General Description

DA9072 is a highly integrated, configurable, low quiescent current power management IC (PMIC) that integrates the most common needs for wearables, home automation, and low power battery applications.

The PMIC comprises a linear charger with power path management, ultra-low quiescent current (I_Q) buck regulator and LDO/load switches, analog battery monitor, watchdog and protection features in an I²C configurable compact WLCSP package.

DA9072 has several power saving modes to increase battery life whether the product sits on the shelf or is in operation. Further savings in power are achieved with the ultra-low I_Q buck converter (efficient down to 10 μ A load currents) and low I_Q LDOs. The uncommitted inputs of LDOs can be connected to either the battery or buck output.

DA9072 provides charge current up to 500 mA to speed up the charge cycle. The charge profile is programmable by external resistors or in software, allowing either stand-alone operation or host control.

DA9072 includes dynamic power path management which automatically balances current delivered to the system and for battery charging.

Suitable for small battery applications, the battery monitors facilitate on-demand battery voltage and discharge current information to an external MCU's ADC to support software-based fuel gauging.

Key Features

- Increased battery life
 - 800 nA (no load, total battery current) buck converter, programmable down to 0.6 V, 300 mA-capable
 - Three configurable 800 nA quiescent current LDOs/load switches, 150 mAcapable
- Power saving modes optimized for storage and operation
- Battery protection
 - Battery thermal- and over-discharge protection
 - □ 20 V tolerant input
 - Automatic battery temperature monitoring in all operation modes
- Configurable battery monitors
 - Battery current (IMON)
 - □ Battery voltage (VBAT_DIV)
 - Battery temperature (TEMP_SNS)

Applications

- Wearable devices fitness trackers, smart watches, wireless headphones
- Home automation devices smoke detectors, smart thermostats, smart door locks

- High integration and configurability
 - I²C enabled analog battery monitors for software-based fuel gauging
 - Watchdog input and power cycling to prevent system stall
 - Reset input and status outputs
 - Low external component count
 - Compact 42 pin, 2.97 mm x 2.66 mm WLCSP package
- Fast charge
 - □ 500 mA (max) charge current; 2 mA (min)
 - Programmable pre-charge, fast charge, and termination voltage
 - Dynamic power path balances multiple power sources
 - Termination current programmable down to 500 µA
 - □ ±0.5 % accurate termination voltage
- Health monitoring medical accessories
- Rechargeable toys
- High efficiency, ultra-low power applications

System Diagram

Ultra-Low Quiescent Current PMIC

Contents

Ge	General Description1					
Ke	Key Features1					
Ар	plicati	ons				
Sy	stem [Diagram		2		
Fig	ures			5		
-						
			ions			
1						
2			s			
-	2.1		Maximum Ratings			
	2.1		atic Discharge Ratings			
	2.2		ended Operating Conditions			
	2.3		I Characteristics			
	2.4	2.4.1				
			Battery Charger			
		2.4.2	Battery Temperature Monitor			
		2.4.3	LDO / Load Switches			
		2.4.4	Digital Inputs			
		2.4.5	I ² C Interface			
		2.4.6	Input Currents			
		2.4.7	Power Path Management and Current Limit			
		2.4.8	Protection			
		2.4.9	Pushbutton Timer	21		
		2.4.10	Digital Outputs			
		2.4.11	Buck Regulator			
		2.4.12	Battery Monitors			
	2.5	Thermal	Characteristics			
3	Typic		mance Graphs			
4			scription			
•	4.1		V			
	4.2		vered Operation			
	7.2	4.2.1	Active Battery and High Impedance Modes			
	4.0	4.2.2	Battery Protection			
	4.3	•	Battery Monitor Functions			
		4.3.1	Battery Discharge Current Monitoring			
		4.3.2	Battery Voltage Monitoring			
	4.4		Charging			
		4.4.1	Battery Charging Process			
		4.4.2	Charge in Progress			
		4.4.3	Pre-Charge and Termination Current			
		4.4.4	Fast Charge Current			
		4.4.5	CV Voltage Regulation and Termination			
		4.4.6	Charge Done and Recharge			
		4.4.7	Charge Faults			
		4.4.8	Safety Timers			
Da	Datasheet Revision 3.2 13-Jun-2023					

