High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

General Description

The DA9141-A is an Automotive grade, high efficiency, 25 A continuous and 40 A peak, four-phase, DC-DC stepdown converter (buck). It is fully AEC-Q100 qualified.

With remote sensing, the DA9141-A improves output voltage regulation at the point of load.

Fully integrated switching FETs means no external FETs or Schottky diodes are needed.

A programmable soft startup can be enabled, which limits the inrush current from the input node and secures a slope-controlled rail activation.

The dynamic voltage control (DVC) supports adaptive adjustment of the supply voltage dependent on the processor load, via either a direct register write using the communication interface (I²C compatible) or with a programmable input pin.

A configurable GPI allows multiple I²C address selection for multiple instances of DA9141-A in the same application.

DA9141-A has integrated over-temperature and over-current protection for increased system reliability, without the need for external sensing components.

Key Features

- 2.8 V to 5.5 V input voltage
- 0.5 V to 1.3 V output voltage
- Up to 40 A peak output current, 25 A continuous output current
- 4 MHz nominal switching frequency
- Quad-phase operation
- 110 nH inductor per phase
- 220 µF output capacitor
- ±1 % output voltage accuracy (static)

- ±5 % load transient
- I²C-compatible interface (FM+)
- Programmable GPIOs
- Programmable soft startup
- Voltage, current, and temperature supervision

RENESAS

- Automotive Grade 1
- 60 FC-BGA 4.5 mm x 7 mm (0.65 mm pitch)
- 180 mm² total solution area
- AEC-Q100 qualified

Applications

- Navigation systems
- Telematics
- Al engines

- Automotive infotainment
- Advanced driver assistance systems (ADAS)
- SiPP modules

High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

Contents

Ge	neral l	Description	1				
Ke	y Feat	ures	1				
Ар	plicati	ions	1				
Fig	ures		3				
1	Term	s and Definitions	5				
2		k Diagram					
-		ut					
4							
4	4.1	Absolute Maximum Ratings	-				
	4.1	Electrostatic Discharge Ratings					
	4.2 4.3	Recommended Operating Conditions					
	4.3 4.4	Thermal Characteristics					
	4.4	4.4.1 Power Derating Curves					
	4.5	C C					
		Buck1 Characteristics Performance and Supervision Characteristics					
	4.6						
	4.7	Digital IO Characteristics					
	4.8	Timing Characteristics					
	4.9	Typical Performance					
5	Func	tional Description					
	5.1	Operating Modes					
		5.1.1 ON					
		5.1.2 OFF	17				
	5.2	DC-DC Buck Converter	17				
		5.2.1 Switching Frequency	17				
		5.2.2 Operation Modes and Phase Selection	17				
		5.2.3 Output Voltage Selection	18				
		5.2.4 Soft Startup and Shutdown					
		5.2.5 Current Limit					
		5.2.6 Temperature Protection	19				
	5.3	Control Circuits	19				
		5.3.1 Chip Enable and Disable	19				
		5.3.2 GPIO					
		5.3.3 Interrupt					
	5.4	I ² C Communication					
		5.4.1 I ² C Protocol	24				
6	Regis	ster Definitions					
	6.1	Register Map					
	6.2	Register Descriptions					
		6.2.1 Buck1					
		6.2.2 OTP Control	43				
7	Pack	age Information					
•	7.1	Package Outlines					
	7.2	Moisture Sensitivity Level					
Dat	tashee	et Revision 2.0 28-	Jan-2022				

	7.3	Soldering Information	46
		ring Information	
9	Application Information		48
	9.1	Capacitor Selection	48
		Inductor Selection	
10	Layo	ut Guidelines	49

Figures

Figure 1: Block Diagram	6
Figure 2: Pinout Diagram (Top View)	
Figure 3: Power Derating Curve	
Figure 4: DA9141-A Efficiency, PWM Mode without Phase Shedding	
Figure 5: DA9141-A Efficiency, Auto Mode with Phase Shedding	
Figure 6: Buck Output Voltage Control Concept	
Figure 7: Temperature Protection Operation	19
Figure 8: Interrupt Operation Example	
Figure 9: I ² C START and STOP Condition Timing	
Figure 10: I ² C Byte Write (SDA Line)	
Figure 11: I ² C Byte Read (SDA Line) Examples	
Figure 12: Package Outline Drawing	
Figure 13: DA9141-A Footprint	

Tables

Table 1: Pin Description	7
Table 2: Pin Type Definition	8
Table 3: Absolute Maximum Ratings	9
Table 4: Electrostatic Discharge Ratings	9
Table 5: Recommended Operating Conditions	
Table 6: Package Ratings	10
Table 7: Typical Temperatures	
Table 8: Quad-Phase Buck Electrical Characteristics	11
Table 9: Performance and Supervision Electrical Characteristics	14
Table 10: Digital I/O Electrical Characteristics	14
Table 11: I2C Electrical Characteristics	
Table 12: Temperature Protection Control Registers	19
Table 13: GPIO Pin Assignment	
Table 14: GPIO0 Configurable Registers when CONF Enabled	20
Table 15: Interrupt List	
Table 16: Interrupt Registers Except for Power-Good Status	
Table 17: Interrupt Registers for Power-Good and Temperature Warning Status	
Table 18: Register Map	26
Table 19: SYŠ_STATUS_0 (0x0001)	
Table 20: SYS_STATUS_1 (0x0002)	
Table 21: SYS_STATUS_2 (0x0003)	
Table 22: SYS_EVENT_0 (0x0004)	
Table 23: SYS_EVENT_1 (0x0005)	
Table 24: SYS_EVENT_2 (0x0006)	
Table 25: SYS_MASK_0 (0x0007)	
Table 26: SYS_MASK_1 (0x0008)	
Table 27: SYS_MASK_2 (0x0009)	
Table 28: SYS_MASK_3 (0x000A)	
Table 29: SYS_CONFIG_0 (0x000B)	
Table 30: SYS_CONFIG_2 (0x000D)	31

_			
	tac	ho	ot.
Da	itas	пе	eι

	04
Table 31: SYS_CONFIG_3 (0x000E) Table 32: SYS_GPIO0_0 (0x0010)	
Table 33: SYS_GPIO0_1 (0x0011)	
Table 34: SYS_GPIO1_0 (0x0012)	
Table 35: SYS_GPIO1_1 (0x0013)	
Table 36: SYS_GPIO2_0 (0x0014)	
Table 37: SYS_GPIO2_1 (0x0015)	
Table 38: SYS_GPIO3_0 (0x0016)	
Table 39: SYS_GPIO3_1 (0x0017)	
Table 40: SYS_GPIO4_0 (0x0018)	
Table 41: SYS_GPIO4_1 (0x0019)	
Table 42: BUCK_BUCK1_0 (0x0020)	39
Table 43: BUCK_BUCK1_1 (0x0021)	40
Table 44: BUCK_BUCK1_2 (0x0022)	40
Table 45: BUCK_BUCK1_3 (0x0023)	41
Table 46: BUCK_BUCK1_4 (0x0024)	41
Table 47: BUCK_BUCK1_5 (0x0025)	42
Table 48: BUCK_BUCK1_6 (0x0026)	42
Table 49: BUCK_BUCK1_7 (0x0027)	43
Table 50: OTP_DEVICE_ID (0x0048)	43
Table 51: OTP_VARIANT_ID (0x0049)	43
Table 52: OTP_CUSTOMER_ID (0x004A)	
Table 53: OTP_CONFIG_ID (0x004B)	
Table 54: MSL Classification	
Table 55: Ordering Information for Consumer / Industrial Applications	
Table 56: Ordering Information for Automotive Applications	
Table 57: Recommended Automotive Grade Capacitor Types	
Table 58: Recommended Inductor Types	48
	10

1 Terms and Definitions

CPU	Central processing unit
DDR	Dual data rate
DVC	Dynamic voltage control
FET	Field effect transistor
FM+	Fast mode plus
GPI	General purpose input
GPIO	General purpose input/output
GPU	Graphics processing unit
IC	Integrated circuit
OTP	One time programmable
PCB	Printed circuit board
SCL	Serial clock
SDA	Serial data
SIPP	Single in-line pin package

2 Block Diagram

Figure 1: Block Diagram

Datasheet

3 Pinout

Table 1: Pin Description

Pin #	Pin Name	Type (Table 2)	Drive (mA)	Description
A1, B1, C1, D1	PVDD1	PWR	10000	Supply voltage for buck power stage, decouple with 10 μF and connect to same source as AVDD
A2, B2, C2, D2	LX1	AIO	10000	Switch node of buck, connect a 100 nH inductor between LX1 and output capacitor
A3, B3, C3, D3	PGND1	GND	10000	Buck power stage GND

