BCLK)}$	μs
-	書き込み、消去電圧		2.7		5.5	V
-	読み出し電圧		2.7		5.5	V
-	書き込み、消去時の温度		-20/-40		85	°C
t _{PS}	フラッシュメモリ回路安定待ち時間				50	μs
-	データ保持時間(注6)	周囲温度=55℃	20			年

注1. プログラム/イレーズ回数の定義

プログラム/イレーズ回数はブロックごとのイレーズ回数です。

プログラム/イレーズ回数がn回 (n=10,000) の場合、ブロックごとにそれぞれn回ずつイレーズすることができます。

たとえば、4Kバイトブロックのブロックについて、それぞれ異なる番地に2ワード書き込みを1,024回に分けて行った後に、そのブロックをイレーズした場合も、プログラム / イレーズ回数は1回と数えます。ただし、イレーズ1回に対して、同一番地に複数回の書き込みを行うことはできません(上書き禁止)。

- 注2. プログラム/イレーズ後のすべての電気的特性を保証する回数です。(保証は1~"最小"値の範囲です。)
- 注3. 多数回の書き換えを実施するシステムの場合は、実効的な書き換え回数を減少させる工夫として、書き込み番地を順にずらしていくなどして、ブランク領域ができるだけ残らないようにプログラム(書き込み)を実施した上で1回のイレーズを行ってください。たとえば一組16バイトをプログラムする場合、最大256組の書き込みを実施した上で1回のイレーズをすることで、実効的な書き換え回数を少なくすることができます。加えてブロックAとブロックBのイレーズ回数が均等になるようにすると、さらに実効的な書き換え回数を少なくすることができます。また、ブロックごとに何回イレーズを実施したかを情報として残し、制限回数を設けていただくことをお勧めします。
- 注4. ブロックイレーズでイレーズエラーが発生した場合は、イレーズエラーが発生しなくなるまでクリアステータ スレジスタコマンド→ブロックイレーズコマンドを少なくとも3回実行してください。
- 注5. 不良率につきましては、弊社営業窓口にお問い合わせください。
- 注6. 電源電圧またはクロックが印加されていない時間を含みます。
- 注7. イレーズ開始または再開から次のサスペンド要求まで、20ms以上の間隔をあけない場合はイレーズシーケンスが進みません。

5.1.6 電圧検出回路、電源回路の電気的特性

表 5.11 電圧検出 0回路の電気的特性

指定のない場合の測定条件は $V_{\rm CC1}$ =2.7~5.5V、 $T_{\rm opr}$ = -20 $^{\circ}$ C~85 $^{\circ}$ C/-40 $^{\circ}$ C~85 $^{\circ}$ Cです。

記号	項目	測定条件		_	単位	
配力	模口	规定未行	最小	標準	最大	丰四
V _{det0}	電圧検出レベルVdet0_0 (注1)	V _{CC1} 立ち下がり時	1.80	1.90	2.10	V
	電圧検出レベルVdet0_2 (注1)	V _{CC1} 立ち下がり時	2.70	2.85	3.00	V
-	電圧検出0回路反応時間 (注3)	V _{CC1} を5Vから(Vdet0_0-0.1)V に下げたとき			200	μs
-	電圧検出回路の自己消費電流	VC25=1、V _{CC1} =5.0V		1.5		μΑ
t _{d(E-A)}	電圧検出回路動作開始までの待ち時間 (注2)				100	μs

- 注1. 電圧検出レベルはOFS1番地のVDSEL1ビットで選択してください。
- 注2. VCR2 レジスタの VC25 ビットを "0" にした後、再度 "1" にした場合の、電圧検出回路が動作するまでに必要な時間です。
- 注3. V_{det0} を通過した時点から、電圧監視0リセットが発生するまでの時間です。

表 5.12 電圧検出1回路の電気的特性

指定のない場合の測定条件はV_{CC1}=2.7 ~ 5.5V、T_{opr} = -20 °C ~85 °C /-40 °C ~85 °C です。

記号	項目	測定条件		規格値		単位
記与	以 日	- 例と末件	最小	標準	最大	中世
V _{det1}	電圧検出レベル Vdet1_6 (注1)	V _{CC1} 立ち下がり時	2.80	3.10	3.40	V
	電圧検出レベル Vdet1_B (注1)	V _{CC1} 立ち下がり時	3.55	3.85	4.15	V
	電圧検出レベル Vdet1_F (注1)	V _{CC1} 立ち下がり時	4.15	4.45	4.75	V
-	電圧検出1回路のV _{CC1} 立ち上がり時の			0.15		V
	ヒステリシス幅			0.10		*
-	電圧検出1回路反応時間(注3)	V _{CC1} を5Vから(Vdet1_0 - 0.1)V			200	μs
		に下げたとき				μο
-	電圧検出回路の自己消費電流	VC26=1、V _{CC1} =5.0V		1.7		μA
t _{d(E-A)}	電圧検出回路動作開始までの待ち時間 (注2)				100	μs

- 注1. 電圧検出レベルはVD1LSレジスタのVD1S0~VD1S3ビットで選択してください。
- 注2. VCR2 レジスタのVC26 ビットを"0"にした後、再度"1"にした場合の、電圧検出回路が動作するまでに必要な時間です。
- 注3. V_{det1}を通過した時点から、電圧監視1リセットが発生するまでの時間です。

表 5.13 電圧検出2回路の電気的特性

指定のない場合の測定条件は $V_{\rm CC1}$ =2.7~5.5V、 $T_{\rm opr}$ = -20 $\mathbb C$ ~85 $\mathbb C$ /-40 $\mathbb C$ ~85 $\mathbb C$ です。

記号	項目	測定条件			単位	
配力	人	测定未 什	最小	標準	最大	丰四
V _{det2}	電圧検出レベル Vdet2_0	V _{CC1} 立ち下がり時	3.70	4.00	4.30	V
-	電圧検出2回路のV _{CC1} 立ち上がり時の			0.15		V
	ヒステリシス幅			0.10		Ů
-	電圧検出2回路反応時間 (注2)	V _{CC1} を5Vから(Vdet2_0 - 0.1)V			200	μs
		に下げたとき			200	μο
-	電圧検出回路の自己消費電流	VC27=1、V _{CC1} =5.0V		1.7		μΑ
t _{d(E-A)}	電圧検出回路動作開始までの待ち時間 (注1)				100	μs

- 注1. VCR2 レジスタの VC27 ビットを "0" にした後、再度 "1" にした場合の、電圧検出回路が動作するまでに必要な時間です。
- 注2. V_{det2} を通過した時点から、電圧監視2リセットが発生するまでの時間です。

表 5.14 パワーオンリセット回路

指定のない場合の測定条件は $V_{\rm CC1}$ =2.0~5.5V、 $T_{\rm opr}$ = -20 $\mathbb C$ ~85 $\mathbb C$ /-40 $\mathbb C$ ~85 $\mathbb C$ です。

記号	項目	測定条件			単位	
配力			最小	標準	最大	- 年四
V _{por1}	パワーオンリセットが有効になる電 圧(注1)				0.5	V
t _{rth}	外部電源V _{CC1} の立ち上がり傾き		2.0		50000	mV/ms
t _{w(por)}	パワーオンリセットが有効になるための保持時間		300			ms

注1. パワーオンリセットを使用する場合には、OFS1番地のLVDAS ビットを"0"にして電圧監視0リセットを有効にしてください。また、VDSEL1 ビットを"0" (V_{det0_2})にしてください。

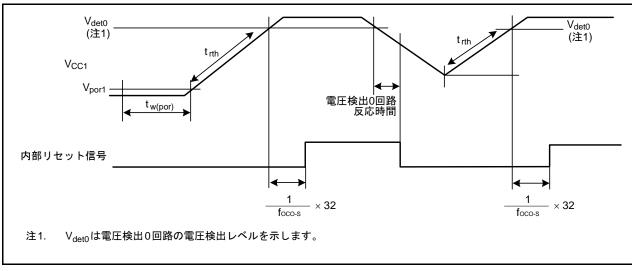


図5.3 パワーオンリセット回路の電気的特性

表 5.15 電源回路のタイミング特性

指定のない場合の測定条件は V_{CC1} =2.7~5.5V、 T_{opr} =25 $^{\circ}$ Cです。

記号	項目	測定条件		単位			
配力	人口 	別足木計	最小	標準	最大	- 中四	
t _{d(P-R)}	電源投入時の内部電源安定時間 (注1)				5	ms	
t _{d(R-S)}	STOP解除時間				150	μs	
t _{d(W-S)}	低消費電力モードウェイトモード解除時間				150	μs	

注1. 電源投入時に、内部電源発生回路が安定するまでの待ち時間です。

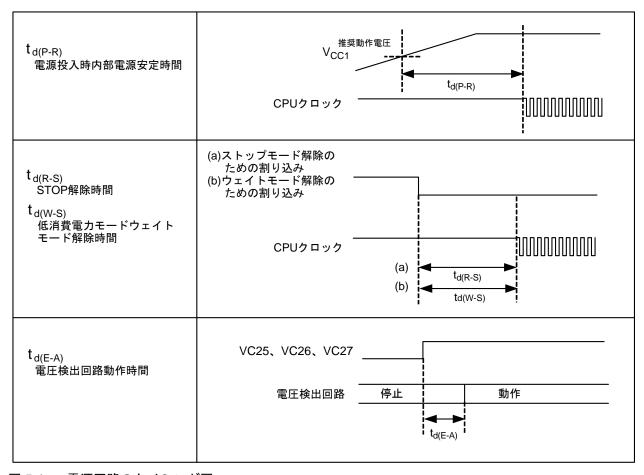


図 5.4 電源回路のタイミング図

5.1.7 発振回路の電気的特性

表 5.16 40MHzオンチップオシレータ発振回路の電気的特性 (1/2)

指定のない場合は、 V_{CC1} =2.7~5.5V、 T_{opr} = -20 \mathbb{C} ~85 \mathbb{C} /-40 \mathbb{C} ~85 \mathbb{C} です。

記号	項目	測定条件		単位		
記方	記号 項目		最小	標準	最大	辛四
f _{OCO40M}	40MHzオンチップオシレータ発振 周波数	10msの期間での平均周波数	38	40	42	MHz
t _{su(fOCO40M)}	40MHzオンチップオシレータ発振 安定待ち時間				2	ms

表 5.17 125kHzオンチップオシレータ発振回路の電気的特性

指定のない場合は、 V_{CC1} =2.7~5.5V、 T_{opr} = -20 $^{\circ}$ C~85 $^{\circ}$ C/-40 $^{\circ}$ C~85 $^{\circ}$ Cです。

記号	項目	測定条件		単位		
配石		测定未 什	最小	標準	最大	辛匹
f _{OCO-S}	125kHzオンチップオシレータ発振 周波数	10msの期間での平均周波数	100	125	150	kHz
t _{su(fOCO-S)}	125kHzオンチップオシレータ発振 安定待ち時間				20	μs

5.2 電気的特性(V_{CC1}=V_{CC2}=5V)

5.2.1 電気的特性

 $V_{CC1}=V_{CC2}=5V$

表 5.18 電気的特性(1)(注1)

指定のない場合は、 V_{CC1} = V_{CC2} =4.2~5.5V、 V_{SS} =0V、 T_{opr} = -20~85 $^{\circ}$ C/-40~85 $^{\circ}$ C、 $f_{(BCLK)}$ =32MHzです。

記号			· · · · · · · · · · · · · · · · · · ·	测点条件	ŧ	現格値		単位
記写			項目	測定条件	最小	標準 最大		単位
V _{OH}	"H"出力電圧		7_2~P7_7, P8_0~P8_4, P8_6, P8_7, 10_0~P10_7, P11_0~P11_7,	I _{OH} = -5mA	V _{CC1} - 2.0		V _{CC1}	V
		,	_0~P1_7, P2_0~P2_7, P3_0~P3_7, 5_0~P5_7, P12_0~P12_7,	I _{OH} = -5mA	V _{CC2} - 2.0		V _{CC2}	V
V _{OH}	"H"出力電圧		7_2~P7_7, P8_0~P8_4, P8_6, P8_7, 10_0~P10_7, P11_0~P11_7,	I _{OH} = -200μA	V _{CC1} - 0.3		V _{CC1}	V
			_0~P1_7, P2_0~P2_7, P3_0~P3_7, 5_0~P5_7, P12_0~P12_7,	I _{OH} = -200μA	V _{CC2} - 0.3		V _{CC2}	V
V _{OH}	"H"出力電圧	XOUT	HIGH POWER	I _{OH} = -1mA	V _{CC1} - 2.0		V _{CC1}	<u> </u>
			LOW POWER	I _{OH} = -0.5mA	V _{CC1} - 2.0		V _{CC1}	V
	"H"出力電圧	XCOUT	HIGH POWER	無負荷時		2.6		
			LOW POWER	無負荷時		2.2		V
V _{OL}	"L"出力電圧		I '_0~P7_7, P8_0~P8_7, P9_0~P9_7, P11_0~P11_7, P14_0~P14_1	I _{OL} = 5mA			2.0	
	P0_0~P0		I_0~P1_7, P2_0~P2_7, P3_0~P3_7, 5_0~P5_7, P12_0~P12_7,	I _{OL} = 5mA			2.0	V
V _{OL}	"L"出力電圧		7_0~P7_7, P8_0~P8_7, P9_0~P9_7, P11_0~P11_7, P14_0~P14_1	I _{OL} = 200μA			0.45	
		P0_0~P0_7, P1_0~P1_7, P2_0~P2_7, P3_0~P3_7, P4_0~P4_7, P5_0~P5_7, P12_0~P12_7, P13_0~P13_7		I _{OL} = 200μA			0.45	V
V _{OL}	"L"出力電圧	XOUT	HIGH POWER	I _{OL} = 1mA			2.0	T
			LOW POWER	I _{OL} = 0.5mA			2.0	V
	"L"出力電圧	XCOUT	HIGH POWER	無負荷時		0		†
			LOW POWER	無負荷時		0		V
V _T +-V _T -	ヒステリシス	TB0IN~TB5IN, ADTRG, CTS0- SCL0~SCL2, S SDA5~SDA7, C KI0~KI3, RXD0	HOLD, RDY, TAOIN~TA4IN, TBOIN~TB5IN, INTO~INT7, NMI, ADTRG, CTS0~CTS2, CTS5~CTS7, SCL0~SCL2, SCL5~SCL7, SDA0~SDA2, SDA5~SDA7, CLK0~CLK7, TAOOUT~TA4OUT, KIO~KI3, RXD0~RXD2, RXD5~RXD7, SIN3, SIN4, SD, PMC0, PMC1, SCLMM, SDAMM, CEC,		0.5		2.0	V
VT+-VT-	ヒステリシス	RESET			0.5		2.5	V
I _{IH}	"H"入力電流	P0_0~P0_7, P1_0~P1_7, P2_0~P2_7, P3_0~P3_7, P4_0~P4_7, P5_0~P5_7, P6_0~P6_7, P7_0~P7_7, P8_0~P8_7, P9_0~P9_7, P10_0~P10_7, P11_0~P11_7, P12_0~P12_7, P13_0~P13_7, P14_0~P14_1 XIN, RESET, CNVSS, BYTE		V _I =5V			5.0	μА
I _{IL}	"L"入力電流	P4_0~P4_7, P5 P8_0~P8_7, P5 P11_0~P11_7, P14_0~P14_1 XIN, RESET, C	_0~P1_7, P2_0~P2_7, P3_0~P3_7, 5_0~P5_7, P6_0~P6_7, P7_0~P7_7, 5_0~P9_7, P10_0~P10_7, P12_0~P12_7, P13_0~P13_7, NVSS, BYTE	V _I =0V			-5.0	μА

注1. $V_{CC1} \neq V_{CC2}$ でご使用の場合は、それぞれの電圧に応じて5Vまたは3Vの規格を参照してください。

 $V_{CC1}=V_{CC2}=5V$

表 5.19 電気的特性(2)(注1)

指定のない場合は、 $V_{CC1}=V_{CC2}=4.2$ ~5.5V、 $V_{SS}=0V$ 、 $T_{opr}=-20$ ~85 $^{\circ}$ C/-40~85 $^{\circ}$ C、 $f_{(BCLK)}=32$ MHzです。

