HCTS374MS Radiation Hardened Octal D-Type Flip-Flop, Three-State, Positive Edge Triggered FN2134 Rev 2.00 August 1995 #### Features - 3 Micron Radiation Hardened SOS CMOS - Total Dose 200K RAD (Si) - SEP Effective LET No Upsets: >100 MEV-cm²/mg - Single Event Upset (SEU) Immunity < 2 x 10⁻⁹ Errors/ Bit-Day (Typ) - Dose Rate Survivability: >1 x 10¹² RAD (Si)/s - Dose Rate Upset >10¹⁰ RAD (Si)/s 20ns Pulse - · Latch-Up Free Under Any Conditions - Fanout (Over Temperature Range) - Bus Driver Outputs 15 LSTTL Loads - Military Temperature Range: -55°C to +125°C - Significant Power Reduction Compared to LSTTL ICs - DC Operating Voltage Range: 4.5V to 5.5V - · LSTTL Input Compatibility - VIL = 0.8V Max - VIH = VCC/2 Min - Input Current Levels Ii ≤ 5µA at VOL, VOH ## Description The Intersil HCTS374MS is a Radiation Hardened non-inverting octal D-type, positive edge triggered flip-flop with three-stateable outputs. The eight flip-flops enter data into their registers on the LOW-to-HIGH transition of the clock (CP). Data is also transferred to the outputs during this transition. The output enable $(\overline{\rm OE})$ controls the three-state outputs and is independent of the register operation. When the output enable is high, the outputs are in the high impedance state. The HCTS374MS utilizes advanced CMOS/SOS technology to achieve high-speed operation. This device is a member of radiation hardened, high-speed, CMOS/SOS Logic Family. The HCTS374MS is supplied in a 20 lead Ceramic flatpack (K suffix) or a SBDIP Package (D suffix). ### **Pinouts** 20 LEAD CERAMIC DUAL-IN-LINE METAL SEAL PACKAGE (SBDIP) MIL-STD-1835 CDIP2-T20 TOP VIEW 20 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE (FLATPACK) MIL-STD-1835 CDFP4-F20 TOP VIEW # Ordering Information | PART NUMBER | TEMPERATURE RANGE | SCREENING LEVEL | PACKAGE | |-----------------|-------------------|-----------------------------|--------------------------| | HCTS374DMSR | -55°C to +125°C | Intersil Class S Equivalent | 20 Lead SBDIP | | HCTS374KMSR | -55°C to +125°C | Intersil Class S Equivalent | 20 Lead Ceramic Flatpack | | HCTS374D/Sample | +25°C | Sample | 20 Lead SBDIP | | HCTS374K/Sample | +25°C | Sample | 20 Lead Ceramic Flatpack | | HCTS374HMSR | +25°C | Die | Die | # **Functional Diagram** #### **TRUTH TABLE** | | OUTPUTS | | | |----|---------|----|----| | ŌĒ | СР | Dn | Qn | | L | | Н | Н | | L | | L | L | | L | L | Х | Q0 | | Н | Х | Х | Z | H =High Level (Steady State) L =Low Level (Steady State) X =Immaterial Z =High Impedance ___=Transition from Low to High Level Q0 =The level of Q before the indicated input conditions were established ## **Absolute Maximum Ratings** | Supply Voltage (VCC)0.5V to +7.0V | |--| | Input Voltage Range, All Inputs0.5V to VCC +0.5V | | DC Input Current, Any One Input±10mA | | DC Drain Current, Any One Output±25mA | | (All Voltage Reference to the VSS Terminal) | | Storage Temperature Range (TSTG)65°C to +150°C | | Lead Temperature (Soldering 10sec) +265°C | | Junction Temperature (TJ) +175°C | | ESD Classification | ## **Reliability Information** | Thermal Resistance | 0 | 0 | |---|---------------|------------------------| | | θ_{JA} | θ_{JC} | | SBDIP Package | 72°C/W | 24°C/W | | Ceramic Flatpack Package | 107°C/W | 28°C/W | | Maximum Package Power Dissipation at +125 | 5°C Ambien | t | | SBDIP Package | | 0.69W | | Ceramic Flatpack Package | | 0.47W | | If device power exceeds package dissipation | capability, p | rovide heat | | sinking or derate linearly at the following rate: | | | | SBDIP Package | 1 | 13.9mW/ ^o C | | Ceramic Flatpack Package | | 9.3mW/°C | CAUTION: As with all semiconductors, stress listed under "Absolute Maximum Ratings" may be applied to devices (one at a time) without resulting in permanent damage. This is a stress rating only. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The conditions listed under "Electrical Performance Characteristics" are the only conditions recommended for satisfactory device operation. ## **Operating Conditions** | Supply Voltage (VCC) | Input Low Voltage (VIL) | |---|--------------------------| | Operating Temperature Range (T _A)55°C to +125°C | Input High Voltage (VIH) | | Input Rise and Fall Times at 4.5V VCC (TR, TF) 500ns Max. | | #### TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS | | | (NOTE 1) | GROUP
A SUB- | | LIMITS | | | |---------------------------------------|--------------------------------|---|-----------------|----------------------|-------------|------|-------| | PARAMETER | SYMBOL | CONDITIONS | GROUPS | TEMPERATURE | MIN | MAX | UNITS | | Quiescent Current | ICC | VCC = 5.5V,
VIN = VCC or GND | 1 | +25°C | - | 40 | μА | | | | VIIN - VCC OI GIND | 2, 3 | +125°C, -55°C | - | 750 | μА | | Output Current
(Sink) | IOL | VCC = 4.5V, VIH = 4.5V,
VOUT = 0.4V, VIL = 0V | 1 | +25°C | 7.2 | - | mA | | (SIIIK) | | VOOT = 0.4V, VIL = 0V | 2, 3 | +125°C, -55°C | 6.0 | - | mA | | Output Current
(Source) | IOH | VCC = 4.5V, VIH = 4.5V,
VOUT = VCC -0.4V, | 1 | +25°C | -7.2 | - | mA | | (Source) | | VIL = 0V | 2, 3 | +125°C, -55°C | -6.0 | - | mA | | Output Voltage Low | VOL | VCC = 4.5V, VIH = 2.25V,
IOL = 50μA, VIL = 0.8V | 1, 2, 3 | +25°C, +125°C, -55°C | - | 0.1 | V | | | | VCC = 5.5V, VIH = 2.75V,
IOL = 50μA, VIL = 0.8V | 1, 2, 3 | +25°C, +125°C, -55°C | - | 0.1 | V | | Output Voltage High | VOH | VCC = 4.5V, VIH = 2.25V,
IOH = -50μA, VIL = 0.8V | 1, 2, 3 | +25°C, +125°C, -55°C | VCC
-0.1 | - | V | | | | VCC = 5.5V, VIH = 2.75V,
IOH = -50μA, VIL = 0.8V | 1, 2, 3 | +25°C, +125°C, -55°C | VCC
-0.1 | - | V | | Input Leakage
Current | IIN | VCC = 5.5V, VIN = VCC or
GND | 1 | +25°C | - | ±0.5 | μΑ | | Current | | GND | 2, 3 | +125°C, -55°C | - | ±5.0 | μА | | Three-State Output
Leakage Current | IOZ | Applied Voltage = 0V or VCC, VCC = 5.5V | 1 | +25°C | - | ±1 | μА | | Leakage Current | eakage Current VCC, VCC = 5.5V | | 2, 3 | +125°C, -55°C | - | ±50 | μА | | Noise Immunity
Functional Test | FN | VCC = 4.5V, VIH = 2.25V,
VIL = 0.8V (Note 2) | 7, 8A, 8B | +25°C, +125°C, -55°C | - | - | - | ## NOTES: - 1. All voltages reference to device GND. - 2. For functional tests $VO \ge 4.0V$ is recognized as a logic "1", and $VO \le 0.5V$ is recognized as a logic "0". TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS | | | (NOTEC 4. 2) | GROUP | | LIM | IITS | | |-------------------|--------|----------------------------|------------------|---------------|-----|------|-------| | PARAMETER | SYMBOL | (NOTES 1, 2)
CONDITIONS | A SUB-
GROUPS | TEMPERATURE | MIN | MAX | UNITS | | Clock to Q | TPLH | VCC = 4.5V | 9 | +25°C | 2 | 27 | ns | | | | | 10, 11 | +125°C, -55°C | 2 | 31 | ns | | | TPHL | VCC = 4.5V | 9 | +25°C | 2 | 31 | ns | | | | | 10, 11 | +125°C, -55°C | 2 | 35 | ns | | Enable to Output | TPZL | VCC = 4.5V | 9 | +25°C | 2 | 32 | ns | | | | | 10, 11 | +125°C, -55°C | 2 | 36 | ns | | | TPZH | VCC = 4.5V | 9 | +25°C | 2 | 26 | ns | | | | | 10, 11 | +125°C, -55°C | 2 | 29 | ns | | Disable to Output | TPLZ, | VCC = 4.5V | 9 | +25°C | 2 | 22 | ns | | | TPHZ | | 10, 11 | +125°C, -55°C | 2 | 25 | ns | ### NOTES: - 