	-	4-	-	L	-	-	4
IJ		ta	1	n	е	e	г
_	-		-		-	-	-

Revision 2.0

High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

Pin #	Pin Name	Type (Table 2)	Drive (mA)	Description
A4, B4, C4, D4	PGND2	GND	10000	Buck power stage GND
A5, B5, C5, D5	LX2	AIO	10000	Switch node of buck, connect a 100 nH inductor between LX2 and output capacitor
A6, B6, C6, D6	PVDD2	PWR	10000	Supply voltage for buck power stage, decouple with 10 μF and connect to same source as AVDD
E1	GPIO1	DIO	10	General purpose I/O
E2	GPIO2	DIO	10	General purpose I/O
E3, F2	AGND	GND	10	Analog control and auxiliary circuitry GND
E4	FBP	AI	10	Buck positive node of differential voltage feedback, connect to VOUT1 at point of load
E5, F5	AVDD	PWR	10	Supply rail for analog control circuitry, decouple with 1 μF and connect to same source as PVDD
E6	SCL/GPIO3	DIO	15	I ² C clock or general purpose I/O
F1	CONF/GPIO0	AI/DIO	10	Chip configuration or general purpose I/O
F3	IC_EN	AI	10	Powers up I ² C control interface and auxiliary circuitry (including bandgap, oscillator, and references)
F4	FBN	AI	10	Buck negative node of differential voltage feedback, connect to GND at point of load
F6	SDA/GPIO4	DIO	15	I ² C data or general purpose I/O
G1, H1, J1, K1	PVDD3	PWR	10000	Supply voltage for buck power stage, decouple with 10 μF and connect to same source as AVDD
G2, H2, J2, K2	LX3	AIO	10000	Switch node of buck, connect a 100 nH inductor between LX3 and output capacitor
G3, H3, J3, K3	PGND3	GND	10000	Buck power stage VSS rail
G4, H4, J4, K4	PGND4	GND	10000	Buck power stage VSS rail
G5, H5, J5, K5	LX4	AIO	10000	Switch node of buck, connect a 100 nH inductor between LX4 and output capacitor
G6, H6, J6, K6	PVDD4	PWR	10000	Supply voltage for buck power stage, decouple with 10 μF and connect to same source as AVDD

Table 2: Pin Type Definition

Pin Type	Description	Pin Type	Description
DI	Digital input	AI	Analog input
DO	Digital output	AO	Analog output
DIO	Digital input/output	AIO	Analog input/output
PWR	Power	GND	Ground

Datasheet

Revision 2.0

4 Characteristics

4.1 Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification are not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Note: Values are preliminary, pending final silicon characterization results.

Table 3:	Absolute	Maximum	Ratings
1 4 5 1 6 1	/		

Parameter	Description	Conditions	Min	Max	Unit
T _{STG}	Storage temperature		-65	150	°C
TJ	Junction temperature		-40	150	°C
V _{SYS}	System supply voltage		-0.3	6.0	V
Vpin	Voltage on pins		-0.3	6.0	V

4.2 Electrostatic Discharge Ratings

Note: Values are preliminary, pending final silicon characterization results.

Parameter	Description	Conditions	Value	Unit
ESDнвм	Maximum ESD protection	Human body model (HBM) All exposed pins	2	kV
ESD _{CDM}	Maximum ESD protection	Charged device model (CDM)	500 (Note 1)	V

Note 1 Increased to 750 V for corner balls.

4.3 Recommended Operating Conditions

Note: Values are preliminary, pending final silicon characterization results.

 Table 5: Recommended Operating Conditions

Parameter	Description	Conditions	Min	Тур	Max	Unit
V _{SYS}	System supply voltage		2.8		5.5	V
Vpin	Voltage on pins		-0.3		V _{SYS} + 0.3	V
TJ	Junction temperature		-40		150	°C
T _A	Ambient temperature		-40		125	°C

4.4 Thermal Characteristics

Note: Values are preliminary, pending final silicon characterization results.

Table 6: Package Ratings

Parameter	Description	Conditions	Min	Тур	Max	Unit
Αιθ	Thermal resistance junction to ambient	No heatsink Note 1		16.4		°C/W
		With heatsink Note 2		9.6		°C/W
θјв	Thermal resistance junction to board	Note 1		9.2		°C/W
θյς	Thermal resistance junction to case	Note 1		7.0		°C/W
PD	Maximum power dissipation, see Section 4.4.1	No heatsink Derating factor above $T_A = 85^{\circ}C: 60.9 \text{ mW/}^{\circ}C (1/\theta_{JA})$	3660	4270		mW
		With heatsink Derating factor above $T_A = 85^{\circ}C:104.1 \text{ mW/}^{\circ}C (1/\theta_{JA})$	6250	7290		mW

Note 1 Obtained from package thermal simulations, JEDEC 2S2P four-layer board (114.3 mm x 101.6 mm x 1.6 mm), 70 μm (2 oz) copper thickness power planes, 35 μm (1 oz) copper thickness signal layer traces, natural convection (still air)

Note 2 As per Note 1 with addition of aluminium heatsink, 114.3 mm x 101.6 mm x 1.0 mm representing the lid of a case.

4.4.1 **Power Derating Curves**

Figure 3: Power Derating Curve

Table 7: Typical Temperatures

	T _A = 85 °C	T _A = 105 °C	T _A = 125 °C
T _{J_WARN}	$P_{D} = 2.74 \text{ W}$	P _D = 1.52 W	$P_{D} = 0.30 \text{ W}$
Tj_crit_wc	P _D = 3.66 W	P _D = 2.44 W	P _D = 1.22 W

4.5 Buck1 Characteristics

Unless otherwise noted, the following is valid for $T_J = -40$ °C to +150 °C, $V_{SYS} = 2.8$ V to 5.5 V. **Note**: Values are preliminary, pending final silicon characterization results.

Parameter	Description	Conditions	Min	Тур	Мах	Unit		
External Electri	External Electrical Conditions							
VIN	Input voltage	$V_{IN} = V_{SYS} = V_{AVDD}$	2.8		5.5	V		
Соит	Total output capacitance, including voltage and temperature coefficient	Typ 10 x 22 μF -40 % to +20 %	132	220	264	μF		
ESRcout	Output capacitor series resistance, per capacitor	f > 100 kHz		3		mΩ		
L	Inductor value, per phase, including current and temperature dependence		88	110	132	nH		
DCRL	Inductor DC resistance			2		mΩ		

Datasheet

Revision 2.0

High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

Parameter	Description	Conditions	Min	Тур	Max	Unit
Electrical Perf	ormance	·				
Vouт	Output voltage, configurable in 10 mV steps	$I_{OUT} = 0 \text{ mA to } I_{OUT_MAX_PK}$ $V_{IN} = 2.8 \text{ V to } 5.5 \text{ V}$	0.5	0.85	1.3	V
Vout_acc	Output voltage accuracy, including static line and load regulation	V _{OUT} ≥ 1 V	-1		1	%
Vout_acc	Output voltage accuracy, including static line and load regulation	Vout < 1 V	-10		10	mV
IOUT_MAX_CONT	Maximum continuous output current	With suitable thermal design	25			A
Iout_max_pk	Maximum peak output current	With suitable thermal design	40			A
ILIM	Current limit, configureable per phase Note 1 Note 2			14.5		A
	Current limit accuracy Note 2		-20		20	%
$V_{\text{THR}_\text{PG}_\text{HYS}}$	Power-good voltage threshold hysteresis	V _{OUT} = V _{THR_PG_DWN}	70	80	90	mV
$V_{\text{THR}_\text{PG}_\text{DWN}}$	Power-good voltage threshold for falling	V _{OUT} = V _{BUCK}	-170	-140	-110	mV
Vthr_hv	High V _{OUT} voltage threshold	Vout = Vbuck	130	160	195	mV
Vout_tr_line	Line transient response	V _{IN} = 3.0 V to 3.6 V V _{OUT} = 1.1 V I _{OUT} = 0.5 * I _{OUT_MAX_PK} dt = 10 µs		10		mV
fsw	Switching frequency			4		MHz
t _{on_min}	Minimum turn-on pulse 0 % duty is also supported			10		ns
tbuck_en	Turn-on time	CH1_EN = high $V_{IN} = 3.3 V$ $V_{OUT} = 0.85 V$ DVC slew rate: 10 mV/8 µs No load Recommended capacitance		600		μs

Datasheet

High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

Parameter	Description	Conditions	Min	Тур	Max	Unit
R _{PD}	Output pull-down resistance for each phase at the LX node, see CH1_PD_DIS	V _{IN} = 3.3 V V _{OUT} = 0.5 V	140	150	160	Ω
Ron_pmos	On resistance of switching PMOS, per phase	V _{IN} = 3.3 V		12		mΩ
Ron_nmos	On resistance of switching NMOS, per phase	V _{IN} = 3.3 V		6		mΩ
PWM Mode						
ηрwм	Efficiency, PWM	V _{IN} = 3.3 V V _{OUT} = 1.1 V I _{OUT} = 5 % (I _{OUT_MAX_PK}) to 80 % (I _{OUT_MAX_PK})		80		%
AUTO Mode				Į		
Vout_tr_ld_rise	Load transient response, phase shedding enabled	Vout = 1.1 V Iout = 25 % to 75 % of Iout_MAX_PK Load rise time = 1 µs	-5			%
Vout_tr_ld_fall	Load transient response, phase shedding enabled	V _{OUT} = 1.1 V I _{OUT} = 75 % to 25 % of I _{OUT_MAX_PK} Load fall time = 1 μs			5	%
PFM Mode						
Iq_pfm_1ph	Quiescent current in PFM	V _{IN} = 3.3 V No load No switching		120		μA
ηрғм	Efficiency, PFM	V _{IN} = 3.3 V V _{OUT} = 1.1 V I _{OUT} = 100 mA		80		%

Note 1For applications requiring $V_{OUT} < 0.75$ V contact Renesas applications support for configuration settingNote 2 $t_{ON} > 40$ ns

4.6 Performance and Supervision Characteristics

Note: Values are preliminary, pending final silicon characterization results.