= □ P	記号 項目 測定条件		測定条件	共		単位	
記写			最小	標準	最大	単位	
R _{PULLUP}	プルアップ 抵抗	P0_0~P0_7, P1_0~P1_7, P2_0~P2_7, P3_0~P3_7, P4_0~P4_7, P5_0~P5_7, P6_0~P6_7, P7_2~P7_7, P8_0~P8_4, P8_6, P8_7, P9_0~P9_7, P10_0~P10_7, P11_0~P11_7, P12_0~P12_7, P13_0~P13_7, P14_0~P14_1	V _I =0V	30	50	100	kΩ
R_{fXIN}	帰還抵抗 XIN	ı			1.5		МΩ
V_{RAM}	RAM保持電圧		ストップモード時	1.8			V

注1. $V_{CC1} \neq V_{CC2}$ でご使用の場合は、それぞれの電圧に応じて5Vまたは3Vの規格を参照してください。

 $V_{CC1}=V_{CC2}=5V$

表 5.20 電気的特性(3)

R5F36506CNFA, R5F36506CNFB, R5F3650ECNFA, R5F3650ECNFB, R5F36506CDFA, R5F3650ECDFA, R5F3650ECDFB, R5F3650ECDFA, R5F3650ECDFB, R5F3650ECDFB,

指定のない場合は、 $V_{CC1}=V_{CC2}=4.2\sim5.5V$ 、 $V_{SS}=0V$ 、 $T_{opt}=-20\sim85$ $^{\circ}$ C/-40~85 $^{\circ}$ C、 $f_{(BCLK)}=32$ MHzです。

記号	項目		測定条件	-	規格値		単位
Parani	帰還抵抗 XCIN			最小	標準 8	最大	ΜΩ
R _{fXCIN}		<u> </u>	f _22MH₹		0		IVIL2
I _{CC}	電源電流	高速モード	f _(BCLK) =32MHz		24.0		mA
	シングルチップモード		XIN=4MHz (方形波)、PLL8逓倍		24.0		IIIA
	で、出力端子は開放、		125kHzオンチップオシレータ停止				
	その他の端子はV _{SS}		f _(BCLK) =32MHz、A/D変換動作				١.
			XIN=4MHz (方形波)、PLL8逓倍		24.7		mA
			125kHzオンチップオシレータ停止				
			f _(BCLK) =20MHz				
			XIN=20MHz (方形波)		16.0		mA
			125kHzオンチップオシレータ停止				
			メインクロック停止				
		オシレータモード	40MHzオンチップオシレータ発振、		17.0		mA
			4分周 (f(BCLK)=10MHz)				
			125kHzオンチップオシレータ停止				
			メインクロック停止				
		オシレータモード	40MHzオンチップオシレータ停止		500.0		μA
			125kHzオンチップオシレータ発振、分周なし				
			FMR22=1 (スローリードモード)				
		低消費電力モード	$f_{(BCLK)}=32kHz$				
			低消費電力モード時 FMR22=FMR23=1		160.0		μA
			フラッシュメモリ上 (注1)				
			f _(BCLK) =32kHz		45.0		μA
			低消費電力モード時RAM上 (注1)				
		ウェイトモード	メインクロック停止				
			40MHzオンチップオシレータ停止				
			125kHzオンチップオシレータ発振		20.0		μA
			周辺クロック動作 T _{OD} =25℃				
			-1				
			f _(BCLK) =32kHz (発振能力High)				
			40MHzオンチップオシレータ停止				
			125kHzオンチップオシレータ停止		11.0		μA
			周辺クロック動作				
			T _{opr} =25°C				
			f _(BCLK) =32kHz (発振能力Low)				
			40MHzオンチップオシレータ停止				
			125kHzオンチップオシレータ停止		6.0		μA
			周辺クロック動作				
			T _{opr} =25°C				
			XIN=6MHz				
			40MHzオンチップオシレータ停止				
			125kHzオンチップオシレータ停止				
			タイマ以外の周辺クロックf1供給禁止 (PCKSTP1A=1)		1.2		mA
			タイマのクロック源にメインクロックを選択				
			(PCKSTP11=0、PCKSTP17=1)				
			タイマは任意の1本が動作				
		ストップモード	メインクロック停止				
			40MHzオンチップオシレータ停止				
			125kHzオンチップオシレータ停止		1.7		μΑ
			周辺クロック停止				
			T _{opr} =25°C				
		フラッシュメモリ	f _(BCLK) =10MHz、PM17=1(1ウェイト)		20.0	-	A
		プログラム中	V _{CC1} =5.0V		20.0		mA
		フラッシュメモリ	f _(BCLK) =10MHz、PM17=1(1ウェイト)	1	1		
		ーノフツンユアモリ			30.0		

注1. 実行するプログラムが存在するメモリを示す。

 $V_{CC1}=V_{CC2}=5V$

表 5.21 電気的特性(4)

R5F3651ECNFC、R5F3651KCNFC、R5F3650KCNFA、R5F3650KCNFB、R5F3651MCNFC、R5F3650MCNFA、R5F3650MCNFB、R5F3651NCNFC、R5F3650NCNFA、R5F3650NCNFB、R5F3651KCDFC、R5F3650KCDFA、R5F3650KCDFB、R5F3651MCDFC、R5F3650MCDFA、R5F3650MCDFA、R5F3650MCDFB、R5F3650MCDFB、R5F3650MCDFB、R5F3650MCDFB、R5F3650MCDFB、R5F3650MCDFB、R5F3650MCDFB、R5F3650MCDFB、R5F3650MCDFB、R5F3650MCDFB

指定のない場合は、 V_{CC1} = V_{CC2} =4.2~5.5V、 V_{SS} =0V、 T_{opr} = -20~85 $^{\circ}$ C/-40~85 $^{\circ}$ C、 $f_{(BCLK)}$ =32MHzです。

記号	項目		測定条件	最小	規格値標準	最大	単位
R _{fXCIN}	帰還抵抗 XCIN			7人1.	8	以八	ΜΩ
CC	電源電流	高速モード	f _(BCLK) =32MHz				10122
CC	电心电池	同处 []	XIN=4MHz (方形波)、PLL8逓倍				
	シングルチップモード		AIN=4MID2 (カ形波)、PLL6 連信 125kHzオンチップオシレータ停止		26.0		mA
	で、出力端子は開放、そ		T25KHZオンチッフオンレータ停止		20.0		1117
	の他の端子はV _{SS}						
	12 12 15 16 1 16 1 2 S		f				
			f _(BCLK) =32MHz、A/D変換動作		07.0		
			XIN=4MHz (方形波) 、PLL8逓倍		27.0		mA
			125kHzオンチップオシレータ停止				
			f _(BCLK) =20MHz				
			XIN=20MHz (方形波)、		17.0		mA
			125kHzオンチップオシレータ停止				
		40MHzオンチップ	メインクロック停止				
		オシレータモード	40MHzオンチップオシレータ発振、		40.0		
			4分周 (f(BCLK)=10MHz)		18.0		mA
			125kHzオンチップオシレータ停止				
		125kHzオンチップ	メインクロック停止				
			40MHzオンチップオシレータ停止				
		オフレーメモード	125kHzオンチップオシレータ発振、分周なし		550.0		μΑ
		低温電電土工 じ	FMR22=1 (スローリードモード)				
		低消費電力モード	f _(BCLK) =32kHz				
			低消費電力モード時 FMP22 FMP22 4		170.0		μΑ
			FMR22=FMR23=1				
			フラッシュメモリ上 (注1)				
			f _(BCLK) =32kHz				
			低消費電力モード時		45.0		μA
			RAM上 (注1)				
		ウェイトモード	メインクロック停止				
			40MHzオンチップオシレータ停止				
			125kHz オンチップオシレータ発振		20.5		μΑ
			周辺クロック動作				
			T _{opr} =25°C				
			f _(BCLK) =32kHz (発振能力High)				
			40MHzオンチップオシレータ停止				
			125kHzオンチップオシレータ停止		11.0		μΑ
					11.0		μ,
			周辺クロック動作				
			T _{opr} =25°C				
			f _(BCLK) =32kHz (発振能力Low)				
			40MHzオンチップオシレータ停止				
			125kHzオンチップオシレータ停止		6.0		μΑ
			周辺クロック動作				
			T _{opr} =25°C				
			XIN=6MHz				
			40MHzオンチップオシレータ停止				
			125kHzオンチップオシレータ停止				
					4.0		Ι,
			タイマ以外の周辺クロックf1供給禁止 (PCKSTP1A=1)		1.2		m/
			タイマのクロック源にメインクロックを選択				
			(PCKSTP11=0、PCKSTP17=1)				
			タイマは任意の1本が動作				
		ストップモード	メインクロック停止				
			40MHzオンチップオシレータ停止				
			125kHzオンチップオシレータ停止		1.7		μA
			周辺クロック停止				
			T _{opr} =25°C				
		フラッシュメモリ	f _(BCLK) =10MHz、PM17=1(1ウェイト)	1	1		1
		フラッシュメモリ プログラム中			20.0		m/
			V _{CC1} =5.0V				
		フラッシュメモリ	f _(BCLK) =10MHz、PM17=1(1ウェイト)		20.0		
	1	イレーズ中	V _{CC1} =5.0V		30.0		m/

注1. 実行するプログラムが存在するメモリを示す。

 $V_{CC1}=V_{CC2}=5V$

5.2.2 タイミング必要条件(周辺機能、他)

(指定のない場合は、 V_{CC1} = V_{CC2} =5V、 V_{SS} =0V、 T_{opr} = -20~85 $^{\circ}$ C/-40~85 $^{\circ}$ C)

5.2.2.1 リセット入力

表 5.22 リセット入力 (RESET入力)

記号	項目	規札	単位	
		最小	最大	— 上 Ⅲ
t _{w(RSTL)}	RESET入力"L"パルス幅	10		μs

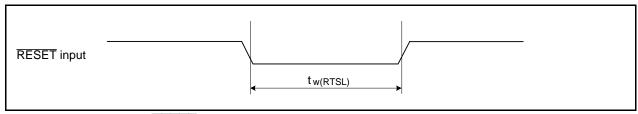


図 5.5 リセット入力 (RESET 入力)

5.2.2.2 外部クロック入力

表 5.23 外部クロック入力 (XIN入力)(注1)

記号	百日	規札	各値	単位	
記ち	項目	最小	最大	甲亚	
t _c	外部クロック入力サイクル時間	50		ns	
$t_{w(H)}$	外部クロック入力"H"パルス幅	20		ns	
t _{w(L)}	外部クロック入力"L"パルス幅	20		ns	
t _r	外部クロック立ち上がり時間		9	ns	
t _f	外部クロック立ち下がり時間		9	ns	

注1. 条件はV_{CC1}=V_{CC2}=3.0~5.0Vです。

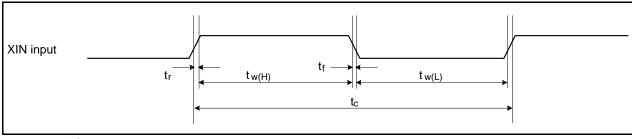


図 5.6 外部クロック入力 (XIN入力)

V_{CC1}=V_{CC2}=5V

タイミング必要条件

(指定のない場合は、 $V_{CC1}=V_{CC2}=5V$ 、 $V_{SS}=0V$ 、 $T_{opr}=-20~85$ $^{\circ}$ C/-40~85 $^{\circ}$ C)

5.2.2.3 タイマA入力

表 5.24 タイマA入力(イベントカウンタモードのカウント入力)

記号	項目	規格値		単位
		最小	最大	早12
t _{c(TA)}	TAilN入力サイクル時間	100		ns
t _{w(TAH)}	TAilN入力"H"パルス幅	40		ns
t _{w(TAL)}	TAilN入力"L"パルス幅	40		ns

表 5.25 タイマA入力(タイマモードのゲーティング入力)

記号	項目	規格値		** / +
		最小	最大	単位
t _{c(TA)}	TAilN入力サイクル時間	400		ns
t _{w(TAH)}	TAilN入力"H"パルス幅	200		ns
t _{w(TAL)}	TAilN入力"L"パルス幅	200		ns

表 5.26 タイマA入力(ワンショットタイマモードの外部トリガ入力)

記号	項目	規格値		単位
		最小	最大	中12
t _{c(TA)}	TAilN入力サイクル時間	200		ns
t _{w(TAH)}	TAilN入力"H"パルス幅	100		ns
t _{w(TAL)}	TAiIN入力"L"パルス幅	100		ns

表 5.27 タイマA入力(パルス幅変調モード、プログラマブル出力モードの外部トリガ入力)

記号	項目	規构	単位	
		最小	最大	早1世
t _{w(TAH)}	TAilN入力"H"パルス幅	100		ns
t _{w(TAL)}	TAilN入力"L"パルス幅	100		ns

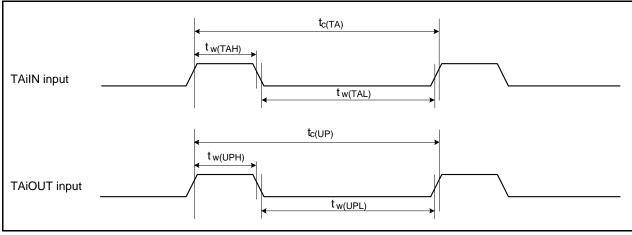


図 5.7 タイマA入力

V_{CC1}=V_{CC2}=5V

タイミング必要条件

(指定のない場合は、 V_{CC1} = V_{CC2} =5V、 V_{SS} =0V、 T_{opr} = -20~85 $^{\circ}$ C/-40~85 $^{\circ}$ C)

表 5.28 タイマA入力(イベントカウンタモードの二相パルス入力)

記号	項目	規格値		# / +
		最小	最大	単位
$t_{c(TA)}$	TAilN入力サイクル時間	800		ns
t _{su(TAIN-TAOUT)}	TAiOUT入力セットアップ時間	200		ns
t _{su(TAOUT-TAIN)}	TAilN入力セットアップ時間	200		ns

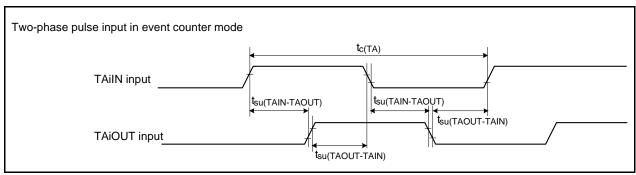


図 5.8 タイマA入力(イベントカウンタモードの二相パルス入力)

 $V_{CC1}=V_{CC2}=5V$

タイミング必要条件

(指定のない場合は、 V_{CC1} = V_{CC2} =5V、 V_{SS} =0V、 T_{opr} = -20~85 $^{\circ}$ C/-40~85 $^{\circ}$ C)

5.2.2.4 タイマB入力

表 5.29 タイマB入力(イベントカウンタモードのカウント入力)

記号	項目	規格値		単位
記方	以口	最小	最大	中位
$t_{c(TB)}$	TBilN入力サイクル時間(片エッジカウント)	100		ns
t _{w(TBH)}	TBilN入力"H"パルス幅(片エッジカウント)	40		ns
t _{w(TBL)}	TBilN入力"L"パルス幅(片エッジカウント)	40		ns
t _{c(TB)}	TBilN入力サイクル時間(両エッジカウント)	200		ns
t _{w(TBH)}	TBilN入力"H"パルス幅(両エッジカウント)	80		ns
t _{w(TBL)}	TBilN入力"L"パルス幅(両エッジカウント)	80		ns

表 5.30 タイマB入力(パルス周期測定モード)

記号	項目	規格値		単位
		最小	最大	中位
$t_{c(TB)}$	TBilN入力サイクル時間	400		ns
t _{w(TBH)}	TBilN入力"H"パルス幅	200		ns
t _{w(TBL)}	TBilN入力"L"パルス幅	200		ns

表 5.31 タイマB入力(パルス幅測定モード)

記号	項目	規格値		単位
		最小	最大	中位
$t_{c(TB)}$	TBilN入力サイクル時間	400		ns
t _{w(TBH)}	TBilN入力"H"パルス幅	200		ns
t _{w(TBL)}	TBilN入力"L"パルス幅	200		ns

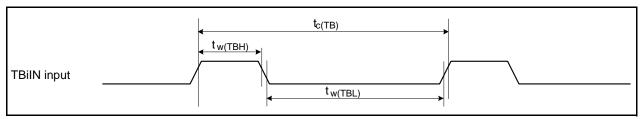


図 5.9 タイマB入力

 $V_{CC1}=V_{CC2}=5V$

タイミング必要条件

(指定のない場合は、 V_{CC1} = V_{CC2} =5V、 V_{SS} =0V、 T_{opr} = -20~85 $^{\circ}$ C/-40~85 $^{\circ}$ C)