Da	tashee	et	Revision 3.2	13-Jun-2023
6	Pack	age Infor	mation	112
		5.2.4	Buck and LDO Control	
		5.2.3	Charger	
		5.2.2	Config	
		5.2.1	System	
	5.2	-	Definitions	
		5.1.3	Buck and LDO Control	
		5.1.2	Charger	57
		5.1.1	System	55
	5.1	Register	Мар	55
5	Regis	sters		55
	4.12	PCB Lay	yout Guidelines	53
	4.11		Protection	
	4.10	LDO / Lo	oad Switches	52
		4.9.9	External Component Selection	51
		4.9.8	Automatic Output Voltage Discharge	51
		4.9.7	Output Over-Voltage Protection	51
		4.9.6	Output Under-Voltage Protection	51
		4.9.5	Over-Current Protection	
		4.9.4	Dynamic Voltage Control	
		4.9.3	Power Saving Mode Operation	
		4.9.2	Buck Enable and Soft Start Operation	
		4.9.1	Buck Output Voltage Programmability	
	4.9		egulator	
		4.8.6	I ² C Programming	
		4.8.5	System Status Register	
		4.0.3 4.8.4	Pushbutton Reset Timer and Reset Output	
		4.8.2 4.8.3	Interrupt Events and Status Control	-
		4.8.1 4.8.2	Watchdog Input and Timer	
	4.8		d Pushbutton Communication	
	10	4.7.3	Charge Current Programming	
		4.7.2	Input Current Limit Programming	
		4.7.1	Termination and Pre-Charge Current Programming	
	4.7		one Mode	
		4.6.2	Fault Triggered Power Cycle	
		4.6.1	Requested Power Cycle	
	4.6		Cycling	
		4.5.8	VDD_PWR Input Supply Impedance	
		4.5.7	Input Over-Voltage Protection	
		4.5.6	Battery Supplement Mode	39
		4.5.5	Dynamic Power Path Mode	39
		4.5.4	Input Voltage Dynamic Power Management	
		4.5.3	VDD_PWR Current Limit	
		4.5.2	Sleep Mode	
		4.5.1	Under-Voltage Lockout	
	4.5	USB Pov	wered Operation and Power Path Management	

Ultra-Low Quiescent Current PMIC

	8.1	Recommended External Components	115
		ication Information	
7	Orde	ring Information	114
	6.3	Soldering Information	113
	6.2	Moisture Sensitivity Level	113
	6.1	Package Outlines	112

Figures

Figure 1: System Diagram	2
Figure 2: Pinout Diagram (Bottom View)	9
Figure 3: Buck Efficiency, Vout = 1.8 V	. 24
Figure 4: Buck Regulation, Vout = 1.8 V	. 24
Figure 5: Buck Efficiency, Vout = 0.9 V	
Figure 6: Buck Regulation, VOUT = 0.9 V	
Figure 7: LDO0 Dropout, VIN = 3.15 V, VOUT Setting = 3.15	. 25
Figure 8: LDO0 Regulation and Dropout, VOUT = 1.80 V	
Figure 9: LDO1 and LDO2 Dropout, VIN = 3.3 V, VOUT Setting = 3.3 V.	
Figure 10: LDO0 Regulation and Dropout, Vout = 3.15 V	
Figure 11: LDO1 Regulation and Dropout, Vout = 3.30 V	. 25
Figure 12: LDO2 Load Regulation, V _{OUT} = 3.30 V	
Figure 13: LDO1 Regulation and Dropout, Vout = 1.80 V	
Figure 14: LDO2 Regulation and Dropout, Vout = 1.80 V	
Figure 15: Typical Buck Startup, V_{BAT} = 3.6 V, V_{BUCK} = 1.8 V and 0.9 V, 0 A	
Figure 16: VBAT I _Q , Ship Mode	
Figure 17: VBAT IQ, Buck Switching, No Load, Hi-Z Mode	
Figure 18: VDD_LDO IQ, No Load	
Figure 19: Charger Efficiency, VDD_PWR = 5 V	
Figure 20: Regions of Operation	.28
Figure 21: Battery Temperature Sensing with NTC	. 31
Figure 22: Battery Temperature Sense Timing	
Figure 23: Typical Charging Example	
Figure 24: VDD_PWR DPM Setting Recommendations (Based on Typical USB Cable Impedance)	
Figure 25: Power Cycle by Push Button Timer	
Figure 26: Power Cycle by VDD_PWR Insertion	
Figure 27: Digital Pin Connections	
Figure 28: Watchdog Behavior	
Figure 29: PWR_FLT Configured as RIN_N Monitor	
Figure 30: PWR_FLT Configured as VDD_PWR Status Indicator	
Figure 31: RIN_N Pushbutton Reset Timer Timing Diagram	
Figure 32: I ² C Start and Stop Conditions	
Figure 33: Example PCB Layout, Top Layer	
Figure 34: Example PCB Layout, Layer-2	
Figure 35: WLCSP-42 Package Outline Drawing, V3 Version1	
Figure 36: WLCSP-42 Package Outline Drawing, OH version	113