1. All voltages referenced to device GND. - 2. AC measurements assume RL = 500Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = 3V. TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS | | | | | | LIN | IITS | | |--------------------|--------|----------------------|-------|---------------|-----|------|-------| | PARAMETER | SYMBOL | CONDITIONS | NOTES | TEMPERATURE | MIN | MAX | UNITS | | Capacitance Power | CPD | VCC = 5.0V, f = 1MHz | 1 | +25°C | - | 60 | pF | | Dissipation | | | 1 | +125°C, -55°C | - | 60 | pF | | Input Capacitance | CIN | VCC = 5.0V, f = 1MHz | 1 | +25°C | - | 10 | pF | | | | | 1 | +125°C | - | 10 | pF | | Output Transition | TTHL | VCC = 4.5V | 1 | +25°C | _ | 12 | ns | | Time | TTLH | | 1 | +125°C, -55°C | - | 18 | ns | | Max Operating Fre- | FMAX | VCC = 4.5V | 1 | +25°C | - | 30 | MHz | | quency | | | 1 | +125°C, -55°C | - | 20 | MHz | | Setup Time Data to | TSU | VCC = 4.5V | 1 | +25°C | 12 | - | ns | | Clock | | | 1 | +125°C, -55°C | 18 | - | ns | | Hold Time Data to | TH | VCC = 4.5V | 1 | +25°C | 5 | - | ns | | Clock | | | 1 | +125°C, -55°C | 5 | - | ns | | Pulse Width Clock | TW | VCC = 4.5V | 1 | +25°C | 16 | - | ns | | | | | 1 | +125°C, -55°C | 24 | _ | ns | #### NOTE: ^{1.} The parameters listed in Table 3 are controlled via design or process parameters. Min and Max Limits are guaranteed but not directly tested. These parameters are characterized upon initial design release and upon design changes which affect these characteristics. TABLE 4. DC POST RADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS | (NOTES 1, 2) | | (NOTEC 4.2) | | | RAD
IITS | | |---------------------------------------|---------------|--|-------------|-------------|-------------|-------| | PARAMETER | SYMBOL | CONDITIONS | TEMPERATURE | MIN | MAX | UNITS | | Quiescent Current | ICC | VCC = 5.5V, VIN = VCC or GND | +25°C | - | 0.75 | mA | | Output Current (Sink) | IOL | VCC = 4.5V, VIN = VCC or GND,
VOUT = 0.4V | +25°C | 6.0 | - | mA | | Output Current
(Source) | IOH | VCC = 4.5V, VIN = VCC or GND,
VOUT = VCC -0.4V | +25°C | -6.0 | - | mA | | Output Voltage Low | VOL | VCC = 4.5V and 5.5V, VIH = VCC/2,
VIL = 0.8V, IOL = 50µA | +25°C | - | 0.1 | V | | Output Voltage High | VOH | VCC = 4.5V and 5.5V, VIH = VCC/2,
VIL = 0.8V, IOH = -50μA | +25°C | VCC
-0.1 | - | V | | Input Leakage Current | IIN | VCC = 5.5V, VIN = VCC or GND | +25°C | - | ±5 | μА | | Three-State Output
Leakage Current | IOZ | Applied Voltage = 0V or VCC, VCC = 5.5V | +25°C | - | ±50 | μА | | Noise Immunity
Functional Test | FN | VCC = 4.5V, VIH = 2.25V,
VIL = 0.8V, (Note 3) | +25°C | - | - | - | | Clock to Q | TPLH | VCC = 4.5V | +25°C | 2 | 31 | ns | | | TPHL | VCC = 4.5V | +25°C | 2 | 35 | ns | | Enable to Output | TPZL | VCC = 4.5V | +25°C | 2 | 36 | | | | TPZH | VCC = 4.5V | +25°C | 2 | 29 | ns | | Disable to Output | TPLZ,
TPHZ | VCC = 4.5V | +25°C | 2 | 25 | ns | #### NOTES: - 1. All voltages referenced to device GND. - 2. AC measurements assume RL = 500Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = 3V. - 3. For functional tests VO \geq 4.0V is recognized as a logic "1", and VO \leq 0.5V is recognized as a logic "0". TABLE 5. BURN-IN AND OPERATING LIFE TEST, DELTA PARAMETERS (+25°C) | PARAMETER | GROUP B