5.2.2.5 シリアルインタフェース

表 5.32 シリアルインタフェース

記号	項目	規格値		単位
	模 口	最小	最大	中位
t _{c(CK)}	CLKi 入力サイクル時間	200		ns
t _{w(CKH)}	CLKi 入力"H"パルス幅	100		ns
t _{w(CKL)}	CLKi 入力 "L" パルス幅	100		ns
t _{d(C-Q)}	TXDi出力遅延時間		80	ns
t _{h(C-Q)}	TXDiホールド時間	0		ns
t _{su(D-C)}	RXDi入力セットアップ時間	70		ns
t _{h(C-D)}	RXDi入力ホールド時間	90		ns

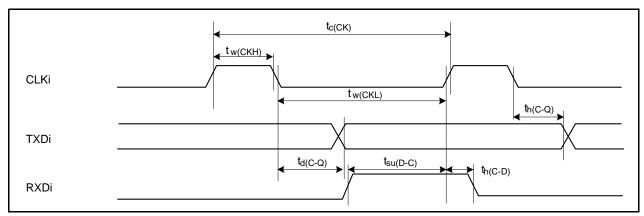


図 5.10 シリアルインタフェース

5.2.2.6 外部割り込み INTi 入力

表 5.33 外部割り込み INTi 入力

記号	項目	規格値		₩ /±
		最小	最大	単位
$t_{w(INH)}$	ĪNTi 入力"H"パルス幅	250		ns
$t_{w(INL)}$	ĪNTi 入力"L"パルス幅	250		ns

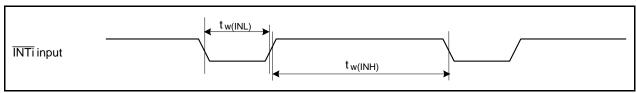


図 5.11 外部割り込み INTi 入力

 $V_{CC1}=V_{CC2}=5V$

タイミング必要条件

(指定のない場合は、 V_{CC1} = V_{CC2} =5V、 V_{SS} =0V、 T_{opr} = -20~85 $^{\circ}$ C/-40~85 $^{\circ}$ C)

5.2.2.7 マルチマスタI²C-bus

表 5.34 マルチマスタ I²C-bus

= 7 □	項目	標準クロックモード		Fast-mode		22 / L
記号		最小	最大	最小	最大	単位
t _{BUF}	バスフリー時間	4.7		1.3		μs
t _{HD;STA}	スタートコンディションホールド時間	4.0		0.6		μs
t_{LOW}	SCLクロック "0" ステータスのホールド時間	4.7		1.3		μs
t _R	SCL、SDA信号立ち上がり時間		1000	20+0.1Cb	300	ns
t _{HD;DAT}	データホールド時間	0		0	0.9	μs
t _{HIGH}	SCLクロック"1"ステータスのホールド時間	4.0		0.6		μs
t _F	SCL、SDA信号立ち下がり時間		300	20+0.1Cb	300	ns
t _{su;DAT}	データセットアップ時間	250		100		ns
t _{su;STA}	リスタートコンディションセットアップ時間	4.7		0.6		μs
t _{su;STO}	ストップコンディションセットアップ時間	4.0		0.6		μs

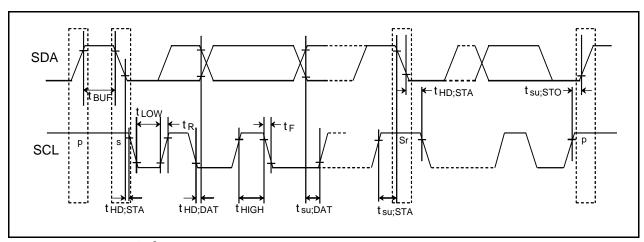


図 5.12 マルチマスタ I²C-bus

V_{CC1}=V_{CC2}=5V

タイミング必要条件

(指定のない場合は、 $V_{CC1}=V_{CC2}=5V$ 、 $V_{SS}=0V$ 、 $T_{opr}=-20~85$ $^{\circ}$ C/-40~85 $^{\circ}$ C)

5.2.3 タイミング必要条件 (メモリ拡張モード、マイクロプロセッサモード)

表 5.35 メモリ拡張モード、マイクロプロセッサモード

記号	項目	規格値		単位
記与	· 块口	最小	最大	甲型
t _{ac1(RD-DB)}	データ入力アクセス時間 (ウェイトなし設定)		(注1)	ns
t _{ac2(RD-DB)}	データ入力アクセス時間 (1~3ウェイト設定)		(注2)	ns
t _{ac3(RD-DB)}	データ入力アクセス時間 (マルチプレクスバス領域をアクセスした場合)		(注3)	ns
t _{ac4(RD-DB)}	データ入力アクセス時間 (2¢ + 3¢以上のウェイト設定)		(注4)	ns
t _{su(DB-RD)}	データ入力セットアップ時間	50		ns
t _{su(RDY-BCLK)}	RDY入力セットアップ時間	80		ns
t _{h(RD-DB)}	データ入力ホールド時間	0		ns
t _{h(BCLK -RDY)}	RDY入力ホールド時間	0		ns

注1. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 45[ns]$$

注2. BCLKの周波数に応じて次の計算式で算出されます。

 $\frac{(n+0.5)\times 10^9}{f_{(BCLK)}}$ – 45[ns] nは1ウェイト設定の場合"1"、2ウェイト設定の場合"2"、3ウェイト設定の場合"3"

注3. BCLKの周波数に応じて次の計算式で算出されます。

 $\frac{(n-0.5)\times 10^9}{f_{(BCLK)}}$ – 45[ns] nは2ウェイト設定の場合"2"、3ウェイト設定の場合"3"

注4. BCLKの周波数に応じて次の計算式で算出されます。

 $\frac{n \times 10^9}{f_{(BCLK)}}$ – 45[ns] nは2 ϕ + 3 ϕ の場合"3"、2 ϕ + 4 ϕ の場合"4"、3 ϕ + 4 ϕ の場合"4"、4 ϕ +5 ϕ の場合"5"

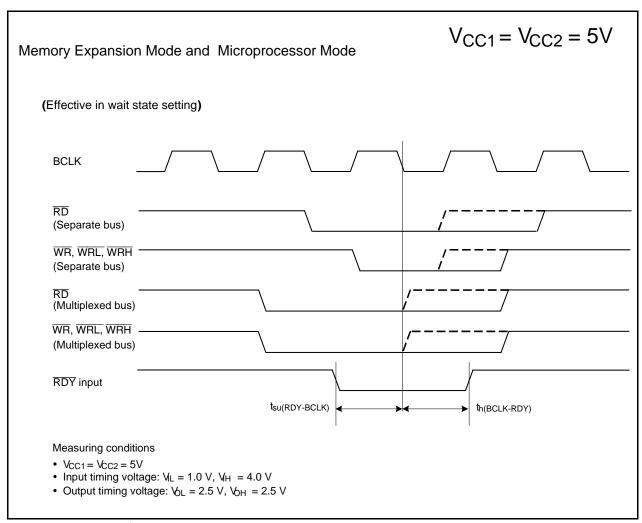


図 5.13 タイミング図

 $V_{CC1}=V_{CC2}=5V$

スイッチング特性(メモリ拡張モード、マイクロプロセッサモード) 5.2.4

(指定のない場合は、 $V_{CC1}=V_{CC2}=5V$ 、 $V_{SS}=0V$ 、 $T_{opr}=-20~85$ $^{\circ}$ C/-40~85 $^{\circ}$ C)

ウェイトなし設定の場合 5.2.4.1

表 5.36 メモリ拡張モード、マイクロプロセッサモード(ウェイトなし設定の場合)

#コ P.	语日	测点条件	規村	各値	単位
記号	項目	測定条件	最小	最大	甲亚
t _{d(BCLK-AD)}	アドレス出力遅延時間			25	ns
t _{h(BCLK-AD)}	アドレス出力保持時間 (BCLK基準)		0		ns
t _{h(RD-AD)}	アドレス出力保持時間 (RD基準)		0		ns
t _{h(WR-AD)}	アドレス出力保持時間 (WR基準)		(注2)		ns
t _{d(BCLK-CS)}	チップセレクト出力遅延時間			25	ns
t _{h(BCLK-CS)}	チップセレクト出力保持時間 (BCLK基準)		0		ns
t _{d(BCLK-ALE)}	ALE信号出力遅延時間			15	ns
t _{h(BCLK-ALE)}	ALE信号出力保持時間	IVI 5 4 4	-4		ns
t _{d(BCLK-RD)}	RD信号出力遅延時間	図 5.14		25	ns
t _{h(BCLK-RD)}	RD信号出力保持時間		0		ns
t _{d(BCLK-WR)}	WR信号出力遅延時間			25	ns
t _{h(BCLK-WR)}	WR信号出力保持時間		0		ns
t _{d(BCLK-DB)}	データ出力遅延時間 (BCLK基準)			40	ns
t _{d(DB-WR)}	データ出力遅延時間 (WR基準)	1	(注1)		ns
t _{h(WR-DB)}	データ出力保持時間 (WR基準) (注3)]	(注4)		ns

BCLKの周波数に応じて次の計算式で算出されます。 注1.

$$\frac{0.5 \times 10^9}{f_{(BCLK)}}$$
 $-40[ns]$ $f_{(BCLK)}$ は12.5MHz以下

注2. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{0.5\times10^9}{f_{(BCLK)}}-10[\text{ns}]$$

この規格値は出力がオフするタイミングを示しており、データバスの 注3. 保持時間を示すものではありません。データバスの保持時間は付加容 量やプルアップ(プルダウン)抵抗値によって異なります。

右図の回路でデータバスの保持時間は、

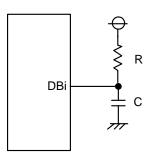
$$t = -CR \times ln (1 - V_{OL}/V_{CC2})$$

で表されます。

たとえば、 V_{OL} =0.2 V_{CC2} 、C=30pF、R=1k Ω とすると、

出力"L"レベルの保持時間は、

 $t = -30pF \times 1k\Omega \times ln (1 - 0.2V_{CC2}/V_{CC2})$


= 6.7 ns

となります。

注4. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 20[ns]$$

なお、BCLKの周波数が25MHzを超えると保持時間は0ns以下になります。

 $V_{CC1}=V_{CC2}=5V$

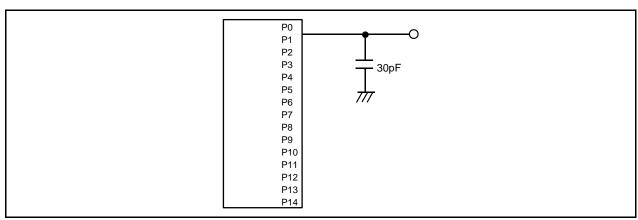


図 5.14 ポートP0~P14の測定回路

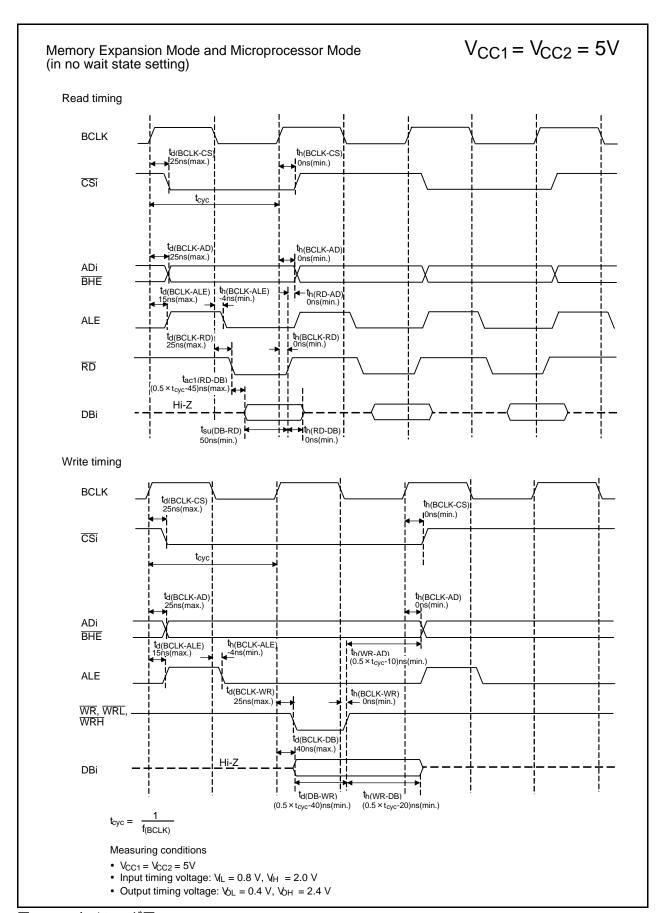


図 5.15 タイミング図

 $V_{CC1}=V_{CC2}=5V$

スイッチング特性

(指定のない場合は、 $V_{CC1}=V_{CC2}=5V$ 、 $V_{SS}=0V$ 、 $T_{opr}=-20~85$ $^{\circ}$ C/-40~85 $^{\circ}$ C)

5.2.4.2 1~3ウェイト設定、外部領域をアクセスした場合

表 5.37 メモリ拡張モード、マイクロプロセッサモード (1~3ウェイト設定、外部領域をアクセスした場合)

=7.0		测点友性	規札	** /*	
記号	項目	測定条件	最小	最大	単位
t _{d(BCLK-AD)}	アドレス出力遅延時間			25	ns
t _{h(BCLK-AD)}	アドレス出力保持時間 (BCLK基準)		0		ns
t _{h(RD-AD)}	アドレス出力保持時間 (RD基準)		0		ns
t _{h(WR-AD)}	アドレス出力保持時間 (WR基準)		(注2)		ns
t _{d(BCLK-CS)}	チップセレクト出力遅延時間			25	ns
t _{h(BCLK-CS)}	チップセレクト出力保持時間 (BCLK基準)		0		ns
t _{d(BCLK-ALE)}	ALE信号出力遅延時間			15	ns
t _{h(BCLK-ALE)}	ALE信号出力保持時間	図 5.14	-4		ns
t _{d(BCLK-RD)}	RD信号出力遅延時間	凶 3.14		25	ns
t _{h(BCLK-RD)}	RD信号出力保持時間		0		ns
t _{d(BCLK-WR)}	WR信号出力遅延時間			25	ns
t _{h(BCLK-WR)}	WR信号出力保持時間		0		ns
t _{d(BCLK-DB)}	データ出力遅延時間 (BCLK基準)]		40	ns
t _{d(DB-WR)}	データ出力遅延時間 (WR基準)]	(注1)		ns
t _{h(WR-DB)}	データ出力保持時間 (WR基準) (注3)		(注4)		ns

注1. BCLKの周波数に応じて次の計算式で算出されます。

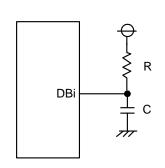
- 注2. BCLKの周波数に応じて次の計算式で算出されます。 $\frac{0.5 \times 10^9}{f_{(BCLK)}}$ 10[ns]
- 注3. この規格値は出力がオフするタイミングを示しており、データバスの 保持時間を示すものではありません。データバスの保持時間は付加容 量やプルアップ(プルダウン)抵抗値によって異なります。 右図の回路でデータバスの保持時間は、

$$t = -CR \times ln (1 - V_{OL}/V_{CC2})$$

で表されます。

たとえば、 V_{OL} =0.2 V_{CC2} 、C=30pF、R=1k Ω とすると、

出力"L"レベルの保持時間は、


 $t = -30pF \times 1k\Omega \times ln (1 - 0.2V_{CC2}/V_{CC2})$

=6.7ns

となります。

注4. BCLKの周波数に応じて次の計算式で算出されます。

$$rac{0.5 imes 10^9}{f_{(BCLK)}}$$
 $-20[ns]$ なお、BCLKの周波数が25MHzを超えると保持時間は0ns以下になります。