Table 9: Performance and Supervision Electrical Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit		
Electrical Per	Electrical Performance							
V _{THR_POR}	Power-on-reset threshold	Threshold for AVDD falling		2.1	2.25	V		
VTHR_POR_HYS	Power-on-reset hysteresis			200		mV		
Twarn	Temperature warning threshold		120	130	140	°C		
TCRIT	Temperature shutdown threshold		145	155	165	°C		
I _{IN_OFF}	Supply current	OFF state $T_A = 27 \text{ °C}$ IC_EN = 0		0.1	1	μA		
lin_on	Supply current	ON state T _A = 27 °C IC_EN = 1 Buck off	5	10	20	μΑ		

4.7 Digital IO Characteristics

Note: Values are preliminary, pending final silicon characterization results.

Table 10: Digital I/O Electrical Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit		
Electrical Perfo	Electrical Performance							
V _{IH_EN}	Input high voltage, IC enable		1.2		AVDD	V		
VIL_EN	Input low voltage, IC enable				0.4	V		
tic_en	IC enable time				1000	μs		
VIH_GPIO_SCL_SDA	Input high voltage GPIO, SCL, SDA		1.2		AVDD	V		
VIL_GPIO_SCL_SDA	Input low voltage GPIO, SCL, SDA				0.4	V		
Voh_gpio	Output high voltage GPIO	Push-pull mode Iout = 1 mA	0.8*AV DD		AVDD	V		
Vol_gpio	Output low voltage GPIO	Push-pull mode Iouт = 1 mA			0.2*AV DD	V		

Datasheet

Revision 2.0

High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

Parameter	Description	Conditions	Min	Тур	Max	Unit
Vol_sda	Output low voltage SDA	Iout = 3 mA		0.24		V
R _{PD}	GPIO pull-down resistor		2	10	120	kΩ
Rpu	GPIO pull-up resistor		2	10	120	kΩ

4.8 Timing Characteristics

Note: Values are preliminary, pending final silicon characterization results.

Table 11: I2C Electrical Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit
Electrical Pe	erformance					
tBUS	Bus free time between a STOP and START condition		0.5			μs
C _{BUS}	Bus line capacitive load				150	pF
f _{SCL}	SCL clock frequency		20 Note 1		1000	kHz
tLO_SCL	SCL low time		0.5			μs
t _{HI_SCL}	SCL high time		0.26			μs
t _{RISE}	SCL and SDA rise time	Requirement for input			1000	ns
t _{FALL}	SCL and SDA fall time	Requirement for input			300	ns
tsetup_start	Start condition setup time		0.26			μs
thold_start	Start condition hold time		0.26			μs
tsetup_stop	Stop condition setup time		0.26			μs
t _{DATA}	Data valid time				0.45	μs
tdata_ack	Data valid acknowledge time				0.45	μs
tsetup_data	Data setup time		50			ns
t _{HOLD_DATA}	Data hold time		0			ns

Note 1 Minimum clock frequency is limited to 20 kHz if I2C_TIMEOUT is enabled

High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

4.9 **Typical Performance**

The static efficiency measurement plots depicted in Figure 4 and Figure 5 were performed at 25°C in a temperature-controlled environment. A continuous load was used for the measurements therefore the peak current limit of 40A was not reached.

Figure 4: DA9141-A Efficiency, PWM Mode without Phase Shedding

Figure 5: DA9141-A Efficiency, Auto Mode with Phase Shedding

Datasheet	Revision 2.0	28-Jan-2022

5 Functional Description

5.1 Operating Modes

5.1.1 ON

DA9141-A is ON when the IC_EN pin is higher than $V_{IH_{EN}}$ and the supply voltage is higher than $V_{THR_{POR}}$. Once enabled, the host processor can start communicating with DA9141-A using the control interface, after the t_{IC_EN} delay.

5.1.2 OFF

DA9141-A is OFF when the IC_EN pin is lower than V_{IL_EN} . In OFF, the buck is always disabled and the LX nodes are pulled down by a (typically 150 Ω) internal pull-down resistor.

5.2 DC-DC Buck Converter

DA9141-A operates as a single-channel, quad-phase buck converter which delivers up to 40 A output current at a 0.5 V to 1.3 V output voltage range.

The buck converter has two configurable output voltage settings. One is the normal output voltage (A), the other offers an alternative retention voltage (B). The bits used to configure the outputs are CH1_A_VOUT and CH1_B_VOUT. In this way, different application power modes are supported. The target output voltage (either A or B) is toggled by either GPI or I²C control interface, providing maximum flexibility for the application's host processor.

When the buck is enabled, its output voltage is monitored and a power-good signal indicates that the buck output voltage has reached a level higher than the power-good rise threshold. The power-good status is lost when the voltage drops below $V_{THR_PG_DWN}$ or increases above V_{THR_HV} . $V_{THR_PG_HYS}$ is the value that defines the hysteresis between a power-good rise and $V_{THR_PG_DWN}$. The status of the power-good indicator is read back via I²C from the PG1 status bit. Alternatively, it can be assigned to any of the GPIOs by setting the GPIO<x>_MODE bits to PG1 output.

The buck converter is capable of supporting DVC transitions that occur when:

- the active and selected A- or B-voltage is updated to a new target value, using bits CH1_A_VOUT and CH1_B_VOUT
- the voltage selection is toggled from the A- to B-voltage (or B- to A-voltage), using bit CH1_VSEL or via GPI control

The DVC operates in pulse-width-modulation (PWM) mode with synchronous rectification. The slew rate of the DVC ramp up and ramp down transitions is programmed at 10 mV per (8, 4, 2, 1, or 0.5) μ s in register bits CH1_SR_DVC_DWN and CH1_SR_DVC_UP.

A pull-down resistor (typically 150 Ω) for each phase is always activated when the buck is disabled, unless it is disabled by setting register bits CH1_PD_DIS to 0x1.

5.2.1 Switching Frequency

The buck switching frequency is tuned using register bit OSC_TUNE. The internal 8 MHz oscillator frequency is tuned in ± 160 kHz steps. This impacts the buck converter frequency in steps of 80 kHz and helps to mitigate possible disturbances to other high frequency systems in the application.

5.2.2 Operation Modes and Phase Selection

The buck converter operates in PWM or PFM modes. The operating mode is selected using register bits CH1_A_MODE and CH1_B_MODE.

Phase shedding automatically changes between 1- and 4-phase operation at a typical current of 4 A.

	-
Datas	haat
Datas	neet

If the automatic operation mode (Auto mode) is selected, the buck converter automatically changes between synchronous PWM mode and PFM mode depending on the load current. This improves the efficiency across the range of output load currents.

5.2.3 Output Voltage Selection

The switching converter is configured using the I²C interface.

Two output voltages (Value A and Value B in Figure 6) are pre-configured in registers CH1_A_VOUT and CH1_B_VOUT. The output voltage (VBUCK in Figure 6) is selected by toggling register bit CH1_VSEL, by re-programming the selected voltage control register, or by toggling a GPI if configured to do so. Any of these options will result in ramped voltage transitions.

After being enabled, the buck converter uses, by default, the register settings in CH1_A_VOUT (Value A) unless the output voltage selection is configured via the GPI port to be CH1_B_VOUT.

Register bits CH1_VMAX limit the output voltage that can be set.

Figure 6: Buck Output Voltage Control Concept

5.2.4 Soft Startup and Shutdown

To limit in-rush current from VSYS, the buck converter performs a soft-start after being enabled. The startup behavior is a compromise between acceptable inrush current from the battery and turn-on time. Ramp times are configured in register CH1_SR_STARTUP. **Note**: rates higher than 5 mV/µs may produce overshoot during the startup phase.

A ramped power down is selected in register bits CH1_SR_SHDN. When no ramp is selected (immediate power down), the output node is discharged only by the pull-down resistor, if enabled, in register CH1_PD_DIS.

5.2.5 Current Limit

The integrated current limit protects the power stages and external coil from excessive current. It should be configured to at least 40 % higher than the required maximum per phase output current. **Note**: this value is loaded from the OTP.

When the current limit is reached, the buck converter generates an event and an interrupt to the host processor unless the interrupt has been masked using bit M_OC1 in SYS_MASK_1. Register bit OC_DVC_MASK masks over-current events during DVC transitions.

Datasheet

5.2.6 **Temperature Protection**

DA9141-A is protected from internal overheating by temperature-triggered shutdown.