SUBGROUP | DELTA LIMIT | |-----------|---------------------|----------------| | ICC | 5 | 12μΑ | | IOL/IOH | 5 | -15% of 0 Hour | | IOZL/IOZH | 5 | ±200nA | **TABLE 6. APPLICABLE SUBGROUPS** | CONFORMANCE GROUPS | | METHOD | GROUP A SUBGROUPS | READ AND RECORD | |----------------------|--------------------------------|-------------|---------------------------------------|------------------------------| | Initial Test (Prebur | Initial Test (Preburn-In) | | 1, 7, 9 | ICC, IOL/H | | Interim Test I (Pos | stburn-In) | 100%/5004 | 1, 7, 9 | ICC, IOL/H | | Interim Test II (Po | stburn-In) | 100%/5004 | 1, 7, 9 | ICC, IOL/H | | PDA | | 100%/5004 | 1, 7, 9, Deltas | | | Interim Test III (Po | Interim Test III (Postburn-In) | | 1, 7, 9 | ICC, IOL/H | | PDA | PDA | | 1, 7, 9, Deltas | | | Final Test | | 100%/5004 | 2, 3, 8A, 8B, 10, 11 | | | Group A (Note 1) | | Sample/5005 | 1, 2, 3, 7, 8A, 8B, 9, 10, 11 | | | Group B Subgroup B-5 | | Sample/5005 | 1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas | Subgroups 1, 2, 3, 9, 10, 11 | | | Subgroup B-6 | Sample/5005 | 1, 7, 9 | | | Group D | | Sample/5005 | 1, 7, 9 | | #### NOTE: #### **TABLE 7. TOTAL DOSE IRRADIATION** | CONFORMANCE | | TEST | | READ AND | RECORD | |--------------------|--------|---------|----------|----------|------------------| | GROUPS | METHOD | PRE RAD | POST RAD | PRE RAD | POST RAD | | Group E Subgroup 2 | 5005 | 1, 7, 9 | Table 4 | 1, 9 | Table 4 (Note 1) | ### NOTE: ### TABLE 8. STATIC BURN-IN AND DYNAMIC BURN-IN TEST CONNECTIONS | | | | | OSCILI | LATOR | |---|--|----------------------------|--|--------|-------------------------------| | OPEN | GROUND | 1/2 VCC = 3V \pm 0.5V | $\text{VCC} = 6\text{V} \pm 0.5\text{V}$ | 50kHz | 25kHz | | STATIC BURN-IN I TEST CONNECTIONS (Note 1) | | | | | | | 2, 5, 6, 9, 12,
15, 16, 19 | 1, 3, 4, 7, 8, 10, 11, 13,
14, 17, 18 | - | 20 | - | - | | STATIC BURN-IN II TEST CONNECTIONS (Note 1) | | | | | | | 2, 5, 6, 9, 12,
15, 16, 19 | 10 | - | 1, 3, 4, 7, 8, 11, 13,
14, 17, 18, 20 | - | - | | DYNAMIC BURN-IN TEST CONNECTIONS (Note 2) | | | | | | | - | 1, 10 | 2, 5, 6, 9, 12, 15, 16, 19 | 20 | 11 | 3, 4, 7, 8, 13,
14, 17, 18 | #### NOTES: - 1. Each pin except VCC and GND will have a resistor of 1K Ω ± 5% for dynamic burn-in. - 2. Each pin except VCC and GND will have a resistor of $680\Omega\pm5\%$ for dynamic burn-in. #### **TABLE 9. IRRADIATION TEST CONNECTIONS** | OPEN | GROUND | $\text{VCC} = 5\text{V} \pm 0.5\text{V}$ | |----------------------------|--------|--| | 2, 5, 6, 9, 12, 15, 16, 19 | 10 | 1, 3, 4, 7, 8, 11, 13, 14, 17, 18, 20 | NOTE: Each pin except VCC and GND will have a resistor of 47K Ω \pm 5% for irradiation testing. Group E, Subgroup 2, sample size is 4 dice/wafer 0 failures. ^{1.} Alternate Group A testing in accordance with Method 5005 of MIL-STD-883 may be exercised. ^{1.} Except FN test which will be performed 100% Go/No-Go. ## Intersil Space Level Product Flow - 'MS' Wafer Lot Acceptance (All Lots) Method 5007 (Includes SEM) GAMMA Radiation Verification (Each Wafer) Method 1019, 4 Samples/Wafer, 0 Rejects 100% Nondestructive Bond Pull, Method 2023 Sample - Wire Bond Pull Monitor, Method 2011 Sample - Die Shear Monitor, Method 2019 or 2027 100% Internal Visual Inspection, Method 2010, Condition A 100% Temperature Cycle, Method 1010, Condition C, 10 Cycles 100% Constant Acceleration, Method 2001, Condition per Method 5004 100% PIND, Method 2020, Condition A 100% External Visual 100% Serialization 100% Initial Electrical Test (T0) 100% Static Burn-In 1, Condition A or B, 24 hrs. min., +125°C min., Method 1015 100% Interim Electrical Test 1 (T1) 100% Delta Calculation (T0-T1) 100% Static Burn-In 2, Condition A or B, 24 hrs. min., +125°C min., Method 1015 100% Interim Electrical Test 2 (T2) 100% Delta Calculation (T0-T2) 100% PDA 1, Method 5004 (Notes 1and 2) 