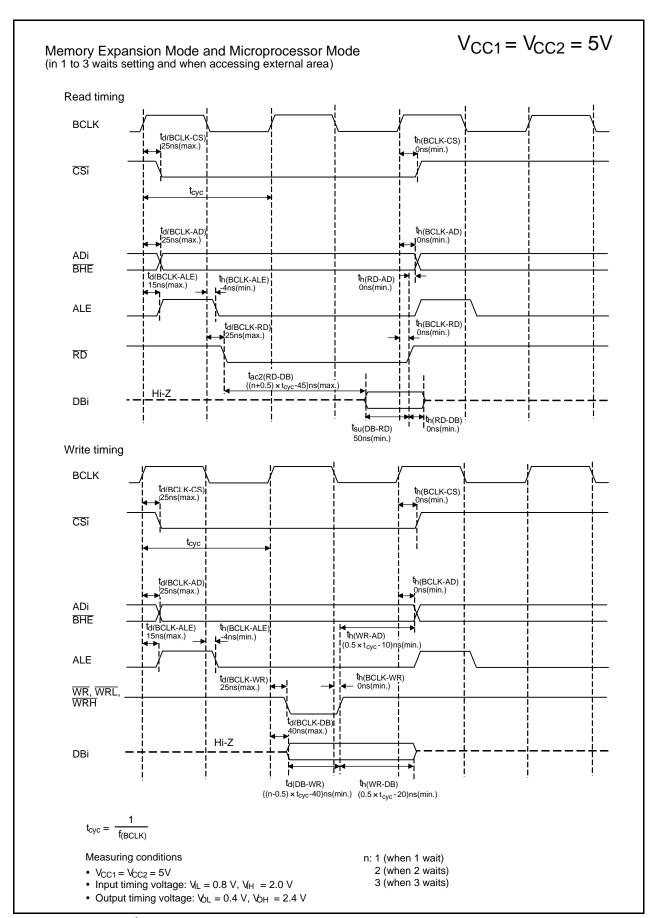


図 5.16 タイミング図

 $V_{CC1}=V_{CC2}=5V$

スイッチング特性

(指定のない場合は、 $V_{CC1}=V_{CC2}=5V$ 、 $V_{SS}=0V$ 、 $T_{opr}=-20~85$ $^{\circ}$ C/-40~85 $^{\circ}$ C)

5.2.4.3 2~3ウェイト設定、外部領域をアクセスし、かつマルチプレクスバスを選択した場合

表 5.38 メモリ拡張モード、マイクロプロセッサモード

(2~3ウェイト設定、外部領域をアクセスし、かつマルチプレクスバスを選択した場合) (注5)

記号	項目	測定条件	規构	規格値		
記写	坝 口	測 及案件	最小	最大	単位	
t _{d(BCLK-AD)}	アドレス出力遅延時間			25	ns	
t _{h(BCLK-AD)}	アドレス出力保持時間 (BCLK基準)		0		ns	
t _{h(RD-AD)}	アドレス出力保持時間 (RD基準)		(注1)		ns	
t _{h(WR-AD)}	アドレス出力保持時間 (WR基準)		(注1)		ns	
t _{d(BCLK-CS)}	チップセレクト出力遅延時間			25	ns	
t _{h(BCLK-CS)}	チップセレクト出力保持時間 (BCLK基準)		0		ns	
t _{h(RD-CS)}	チップセレクト出力保持時間 (RD基準)		(注1)		ns	
t _{h(WR-CS)}	チップセレクト出力保持時間 (WR基準)		(注1)		ns	
t _{d(BCLK-RD)}	RD信号出力遅延時間			25	ns	
t _{h(BCLK-RD)}	RD信号出力保持時間		0		ns	
t _{d(BCLK-WR)}	WR信号出力遅延時間			25	ns	
t _{h(BCLK-WR)}	WR信号出力保持時間	図 5.14	0		ns	
t _{d(BCLK-DB)}	データ出力遅延時間 (BCLK基準)			40	ns	
t _{d(DB-WR)}	データ出力遅延時間 (WR基準)		(注2)		ns	
t _{h(WR-DB)}	データ出力保持時間 (WR基準)		(注6)		ns	
t _{d(BCLK-ALE)}	ALE出力遅延時間 (BCLK基準)			15	ns	
t _{h(BCLK-ALE)}	ALE出力保持時間 (BCLK基準)		-4		ns	
t _{d(AD-ALE)}	ALE出力遅延時間 (アドレス基準)		(注3)		ns	
t _{h(ALE-AD)}	ALE出力保持時間 (アドレス基準)		(注4)		ns	
t _{d(AD-RD)}	アドレス後RD信号出力遅延時間		0		ns	
t _{d(AD-WR)}	アドレス後WR信号出力遅延時間		0		ns	
t _{dZ(RD-AD)}	アドレス出力フローティング開始時間			8	ns	

注1. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{0.5\times10^9}{f_{(BCLK)}}-10[\text{ns}]$$

注2. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{(n-0.5)\times 10^9}{f_{(BCLK)}}$$
 - 40[ns] nは2ウェイト設定の場合"2"、3ウェイト設定の場合"3"

注3. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 25[\text{ns}]$$

注4. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 15[ns]$$

注5. マルチプレクスバスを使用する場合、 $f_{(BCLK)}$ は12.5MHz以下にしてください。

注6. BCLKの周波数に応じて次の計算式で算出されます。
$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 20[ns]$$

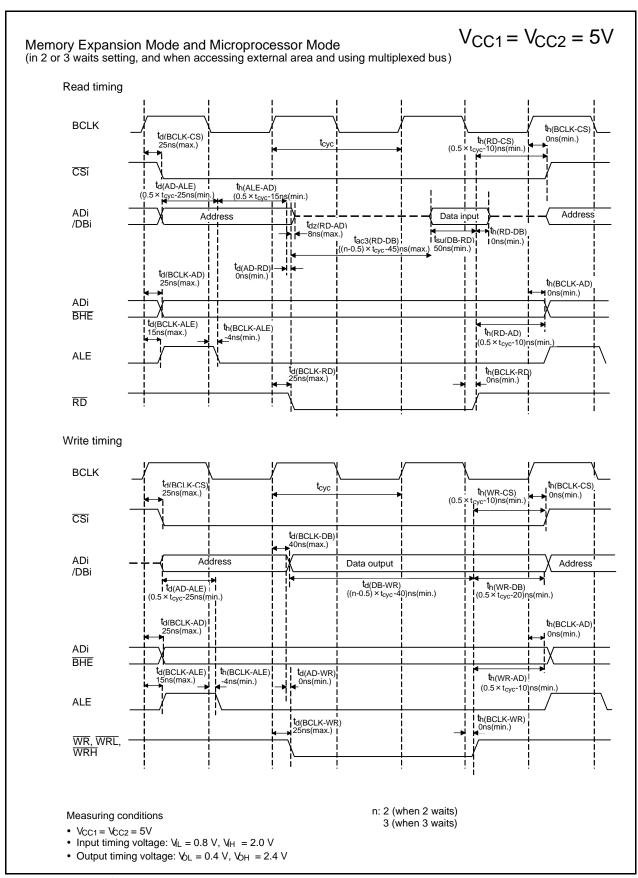


図 5.17タイミング図

V_{CC1}=V_{CC2}=5V

スイッチング特性

(指定のない場合は、V_{CC1}=V_{CC2}=5V、V_{SS}=0V、T_{opr}= -20~85℃/-40~85℃)

5.2.4.4 ウェイトあり 2φ + 3φ、2φ + 4φ、3φ + 4φ、4φ + 5φ設定、 外部領域をアクセスした場合

表 5.39 メモリ拡張モード、マイクロプロセッサモード (ウェイトあり $2\phi + 3\phi$ 、 $2\phi + 4\phi$ 、 $3\phi + 4\phi$ 、 $4\phi + 5\phi$ 設定、外部領域をアクセスした場合)

=7.0		测点多件	規札	単位	
記号	項目 -	測定条件	最小	最大	単位
t _{d(BCLK-AD)}	アドレス出力遅延時間			25	ns
t _{h(BCLK-AD)}	アドレス出力保持時間 (BCLK基準)		0		ns
t _{h(RD-AD)}	アドレス出力保持時間 (RD基準)		0		ns
t _{h(WR-AD)}	アドレス出力保持時間 (WR基準)		(注2)		ns
t _{d(BCLK-CS)}	チップセレクト出力遅延時間			25	ns
t _{h(BCLK-CS)}	チップセレクト出力保持時間 (BCLK基準)		0		ns
t _{d(BCLK-ALE)}	ALE信号出力遅延時間			15	ns
t _{h(BCLK-ALE)}	ALE信号出力保持時間	図 5.14	-4		ns
t _{d(BCLK-RD)}	RD信号出力遅延時間	凶 3.14		25	ns
t _{h(BCLK-RD)}	RD信号出力保持時間		0		ns
t _{d(BCLK-WR)}	WR信号出力遅延時間			25	ns
t _{h(BCLK-WR)}	WR信号出力保持時間		0		ns
t _{d(BCLK-DB)}	データ出力遅延時間 (BCLK基準)]		40	ns
t _{d(DB-WR)}	データ出力遅延時間 (WR基準)		(注1)		ns
t _{h(WR-DB)}	データ出力保持時間 (WR基準) (注3)]	(注4)		ns

注1. BCLKの周波数に応じて次の計算式で算出されます。

注2. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 10[ns]$$

注3. この規格値は出力がオフするタイミングを示しており、データバスの保持時間を示すものではありません。データバスの保持時間は付加容量やプルアップ(プルダウン)抵抗値によって異なります。

右図の回路でデータバスの保持時間は、

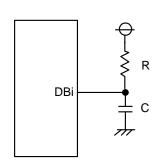
 $t = -CR \times ln (1 - V_{OL}/V_{CC2})$

で表されます。

たとえば、 V_{OL} =0.2 V_{CC2} 、C=30pF、R=1k Ω とすると、

出力"L"レベルの保持時間は、

 $t = -30pF \times 1k\Omega \times ln (1 - 0.2V_{CC2}/V_{CC2})$


=6.7ns

となります。

注4. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 20[ns]$$

なお、BCLKの周波数が25MHzを超えると保持時間は0ns以下になります。

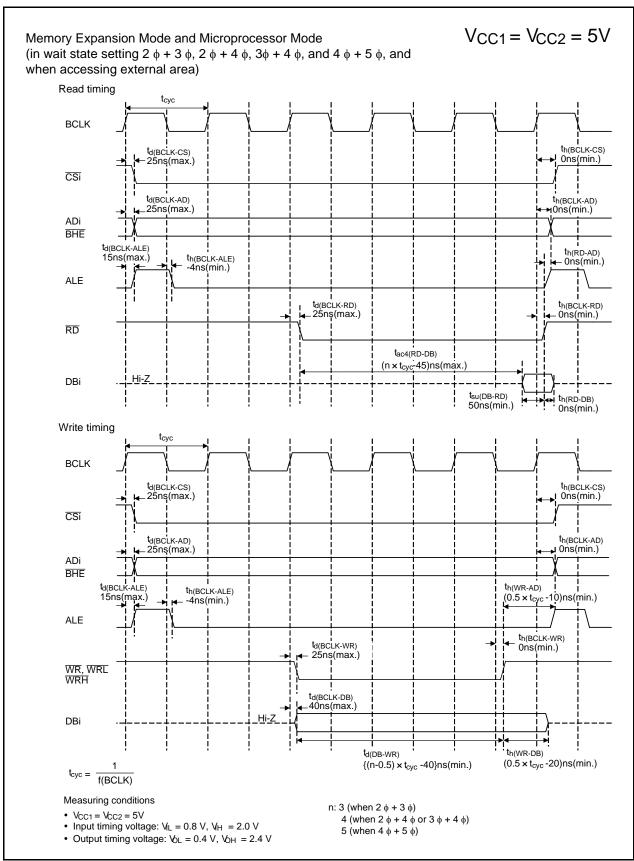


図 5.18 タイミング図

V_{CC1}=V_{CC2}=5V

スイッチング特性

(指定のない場合は、V_{CC1}=V_{CC2}=5V、V_{SS}=0V、T_{opr}= -20~85℃/-40~85℃)

5.2.4.5 ウェイトあり $2\phi + 3\phi$ 、 $2\phi + 4\phi$ 、 $3\phi + 4\phi$ 、 $4\phi + 5\phi$ 設定、 リカバリサイクル1~3サイクル挿入、外部領域をアクセスした場合

表 5.40 メモリ拡張モード、マイクロプロセッサモード (ウェイトあり $2\phi + 3\phi$ 、 $2\phi + 4\phi$ 、 $3\phi + 4\phi$ 、 $4\phi + 5\phi$ 設定、 リカバリサイクル1~3サイクル挿入、外部領域をアクセスした場合)

記号	項目	測定条件	規格値		単位
記写	· · · · · · · · · · · · · · · · · · ·	测定采 件	最小	最大	1 単位
t _{d(BCLK-AD)}	アドレス出力遅延時間			25	ns
t _{h(BCLK-AD)}	アドレス出力保持時間 (BCLK基準)		0		ns
t _{h(RD-AD)}	アドレス出力保持時間 (RD基準)		(注4)		ns
t _{h(WR-AD)}	アドレス出力保持時間 (WR基準)		(注2)		ns
t _{d(BCLK-CS)}	チップセレクト出力遅延時間			25	ns
t _{h(BCLK-CS)}	チップセレクト出力保持時間 (BCLK基準)		0		ns
t _{d(BCLK-ALE)}	ALE信号出力遅延時間			15	ns
t _{h(BCLK-ALE)}	ALE信号出力保持時間		-4		ns
t _{d(BCLK-RD)}	RD信号出力遅延時間	- 図 5.14		25	ns
t _{h(BCLK-RD)}	RD信号出力保持時間		0		ns
t _{d(BCLK-WR)}	WR信号出力遅延時間			25	ns
t _{h(BCLK-WR)}	WR信号出力保持時間		0		ns
t _{d(BCLK-DB)}	データ出力遅延時間 (BCLK基準)			40	ns
t _{d(DB-WR)}	データ出力遅延時間 (WR基準)		(注1)		ns
t _{h(WR-DB)}	データ出力保持時間 (WR基準) (注3)		(注5)		ns

注1. BCLKの周波数に応じて次の計算式で算出されます。

注2. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{m \times 10^9}{f_{(BCLK)}}$$
 $-$ 10[ns] mはリカバリサイクル1サイクル挿入の場合"1"、2サイクル挿入の場合"2"、3 サイクル挿入の場合"3"

注3. この規格値は出力がオフするタイミングを示しており、データバスの保持時間を示すものではありません。データバスの保持時間は付加容量やプルアップ(プルダウン)抵抗値によって異なります。

右図の回路でデータバスの保持時間は、下の式で表されます。

$$t = -CR \times ln (1 - V_{OI}/V_{CC2})$$

たとえば、 V_{OL} =0.2 V_{CC2} 、C=30pF、R=1k Ω とすると、

出力"L"レベルの保持時間は、下のようになります。

 $t = -30pF \times 1k\Omega \times ln (1 - 0.2V_{CC2}/V_{CC2})$

=6.7ns

注4. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{m\times 10^9}{f_{(BCLK)}}+0[ns]$$
 mはリカバリサイクル1サイクル挿入の場合"1"、2サイクル挿入の場合"2"、3サイクル挿入の場合"3"

注5. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{m \times 10^9}{f_{(BCLK)}} - 20[ns]$$
 mはリカバリサイクル1サイクル挿入の場合"1"、2サイクル挿入の場合"2"、3サイクル挿入の場合"3"

DBi

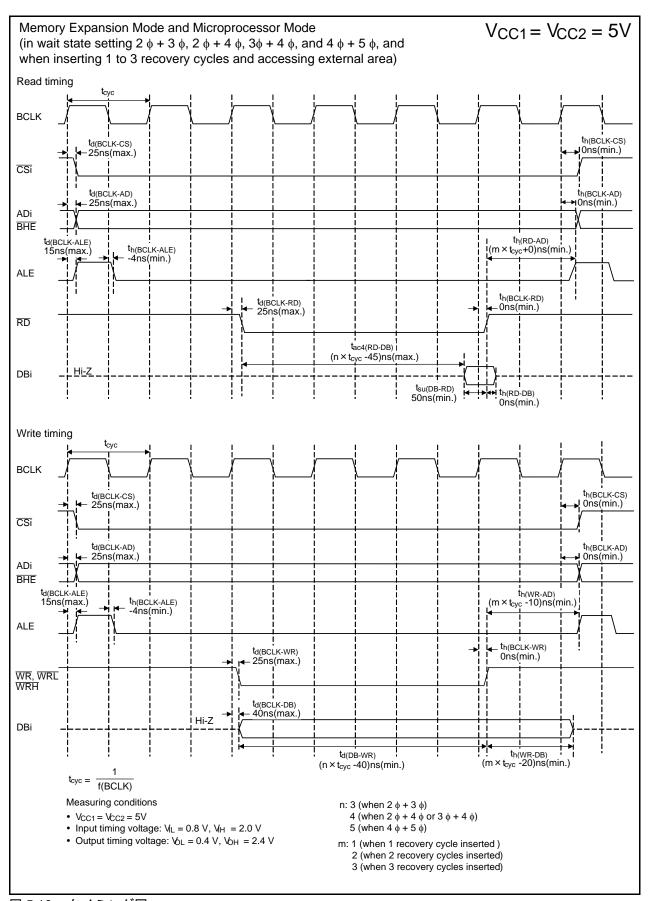


図 5.19 タイミング図

5.3 電気的特性(V_{CC1}=V_{CC2}=3V)

