HA-5102, HA-5104
Dual and Quad, 8MHz, Low Noise Operational Amplifiers

Low noise and high performance are key words describing HA-5102 and HA-5104. These general purpose amplifiers offer an array of dynamic specifications including a 3V/μs slew rate and 8MHz bandwidth. Complementing these outstanding parameters is a very low noise specification of 4.3nV/√Hz at 1kHz.

Fabricated using the Intersil high frequency DI process, these operational amplifiers also offer excellent input specifications such as a 0.5mV offset voltage and 30nA offset current. Complementing these specifications are 108dB open loop gain and 60dB channel separation. Consuming a very modest amount of power (90mW/package for duals and 150mW/package for quads), HA-5102/04 also provide 15mA of output current. This impressive combination of features make this series of amplifiers ideally suited for designs ranging from audio amplifiers and active filters to the most demanding signal conditioning and instrumentation circuits.

These operational amplifiers are available in dual or quad form with industry standard pinouts allowing for immediate interchangeability with most other dual and quad operational amplifiers.

HA-5102 Dual, Comp. HA-5104 Quad, Comp.
Refer to the /883 data sheet for military product.

Ordering Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>TEMP. RANGE (°C)</th>
<th>PACKAGE</th>
<th>PKG. DWG. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA7-5102-2</td>
<td>-55 to 125</td>
<td>8 Ld CERDIP</td>
<td>F8.3A</td>
</tr>
<tr>
<td>HA1-5104-2</td>
<td>-55 to 125</td>
<td>14 Ld CERDIP</td>
<td>F14.3</td>
</tr>
<tr>
<td>HA9P5104-9</td>
<td>-40 to 85</td>
<td>16 Ld SOIC</td>
<td>M16.3</td>
</tr>
</tbody>
</table>

Features

- Low Noise .. 4.3nV/√Hz
- Bandwidth 8MHz (Compensated)
- Slew Rate 3V/μs (Compensated)
- Low Offset Voltage 0.5mV
- Available in Duals or Quads

Applications

- High Q, Active Filters
- Audio Amplifiers
- Instrumentation Amplifiers
- Integrators
- Signal Generators
- For Further Design Ideas, See Application Note AN554
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HA-5102-2</th>
<th>HA-5104-2</th>
<th>HA-5104-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage Between V+ and V- Terminals</td>
<td>±30V</td>
<td>±30V</td>
<td>±30V</td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td>±30V</td>
<td>±30V</td>
<td>±30V</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>±30V</td>
<td>±30V</td>
<td>±30V</td>
</tr>
<tr>
<td>Output Short Circuit Duration (Note 3)</td>
<td>Indefinite</td>
<td>Indefinite</td>
<td>Indefinite</td>
</tr>
<tr>
<td>Thermal Information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance (Typical, Note 2)</td>
<td>θJA (°C/W)</td>
<td>θJC (°C/W)</td>
<td></td>
</tr>
<tr>
<td>8 Lead CERDIP Package</td>
<td>115</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>14 Lead CERDIP Package</td>
<td>75</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>SOIC Package</td>
<td>100</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature (Note 1, Hermetic Package)</td>
<td>-175°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature (Plastic Package)</td>
<td>-150°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Storage Temperature Range</td>
<td>-65°C to 150°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Lead Temperature (Soldering 10s) (SOIC - Lead Tips Only)</td>
<td>300°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Maximum power dissipation, including output load, must be designed to maintain the maximum junction temperature below 175°C for hermetic packages, and below 150°C for plastic packages.
2. θJA is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
3. Any one amplifier may be shorted to ground indefinitely.