There are two kinds of flags concerning temperature protection: temperature warning and temperature critical. The warning flag asserts when $T_J > T_{WARN}$ and the critical flag asserts when $T_J > T_{CRIT}$. When the critical flag asserts, Buck1 shuts down immediately.

Category	Register name	Description
Status	TEMP_WARN	Asserts when the temperature warning threshold is reached
	TEMP_CRIT	Asserts when the temperature shutdown threshold is reached
IRQ event	E_TEMP_WARN	TEMP_WARN caused event
	E_TEMP_CRIT	TEMP_CRIT caused event
IRQ mask	M_TEMP_WARN	TEMP_WARN event IRQ mask
	M_TEMP_CRIT	TEMP_CRIT event IRQ mask
	M_VR_HOT	TEMP_WARN status IRQ mask

Figure 7: Temperature Protection Operation

5.3 Control Circuits

5.3.1 Chip Enable and Disable

The IC_EN pin enables and disables the IC. When IC_EN = 0 all blocks, except for low I_Q POR, powerdown and the buck output is pulled down.

5.3.2 **GPIO**

5.3.2.1 **GPIO Pin Assignment**

The DA9141-A provides up to five GPIO pins, three if the I²C is enabled, see Table 13. The registers that configure the GPIO pin assignments are OTP programmable.

GPIO0 can be programmed (OTP option) to function as chip configuration (CONF), see Section 5.3.2.3. When the I²C interface is enabled (OTP option) any register settings for GPIO3 and GPIO4 are ignored and GPIO3 and GPIO4 function as SCL and SDA respectively.

Table 13: GPIO Pin Assignment

OTP Option		GPIO Pin					Available
I2C	CONF	CONF/ GPIO0	GPI01	GPIO2	SCL/ GPIO3	SDA/ GPIO4	GPIOs
Disabled	Disabled	GPIO0	GPIO1	GPIO2	GPIO3	GPIO4	5
	Enabled	CONF	GPIO1	GPIO2	GPIO3	GPIO4	4
Enabled	Disabled	GPIO0	GPIO1	GPIO2	SCL	SDA	3
	Enabled	CONF	GPIO1	GPIO2	SCL	SDA	2

5.3.2.2 **GPIO Function**

The GPIO pins are configurable as the following functions in register GPIO<x> MODE (x = 0 to 4):

- Buck1 enable input (EN1) •
- Buck1 DVC control input (DVC1) •
- Buck1 OTP setting reload input (RELOAD) •
- Buck1 power-good output (PG1) •
- Interrupt output (nIRQ) •

5.3.2.3 **Chip Configuration Select**

GPIO0 functions as chip configuration select (CONF) input when enabled as an OTP setting.

Three different chip configurations can be selected according to the CONF pin level (high, low, or Hi-Z).

Table 14: GPIO0 Configurable Registers when CONF Enabled			
Register Name Description			
IF_SLAVE_ADDR[6:0]	I2C slave address		
CH1_A_MODE[1:0]	CH1_A Operation mode select		
CH1_B_MODE[1:0]	CH1_B Operation mode select		
CH1_VSEL	CH1 output voltage and operation selection		
CH1_EN	CH1 enable		
CH1_A_VOUT[7:0]	CH1 output voltage setting A		
CH1_B_VOUT[7:0]	CH1 output voltage setting B		

CH1_B_VOUT[7:0]	CH1 output voltage setting B
M_PG1_STAT	IRQ mask setting for CH1 power-good status
M_VR_HOT	IRQ mask setting for temp warning status
GPIO1_MODE[3:0]	GPIO1 mode setting
GPIO2_MODE[3:0]	GPIO2 mode setting

Datasheet

Revision 2.0

28-Jan-2022

High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

Register Name	Description
GPIO1_OBUF	GPIO1 output buffer select
GPIO2_OBUF	GPIO2 output buffer select
GPIO1_TRIG[1:0]	GPIO1 input trigger select
GPIO1_POL	GPIO1 polarity select
GPIO1_PUPD	GPIO1 pull-up/pull-down enable
GPIO1_DEB[1:0]	GPIO1 input debounce time setting
GPIO1_DEB_RISE	GPIO1 input debounce rising edge enable
GPIO1_DEB_FALL	GPIO1 input debounce falling edge enable
GPIO2_TRIG[1:0]	GPIO2 input trigger select
GPIO2_POL	GPIO2 polarity select
GPIO2_PUPD	GPIO2 pull-up/pull-down enable
GPIO2_DEB[1:0]	GPIO2 input debounce time setting
GPIO2_DEB_RISE	GPIO2 input debounce rising edge enable
GPIO2_DEB_FALL	GPIO2 input debounce falling edge enable

5.3.3 Interrupt

When an event is triggered, the nIRQ interrupt flag is asserted. Trigger conditions and control registers for each interrupt event are listed in Table 15.

Some of these events are categorized as fault events and affect device operation (for example, buck disable), see Section 5.2.6.

Table 15: Interrupt List

Name	Polarity (Note 1)	Trigger	IRQ Status Register	IRQ Mask Register	Deglitch Period
Temperature warning (event)	N	$T_{\rm J}$ rising above $T_{\rm WARN}$	E_TEMP_WARN	M_TEMP_WARN	0 s
Temperature critical (event)	N	T _J rising above T _{CRIT}	E_TEMP_CRIT	M_TEMP_CRIT	0 s
Buck1 power-good (event)	Ρ	Buck1 V _{OUT} is in power- good voltage range (not under- or over-voltage)	E_PG1	M_PG1	0 s
Buck1 over-voltage (event)	N	Buck1 Vout rising above over-voltage threshold (target voltage + 150 mV)	E_OV1	M_OV1	Rise: 8 µs Fall: 8 µs
Buck1 under- voltage (event)	N	Buck1 Vout falling below under-voltage threshold (target voltage - VTH_PG_FALL)	E_UV1	M_UV1	0 s
Buck1 over-current (event)	N	Buck1 current rising above over-current threshold	E_OC1	M_OC1	0 s
Buck1 power-good (status) (Note 2)	Ρ	Buck1 V _{OUT} is in power- good voltage range (not under- or over-voltage)	PG1	M_PG1_STAT (Note 3)	0 s
Temperature warning (status) (Note 2)	N	$T_{\rm J}$ rising above $T_{\rm WARN}$	TEMP_WARN	M_VR_HOT (Note 3)	0 s
GPIO0 change (event)	N	Detect GPIO0 change for active trigger selected by GPIO0_TRIG register	E_GPIO0	M_GPIO0	100 μs, 1 ms, or 10 ms
GPIO1 change (event)	N	Detect GPIO1 change for active trigger selected by GPIO1_TRIG register	E_GPIO1	M_GPIO1	100 ms
GPIO2 change (event)	N	Detect GPIO2 change for active trigger selected by GPIO2_TRIG register	E_GPIO2	M_GPIO2	

Note 1 Polarity at the source of the flag: P = active high, N = active low.

General rule is: normal system state is high, and abnormal system state is low (for example, PG = high means power-good, TEMP_CRIT = low when in temperature critical state).

 $\label{eq:Note 2} \mbox{ Interrupt outputs the status as is. I^2C write is not required for interrupt clear.}$

Note 3 OTP load value defined by CONF pin setting (if CONF pin enabled).

Datasheet

Revision 2.0

Table 16: Interrupt Registers Except for Power-Good Status

Register	Description
E_ <name></name>	Read-only interrupt event register 0: No interrupt
	1: Interrupt occurred
	Cleared after being written to I ² C. Set until IRQ is removed.
M_ <name></name>	Interrupt mask register
	0: Not masked
	1: Masked. No IRQ signal sent. Event register (E_ <name>) is updated.</name>

Table 17: Interrupt Registers for Power-Good and Temperature Warning Status

Register	Description
PG1	Buck1 power-good status. Asserted as long as Buck1 output voltage is in range (under-voltage threshold < buck output voltage < over-voltage threshold) 0: Not power-good 1: Power-good
M_PG1_STAT	Power-good status interrupt mask register 0: Not masked 1: Masked. No IRQ signal sent. Power-good status register (PG1) is updated
TEMP_WARN	Asserted as long as the temperature warning threshold (T _{WARN}) is reached 0: Junction temperature is below T _{WARN} 1: Junction temperature is above T _{WARN}
M_VR_HOT	Temperature warning status (TEMP_WARN) interrupt mask register 0: Not masked 1: Masked. No IRQ signal sent. Temperature warning status register (TEMP_WARN) is updated

5.4 I²C Communication

All features of DA9141-A can be controlled with the I²C interface, which is enabled or disabled as an OTP setting.

I2C	Description
Disabled	SCL/GPIO3 and SDA/GPIO4 pins can be used as GPIO
Enabled	SCL/GPIO3 and SDA/GPIO4 pins are used as I ² C clock input and I ² C data input/output.

GPIO3 functions as the I²C clock (SCL) and GPIO4 carries all the power manager bidirectional I²C data (SDA). The I²C interface is open drain supporting multiple devices on a single line. The bus lines have to be pulled high by external pull-up resistors (2 k Ω to 20 k Ω). The standard frequency of the I²C bus is 1 MHz in fast-mode plus (FM+), 400 kHz in fast-mode, or 100 kHz in standard mode.