5.3.1 電気的特性

表 5.41 電気的特性(1)(注1)

 $V_{CC1}=V_{CC2}=3V$

to 모		·百日		'메스 & M	規格値			
記号			項目	測定条件	最小	標準	最大	単位
V _{ОН}	"H"出力電圧	P8_6, P8_7,	P7_2~P7_7, P8_0~P8_4, P9_0~P9_7, P10_0~P10_7, 7, P14_0~P14_1	I _{OH} = -1mA	V _{CC1} - 0.5		V _{CC1}	V
		P3_0~P3_7, P12_0~P12_	P1_0~P1_7, P2_0~P2_7, P4_0~P4_7, P5_0~P5_7, 7, P13_0~P13_7	I _{OH} = -1mA	V _{CC2} - 0.5		V _{CC2}	
/он	"H"出力電圧	XOUT	HIGH POWER	I _{OH} = -0.1mA	V _{CC1} - 0.5		V _{CC1}	V
			LOW POWER	I _{OH} = -50μA	V _{CC1} - 0.5		V _{CC1}	1 °
	"H"出力電圧	XCOUT	HIGH POWER	無負荷時		2.6		.,
			LOW POWER	無負荷時		2.2		V
V _{OL}	"L"出力電圧	P9_0~P9_7, P14_0~P14_		I _{OL} =1mA			0.5	V
		P3_0~P3_7, P12_0~P12_	P1_0~P1_7, P2_0~P2_7, P4_0~P4_7, P5_0~P5_7, 7, P13_0~P13_7	I _{OL} =1mA			0.5	
,		CEC	1	I _{OL} =1mA		0	0.5	V
V _{OL}	"L"出力電圧	XOUT	HIGH POWER	I _{OL} =0.1mA			0.5	V
			LOW POWER	I _{OL} =50μA			0.5	
	"L"出力電圧	XCOUT	HIGH POWER	無負荷時		0		V
			LOW POWER	無負荷時		0]
		SDA0~SDA2 TA0OUT~TA RXD5~RXD7	, SCL0~SCL2, SCL5~SCL7, , SDA5~SDA7, CLK0~CLK7, 4OUT, KI0~KI3, RXD0~RXD2, 7, SIN3, SIN4, SD, PMC0, PMC1, AMM, ZP, IDU, IDV, IDW		0.2		1.0	٧
		CEC	, , e,,		0.2	0.5	1.0	V
		RESET			0.2		1.8	V
IH	"H" 入力電流	P3_0~P3_7, P6_0~P6_7, P9_0~P9_7, P12_0~P12_ P14_0~P14_	P1_0~P1_7, P2_0~P2_7, P4_0~P4_7, P5_0~P5_7, P7_0~P7_7, P8_0~P8_7, P10_0~P10_7, P11_0~P11_7, 7, P13_0~P13_7, 1 CNVSS, BYTE	V _I =3V			4.0	μ
	Power OFF	- 侍の端子電流	CEC	V _{CC1} =0V			1.8	μA
li∟	"L"入力電流	P3_0~P3_7, P6_0~P6_7, P9_0~P9_7, P12_0~P12_ P14_0~P14_ XIN, RESET,	CNVSS, BYTE	V _I =0V			-4.0	μA
RPULLUP	プルアップ 抵抗	P3_0~P3_7, P6_0~P6_7, P8_7, P9_0~ P11_0~P11_	P1_0~P1_7, P2_0~P2_7, P4_0~P4_7, P5_0~P5_7, P7_2~P7_7, P8_0~P8_4, P8_6, P9_7, P10_0~P10_7, 7, P12_0~P12_7,	V _I =0V	50	80	150	kΩ
		P13_0~P13_	7, P14_0~P14_1					

注1. $V_{CC1} \neq V_{CC2}$ でご使用の場合は、それぞれの電圧に応じて5Vまたは3Vの規格を参照してください。

 $V_{CC1}=V_{CC2}=3V$

表 5.42 電気的特性(2)

R5F36506CNFA, R5F36506CNFB, R5F3650ECNFA, R5F3650ECNFB, R5F36506CDFA, R5F3650ECDFA, R5F3650ECDFB, R5F3650ECDFA, R5F3650ECDFB, R5F3650ECDFB,

指定のない場合は、 V_{CC1} = V_{CC2} =2.7~3.3V、 V_{SS} =0V、 T_{opr} = -20~85 $^{\circ}$ C/-40~85 $^{\circ}$ C、 $f_{(BCLK)}$ =32MHzです。

記号	項目		測定条件		規格値		単位
			межп	最小	標準	最大	
R _{fXCIN}	帰還抵抗 XCIN		Ir annu		16		МΩ
^I cc	電源電流 シングルチップモード で、出力端子は開放、そ	高速モード	f _(BCLK) =32MHz XIN=4MHz (方形波)、PLL8逓倍 125kHzオンチップオシレータ停止		24.0		mA
	の他の端子はV _{SS}		f _(BCLK) =32MHz、A/D変換動作 XIN=4MHz (方形波) 、PLL8逓倍 125kHzオンチップオシレータ停止		24.7		mA
			f _(BCLK) =20MHz XIN=20MHz (方形波) 125kHzオンチップオシレータ停止		16.0		mA
		40MHzオンチップ オシレータモード	メインクロック停止 40MHzオンチップオシレータ発振、 4分周 (f(BCLK)=10MHz) 125kHzオンチップオシレータ停止		17.0		mA
		オシレータモード	メインクロック停止 40MHzオンチップオシレータ停止 125kHzオンチップオシレータ発振、分周なし FMR22=1 (スローリードモード)		450.0		μА
		低消費電力モード	f _(BCLK) =32kHz 低消費電力モード時 FMR22=FMR23=1 フラッシュメモリ上 (注1)		160.0		μА
			f _(BCLK) =32kHz 低消費電カモード時 RAM上 (注1)		40.0		μА
		ウェイトモード	メインクロック停止 40MHzオンチップオシレータ停止 125kHzオンチップオシレータ発振 周辺クロック動作 T _{opr} =25℃		20.0		μА
			f _(BCLK) =32kHz (発振能力High) 40MHzオンチップオシレータ停止 125kHzオンチップオシレータ停止 周辺クロック動作 T _{opr} =25℃		8.0		μА
			f _(BCLK) =32kHz (発振能力Low) 40MHzオンチップオシレータ停止 125kHzオンチップオシレータ停止 周辺クロック動作 T _{opr} =25℃		4.0		μА
			XIN=6MHz 40MHzオンチップオシレータ停止 125kHzオンチップオシレータ停止 タイマ以外の周辺クロックf1供給禁止 (PCKSTP1A=1) タイマのクロック源にメインクロックを選択 (PCKSTP11=0、PCKSTP17=1) タイマは任意の1本が動作		0.5		mA
		ストップモード	メインクロック停止 40MHzオンチップオシレータ停止 125kHzオンチップオシレータ停止 周辺クロック停止 T _{opr} =25℃		1.6		μА
		フラッシュメモリ プログラム中	f _(BCLK) =10MHz、PM17=1(1ウェイト) V _{CC1} =3.0V		20.0		mA
		フラッシュメモリ イレーズ中	f _(BCLK) =10MHz、PM17=1(1ウェイト) V _{CC1} =3.0V		30.0		mA

注1. 実行するプログラムが存在するメモリを示す。

 $V_{CC1}=V_{CC2}=3V$

表 5.43 電気的特性(3)

R5F3651ECNFC、R5F3651KCNFC、R5F3650KCNFA、R5F3650KCNFB、R5F3651MCNFC、R5F3650MCNFA、R5F3650MCNFB、R5F3650MCNFB、R5F3650MCNFB、R5F3650MCNFA、R5F3650NCNFA、R5F3650NCNFB、R5F3651ECDFC、R5F3651KCDFC、R5F3650KCDFA、R5F3650KCDFB、R5F3650MCDFB R5F3650MCDFB R5F3650MCDFB R5F3650MCDFB R5F3650MCDFB R5F3650MCDFB R5F3650MCDFB R5F3650MCDFB R5

記号	項目		測定条件		規格値		単位
			測足常性	最小	標準	最大	
R _{fXCIN}	帰還抵抗 XCIN				16		МΩ
I _{CC}	電源電流 シングルチップモード で、出力端子は開放、そ	高速モード	f _(BCLK) =32MHz XIN=4MHz (方形波) 、PLL8逓倍 125kHzオンチップオシレータ停止		26.0		mA
	で、田力場子はFIRM、その他の端子はV _{SS}		f _(BCLK) =32MHz、A/D変換動作 XIN=4MHz (方形波) 、PLL8逓倍 125kHzオンチップオシレータ停止		27.0		mA
			f _(BCLK) =20MHz XIN=20MHz (方形波)、 125kHzオンチップオシレータ停止		17.0		mA
		40MHzオンチップ オシレータモード	メインクロック停止 40MHzオンチップオシレータ発振、 4分周 (f(BCLK)=10MHz) 125kHzオンチップオシレータ停止		18.0		mA
		125kHzオンチップオ シレータモード	メインクロック停止 40MHzオンチップオシレータ停止 125kHzオンチップオシレータ発振、分周なし FMR22=1 (スローリードモード)		500.0		μА
		低消費電力モード	f _(BCLK) =32kHz 低消費電力モード時、FMR22=FMR23=1 フラッシュメモリ上 (注1)		170.0		μA
			f _(BCLK) =32kHz 低消費電力モード時 RAM上 (注1)		40.0		μA
		ウェイトモード	メインクロック停止 40MHzオンチップオシレータ停止 125kHzオンチップオシレータ発振 周辺クロック動作 T _{opr} =25℃		20.0		μА
			f _(BCLK) =32kHz (発振能力High) 40MHzオンチップオシレータ停止 125kHzオンチップオシレータ停止 周辺クロック動作 T _{opr} =25℃		8.0		μА
			f _(BCLK) =32kHz (発振能力Low) 40MHzオンチップオシレータ停止 125kHzオンチップオシレータ停止 周辺クロック動作 T _{opr} =25℃		4.0		μА
			XIN=6MHz 40MHzオンチップオシレータ停止 125kHzオンチップオシレータ停止 タイマ以外の周辺クロックf1供給禁止 (PCKSTP1A=1) タイマのクロック源にメインクロックを選択 (PCKSTP11=0、PCKSTP17=1) タイマは任意の1本が動作		0.5		mA
		ストップモード	メインクロック停止 40MHzオンチップオシレータ停止 125kHzオンチップオシレータ停止 周辺クロック停止 T _{opr} =25°C		1.6		μА
		フラッシュメモリプ ログラム中	f _(BCLK) =10MHz、PM17=1(1ウェイト) V _{CC1} =3.0V		20.0		mA
		フラッシュメモリイ レーズ中	f _(BCLK) =10MHz、PM17=1(1ウェイト) V _{CC1} =3.0V		30.0		mA

注1. 実行するプログラムが存在するメモリを示す。

 $V_{CC1}=V_{CC2}=3V$

5.3.2 タイミング必要条件 (周辺機能、他)

(指定のない場合は、VCC1=VCC2=3V、VSS=0V、Topr=-20~85℃/-40~85℃)

5.3.2.1 リセット入力

表 5.44 リセット入力 (RESET入力)

÷3 P	項目		各値	出仕
記号		最小	最大	単位
t _{w(RSTL)}	RESET 入力 "L" パルス幅	10		μs

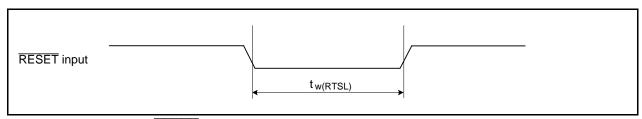


図 5.20 リセット入力 (RESET入力)

5.3.2.2 外部クロック入力

表 5.45 外部クロック入力 (XIN入力)(注1)

記号	項目	規构	単位	
記方	以 口	最小	最大	中位
t _c	外部クロック入力サイクル時間	50		ns
t _{w(H)}	外部クロック入力"H"パルス幅	20		ns
t _{w(L)}	外部クロック入力"L"パルス幅	20		ns
t _r	外部クロック立ち上がり時間		9	ns
t _f	外部クロック立ち下がり時間		9	ns

注1. 条件はV_{CC1}=V_{CC2}=2.7~3.0Vです。

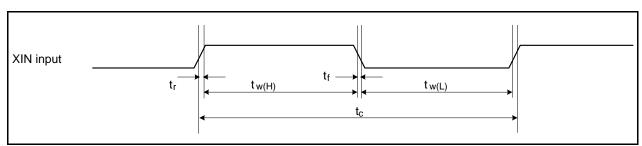


図 5.21 外部クロック入力 (XIN入力)

V_{CC1}=V_{CC2}=3V

タイミング必要条件

(指定のない場合は、 $V_{CC1}=V_{CC2}=3V$ 、 $V_{SS}=0V$ 、 $T_{opr}=-20~85$ $^{\circ}$ C/-40~85 $^{\circ}$ C)

5.3.2.3 タイマA入力

表 5.46 タイマ A 入力(イベントカウンタモードのカウント入力)

記号	百日	規构	各値	単位
記写	項目		最大	甲亚
t _{c(TA)}	TAilN入力サイクル時間	150		ns
t _{w(TAH)}	TAilN入力"H"パルス幅	60		ns
t _{w(TAL)}	TAilN入力"L"パルス幅	60		ns

表 5.47 タイマA入力(タイマモードのゲーティング入力)

記号	百日	規格値		単位
記写	項目		最大	甲亚
t _{c(TA)}	TAilN入力サイクル時間	600		ns
t _{w(TAH)}	TAilN入力"H"パルス幅	300		ns
t _{w(TAL)}	TAilN入力"L"パルス幅	300		ns

表 5.48 タイマA入力(ワンショットタイマモードの外部トリガ入力)

記号	項目	規格値		単位
		最小	最大	中位
t _{c(TA)}	TAilN入力サイクル時間	300		ns
t _{w(TAH)}	TAilN入力"H"パルス幅	150		ns
t _{w(TAL)}	TAiIN入力"L"パルス幅	150		ns

表 5.49 タイマA入力(パルス幅変調モード、プログラマブル出力モードの外部トリガ入力)

記号	項目	規村	単位	
		最小	最大	中位
t _{w(TAH)}	TAilN入力"H"パルス幅	150		ns
t _{w(TAL)}	TAilN入力"L"パルス幅	150		ns

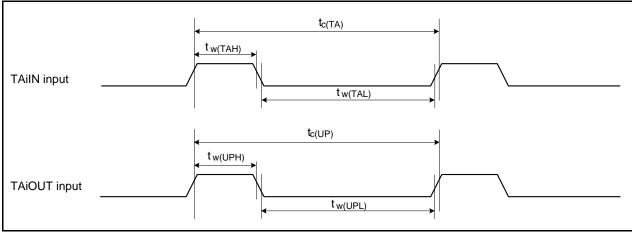


図 5.22 タイマA入力

 $V_{CC1}=V_{CC2}=3V$

タイミング必要条件

(指定のない場合は、 $V_{CC1}=V_{CC2}=3V$ 、 $V_{SS}=0V$ 、 $T_{opr}=-20\sim85$ $^{\circ}$ C/-40~85 $^{\circ}$ C)

表 5.50 タイマA入力(イベントカウンタモードの二相パルス入力)

記号		規格値		# / +
	項目	最小	最大	単位
$t_{c(TA)}$	TAilN入力サイクル時間	2		μs
t _{su(TAIN-TAOUT)}	TAiOUT入力セットアップ時間	500		ns
t _{su(TAOUT-TAIN)}	TAilN入力セットアップ時間	500		ns