Tables

Table 1: Pin Description	9
Table 2: Pin Type Definition	
Table 3: Absolute Maximum Ratings	
Table 4: Electrostatic Discharge Ratings	
Table 5: Recommended Operating Conditions	
Table 6: Battery Charger	

Datasheet

Table 7: Battery Temperature Monitor14				
Table 8: LDO0 / Loadswitch (LV)				
Table 9: LDO1 / Loadswitch (HV)				
Table 10: LDO2 / Loadswitch (HV+Power cycle)				
Table 11: Digital Input Pins (MODE, WD)				
Table 12: I2C interface				
Table 13: Input Currents	. 18			
Table 14: Power-Path Management and ILIM	. 19			
Table 15: Protection				
Table 16: Pushbutton Timer (RIN_N)	. 21			
Table 17: Digital Output Pins (SYS_FLT, PWR_FLT, and ROUT_N)	. 21			
Table 18: Buck	. 21			
Table 1: Battery Monitors (VBAT_DIV and IMON)	. 22			
Table 20: Thermal Characteristics				
Table 21: MODE Functionality	. 30			
Table 22: Battery Thermal Protection Measures				
Table 23: VBAT DIV Ratios				
Table 24: Charge Status.				
Table 25: Charging Modes				
Table 26: Charge Faults				
Table 27: Safety Timer Register Settings (0x0021)				
Table 28: Power Cycle Trigger Settings				
Table 29: Power Cycle Faults				
Table 30: BUCK Power Cycle Faults				
Table 31: Enabling External Resistor Setting Mode				
Table 32: ITER_CHG Pin Recommended Resistor Values				
Table 33: ILIM_PWR Pin Recommended Resistor Values				
Table 34: ILIM_CHG Pin Recommended Resistor Values				
Table 35: Digital Pins for Host and Pushbutton Interface				
Table 36: Watchdog Timer Enable Settings for Different Modes				
Table 37: Watchdog Timer Clear Settings				
Table 38: SYS_FLT Configuration	. 47			
Table 39: RIN_N Pushbutton Wake-Up Timer Control				
Table 40: RIN_N Reset Timer Configuration				
Table 41: I ² C Interface Configuration				
Table 42: External Buck Components				
Table 43: System Register Map	. 55			
Table 44: Charger Register Map	. 57			
Table 45: Buck and LDO Control Register Map	. 58			
Table 46: Register SYS_STS_0	. 59			
Table 47: Register SYS_ISR_0	. 60			
Table 40: Deviater CVC ICD 4	. 60			
Table 48: Register SYS_ISR_1				
	. 61			
Table 49: Register SYS_ISR_2				
Table 49: Register SYS_ISR_2 Table 50: Register SYS_ISR_3	. 62			
Table 49: Register SYS_ISR_2 Table 50: Register SYS_ISR_3 Table 51: Register SYS_ISR_4	. 62 . 62			
Table 49: Register SYS_ISR_2. Table 50: Register SYS_ISR_3. Table 51: Register SYS_ISR_4. Table 52: Register SYS_IMR_0.	62 62 63			
Table 49: Register SYS_ISR_2. Table 50: Register SYS_ISR_3. Table 51: Register SYS_ISR_4. Table 52: Register SYS_IMR_0. Table 53: Register SYS_IMR_1	62 62 63 64			
Table 49: Register SYS_ISR_2. Table 50: Register SYS_ISR_3. Table 51: Register SYS_ISR_4. Table 52: Register SYS_IMR_0. Table 53: Register SYS_IMR_1. Table 54: Register SYS_IMR_2.	62 62 63 64 64			