5.4.1 I²C Protocol

All data is transmitted across the I²C bus in eight-bit groups. To send a bit, the SDA line is driven towards the intended state while the SCL is low (a low SDA indicates a zero bit). Once the SDA has settled, the SCL line is brought high and then low. This pulse on SCL clocks the SDA bit into the receiver's shift register.

A two-byte serial protocol is used containing one byte for address and one byte for data. Data and address transfer are transmitted MSB first for both read and write operations. All transmissions begin with the START condition from the master while the bus is in idle state (the bus is free). It is initiated by a high to low transition on the SDA line while the SCL is in the high state (a STOP condition is indicated by a low to high transition on the SDA line while the SCL is in the high state).

The I²C bus is monitored for a valid slave address whenever the interface is enabled. It responds immediately when it receives its own slave address. The acknowledge is done by pulling the SDA line low during the following clock cycle (white blocks marked with A in Figure 10 and Figure 11).

The protocol for a register write from master to slave consists of a START condition, a slave address with read/write bit, and the eight-bit register address followed by eight bits of data, terminated by a STOP condition. DA9141-A responds to all bytes with acknowledge (A), see Figure 10.

Figure 10: I²C Byte Write (SDA Line)

Datasheet	Revision 2.0	28-Jan-2022

When the host reads data from a register it first has to write to DA9141-A with the target register address and then read from DA9141-A with a repeated START, or alternatively a second START, condition. After receiving the data, the host sends no acknowledge (A*) and terminates the transmission with a STOP condition, see Figure 11.

Figure 11: I²C Byte Read (SDA Line) Examples

High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

6 Register Definitions

6.1 Register Map

Table 18: Register Map

Addr	Register	7	6	5	4	3	2	1	0
System Module									
0x0001	SYS_STATUS_0	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved 0	TEMP_CRIT	TEMP_WARN
0x0002	SYS_STATUS_1	Reserved	Reserved	Reserved	Reserved	PG1	OV1	UV1	OC1
0x0003	SYS_STATUS_2	Reserved	Reserved	Reserved	Reserved	Reserved	GPIO2	GPIO1	GPIO0
0x0004	SYS_EVENT_0	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved 0	E_TEMP_CRIT	E_TEMP_WARN
0x0005	SYS_EVENT_1	Reserved	Reserved	Reserved	Reserved	E_PG1	E_OV1	E_UV1	E_OC1
0x0006	SYS_EVENT_2	Reserved	Reserved	Reserved	Reserved	Reserved	E_GPIO2	E_GPIO1	E_GPIO0
0x0007	SYS_MASK_0	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved 1	M_TEMP_CRIT	M_TEMP_WARN
0x0008	SYS_MASK_1	Reserved	Reserved	Reserved	Reserved	M_PG1	M_OV1	M_UV1	M_OC1
0x0009	SYS_MASK_2	Reserved	Reserved	Reserved	Reserved	Reserved	M_GPIO2	M_GPIO1	M_GPIO0
0x000A	SYS_MASK_3	Reserved	Reserved	Reserved	Reserved	M_VR_HOT	Reserved 1	Reserved	M_PG1_STAT
0x000B	SYS_CONFIG_0	CH1_DIS_DLY<3:0>				CH1_EN_DLY<	3:0>		
0x000D	SYS_CONFIG_2	Reserved	OC_LATCHOFF<1:0	>	OC_DVC_MASK	PG_DVC_MAS	K<1:0>	Reserved	Reserved
0x000E	SYS_CONFIG_3	Reserved	OSC_TUNE<2:0>			Reserved	Reserved	I2C_TIMEOUT	Reserved 0
0x0010	SYS_GPIO0_0	Reserved	Reserved	Reserved	GPIO0_MODE<3:	0>			GPIO0_OBUF
0x0011	SYS_GPIO0_1	GPIO0_DEB_FALL	GPIO0_DEB_RISE	GPIO0_DEB<1	:0>	GPIO0_PUPD	GPIO0_POL	GPIO0_TRIG<1:0)>
0x0012	SYS_GPIO1_0	Reserved	Reserved	Reserved	GPIO1_MODE<3:	0>			GPIO1_OBUF
0x0013	SYS_GPIO1_1	GPIO1_DEB_FALL	GPIO1_DEB_RISE	GPIO1_DEB<1	:0>	GPIO1_PUPD	GPIO1_POL	GPIO1_TRIG<1:0)>
0x0014	SYS_GPIO2_0	Reserved	Reserved	Reserved GPIO2_MODE<3:0>			GPIO2_OBUF		
0x0015	SYS_GPIO2_1	GPIO2_DEB_FALL	GPIO2_DEB_RISE	ISE GPIO2_DEB<1:0> GPIO2_PU		GPIO2_PUPD	GPIO2_POL	GPIO2_TRIG<1:0)>
0x0016	SYS_GPIO3_0	Reserved	Reserved	d Reserved GPIO3_MODE<3:0>		0>)>		GPIO3_OBUF
0x0017	SYS_GPIO3_1	GPIO3_DEB_FALL	GPIO3_DEB_RISE	GPIO3_DEB<1	:0>	GPIO3_PUPD	GPIO3_POL	GPIO3_TRIG<1:0)>
0x0018	SYS_GPIO4_0	Reserved	Reserved	Reserved	GPIO4_MODE<3:	0>			GPIO4_OBUF

Datasheet

Revision 2.0

28-Jan-2022

High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

Addr	Register	7	6	5	4	3	2	1	0
0x0019	SYS_GPIO4_1	GPIO4_DEB_FALL	GPIO4_DEB_RISE GPIO4_DEB<1:0>		GPIO4_PUPD GPIO4_POL GPIO4_TRIG<1:0>)>		
Buck Control	Buck Control								
Buck1									
0x0020	BUCK_BUCK1_0	Reserved	CH1_SR_DVC_DWN	\<2:0>		CH1_SR_DVC_	UP<2:0>		CH1_EN
0x0021	BUCK_BUCK1_1	Reserved	CH1_SR_SHDN<2:0	>		CH1_SR_STAR	TUP<2:0>		CH1_PD_DIS
0x0022	BUCK_BUCK1_2	Reserved	Reserved	Reserved	Reserved	CH1_ILIM<3:0>			
0x0023	BUCK_BUCK1_3	CH1_VMAX<7:0>							
0x0024	BUCK_BUCK1_4	Reserved	Reserved	Reserved	CH1_VSEL	CH1_B_MODE	<1:0>	CH1_A_MODE<	1:0>
0x0025	BUCK_BUCK1_5	CH1_A_VOUT<7:0>							
0x0026	BUCK_BUCK1_6	CH1_B_VOUT<7:0>							
0x0027	BUCK_BUCK1_7	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	CH1_RIPPLE_C/	ANCEL<1:0>
OTP Control									
Serialization	zation								
0x0048	OTP_DEVICE_ID	DEV_ID<7:0>							
0x0049	OTP_VARIANT_ID	MRC<3:0> VRC<3:0>							
0x004A	OTP_CUSTOMER_ID	CUST_ID<7:0>	CUST_ID<7:0>						
0x004B	OTP_CONFIG_ID	CONFIG_REV<7:0>							

High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

6.2 Register Descriptions

Table 19: SYS_STATUS_0 (0x0001)

Bit	Туре	Field Name	Description
[1]	R	TEMP_CRIT	Asserted when the thermal shutdown threshold is reached
[0]	R	TEMP_WARN	Asserted when the thermal warning threshold is reached

Table 20: SYS_STATUS_1 (0x0002)

Bit	Туре	Field Name	Description
[3]	R	PG1	Asserted when the buck output voltage is in range
[2]	R	OV1	Asserted when the buck exceeds the over-voltage threshold
[1]	R	UV1	Asserted when the buck exceeds the under-voltage threshold
[0]	R	OC1	Asserted when the buck exceeds the over-current threshold

Table 21: SYS_STATUS_2 (0x0003)

Bit	Туре	Field Name	Description
[2]	R	GPIO2	GPIO2 input readback status - asserted if the input on GPIO is seen as logic high
[1]	R	GPIO1	GPIO1 input readback status - asserted if the input on GPIO is seen as logic high
[0]	R	GPIO0	GPIO0 input readback status - asserted if the input on GPIO is seen as logic high

Table 22: SYS_EVENT_0 (0x0004)

Bit	Туре	Field Name	Description
[1]	RW1C	E_TEMP_CRIT	An over-temperature event has occurred. Write 0x1 to reset this bit to 0x0 when the event source has been released.
[0]	RW1C	E_TEMP_WARN	A temperature warning event has occurred. Write 0x1 to reset this bit to 0x0 when the event source has been released.