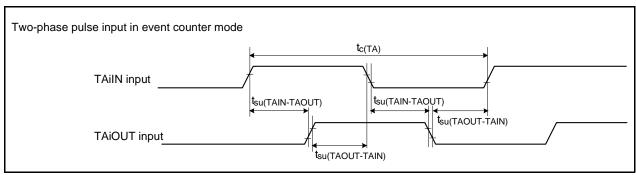


図 5.23 タイマA入力(イベントカウンタモードの二相パルス入力)

 $V_{CC1}=V_{CC2}=3V$

タイミング必要条件

(指定のない場合は、 $V_{CC1}=V_{CC2}=3V$ 、 $V_{SS}=0V$ 、 $T_{opr}=-20\sim85$ $^{\circ}$ C/-40~85 $^{\circ}$ C)

5.3.2.4 タイマB入力

表 5.51 タイマB入力(イベントカウンタモードのカウント入力)

÷ ⊐ P.	記号 項目	規格値		単位
配方		最小	最大	中位
t _{c(TB)}	TBilN入力サイクル時間(片エッジカウント)	150		ns
t _{w(TBH)}	TBilN入力"H"パルス幅(片エッジカウント)	60		ns
t _{w(TBL)}	TBilN入力"L"パルス幅(片エッジカウント)	60		ns
t _{c(TB)}	TBilN入力サイクル時間(両エッジカウント)	300		ns
t _{w(TBH)}	TBilN入力"H"パルス幅(両エッジカウント)	120		ns
t _{w(TBL)}	TBilN入力"L"パルス幅(両エッジカウント)	120		ns

表 5.52 タイマB入力(パルス周期測定モード)

記号	項目	規格値		単位
		最小	最大	中世
tc(TB)	TBilN入力サイクル時間	600		ns
tw(TBH)	TBilN入力"H"パルス幅	300		ns
tw(TBL)	TBilN入力"L"パルス幅	300		ns

表 5.53 タイマB入力(パルス幅測定モード)

記号	15日	規格値		単位
	項目	最小	最大	早12
$t_{C(TB)}$	TBilN入力サイクル時間	600		ns
t _{w(TBH)}	TBilN入力"H"パルス幅	300		ns
t _{w(TBL)}	TBilN入力"L"パルス幅	300		ns

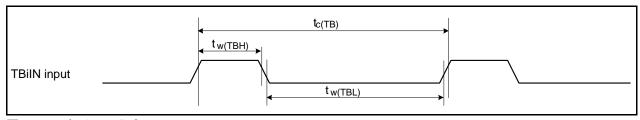


図 5.24 タイマB入力

 $V_{CC1}=V_{CC2}=3V$

タイミング必要条件

(指定のない場合は、 $V_{CC1}=V_{CC2}=3V$ 、 $V_{SS}=0V$ 、 $T_{opr}=-20\sim85$ $^{\circ}$ C/-40~85 $^{\circ}$ C)

5.3.2.5 シリアルインタフェース

表 5.54 シリアルインタフェース

記号	項目	規村	単位	
		最小	最大	中世
t _{c(CK)}	CLKi入力サイクル時間	300		ns
t _{w(CKH)}	CLKi 入力"H"パルス幅	150		ns
t _{w(CKL)}	CLKi 入力"L"パルス幅	150		ns
t _{d(C-Q)}	TXDi出力遅延時間		160	ns
t _{h(C-Q)}	TXDiホールド時間	0		ns
t _{su(D-C)}	RXDi入力セットアップ時間	100		ns
t _{h(C-D)}	RXDi入力ホールド時間	90		ns

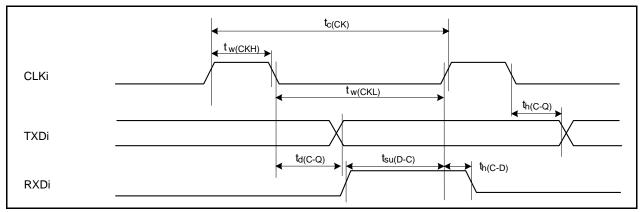


図 5.25 シリアルインタフェース

5.3.2.6 外部割り込み INTi 入力

表 5.55 外部割り込み INTi 入力

記号	項目	規构	出什	
		最小	最大	単位
t _{w(INH)}	INTi 入力 "H" パルス幅	380		ns
t _{w(INL)}	ĪNTī 入力"L"パルス幅	380		ns

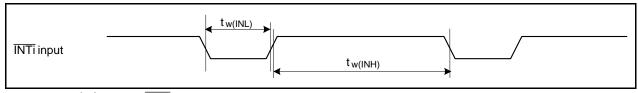


図 5.26 外部割り込み INTi 入力

 $V_{CC1}=V_{CC2}=3V$

タイミング必要条件

(指定のない場合は、 $V_{CC1}=V_{CC2}=3V$ 、 $V_{SS}=0V$ 、 $T_{opr}=-20\sim85$ °C/-40~85°C)

5.3.2.7 マルチマスタI²C-bus

表 5.56 マルチマスタ I²C-bus

記号	項目	標準クロックモード		Fast-mode		単位
記写	現日 	最小	最大	最小	最大	甲亚
t _{BUF}	バスフリー時間	4.7		1.3		μs
t _{HD;STA}	スタートコンディションホールド時間	4.0		0.6		μs
t_{LOW}	SCLクロック "0" ステータスのホールド時間	4.7		1.3		μs
t _R	SCL、SDA信号立ち上がり時間		1000	20+0.1Cb	300	ns
t _{HD;DAT}	データホールド時間	0		0	0.9	μs
t _{HIGH}	SCLクロック "1" ステータスのホールド時間	4.0		0.6		μs
t _F	SCL、SDA信号立ち下がり時間		300	20+0.1Cb	300	ns
t _{su;DAT}	データセットアップ時間	250		100		ns
t _{su;STA}	リスタートコンディションセットアップ時間	4.7		0.6		μs
t _{su;STO}	ストップコンディションセットアップ時間	4.0		0.6		μs

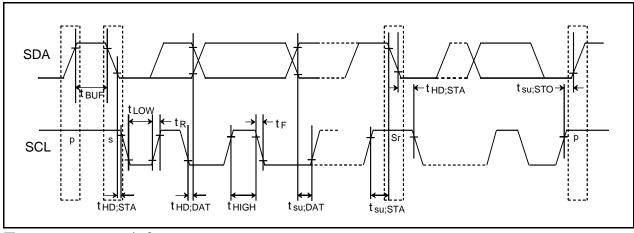


図 5.27 マルチマスタ I²C-bus

V_{CC1}=V_{CC2}=3V

タイミング必要条件

(指定のない場合は、 $V_{CC1}=V_{CC2}=3V$ 、 $V_{SS}=0V$ 、 $T_{opr}=-20~85$ °C/-40~85°C)

5.3.3 タイミング必要条件 (メモリ拡張モード、マイクロプロセッサモード)

表 5.57 メモリ拡張モード、マイクロプロセッサモード

記号	項目	規格値		₩ <i> </i>	
		最小	最大	単位	
t _{ac1(RD-DB)}	データ入力アクセス時間 (ウェイトなし設定)		(注1)	ns	
t _{ac2(RD-DB)}	データ入力アクセス時間 (1~3ウェイト設定)		(注2)	ns	
t _{ac3(RD-DB)}	データ入力アクセス時間 (マルチプレクスバス領域をアクセスした場合)		(注3)	ns	
t _{ac4(RD-DB)}	データ入力アクセス時間 (2φ+3φ以上のウェイト設定)		(注4)	ns	
t _{su(DB-RD)}	データ入力セットアップ時間	60		ns	
t _{su(RDY-BCLK)}	RDY入力セットアップ時間	85		ns	
t _{h(RD-DB)}	データ入力ホールド時間	0		ns	
t _{h(BCLK -RDY)}	RDY入力ホールド時間	0		ns	

注1. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{0.5\times10^9}{f_{(BCLK)}}-60[\text{ns}]$$

注2. BCLKの周波数に応じて次の計算式で算出されます。

 $\frac{(n+0.5)\times 10^9}{f_{(BCLK)}}$ – 60[ns] nは1ウェイト設定の場合"1"、2ウェイト設定の場合"2"、3ウェイト設定の場合"3"

注3. BCLKの周波数に応じて次の計算式で算出されます。

 $\frac{(n-0.5)\times 10^9}{f_{(BCLK)}}$ - 60[ns] nは2ウェイト設定の場合"2"、3ウェイト設定の場合"3"

注4. BCLKの周波数に応じて次の計算式で算出されます。

 $\frac{n \times 10^9}{f_{(BCLK)}}$ -60[ns] nは2 ϕ +3 ϕ の場合"3"、2 ϕ + 4 ϕ の場合"4"、3 ϕ + 4 ϕ の場合"4"、4 ϕ + 5 ϕ の場合"5"

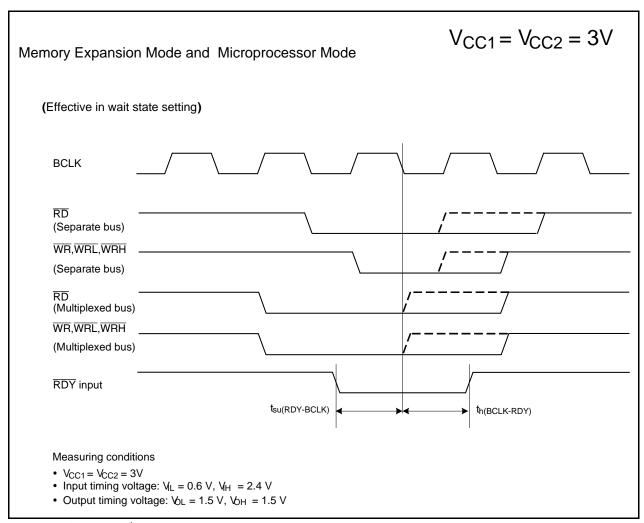


図 5.28 タイミング図

 $V_{CC1}=V_{CC2}=3V$

5.3.4 スイッチング特性 (メモリ拡張モード、マイクロプロセッサモード)

(指定のない場合は、 $V_{CC1}=V_{CC2}=3V$ 、 $V_{SS}=0V$ 、 $T_{opr}=-20\sim85$ $^{\circ}$ C/-40~85 $^{\circ}$ C)

5.3.4.1 ウェイトなし設定の場合

表 5.58 メモリ拡張モード、マイクロプロセッサモード(ウェイトなし設定の場合)

記号	項目	測定条件	規格値		単位
配石	人	例 足 木 什	最小	最大	丰四
t _{d(BCLK-AD)}	アドレス出力遅延時間			30	ns
t _{h(BCLK-AD)}	アドレス出力保持時間 (BCLK基準)		0		ns
t _{h(RD-AD)}	アドレス出力保持時間 (RD基準)		0		ns
t _{h(WR-AD)}	アドレス出力保持時間 (WR基準)		(注2)		ns
t _{d(BCLK-CS)}	チップセレクト出力遅延時間			30	ns
t _{h(BCLK-CS)}	チップセレクト出力保持時間 (BCLK基準)		0		ns
t _{d(BCLK-ALE)}	ALE信号出力遅延時間			25	ns
t _{h(BCLK-ALE)}	ALE信号出力保持時間	図 5.29	-4		ns
t _{d(BCLK-RD)}	RD信号出力遅延時間	区 5.29		30	ns
t _{h(BCLK-RD)}	RD信号出力保持時間		0		ns
t _{d(BCLK-WR)}	WR信号出力遅延時間			30	ns
t _{h(BCLK-WR)}	WR信号出力保持時間		0		ns
t _{d(BCLK-DB)}	データ出力遅延時間 (BCLK基準)			40	ns
t _{d(DB-WR)}	データ出力遅延時間 (WR基準)		(注1)		ns
t _{h(WR-DB)}	データ出力保持時間 (WR基準) (注3)		(注4)		ns

注1. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{0.5 \times 10^9}{f_{(BCLK)}}$$
 $-40[ns]$ $f_{(BCLK)}$ は12.5MHz以下

注2. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 15[ns]$$

注3. この規格値は出力がオフするタイミングを示しており、データバスの保持時間を示すものではありません。データバスの保持時間は付加容量やプルアップ(プルダウン)抵抗値によって異なります。

右図の回路でデータバスの保持時間は、

$$t = -CR \times ln (1 - V_{OL}/V_{CC2})$$

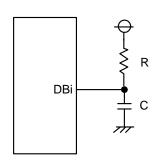
で表されます。

たとえば、 V_{OL} =0.2 V_{CC2} 、C=30pF、R=1kΩとすると、

出力"L"レベルの保持時間は、

 $t = -30pF \times 1k\Omega \times ln (1 - 0.2V_{CC2}/V_{CC2})$

=6.7ns


となります。

注4. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{0.5\times10^9}{f_{(BCLK)}} - 25[ns]$$

なお、BCLKの周波数が20MHzを超えると保持時間は0ns以下になります。

RENESAS

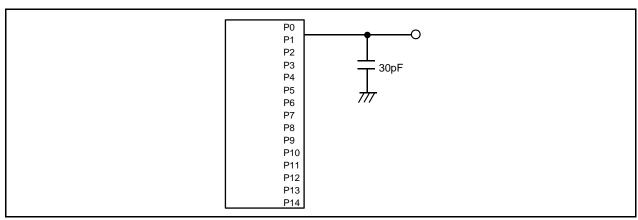


図 5.29 ポートP0~P14の測定回路

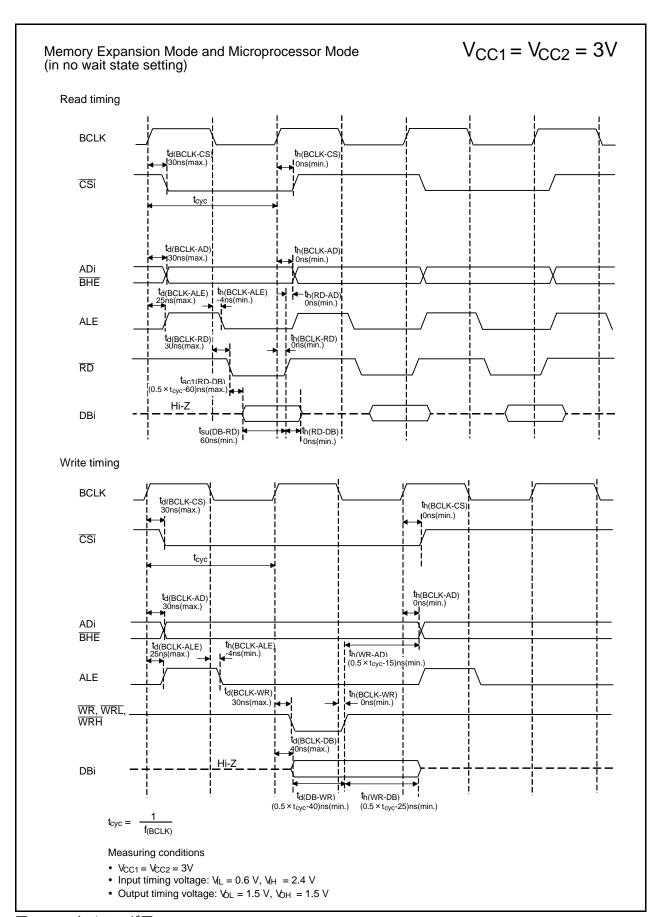


図 5.30 タイミング図

 $V_{CC1}=V_{CC2}=3V$

スイッチング特性

(指定のない場合は、 $V_{CC1}=V_{CC2}=3V$ 、 $V_{SS}=0V$ 、 $T_{opr}=-20\sim85$ $^{\circ}$ C/ $-40\sim85$ $^{\circ}$ C)

1~3ウェイト設定、外部領域をアクセスした場合 5.3.4.2

表 5.59 メモリ拡張モード、マイクロプロセッサモード (1~3ウェイト設定、外部領域をアクセスした場合)