100% Dynamic Burn-In, Condition D, 240 hrs., +125°C or Equivalent, Method 1015 100% Interim Electrical Test 3 (T3) 100% Delta Calculation (T0-T3) 100% PDA 2, Method 5004 (Note 2) 100% Final Electrical Test 100% Fine/Gross Leak, Method 1014 100% Radiographic, Method 2012 (Note 3) 100% External Visual, Method 2009 Sample - Group A, Method 5005 (Note 4) 100% Data Package Generation (Note 5) #### NOTES: - 1. Failures from Interim electrical test 1 and 2 are combined for determining PDA 1. - 2. Failures from subgroup 1, 7, 9 and deltas are used for calculating PDA. The maximum allowable PDA = 5% with no more than 3% of the failures from subgroup 7. - 3. Radiographic (X-Ray) inspection may be performed at any point after serialization as allowed by Method 5004. - 4. Alternate Group A testing may be performed as allowed by MIL-STD-883, Method 5005. - 5. Data Package Contents: - Cover Sheet (Intersil Name and/or Logo, P.O. Number, Customer Part Number, Lot Date Code, Intersil Part Number, Lot Number, Quantity) - · Wafer Lot Acceptance Report (Method 5007). Includes reproductions of SEM photos with percent of step coverage. - GAMMA Radiation Report. Contains Cover page, disposition, Rad Dose, Lot Number, Test Package used, Specification Numbers, Test equipment, etc. Radiation Read and Record data on file at Intersil. - · X-Ray report and film. Includes penetrometer measurements. - · Screening, Electrical, and Group A attributes (Screening attributes begin after package seal). - Lot Serial Number Sheet (Good units serial number and lot number). - · Variables Data (All Delta operations). Data is identified by serial number. Data header includes lot number and date of test. - The Certificate of Conformance is a part of the shipping invoice and is not part of the Data Book. The Certificate of Conformance is signed by an authorized Quality Representative. © Copyright Intersil Americas LLC 1999. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners. For additional products, see www.intersil.com/en/products.html Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com # **AC Timing Diagrams** FIGURE 1. CLOCK TO OUTPUT DELAYS AND CLOCK PULSE WIDTH FIGURE 2. DATA SET-UP AND HOLD TIMES ## **AC VOLTAGE LEVELS** | PARAMETER | нстѕ | UNITS | |-----------|------|-------| | VCC | 4.50 | V | | VIH | 3.00 | V | | VS | 1.30 | V | | VIL | 0 | V | | GND | 0 | V | FIGURE 3. OUTPUT TRANSITION TIME ## **AC Load Circuit** ## Three-State Low Timing Diagrams #### THREE-STATE LOW VOLTAGE LEVELS | PARAMETER | нстѕ | UNITS | |-----------|------|-------| | VCC | 4.50 | V | | VIH | 3.00 | V | | VS | 1.30 | V | | VT | 1.30 | V | | VW | 0.90 | V | | VIL | 0 | V | | GND | 0 | V | # Three-State High Timing Diagrams ### THREE-STATE HIGH VOLTAGE LEVELS | PARAMETER | нстѕ | UNITS | |-----------|------|-------| | VCC | 4.50 | V | | VIH | 3.00 | V | | VS | 1.30 | V | | VT | 1.30 | V | | VW | 3.60 | V | | VIL | 0 | V | | GND | 0 | V | ## Three-State Low Load Circuit # Three-State High Load Circuit ## Die Characteristics **DIE DIMENSIONS:** 108 x 106 mils **METALLIZATION:** Type: AlSi Metal Thickness: $11k\text{\AA} \pm 1k\text{\AA}$ ### **GLASSIVATION:** Type: SiO₂ Thickness: 13kÅ ± 2.6kÅ ## **WORST CASE CURRENT DENSITY:** $2.0 \times 10^5 \text{A/cm}^2$ ## **BOND PAD SIZE:** $100\mu m\ x\ 100\mu m$ 4 mils x 4 mils # Metallization Mask Layout ### HCTS374MS NOTE: The die diagram is a generic plot from a similar HCS device. It is intended to indicate approximate die size and bond pad location. The mask series for the HCTS374 is TA14404A.