Table 23: SYS_EVENT_1 (0x0005)

Bit	Туре	Field Name	Description
[3]	RW1C	E_PG1	PG1 caused event. Write 0x1 to reset this bit to 0x0 when the event source has been released.
[2]	RW1C	E_OV1	OV1 caused event. Write 0x1 to reset this bit to 0x0 when the event source has been released.
[1]	RW1C	E_UV1	UV1 caused event. Write 0x1 to reset this bit to 0x0 when the event source has been released.
[0]	RW1C	E_OC1	OC1 caused event. Write 0x1 to reset this bit to 0x0 when the event source has been released.

Table 24: SYS_EVENT_2 (0x0006)

Bit	Туре	Field Name	Description
[2]	RW1C	E_GPIO2	GPIO2 caused event. Write 0x1 to reset this bit to 0x0 when the event source has been released.
[1]	RW1C	E_GPIO1	GPIO1 caused event. Write 0x1 to reset this bit to 0x0 when the event source has been released.
[0]	RW1C	E_GPIO0	GPIO0 caused event. Write 0x1 to reset this bit to 0x0 when the event source has been released.

Table 25: SYS_MASK_0 (0x0007)

Bit	Туре	Field Name	Description
[1]	RW	M_TEMP_CRIT	Thermal shutdown can cause an interrupt. Write 0x1 to mask this cause of interrupt.
[0]	RW	M_TEMP_WARN	Temperature warning can cause an interrupt. Write 0x1 to mask this cause of interrupt.

Table 26: SYS_MASK_1 (0x0008)

Bit	Туре	Field Name	Description
[3]	RW	M_PG1	PG1 event can cause an interrupt. Write 0x1 to mask this cause of interrupt.
[2]	RW	M_OV1	OV1 event can cause an interrupt. Write 0x1 to mask this cause of interrupt.
[1]	RW	M_UV1	UV1 event can cause an interrupt. Write 0x1 to mask this cause of interrupt.
[0]	RW	M_OC1	OC1 event can cause an interrupt. Write 0x1 to mask this cause of interrupt.

Table 27: SYS_MASK_2 (0x0009)

Bit	Туре	Field Name	Description	
[2]	RW	M_GPIO2	GPIO2 event can cause an interrupt. Write 0x1 to mask this cause of interrupt.	
[1]	RW	M_GPIO1	GPIO1 event can cause an interrupt. Write 0x1 to mask this cause of interrupt.	
[0]	RW	M_GPIO0	GPIO0 event can cause an interrupt. Write 0x1 to mask this cause of interrupt.	

Table 28: SYS_MASK_3 (0x000A)

Bit	Туре	Field Name	Description
[3]	RW	M_VR_HOT	Temperature warning status IRQ mask. Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting)
[0]	RW	M_PG1_STAT	PG1 status IRQ mask. Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting)

Table 29: SYS_CONFIG_0 (0x000B)

Bit	Туре	Field Name	Descriptio	n
[7:4]	RW	CH1_DIS_DLY	configured	(ms) until CH1 is disabled. Active when GPIO is as EN1 or IC_EN control. Initial value is determined in setting during start up if the CONF pin is enabled g)
			Value	Description
			0x0	0
			0x1	1
			0x2	2
			0x3	3
			0x4	4
			0x5	5
			0x6	6
			0x7	7
			0x8	8
			0x9	9
			0xA	10
			0xB	11
			0xC	12
			0xD	13
			0xE	14
			0xF	15
[3:0]	RW	CH1_EN_DLY	configured determined	(ms) until CH1 is enabled. Active when GPIO is as EN1 control or IC_EN control. Initial value is by CONF pin setting during start up if the CONF pin (OTP setting)
			Value	Description
			0x0	0
			0x1	0.5
			0x2	1
			0x3	1.5
			0x4	2
			0x5	2.5
			0x6	3
			0x7	3.5
			0x8	4
			0x9	4.5
			0xA	5
			0xB	5.5

Da	tas	ho	ot
Da	เลว	ne	eι

Revision 2.0

High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

Bit	Туре	Field Name	Description	
			0xC	6
			0xD	6.5
			0xE	7
			0xF	7.5

Table 30: SYS_CONFIG_2 (0x000D)

Bit	Туре	Field Name	Descripti	on	
[6:5]	RW	OC_LATCHOFF	down afte	Over-current latch-off time (Debounce duration). Buck shuts down after over-current persists for 8 us, 1 ms or 3 ms unless setting is disabled setting. An IRQ is generated unless masked.	
			Value	Description	
			0x0	Latch off disable	
			0x1	Latch off after 8 us	
			0x2	Latch off after 1 ms	
			0x3	Latch off after 3 ms	
[4]	RW	OC_DVC_MASK		ent event mask during DVC ramp-up and ramp- ite 0x1 to mask over-current during DVC causing IRQ CHOFF.	
[3:2]	RW	PG_DVC_MASK	Power go	od mask during DVC	
			Value	Description	
			0x0	No mask	
			0x1	Mask as not power good	
			0x2	Mask as power good	
			0x3	Reserved	

Table 31: SYS_CONFIG_3 (0x000E)

Bit	Туре	Field Name	Description	
[6:4]	RW	OSC_TUNE	Tune oscillator frequency, tuned frequency = current frequency + OSC_TUNE * 160 kHz	
			Value	Description
			0x3	3
			0x2	2
			0x1	1
			0x0	0
			0x7	-1
			0x6	-2
			0x5	-3
			0x4	-4

Datasheet

High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

Bit	Туре	Field Name	Description	
[1]	RW	I2C_TIMEOUT	Enable automatic reset of 2 wire interface (if SDA stays low for > 50 ms).	

Table 32: SYS_GPIO0_0 (0x0010)

Bit	Туре	Field Name	Descriptio	n
[4:1]	RW	GPIO0_MODE	GPIO funct	ion mode select
			Value	Description
			0x0	GPIO disable
			0x1	EN1 input
			0x2	Reserved
			0x3	EN1 input
			0x4	DVC1 input
			0x5	Reserved
			0x6	DVC1 input
			0x7	RELOAD input
			0x8	PG1 output
			0x9	Low output
			0xA	Low output
			0xB	PG1 output
			0xC	nIRQ output
			0xD	Reserved
			0xE	Low output
			0xF	High output
[0]	RW	GPIO0_OBUF	GPIO outpu	ut buffer select
			Value	Description
			0x0	open-drain output
			0x1	push-pull output

Table 33: SYS_GPIO0_1 (0x0011)

Bit	Туре	Field Name	Description		
[7]	RW	GPIO0_DEB_FALL	GPI debou	nce falling edge	
[6]	RW	GPIO0_DEB_RISE	GPI debou	GPI debounce rising edge	
[5:4]	RW	GPIO0_DEB	GPI debounce time		
			Value	Description	
			0x0	100 us debounce	
			0x1	1 ms debounce	
			0x2	10 ms debounce	
			0x3	100 ms debounce	

Datasheet

Revision 2.0

Bit	Туре	Field Name	Descriptio	on
[3]	RW	GPIO0_PUPD	GPIO pull-	up/pull-down enable
			Value	Description
			0x0	GPI: pull-down disabled, GPO: pull-up to AVDD disabled
			0x1	GPI: pull-down enabled, GPO: pull-up to AVDD enabled
[2]	RW	GPIO0_POL	GPIO polarity	
			Value	Description
			0x0	GPIO is active-high
			0x1	GPIO is active-low
[1:0]	RW	GPIO0_TRIG	GPI trigge	r type
			Value	Description
			0x0	Dual-edge triggered
			0x1	Positive-edge triggered
			0x2	Negative-edge triggered
			0x3	Reserved (No trigger)

Table 34: SYS_GPIO1_0 (0x0012)

Bit	Туре	Field Name	Descripti	on
[4:1]	RW	GPIO1_MODE	CONF pir	ction mode select. Initial value is determined by n setting during start-up and if the CONF pin is OTP setting)
			Value	Description
			0x0	GPIO disable
			0x1	EN1 input
			0x2	Reserved
			0x3	EN1 input
			0x4	DVC1 input
			0x5	Reserved
			0x6	DVC1 input
			0x7	RELOAD input
			0x8	PG1 output
			0x9	Low output
			0xA	Low output
			0xB	PG1 output
			0xC	nIRQ output
			0xD	Reserved
			0xE	Low output
			0xF	High output

High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

Bit	Туре	Field Name	Description	
[0]	RW	GPIO1_OBUF	GPIO output buffer select. Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting).	
			Value	Description
			0x0	open-drain output
			0x1	push-pull output

Table 35: SYS_GPIO1_1 (0x0013)

Bit	Туре	Field Name	Description		
[7]	RW	GPIO1_DEB_FALL	GPI debounce falling edge. Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting)		
[6]	RW	GPIO1_DEB_RISE	pin setting	GPI debounce rising edge. Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting)	
[5:4]	RW	GPIO1_DEB		GPI debounce time. Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting)	
			Value	Description	
			0x0	100 us debounce	
			0x1	1 ms debounce	
			0x2	10 ms debounce	
			0x3	100 ms debounce	
[3]	RW	GPIO1_PUPD	GPIO pull-up/pull-down enable. Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting)		
			Value	Description	
			0x0	GPI: pull-down disabled, GPO: pull-up to AVDD disabled	
			0x1	GPI: pull-down enabled, GPO: pull-up to AVDD enabled	
[2]	RW	GPIO1_POL	GPIO polarity. Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting)		
			Value	Description	
			0x0	GPIO is active-high	
			0x1	GPIO is active-low	
[1:0]	RW	GPIO1_TRIG	GPI trigger type. Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting)		
			Value	Description	
			0x0	Dual-edge triggered	
			0x1	Positive-edge triggered	
			0x2	Negative-edge triggered	