⇒□□	項目	测点条件	規村	兴止	
記号	項目	測定条件	最小	最大	単位
t _{d(BCLK-AD)}	アドレス出力遅延時間			30	ns
t _{h(BCLK-AD)}	アドレス出力保持時間 (BCLK基準)		0		ns
t _{h(RD-AD)}	アドレス出力保持時間 (RD基準)		0		ns
t _{h(WR-AD)}	アドレス出力保持時間 (WR基準)		(注2)		ns
t _{d(BCLK-CS)}	チップセレクト出力遅延時間			30	ns
t _{h(BCLK-CS)}	チップセレクト出力保持時間 (BCLK基準)		0		ns
t _{d(BCLK-ALE)}	ALE信号出力遅延時間			25	ns
t _{h(BCLK-ALE)}	ALE信号出力保持時間	ISI € 20	-4		ns
t _{d(BCLK-RD)}	RD信号出力遅延時間	図 5.29		30	ns
t _{h(BCLK-RD)}	RD信号出力保持時間		0		ns
t _{d(BCLK-WR)}	WR信号出力遅延時間			30	ns
t _{h(BCLK-WR)}	WR信号出力保持時間		0		ns
t _{d(BCLK-DB)}	データ出力遅延時間 (BCLK基準)			40	ns
t _{d(DB-WR)}	データ出力遅延時間 (WR基準)		(注1)		ns
t _{h(WR-DB)}	データ出力保持時間 (WR基準) (注3)		(注4)		ns

注1. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{(n-0.5)\times 10^9}{f_{(D,O,LK)}} - 40[ns]$$

nは1ウェイト設定の場合"1"、2ウェイト設定の場合"2"、

f_(BCLK)

3ウェイト設定の場合"3" n=1の場合は、f_(BCLK)は12.5MHz以下

注2. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{0.5 \times 10^9}{f_{(RCLK)}} - 15[ns]$$

この規格値は出力がオフするタイミングを示しており、データバスの 保持時間を示すものではありません。データバスの保持時間は付加容 量やプルアップ(プルダウン)抵抗値によって異なります。

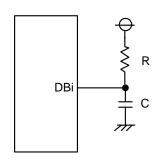
右図の回路でデータバスの保持時間は、

$$t = -CR \times ln (1 - V_{OL}/V_{CC2})$$

たとえば、 V_{OL} =0.2 V_{CC2} 、C=30pF、R=1k Ω とすると、

出力"L"レベルの保持時間は、

 $t = -30pF \times 1k\Omega \times ln (1 - 0.2V_{CC2}/V_{CC2})$


=6.7ns

となります。

注4. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 25[ns]$$

なお、BCLKの周波数が20MHzを超えると保持時間は0ns以下になります。

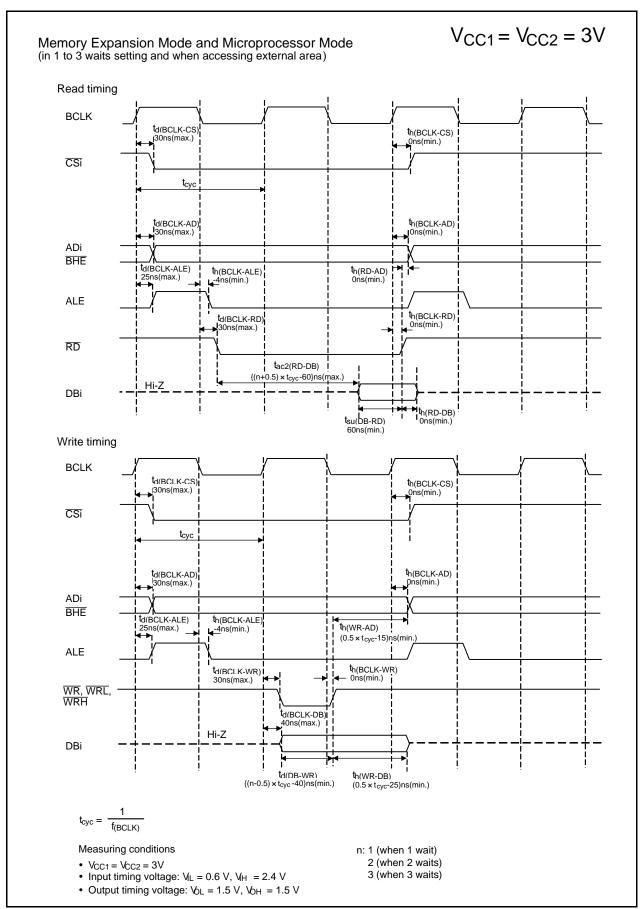


図 5.31 タイミング図

 $V_{CC1}=V_{CC2}=3V$

スイッチング特性

(指定のない場合は、 $V_{CC1}=V_{CC2}=3V$ 、 $V_{SS}=0V$ 、 $T_{opr}=-20~85$ $^{\circ}$ C/-40~85 $^{\circ}$ C)

5.3.4.3 2~3ウェイト設定、外部領域をアクセスし、かつマルチプレクスバスを選択した場合

表 5.60 メモリ拡張モード、マイクロプロセッサモード (2~3ウェイト設定、外部領域をアクセスし、かつマルチプレクスバスを選択した場合) (注5)

記号	項目	测点条件	規格値		₩ /⊥
		測定条件	最小	最大	単位
t _{d(BCLK-AD)}	アドレス出力遅延時間			50	ns
t _{h(BCLK-AD)}	アドレス出力保持時間 (BCLK基準)		0		ns
t _{h(RD-AD)}	アドレス出力保持時間 (RD基準)		(注1)		ns
t _{h(WR-AD)}	アドレス出力保持時間 (WR基準)		(注6)		ns
t _{d(BCLK-CS)}	チップセレクト出力遅延時間			50	ns
t _{h(BCLK-CS)}	チップセレクト出力保持時間 (BCLK基準)		0		ns
t _{h(RD-CS)}	チップセレクト出力保持時間 (RD基準)		(注1)		ns
t _{h(WR-CS)}	チップセレクト出力保持時間 (WR基準)		(注1)		ns
t _{d(BCLK-RD)}	RD信号出力遅延時間			40	ns
t _{h(BCLK-RD)}	RD信号出力保持時間		0		ns
t _{d(BCLK-WR)}	WR信号出力遅延時間			40	ns
t _{h(BCLK-WR)}	WR信号出力保持時間	図 5.29	0		ns
t _{d(BCLK-DB)}	データ出力遅延時間 (BCLK基準)			50	ns
t _{d(DB-WR)}	データ出力遅延時間 (WR基準)		(注2)		ns
t _{h(WR-DB)}	データ出力保持時間 (WR基準)		(注7)		ns
t _{d(BCLK-ALE)}	ALE 出力遅延時間 (BCLK基準)			25	ns
t _{h(BCLK-ALE)}	ALE 出力保持時間 (BCLK基準)		-4		ns
t _{d(AD-ALE)}	ALE 出力遅延時間 (アドレス基準)		(注3)		ns
t _{h(ALE-AD)}	ALE 出力保持時間 (アドレス基準)		(注4)		ns
t _{d(AD-RD)}	アドレス後RD信号出力遅延時間	7	0		ns
t _{d(AD-WR)}	アドレス後WR信号出力遅延時間		0		ns
t _{dZ(RD-AD)}	アドレス出力フローティング開始時間	7		8	ns

- 注1. BCLKの周波数に応じて次の計算式で算出されます。 $\frac{0.5 \times 10^9}{f_{(BCLK)}}$ 10[ns]
- 注2. BCLKの周波数に応じて次の計算式で算出されます。

 $\frac{(n-0.5)\times 10^9}{f_{(BCLK)}}$ – 50[ns] nは2ウェイト設定の場合"2"、3ウェイト設定の場合"3"

- 注3. BCLKの周波数に応じて次の計算式で算出されます。 $\frac{0.5 \times 10^9}{f_{(BCLK)}}$ 40[ns]
- 注4. BCLKの周波数に応じて次の計算式で算出されます。 $\frac{0.5 \times 10^9}{f_{(BCLK)}}$ 15[ns]
- 注5. マルチプレクスバスを使用する場合、f_(BCLK)は12.5MHz以下にしてください。
- 注6. BCLKの周波数に応じて次の計算式で算出されます。 $rac{0.5 imes 10^9}{f_{(BCLK)}}$ 15[ns]
- 注7. BCLKの周波数に応じて次の計算式で算出されます。 $\frac{0.5 \times 10^9}{f_{(BCLK)}} 25[ns]$

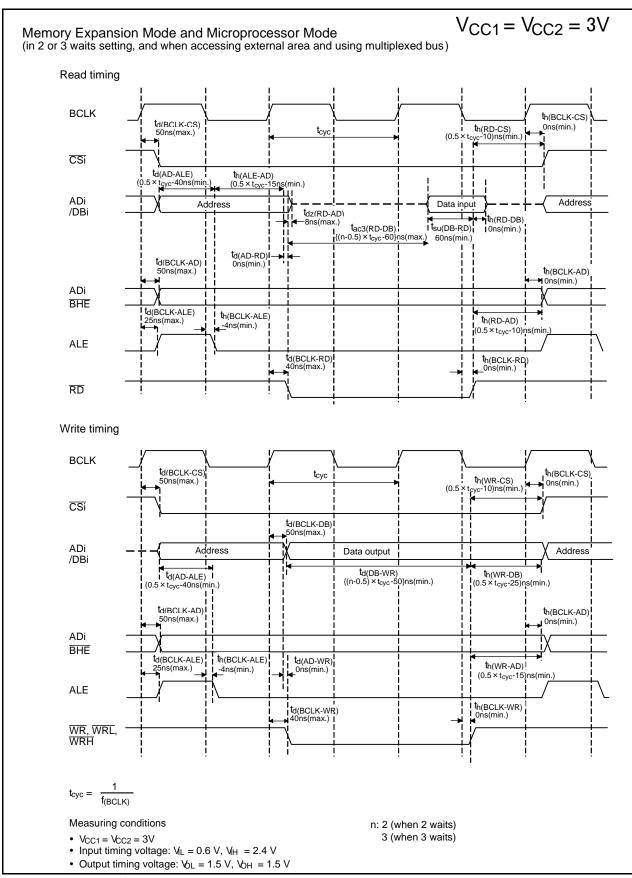


図 5.32 タイミング図

 $V_{CC1}=V_{CC2}=3V$

スイッチング特性

(指定のない場合は、 $V_{CC1}=V_{CC2}=3V$ 、 $V_{SS}=0V$ 、 $T_{opr}=-20~85$ $^{\circ}$ C/-40~85 $^{\circ}$ C)

5.3.4.4 ウェイトあり 2φ + 3φ、2φ + 4φ、3φ + 4φ、4φ + 5φ設定、 外部領域をアクセスした場合

表 5.61 メモリ拡張モード、マイクロプロセッサモード (ウェイトあり $2\phi + 3\phi$ 、 $2\phi + 4\phi$ 、 $3\phi + 4\phi$ 、 $4\phi + 5\phi$ 設定、外部領域をアクセスした場合)

記号		1百日 測点を併	規格値		単位
	項目	測定条件	最小最大		
t _{d(BCLK-AD)}	アドレス出力遅延時間			30	ns
t _{h(BCLK-AD)}	アドレス出力保持時間 (BCLK基準)		0		ns
t _{h(RD-AD)}	アドレス出力保持時間 (RD基準)		0		ns
t _{h(WR-AD)}	アドレス出力保持時間 (WR基準)		(注2)		ns
t _{d(BCLK-CS)}	チップセレクト出力遅延時間			30	ns
t _{h(BCLK-CS)}	チップセレクト出力保持時間 (BCLK基準)		0		ns
t _{d(BCLK-ALE)}	ALE信号出力遅延時間			25	ns
t _{h(BCLK-ALE)}	ALE信号出力保持時間	IVI 5 20	-4		ns
t _{d(BCLK-RD)}	RD信号出力遅延時間	図 5.29		30	ns
t _{h(BCLK-RD)}	RD信号出力保持時間		0		ns
t _{d(BCLK-WR)}	WR信号出力遅延時間			30	ns
t _{h(BCLK-WR)}	WR信号出力保持時間		0		ns
t _{d(BCLK-DB)}	データ出力遅延時間 (BCLK基準)			40	ns
t _{d(DB-WR)}	データ出力遅延時間 (WR基準)		(注1)		ns
t _{h(WR-DB)}	データ出力保持時間 (WR基準) (注3)		(注4)		ns

注1. BCLKの周波数に応じて次の計算式で算出されます。

注2. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 15[ns]$$

注3. この規格値は出力がオフするタイミングを示しており、データバスの保持時間を示すものではありません。データバスの保持時間は付加容量やプルアップ(プルダウン)抵抗値によって異なります。

右図の回路でデータバスの保持時間は、

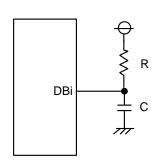
$$t = -CR \times ln (1 - V_{OL}/V_{CC2})$$

で表されます。

たとえば、 V_{OL} =0.2 V_{CC2} 、C=30pF、R=1k Ω とすると、

出力"L"レベルの保持時間は、

 $t = -30pF \times 1k\Omega \times ln (1 - 0.2V_{CC2}/V_{CC2})$


=6.7ns

となります。

注4. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 25[ns]$$

なお、BCLKの周波数が20MHzを超えると保持時間は0ns以下になります。

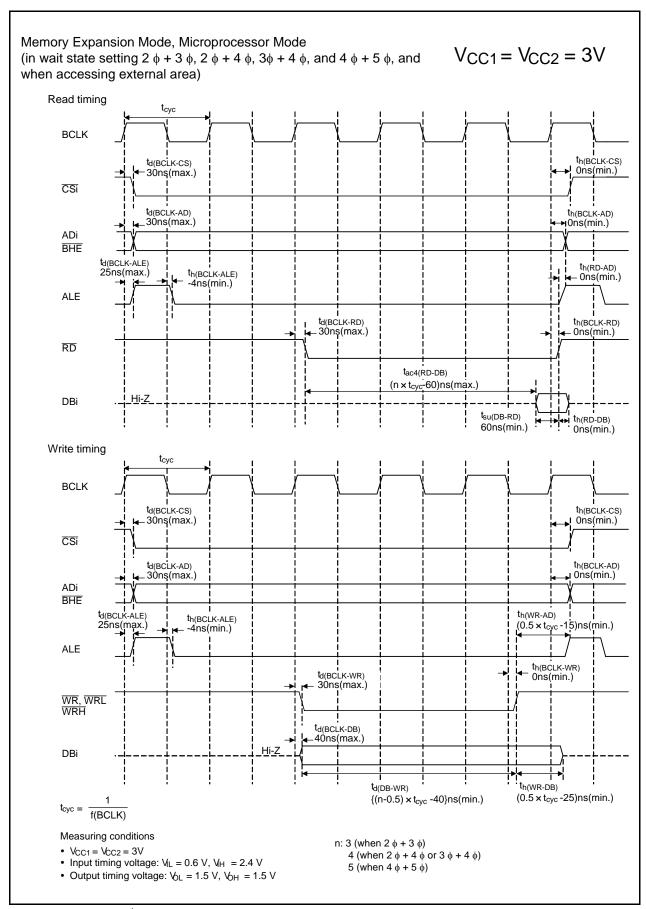


図 5.33 タイミング図

V_{CC1}=V_{CC2}=3V

スイッチング特性

(指定のない場合は、V_{CC1}=V_{CC2}=3V、V_{SS}=0V、T_{opr} = -20~85℃/-40~85℃)

5.3.4.5 ウェイトあり $2\phi + 3\phi$ 、 $2\phi + 4\phi$ 、 $3\phi + 4\phi$ 、 $4\phi + 5\phi$ 設定、 リカバリサイクル1~3サイクル挿入、外部領域をアクセスした場合

表 5.62 メモリ拡張モード、マイクロプロセッサモード (ウェイトあり $2\phi + 3\phi$ 、 $2\phi + 4\phi$ 、 $3\phi + 4\phi$ 、 $4\phi + 5\phi$ 設定、 リカバリサイクル1~3サイクル挿入、外部領域をアクセスした場合)

記号	項目	测点条件	規格値	値	
		測定条件	最小	最大	単位
t _{d(BCLK-AD)}	アドレス出力遅延時間			30	ns
t _{h(BCLK-AD)}	アドレス出力保持時間 (BCLK基準)		0		ns
t _{h(RD-AD)}	アドレス出力保持時間 (RD基準)		(注4)		ns
t _{h(WR-AD)}	アドレス出力保持時間 (WR基準)		(注2)		ns
t _{d(BCLK-CS)}	チップセレクト出力遅延時間			30	ns
t _{h(BCLK-CS)}	チップセレクト出力保持時間 (BCLK基準)		0		ns
t _{d(BCLK-ALE)}	ALE信号出力遅延時間			25	ns
t _{h(BCLK-ALE)}	ALE信号出力保持時間	図 5.29	-4		ns
t _{d(BCLK-RD)}	RD信号出力遅延時間	区 5.29		30	ns
t _{h(BCLK-RD)}	RD信号出力保持時間		0		ns
t _{d(BCLK-WR)}	WR信号出力遅延時間			30	ns
t _{h(BCLK-WR)}	WR信号出力保持時間		0		ns
t _{d(BCLK-DB)}	データ出力遅延時間 (BCLK基準)			40	ns
t _{d(DB-WR)}	データ出力遅延時間 (WR基準)		(注1)		ns
t _{h(WR-DB)}	データ出力保持時間 (WR基準) (注3)		(注5)		ns