Electrical Specifications

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEMP. (°C)</th>
<th>HA-5102-2</th>
<th>HA-5104-2</th>
<th>HA-5104-9</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset Voltage</td>
<td>25</td>
<td>-</td>
<td>0.5</td>
<td>2.0</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>Full</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
<td>mV</td>
</tr>
<tr>
<td>Offset Voltage Average Drift</td>
<td></td>
<td>-</td>
<td>-</td>
<td>3.0</td>
<td>μV/°C</td>
</tr>
<tr>
<td>Bias Current</td>
<td>25</td>
<td>-</td>
<td>130</td>
<td>200</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td>Full</td>
<td>-</td>
<td>-</td>
<td>325</td>
<td>nA</td>
</tr>
<tr>
<td>Offset Current</td>
<td>25</td>
<td>-</td>
<td>30</td>
<td>75</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td>Full</td>
<td>-</td>
<td>-</td>
<td>125</td>
<td>nA</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>25</td>
<td>-</td>
<td>500</td>
<td>-</td>
<td>kΩ</td>
</tr>
<tr>
<td>Common Mode Range</td>
<td></td>
<td>±12</td>
<td>-</td>
<td>±12</td>
<td>-</td>
</tr>
<tr>
<td>TRANSFER CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Signal Voltage Gain, (V_{OUT} = ±5V, R_L = 2kΩ)</td>
<td>25</td>
<td>100</td>
<td>250</td>
<td>-</td>
<td>kV/V</td>
</tr>
<tr>
<td></td>
<td>Full</td>
<td>100</td>
<td>-</td>
<td>100</td>
<td>kV/V</td>
</tr>
<tr>
<td>Common Mode Rejection Ratio (V_{CM} = ±5.0V)</td>
<td></td>
<td>86</td>
<td>95</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Small Signal Bandwidth, (A_V = 1)</td>
<td>25</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>MHz</td>
</tr>
<tr>
<td>Channel Separation (Note 4)</td>
<td>25</td>
<td>-</td>
<td>60</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OUTPUT CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage Swing (R_L = 10kΩ)</td>
<td>±12</td>
<td>±13</td>
<td>±12</td>
<td>±13</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Full</td>
<td>±10</td>
<td>±12</td>
<td>±10</td>
<td>V</td>
</tr>
<tr>
<td>Output Current, (V_{OUT} = ±5V)</td>
<td>±10</td>
<td>±15</td>
<td>±10</td>
<td>±15</td>
<td>mA</td>
</tr>
<tr>
<td>Full Power Bandwidth (Note 5)</td>
<td>25</td>
<td>16</td>
<td>47</td>
<td>-</td>
<td>kHz</td>
</tr>
<tr>
<td>Output Resistance</td>
<td>25</td>
<td>110</td>
<td>-</td>
<td>110</td>
<td>Ω</td>
</tr>
</tbody>
</table>

NOTES:
1. Minimum Stable Closed Loop Gain
2. Transient Response (Note 6)
Electrical Specifications
V$_{SUPPLY} = \pm 15V$, Unless Otherwise Specified
(Continued)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEMP. (°C)</th>
<th>HA-5102-2</th>
<th>HA-5104-2</th>
<th>HA-5104-9</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overshoot</td>
<td>25</td>
<td>- 20 35</td>
<td>- 20 35</td>
<td>- 20 35</td>
<td>%</td>
</tr>
<tr>
<td>Slew Rate</td>
<td>25</td>
<td>1 3 -</td>
<td>1 3 -</td>
<td>1 3 -</td>
<td>V/μs</td>
</tr>
<tr>
<td>Settling Time (Note 7)</td>
<td>25</td>
<td>- 4.5 -</td>
<td>- 4.5 -</td>
<td>- 4.5 -</td>
<td>μs</td>
</tr>
</tbody>
</table>

NOISE CHARACTERISTICS (Note 8)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>f = 10Hz</th>
<th>f = 1kHz</th>
<th>f = 1kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Noise Voltage</td>
<td>25</td>
<td>- 9 25</td>
<td>- 9 25</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4.3 6.0</td>
<td>4.3 6.0</td>
</tr>
<tr>
<td>Input Noise Current</td>
<td>25</td>
<td>- 5.1 15</td>
<td>- 5.1 15</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.57 3</td>
<td>0.57 3</td>
</tr>
<tr>
<td>Broadband Noise Voltage</td>
<td>25</td>
<td>870</td>
<td>870</td>
</tr>
</tbody>
</table>