Datasheet

Bit	Туре	Field Name	Description	
			0x3	Reserved (No trigger)

Table 36: SYS_GPIO2_0 (0x0014)

Bit	Туре	Field Name	Description	
[4:1]	RW	GPIO2_MODE	GPIO function mode select. Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting)	
			Value	Description
			0x0	GPIO disable
			0x1	EN1 input
			0x2	Reserved
			0x3	EN1 input
			0x4	DVC1 input
			0x5	Reserved
			0x6	DVC1 input
			0x7	RELOAD input
			0x8	PG1 output
			0x9	Low output
			0xA	Low output
			0xB	PG1 output
			0xC	nIRQ output
			0xD	Reserved
			0xE	Low output
			0xF	High output
[0]	RW	GPIO2_OBUF	GPIO output buffer select. Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting)	
			Value	Description
			0x0	open-drain output
			0x1	push-pull output

Table 37: SYS_GPIO2_1 (0x0015)

Bit	Туре	Field Name	Description
[7]	RW	GPIO2_DEB_FALL	GPI debounce falling edge. Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting)
[6]	RW	GPIO2_DEB_RISE	GPI debounce rising edge. Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting)
[5:4]	RW	GPIO2_DEB	GPI debounce time. Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting)

Datasheet

Revision 2.0

28-Jan-2022

High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

Bit	Туре	Field Name	Description	
			Value	Description
			0x0	100 us debounce
			0x1	1 ms debounce
			0x2	10 ms debounce
			0x3	100 ms debounce
[3]	RW	GPIO2_PUPD	GPIO pull-up/pull-down enable. Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting)	
			Value	Description
			0x0	GPI: pull-down disabled, GPO: pull-up to AVDD disabled
			0x1	GPI: pull-down enabled, GPO: pull-up to AVDD enabled
[2]	RW	GPIO2_POL	GPIO polarity. Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting)	
			Value	Description
			0x0	GPIO is active-high
			0x1	GPIO is active-low
[1:0]	RW	GPIO2_TRIG	GPI trigger type. Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting)	
			Value	Description
			0x0	Dual-edge triggered
			0x1	Positive-edge triggered
			0x2	Negative-edge triggered
			0x3	Reserved (No trigger)

Table 38: SYS_GPIO3_0 (0x0016)

Bit	Туре	Field Name	Description	
[4:1]	R	GPIO3_MODE	GPIO function mode select	
			Value	Description
			0x0	GPIO disable
			0x1	EN1 input
			0x2	Reserved
			0x3	EN1 input
			0x4	DVC1 input
			0x5	Reserved
			0x6	DVC1 input
			0x7	RELOAD input
			0x8	PG1 output

Datasheet

Revision 2.0

High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

Bit	Туре	Field Name	Descriptio	n
			0x9	Low output
			0xA	Low output
			0xB	PG1 output
			0xC	nIRQ output
			0xD	Reserved
			0xE	Low output
			0xF	High output
[0]	R	GPIO3_OBUF	GPIO outpu	ut buffer select
			Value	Description
			0x0	open-drain output
			0x1	push-pull output

Table 39: SYS_GPIO3_1 (0x0017)

Bit	Туре	Field Name	Descriptio	n
[7]	R	GPIO3_DEB_FALL	GPI debou	nce falling edge
[6]	R	GPIO3_DEB_RISE	GPI debou	nce rising edge
[5:4]	R	GPIO3_DEB	GPI debou	nce time
			Value	Description
			0x0	100 us debounce
			0x1	1 ms debounce
			0x2	10 ms debounce
			0x3	100 ms debounce
[3]	R	GPIO3_PUPD	GPIO pull-up/pull-down enable	
			Value	Description
			0x0	GPI: pull-down disabled, GPO: pull-up to AVDD disabled
			0x1	GPI: pull-down enabled, GPO: pull-up to AVDD enabled
[2]	R	GPIO3_POL	GPIO polar	ity
			Value	Description
			0x0	GPIO is active-high
			0x1	GPIO is active-low
[1:0]	R	GPIO3_TRIG	GPI trigger	type
			Value	Description
			0x0	Dual-edge triggered
			0x1	Positive-edge triggered
			0x2	Negative-edge triggered
			0x3	Reserved (No trigger)

```
Datasheet
```


Table 40: SYS_GPIO4_0 (0x0018)

Bit	Туре	Field Name	Descriptio	n
[4:1]	R	GPIO4_MODE	GPIO funct	ion mode select
			Value	Description
			0x0	GPIO disable
			0x1	EN1 input
			0x2	Reserved
			0x3	EN1 input
			0x4	DVC1 input
			0x5	Reserved
			0x6	DVC1 input
			0x7	RELOAD input
			0x8	PG1 output
			0x9	Low output
			0xA	Low output
			0xB	PG1 output
			0xC	nIRQ output
			0xD	Reserved
			0xE	Low output
			0xF	High output
[0]	R	GPIO4_OBUF	GPIO outpu	ut buffer select
			Value	Description
			0x0	open-drain output
			0x1	push-pull output

Table 41: SYS_GPIO4_1 (0x0019)

Bit	Туре	Field Name	Description		
[7]	R	GPIO4_DEB_FALL	GPI debou	GPI debounce falling edge	
[6]	R	GPIO4_DEB_RISE	GPI debou	ince rising edge	
[5:4]	R	GPIO4_DEB	GPI debou	ince time	
			Value	Description	
			0x0	100 us debounce	
			0x1	1 ms debounce	
			0x2	10 ms debounce	
			0x3	100 ms debounce	
[3]	R	GPIO4_PUPD	GPIO pull-up/pull-down enable		
			Value	Description	
			0x0	GPI: pull-down disabled, GPO: pull-up to AVDD disabled	

Datasheet

Revision 2.0

28-Jan-2022

High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

Bit	Туре	Field Name	Descriptio	n
			0x1	GPI: pull-down enabled, GPO: pull-up to AVDD enabled
[2]	R	GPIO4_POL	GPIO polarity	
			Value	Description
			0x0	GPIO is active-high
			0x1	GPIO is active-low
[1:0]	R	GPIO4_TRIG	GPI trigger	type
			Value	Description
			0x0	Dual-edge triggered
			0x1	Positive-edge triggered
			0x2	Negative-edge triggered
			0x3	Reserved (No trigger)

6.2.1 Buck1

Table 42: BUCK_BUCK1_0 (0x0020)

Bit	Туре	Field Name	Descripti	on
[6:4]	RW	CH1_SR_DVC_DWN	Voltage sl	ew-rate for DVC ramp-down
			Value	Description
			0x0	10 mV / 8 us
			0x1	10 mV / 4 us
			0x2	10 mV / 2 us
			0x3	10 mV / 1 us
			0x4	20 mV / 1 us
			0x5	Reserved
			0x6	Reserved
			0x7	Reserved
[3:1]	RW	CH1_SR_DVC_UP	Voltage sl	ew-rate for DVC ramp-up
			Value	Description
			0x0	10 mV / 8 us
			0x1	10 mV / 4 us
			0x2	10 mV / 2 us
			0x3	10 mV / 1 us
			0x4	20 mV / 1 us
			0x5	40 mV / 1 us
			0x6	Reserved
			0x7	Reserved

High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

Bit	Туре	Field Name	Description
[0]	RW	CH1_EN	Channel enable. Write 0x1 to enable the buck. Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting)

Table 43: BUCK_BUCK1_1 (0x0021)

Bit	Туре	Field Name	Descriptio	n	
[6:4]	RW	CH1_SR_SHDN	Voltage sle	w-rate during shut-down	
			Value	Description	
			0x0	10 mV / 8 us	
			0x1	10 mV / 4 us	
			0x2	10 mV / 2 us	
			0x3	10 mV / 1 us	
			0x4	20 mV / 1 us	
			0x5	Reserved	
			0x6	Reserved	
			0x7	Immediate power-down	
[3:1]	RW	CH1_SR_STARTUP	Voltage slew-rate during start-up		
			Value	Description	
			0x0	10 mV / 8 us	
			0x1	10 mV / 4 us	
			0x2	10 mV / 2 us	
			0x3	10 mV / 1 us	
			0x4	20 mV / 1 us	
			0x5	40 mV / 1 us	
			0x6	Reserved	
			0x7	Reserved	
[0]	RW	CH1_PD_DIS	LX Pull dov function.	vn while BUCK is off. Write 0x1 to disable this	

Table 44: BUCK_BUCK1_2 (0x0022)

Bit	Туре	Field Name	Description	
[3:0]	RW	CH1_ILIM	Select OCP threshold (A)	
			Value	Description
			0x0	Reserved
			0x1	6.5
			0x2	7.5
			0x3	8.5
			0x4	9.5
			0x5	10.5