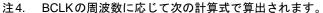
注1. BCLKの周波数に応じて次の計算式で算出されます。

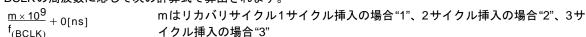
注2. BCLKの周波数に応じて次の計算式で算出されます。

$$\frac{m\times 10^9}{f_{(BCLK)}}$$
 $15[ns]$ mはリカバリサイクル1サイクル挿入の場合"1"、2サイクル挿入の場合"2"、3 サイクル挿入の場合"3"

注3. この規格値は出力がオフするタイミングを示しており、データバスの保持時間を示すものではありません。データバスの保持時間は付加容量やプルアップ(プルダウン)抵抗値によって異なります。

右図の回路でデータバスの保持時間は、下の式で表されます。


 $t = -CR \times ln (1 - V_{OL}/V_{CC2})$


たとえば、 V_{OL} =0.2 V_{CC2} 、C=30pF、R=1k Ω とすると、

出力"L"レベルの保持時間は、下のようになります。

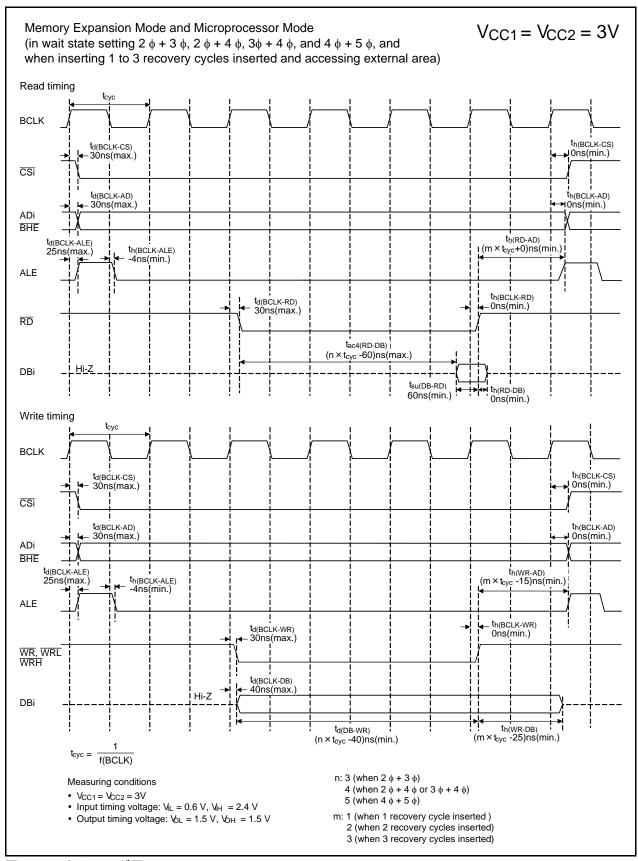
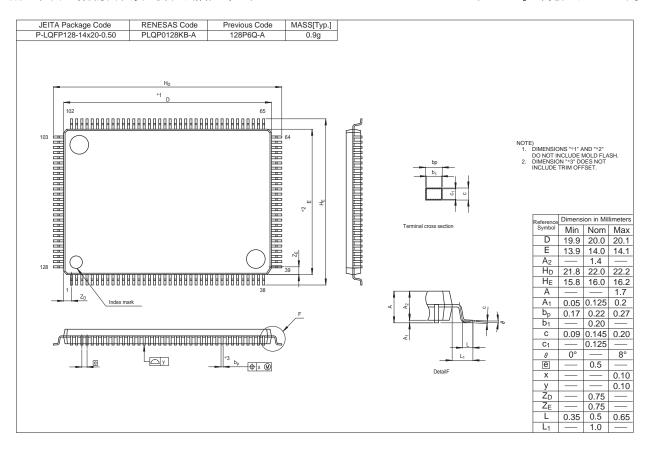
 $t = -30 pF \times 1 k\Omega \times ln (1 - 0.2 V_{CC2}/V_{CC2})$

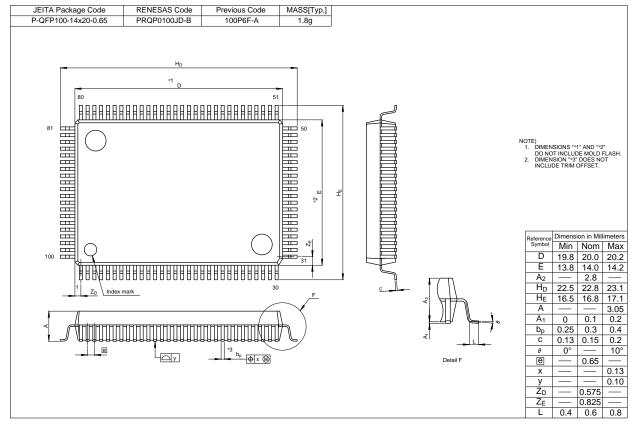
=6.7ns

注5. BCLKの周波数に応じて次の計算式で算出されます。

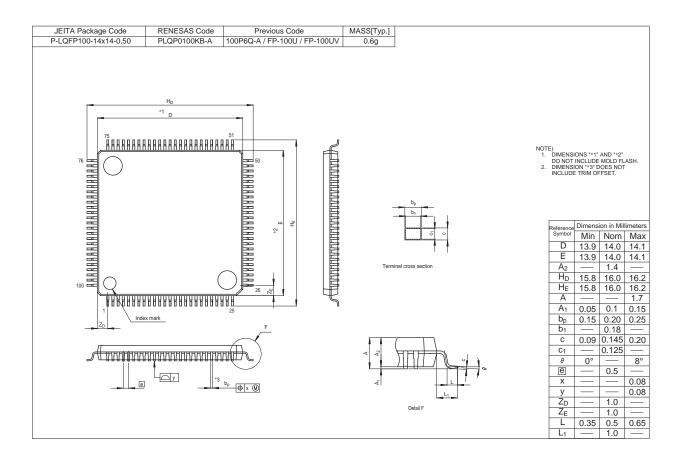
$$\frac{m \times 10^9}{f_{(BCLK)}}$$
 $-25[ns]$ mはリカバリサイクル1サイクル挿入の場合"1"、2サイクル挿入の場合"2"、3サイクル挿入の場合"3"

DBi


図 5.34 タイミング図

M16C/65C グループ 付録 1. 外形寸法図


付録1. 外形寸法図

外形寸法図の最新版や実装に関する情報は、ルネサスエレクトロニクスホームページの「パッケージ」に掲載されています。

M16C/65C グループ 付録1. 外形寸法図

-1	=-		\sim
\neg	ŦΙ	=_	録
$-\alpha$	- 1	āГ.	#:.
以	п.	п .	JK.W

M16C/65C グループ データシート

Rev.	発行日	ページ	改訂内容				
0.10	2010.09.30	_	初版発行				
1.00	2011.02.07						
		3, 5	表 1.2 仕様概要 (128ピン版) (2/2)、表 1.4 仕様概要 (100ピン版) (2/2):				
		3, 3	「消費電流」の説明を変更				
		6	表 1.5 製品一覧表 (Nバージョン)、表 1.6 製品一覧表 (Dバージョン): 開発状況を変更				
		電気的特性					
		Vcc=5V					
		63, 64	表 5.20 電気的特性(3)、表 5.21 電気的特性(4):				
		00, 01	測定条件の「ウェイトモード」に「XIN=6MHz」の場合の項目を追加				
		70	図 5.12 マルチマスタI ² C-bus: 「 t_{HD} ;DTA」 \rightarrow 「 t_{HD} ;DAT」、「 t_{su} ;DTA」 \rightarrow 「 t_{su} ;DAT」に修正				
			スイッチング特性 (メモリ拡張モード、マイクロプロセッサモード)内、				
		73, 76, 78,	表 5.36、表 5.37、表 5.38、表 5.39、表 5.40の各表:				
		80, 82	●「th(BCLK-DB)」行を削除				
			• th(WR-DB)の最小欄の式を変更				
		75, 77, 79,	図 5.15、図 5.16、図 5.17、図 5.18、図 5.19 タイミング図:				
		81, 83	• 読み込みタイミング: tsu(DB-RD)の数値を40ns(min.)から変更				
		01,03	● 書き込みタイミング: th(BCLK-DB)の記述を削除し、th(WR-DB)の式を変更				
		Vcc=3V					
		85, 86	長 5.42 電気的特性(2)、表 5.43 電気的特性(3):				
		00, 00	測定条件の「ウェイトモード」に「XIN=6MHz」の場合の項目を追加				
		92	図 5.27 マルチマスタ I^2 C-bus: 「 t_{HD} ;DTA」 \rightarrow 「 t_{HD} ;DAT」、「 t_{su} ;DTA」 \rightarrow 「 t_{su} ;DAT」に修正				
			スイッチング特性 (メモリ拡張モード、マイクロプロセッサモード)内、				
		95, 98,	表 5.58、表 5.59、表 5.60、表 5.61、表 5.62の各表:				
		100, 102,	, , , , , , , , , , , , , , , , , , , ,				
		104	• th(WR-AD)の最小欄の式を変更				
			• th(WR-DB)の最小欄の式を変更				
		97, 99,	図 5.30、図 5.31、図 5.32、図 5.33、図 5.34 タイミング図:				
		101, 103,					
		105	● 書き込みタイミング : th(WR-AD)、th(WR-DB)の式を変更し、th(BCLK-DB)の記述を削除				
1.10	2012.03.16	概要	,				
		6	表 1.5 製品一覧表 (Nバージョン)、表 1.6 製品一覧表 (Dバージョン): 開発状況変更				
		電気的特性					
		Vcc=5V	Vcc=5V				
			表 5.20 電気的特性(3)、表 5.21 電気的特性(4):				
		63, 64	I _{CC} の「40MHzオンチップオシレータモード」の40MHzオンチップオシレータの測定条件を変				
			更				
		Vcc=3V	3V				
			表 5.42 電気的特性(2)、表 5.43 電気的特性(3):				
		85, 86	I _{CC} の「40MHzオンチップオシレータモード」の40MHzオンチップオシレータの測定条件を変				
			更				

すべての商標および登録商標は、それぞれの所有者に帰属します。

HDMI及びHigh-Definition Multimedia Interfaceは、HDMI Licensing, LLCの商標または登録商標です。

製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意 事項については、本文を参照してください。なお、本マニュアルの本文と異なる記載がある場合は、本文の 記載が優先するものとします。

1. 未使用端子の処理

【注意】未使用端子は、本文の「未使用端子の処理」に従って処理してください。

CMOS 製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI 周辺のノイズが印加され、LSI 内部で貫通電流が流れたり、入力信号と認識されて誤動作を起こす恐れがあります。未使用端子は、本文「未使用端子の処理」で説明する指示に従い処理してください。

2. 電源投入時の処置

【注意】電源投入時は、製品の状態は不定です。

電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。

外部リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。

同様に、内蔵パワーオンリセット機能を使用してリセットする製品の場合、電源投入からリセットの かかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. リザーブアドレス (予約領域) のアクセス禁止

【注意】リザーブアドレス(予約領域)のアクセスを禁止します。

アドレス領域には、将来の機能拡張用に割り付けられているリザーブアドレス(予約領域)があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

4. クロックについて

【注意】リセット時は、クロックが安定した後、リセットを解除してください。

プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後に切り替えてください。

リセット時、外部発振子(または外部発振回路)を用いたクロックで動作を開始するシステムでは、 クロックが十分安定した後、リセットを解除してください。また、プログラムの途中で外部発振子 (または外部発振回路)を用いたクロックに切り替える場合は、切り替え先のクロックが十分安定し てから切り替えてください。

5. 製品間の相違について

【注意】型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。

同じグループのマイコンでも型名が違うと、内部 ROM、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ輻射量などが異なる場合があります。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

ご注意書き

- 1. 本資料に記載されている内容は本資料発行時点のものであり、予告なく変更することがあります。当社製品のご購入およびご使用にあたりましては、事前に当社営 業窓口で最新の情報をご確認いただきますとともに、当社ホームページなどを通じて公開される情報に常にご注意ください。
- 2. 本資料に記載された当社製品および技術情報の使用に関連し発生した第三者の特許権、著作権その他の知的財産権の侵害等に関し、当社は、一切その責任を負いま せん。当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 3. 当社製品を改造、改変、複製等しないでください。
- 4. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器の設計において、回路、 ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因しお客様または第三者に生じた損害 に関し、当社は、一切その青仟を負いません。
- 5. 輸出に際しては、「外国為替及び外国貿易法」その他輸出関連法令を遵守し、かかる法令の定めるところにより必要な手続を行ってください。本資料に記載されて いる当社製品および技術を大量破壊兵器の開発等の目的、軍事利用の目的その他軍事用途の目的で使用しないでください。また、当社製品および技術を国内外の 法令および規則により製造・使用・販売を禁止されている機器に使用することができません。
- 6. 本資料に記載されている情報は、正確を期すため慎重に作成したものですが、誤りがないことを保証するものではありません。万一、本資料に記載されている情報 の誤りに起因する損害がお客様に生じた場合においても、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質水準を「標準水準」、「高品質水準」および「特定水準」に分類しております。また、各品質水準は、以下に示す用途に製品が使われるこ とを意図しておりますので、当社製品の品質水準をご確認ください。お客様は、当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途に 当社製品を使用することができません。また、お客様は、当社の文書による事前の承諾を得ることなく、意図されていない用途に当社製品を使用することができ ません。当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途または意図されていない用途に当社製品を使用したことによりお客様また は第三者に生じた損害等に関し、当社は、一切その責任を負いません。なお、当社製品のデータ・シート、データ・ブック等の資料で特に品質水準の表示がない 場合は、標準水準製品であることを表します。

煙進水進· コンピュータ、OA機器、通信機器、計測機器、AV機器、家電、工作機械、パーソナル機器、産業用ロボット

高品質水準: 輸送機器(自動車、電車、船舶等)、交通用信号機器、防災・防犯装置、各種安全装置、生命維持を目的として設計されていない医療機器

(厚生労働省定義の管理医療機器に相当)

特定水進· 航空機器、航空宇宙機器、海底中継機器、原子力制御システム、生命維持のための医療機器(生命維持装置、人体に埋め込み使用するもの、治療

行為(患部切り出し等)を行うもの、その他直接人命に影響を与えるもの) (厚生労働省定義の高度管理医療機器に相当)またはシステム等

- 8. 本資料に記載された当社製品のご使用につき、特に、最大定格、動作電源電圧範囲、放熱特性、実装条件その他諸条件につきましては、当社保証範囲内でご使用く ださい。当社保証範囲を超えて当社製品をご使用された場合の故障および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めておりますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合がありま す。また、当社製品は耐放射線設計については行っておりません。当社製品の故障または誤動作が生じた場合も、人身事故、火災事故、社会的損害などを生じさ せないようお客様の責任において冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、機器またはシステムとしての出荷保証をお願 いいたします。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様が製造された最終の機器・システムとしての安全検証をお願いいたします。
- 10. 当社製品の環境適合性等、詳細につきましては製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有·使用を規制するRoHS指 令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関し て、当社は、一切その責任を負いません。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを固くお断りいたします。
- 12. 本資料に関する詳細についてのお問い合わせその他お気付きの点等がございましたら当社営業窓口までご照会ください。
- 注1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社がその総株主の議決権の過半数を 直接または間接に保有する会社をいいます。
- 注2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

ルネサスエレクトロニクス株式会社

■営業お問合せ窓口

http://www.renesas.com

※営業お問合せ窓口の住所・電話番号は変更になることがあります。最新情報につきましては、弊社ホームページをご覧ください。

ルネサス エレクトロニクス販売株式会社 〒100-0004 千代田区大手町2-6-2 (日本ビル)

(03)5201-5307

■技術的なお問合せ	および資料の	ご請求は下記	へどうぞ。
総合お問合せ窓口	: http://japan	.renesas.com	/contact/