POWER SUPPLY CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TEMP. (°C)</th>
<th>HA-5102-2</th>
<th>HA-5104-2</th>
<th>HA-5104-9</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Current (All Amps)</td>
<td>25</td>
<td>- 3.0 5.0</td>
<td>- 5.0 6.5</td>
<td>- 5.0 6.5</td>
<td>mA</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio, (ΔV$_S = \pm 5V$)</td>
<td>Full</td>
<td>86 100</td>
<td>86 100</td>
<td>80 100</td>
<td>dB</td>
</tr>
</tbody>
</table>

NOTES:

4. Channel separation value is referred to the input of the amplifier. Input test conditions are: \(f = 10kHz \); \(V_{IN} = 100mV_{PEAK} \); \(R_S = 1kΩ \).

5. Full power bandwidth is guaranteed by equation: Full power bandwidth = \(\frac{\text{Slew Rate}}{2\pi V_{PEAK}} \).

6. Refer to Test Circuits section of the data sheet.

7. Settling time is measured to 0.1% of final value for a 10V input step, \(A_V = -1 \).

8. The limits for these parameters are guaranteed based on lab characterization, and reflect lot-to-lot variation.
Test Circuits and Waveforms

FIGURE 1. LARGE SIGNAL RESPONSE CIRCUIT

```
+5V

IN
|--
| 2kΩ
|---
| 1kΩ
|---
| 2kΩ
|---
| 50pF
|---
| OUT
```

Vertical = 5V/Div., Horizontal = 5μs/Div. ($AV = -1$)

FIGURE 2. SMALL SIGNAL RESPONSE CIRCUIT

```
+5V

IN
|--
| 2kΩ
|---
| 50pF
|---
| OUT
```

Vertical = 40mV/Div., Horizontal = 50ns/Div. ($AV = +1$)

FIGURE 3. SETTLING TIME CIRCUIT

```
+15V

V_IN
|--
| 5kΩ
|---
| 5kΩ
|---
| 200Ω (NOTE 9)
|---
| 2kΩ
|---
| 2N4416
|---
| 500Ω (NOTE 9)
|---
| 2kΩ
|---
| -15V
|---
| 50pF
|---
| V_OUT
```

NOTES:

9. $AV = -1$.
10. Feedback and summing resistors should be 0.1% matched.
11. Clipping diodes are optional, HP5082-2810 recommended.
Simplified Schematic

Typical Performance Curves

FIGURE 4. INPUT NOISE VOLTAGE DENSITY

FIGURE 5. INPUT NOISE CURRENT DENSITY
Typical Performance Curves (Continued)

- **FIGURE 6. 0.1Hz TO 10Hz NOISE**
 - $V_S = \pm 15V$, $T_A = 25^\circ C$, $50\mu V/\text{Div.}$, $1s/\text{Div.}$, $A_V = 1000V/V$
 - Input Noise = $0.232\mu V_{P-P}$

- **FIGURE 7. 0.1Hz TO 1MHz NOISE**
 - $V_S = \pm 15V$, $T_A = 25^\circ C$, $500\mu V/\text{Div.}$, $1s/\text{Div.}$, $A_V = 1000V/V$
 - Total Output Noise = $2.075\mu V_{P-P}$

- **FIGURE 8. V_{IO} vs TEMPERATURE**

- **FIGURE 9. V_{IO} vs V_S**

- **FIGURE 10. I_{IO} vs TEMPERATURE**

- **FIGURE 11. I_{BIAS} vs TEMPERATURE**
Typical Performance Curves (Continued)

FIGURE 12. I_{CC} vs TEMPERATURE (HA-5104)