High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

Bit	Туре	Field Name	Description	n
			0x6	11.5
			0x7	12.5
			0x8	13.5
			0x9	14.5
			0xA	15.5
			0xB	16.5
			0xC	17.5
			0xD	18.5
			0xE	19.5
			0xF	Disable

Table 45: BUCK_BUCK1_3 (0x0023)

Bit	Туре	Field Name	Descriptio	n
[7:0]	R	CH1_VMAX	From 0.50	setting (V): V (0x32) to 1.30 V (0x82) in steps of 10 mV ad-only register.
			Value	Description
			0x00	Reserved
			0x31	Reserved
			0x32	0.5
			0x33	0.51
				+0.01 steps
			0x63	0.99
			0x64	1
			0x65	1.01
				+0.01 steps
			0x81	1.29
			0x82	1.3
			0x83	Reserved
			0xFF	Reserved

Table 46: BUCK_BUCK1_4 (0x0024)

Bit	Туре	Field Name	Description	
[4]	RW	CH1_VSEL	Output voltage and operation selection: 0: A, 1: B. Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting)	
[3:2]	RW	CH1_B_MODE	Operation mode selection. Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting) Value Description	

ata	Sh	001	۰.
	5		

High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

Bit	Туре	Field Name	Descriptio	n
			0x0	Force PFM operation
			0x1	Force PWM operation (full phase)
			0x2	Force PWM operation (with phase shedding)
			0x3	Auto mode
[1:0]	RW	CH1_A_MODE	Operation mode selection. Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting)	
			Value	Description
			0x0	Force PFM operation
			0x1	Force PWM operation (full phase)
			0x2	Force PWM operation (with phase shedding)
			0x3	Auto mode

Table 47: BUCK_BUCK1_5 (0x0025)

Bit	Туре	Field Name	Descriptio	n
[7:0]	RW	CH1_A_VOUT	Output voltage setting A: Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting) From 0.50 V (0x32) to 1.30 V (0x82) in steps of 10 mV	
			Value	Description
			0x00	Reserved
			0x31	Reserved
			0x32	0.5
			0x33	0.51
				+0.01 steps
			0x63	0.99
			0x64	1
			0x65	1.01
				+0.01 steps
			0x81	1.29
			0x82	1.3
			0x83	Reserved
			0xFF	Reserved

Table 48: BUCK_BUCK1_6 (0x0026)

Bit	Туре	Field Name	Description
[7:0]	RW	CH1_B_VOUT	Output voltage setting B: Initial value is determined by CONF pin setting during start-up and if the CONF pin is enabled (OTP setting) From 0.50 V (0x32) to 1.30 V (0x82) in steps of 10 mV

Datasheet

High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

Bit	Туре	Field Name	Description	n
			Value	Description
			0x00	Reserved
			0x31	Reserved
			0x32	0.5
			0x33	0.51
				+0.01 steps
			0x63	0.99
			0x64	1
			0x65	1.01
				+0.01 steps
			0x81	1.29
			0x82	1.3
			0x83	Reserved
			0xFF	Reserved

Table 49: BUCK_BUCK1_7 (0x0027)

Bit	Туре	Field Name	Description	
[1:0]	RW	CH1_RIPPLE_CANCEL	Ripple cancel control	
			Value	Description
			0x0	No ripple cancel
			0x1	Small ripple cancel
			0x2	Mid ripple cancel
			0x3	Large ripple cancel

6.2.2 OTP Control

6.2.2.1 Serialization

Table 50: OTP_DEVICE_ID (0x0048)

Bit	Туре	Field Name	Description
[7:0]	R	DEV_ID	Device ID; hard-coded or metal-programmed

Table 51: OTP_VARIANT_ID (0x0049)

Bit	Туре	Field Name	Description	
[7:4]	R	MRC	Mask Revision Code	
[3:0]	R	VRC	Chip Variant Code; e.g. package variants.	

Table 52: OTP_CUSTOMER_ID (0x004A)

Bit	Туре	Field Name	Description
[7:0]	R	CUST_ID	Customer ID

Table 53: OTP_CONFIG_ID (0x004B)

Bit	Туре	Field Name	Description
[7:0]	R	CONFIG_REV	OTP settings revision

High-Performance, 25 A/40 A Peak, DC-DC Converter for Automotive Applications

7 Package Information

7.1 Package Outlines

Figure 12: Package Outline Drawing

7.2 Moisture Sensitivity Level

The Moisture Sensitivity Level (MSL) is an indicator for the maximum allowable time period (floor lifetime) in which a moisture sensitive plastic device, once removed from the dry bag, can be exposed to an environment with a specified maximum temperature and a maximum relative humidity before the solder reflow process. The MSL classification is defined in Table 54.

For detailed information on MSL levels refer to the IPC/JEDEC standard J-STD-020, which can be downloaded from http://www.jedec.org.

The DA9141-A package is qualified for MSL 3.

Table	54:	MSL	Classification
-------	-----	-----	----------------

MSL Level	Floor Lifetime	Conditions
MSL 4	72 hours	30 °C / 60 % RH
MSL 3	168 hours	30 °C / 60 % RH
MSL 2A	4 weeks	30 °C / 60 % RH
MSL 2	1 year	30 °C / 60 % RH
MSL 1	Unlimited	30 °C / 85 % RH

7.3 Soldering Information

Refer to the IPC/JEDEC standard J-STD-020 for relevant soldering information. This document can be downloaded from http://www.jedec.org.

8 Ordering Information

The ordering number consists of the part number followed by a suffix indicating the packing method. For details and availability, please consult your Renesas local sales representative.

Table 55: Ordering Information for Consumer / Industrial Applications

Part Number	Package	Size (mm)	Shipment Form	Pack Quantity
DA9141-xxF71	60 FCBGA	4.5 x 7 x 1.01 0.65 mm pitch	Tray	364
DA9141-xxF72	60 FCBGA	4.5 x 7 x 1.01 0.65 mm pitch	Reel	2600

Table 56: Ordering Information for Automotive Applications

Part Number	Package	Size (mm)	Shipment Form	Pack Quantity
DA9141-xxF71-A	60 FCBGA	4.5 x 7 x 1.01 0.65 mm pitch	Tray	364
DA9141-xxF72-A	60 FCBGA	4.5 x 7 x 1.01 0.65 mm pitch	Reel	2600

9 Application Information

The following recommended components are examples selected from requirements of a typical application.

9.1 Capacitor Selection

Ceramic capacitors are used as bypass capacitors at all VDD and output rails. When selecting a capacitor, especially for types with high capacitance at smallest physical dimension, the DC bias characteristic has to be taken into account.

Application	Value (µF)	Size	Temp. Char.	Tol. (%)	V-Rate (V)	Туре
VOUT output bypass	22	1206	X7R ±15%	±20	6.3	Murata GCM31CR70J226ME23L
PVDDx bypass	10	0805	X7R ±15%	±10	16	Murata GCM21BC71C106KE36L
PVDDx bypass for VSYS < 4V	10	0603	X7R ±15%	±10	6.3	Murata GCM188D70J106ME36L
AVDD bypass	1	0805	X7R ±15%	±10	50	Murata GCM21BR71H105KA03L

9.2 Inductor Selection

Inductors should be selected based on the following parameters:

- Rated maximum current and ISAT ISAT specifies the maximum current at which the inductance drops by 30 % of the nominal value, and IMAX is defined by the maximum power dissipation and is applied to the effective current at 40°C temperature rise.
- DC resistance Critical for the converter efficiency and should therefore be minimized.

Table 58:	Recommended	Inductor	Types
-----------	-------------	----------	-------

Value (nH)	Size (mm)	Імах (DC) (A)	I _{SAT} (A)	Tol. (%)	DC Resistance (mΩ)	Туре
112	3.2 x 2.5 x 2.5	20	31	20	1.9	TDK CLT3225AR11MI3
110	4.0 x 4.0 x 2.1	29	29	20	1.4	Coilcraft XGL4020-111MEC
100	5.3 x 5.1 x 3.0	18.3	37.1	20	2.7	TDK SPM5030VT-R10M-D

10 Layout Guidelines

Figure 13: DA9141-A Footprint

Status Definitions

Revision	Datasheet Status	Product Status	Definition
1. <n></n>	Target	Development	This datasheet contains the design specifications for product development. Specifications may be changed in any manner without notice.
2. <n></n>	Preliminary	Qualification	This datasheet contains the specifications and preliminary characterization data for products in pre-production. Specifications may be changed at any time without notice in order to improve the design.
3. <n></n>	Final	Production	This datasheet contains the final specifications for products in volume production. The specifications may be changed at any time in order to improve the design, manufacturing and supply. Major specification changes are communicated via Customer Product Notifications. Datasheet changes are communicated via www.dialog-semiconductor.com.
4. <n></n>	Obsolete	Archived	This datasheet contains the specifications for discontinued products. The information is provided for reference only.

RoHS Compliance

Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Disclaimer Rev.5.0-1)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.