FIGURE 13. I_{CC} vs V_S (HA-5102)

FIGURE 14. A_{VOL} vs TEMPERATURE

FIGURE 15. A_{VOL} vs LOAD RESISTANCE

FIGURE 16. A_{VOL} vs V_S

FIGURE 17. V_{OUT} vs V_S
Typical Performance Curves (Continued)

FIGURE 18. OUTPUT SHORT CIRCUIT CURRENT vs TIME

FIGURE 19. CMRR vs FREQUENCY

FIGURE 20. PSRR vs FREQUENCY

FIGURE 21. UNITY GAIN FREQUENCY RESPONSE

FIGURE 22. OPEN LOOP GAIN vs FREQUENCY

FIGURE 23. SMALL SIGNAL OVERSHEAT vs CLOAD
Die Characteristics

DIE DIMENSIONS:
- 98.4 mils x 67.3 mils x 19 mils
- 2500μm x 1710μm x 483μm

METALLIZATION:
- Type: Al, 1% Cu
- Thickness: 16kÅ ±2kÅ

PASSIVATION:
- Type: Nitride (Si₃N₄) over Silox (SiO₂, 5% Phos.)
- Silox Thickness: 12kÅ ±2kÅ
- Nitride Thickness: 3.5kÅ ±1.5kÅ

SUBSTRATE POTENTIAL (POWERED UP):
- Unbiased

TRANSISTOR COUNT:
- 93

PROCESS:
- Bipolar Dielectric Isolation

Metallization Mask Layout

Typical Performance Curves (Continued)

FIGURE 24. SLEW RATE vs TEMPERATURE

FIGURE 25. RISE TIME vs TEMPERATURE

- $R_L = 2kΩ$, $C_L = 50pF$, $V_S = ±15V$
Die Characteristics

DIE DIMENSIONS:
95 mils x 99 mils x 19 mils
2420µm x 2530µm x 483µm

METALLIZATION:
Type: Al, 1% Cu
Thickness: 16kÅ ±2kÅ

PASSIVATION:
Type: Nitride (Si₃N₄) over Silox (SiO₂, 5% Phos.)
Silox Thickness: 12kÅ ±2kÅ
Nitride Thickness: 3.5kÅ ±1.5kÅ

SUBSTRATE POTENTIAL (POWERED UP):
Unbiased

TRANSISTOR COUNT:
175

PROCESS:
Bipolar Dielectric Isolation
Ceramic Dual-In-Line Frit Seal Packages (CERDIP)

NOTES:
1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
4. Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
5. This dimension allows for off-center lid, meniscus, and glass overrun.
6. Dimension Q shall be measured from the seating plane to the base plane.
7. Measure dimension S1 at all four corners.
8. N is the maximum number of terminal positions.
10. Controlling dimension: INCH

F8.3A MIL-STD-1835 GDIP1-T8 (D-4, CONFIGURATION A)
8 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>INCHES</th>
<th>MILLIMETERS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>0.200</td>
<td>5.08</td>
</tr>
<tr>
<td>b</td>
<td>0.014</td>
<td>0.026</td>
<td>0.36</td>
</tr>
<tr>
<td>b1</td>
<td>0.014</td>
<td>0.023</td>
<td>0.36</td>
</tr>
<tr>
<td>b2</td>
<td>0.045</td>
<td>0.065</td>
<td>1.14</td>
</tr>
<tr>
<td>b3</td>
<td>0.023</td>
<td>0.045</td>
<td>0.58</td>
</tr>
<tr>
<td>c</td>
<td>0.008</td>
<td>0.018</td>
<td>0.20</td>
</tr>
<tr>
<td>c1</td>
<td>0.008</td>
<td>0.015</td>
<td>0.20</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>0.405</td>
<td>10.29</td>
</tr>
<tr>
<td>E</td>
<td>0.220</td>
<td>0.310</td>
<td>5.59</td>
</tr>
<tr>
<td>e</td>
<td>0.100</td>
<td>BSC</td>
<td>2.54</td>
</tr>
<tr>
<td>eA</td>
<td>0.300</td>
<td>BSC</td>
<td>7.62</td>
</tr>
<tr>
<td>eA/2</td>
<td>0.150</td>
<td>BSC</td>
<td>3.81</td>
</tr>
<tr>
<td>L</td>
<td>0.125</td>
<td>0.200</td>
<td>3.18</td>
</tr>
<tr>
<td>Q</td>
<td>0.015</td>
<td>0.060</td>
<td>0.38</td>
</tr>
<tr>
<td>S1</td>
<td>0.005</td>
<td>-</td>
<td>0.13</td>
</tr>
<tr>
<td>α</td>
<td>90°</td>
<td>105°</td>
<td>90°</td>
</tr>
<tr>
<td>aaa</td>
<td>-</td>
<td>0.015</td>
<td>-</td>
</tr>
<tr>
<td>bbb</td>
<td>-</td>
<td>0.030</td>
<td>-</td>
</tr>
<tr>
<td>ccc</td>
<td>-</td>
<td>0.010</td>
<td>-</td>
</tr>
<tr>
<td>M</td>
<td>-</td>
<td>0.0015</td>
<td>-</td>
</tr>
<tr>
<td>N</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Rev. 0 4/94
Ceramic Dual-In-Line Frit Seal Packages (CERDIP)

NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.

2. The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.

3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.

4. Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.

5. This dimension allows for off-center lid, meniscus, and glass overrun.

6. Dimension Q shall be measured from the seating plane to the base plane.

7. Measure dimension S1 at all four corners.

8. N is the maximum number of terminal positions.

10. Controlling dimension: INCH.

F14.3 MIL-STD-1835 GDIP1-T14 (D-1, CONFIGURATION A)

14 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>INCHES</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.200</td>
</tr>
<tr>
<td>b</td>
<td>0.014</td>
<td>0.026</td>
</tr>
<tr>
<td>b1</td>
<td>0.014</td>
<td>0.023</td>
</tr>
<tr>
<td>b2</td>
<td>0.045</td>
<td>0.065</td>
</tr>
<tr>
<td>b3</td>
<td>0.023</td>
<td>0.045</td>
</tr>
<tr>
<td>c</td>
<td>0.008</td>
<td>0.018</td>
</tr>
<tr>
<td>c1</td>
<td>0.008</td>
<td>0.015</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>0.785</td>
</tr>
<tr>
<td>E</td>
<td>0.220</td>
<td>0.310</td>
</tr>
<tr>
<td>e</td>
<td>0.100 BSC</td>
<td>2.54 BSC</td>
</tr>
<tr>
<td>ea</td>
<td>0.300 BSC</td>
<td>7.62 BSC</td>
</tr>
<tr>
<td>ea2</td>
<td>0.150 BSC</td>
<td>3.81 BSC</td>
</tr>
<tr>
<td>L</td>
<td>0.125</td>
<td>0.200</td>
</tr>
<tr>
<td>Q</td>
<td>0.015</td>
<td>0.060</td>
</tr>
<tr>
<td>S1</td>
<td>0.005</td>
<td>-</td>
</tr>
<tr>
<td>α</td>
<td>90°</td>
<td>105°</td>
</tr>
<tr>
<td>aaa</td>
<td>-</td>
<td>0.015</td>
</tr>
<tr>
<td>bbb</td>
<td>-</td>
<td>0.030</td>
</tr>
<tr>
<td>ccc</td>
<td>-</td>
<td>0.010</td>
</tr>
<tr>
<td>M</td>
<td>-</td>
<td>0.0015</td>
</tr>
<tr>
<td>N</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

Rev. 0 4/94
Small Outline Plastic Packages (SOIC)

NOTES:
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication Number 95.
3. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.