Table 49: Register SYS_ISR_2. Table 50: Register SYS_ISR_3. Table 51: Register SYS_ISR_4. Table 52: Register SYS_IMR_0. Table 53: Register SYS_IMR_1. Table 54: Register SYS_IMR_2. Table 55: Register SYS_IMR_3.	62 62 63 64 64 65			
Table 49: Register SYS_ISR_2. Table 50: Register SYS_ISR_3. Table 51: Register SYS_ISR_4. Table 52: Register SYS_IMR_0. Table 53: Register SYS_IMR_1. Table 54: Register SYS_IMR_2. Table 55: Register SYS_IMR_3. Table 56: Register SYS_IMR_4.	62 62 63 64 64 65 66			
Table 49: Register SYS_ISR_2. Table 50: Register SYS_ISR_3. Table 51: Register SYS_ISR_4. Table 52: Register SYS_IMR_0. Table 53: Register SYS_IMR_1. Table 54: Register SYS_IMR_2. Table 55: Register SYS_IMR_3. Table 56: Register SYS_IMR_4. Table 57: Register SYS_IMR_4.	62 62 63 64 64 65 66 66			
Table 49: Register SYS_ISR_2. Table 50: Register SYS_ISR_3. Table 51: Register SYS_ISR_4. Table 52: Register SYS_IMR_0. Table 53: Register SYS_IMR_1. Table 54: Register SYS_IMR_2. Table 55: Register SYS_IMR_3. Table 56: Register SYS_IMR_4. Table 57: Register SYS_0. Table 58: Register SYS_BAT_0.	62 63 64 64 65 66 66 67			
Table 49: Register SYS_ISR_2Table 50: Register SYS_ISR_3Table 51: Register SYS_ISR_4Table 52: Register SYS_IMR_0Table 53: Register SYS_IMR_1Table 54: Register SYS_IMR_2Table 55: Register SYS_IMR_3Table 56: Register SYS_IMR_4Table 57: Register SYS_SYS_0Table 58: Register SYS_BAT_0Table 59: Register SYS_BAT_1	62 62 63 64 64 65 66 66 67 68			
Table 49: Register SYS_ISR_2.Table 50: Register SYS_ISR_3.Table 51: Register SYS_ISR_4.Table 52: Register SYS_IMR_0.Table 53: Register SYS_IMR_1.Table 54: Register SYS_IMR_2.Table 55: Register SYS_IMR_3.Table 56: Register SYS_IMR_4.Table 57: Register SYS_IMR_4.Table 58: Register SYS_BAT_0.Table 59: Register SYS_BAT_1.Table 60: Register SYS_RIN_0.	62 63 64 64 65 66 66 67 68 68			
Table 49: Register SYS_ISR_2.Table 50: Register SYS_ISR_3.Table 51: Register SYS_ISR_4.Table 52: Register SYS_IMR_0.Table 53: Register SYS_IMR_1.Table 54: Register SYS_IMR_2.Table 55: Register SYS_IMR_3.Table 56: Register SYS_IMR_4.Table 57: Register SYS_IMR_4.Table 58: Register SYS_BAT_0.Table 59: Register SYS_BAT_1.Table 60: Register SYS_RIN_0.Table 61: Register SYS_STS_OUT_0.	62 63 64 64 65 66 66 67 68 68 70			
Table 49: Register SYS_ISR_2.Table 50: Register SYS_ISR_3.Table 51: Register SYS_ISR_4.Table 52: Register SYS_IMR_0.Table 53: Register SYS_IMR_1.Table 54: Register SYS_IMR_2.Table 55: Register SYS_IMR_3.Table 56: Register SYS_IMR_4.Table 57: Register SYS_IMR_4.Table 58: Register SYS_BAT_0.Table 59: Register SYS_RIN_0.Table 60: Register SYS_RIN_0.Table 61: Register SYS_STS_OUT_0.Table 62: Register SYS_PWR_CYC_0.	62 63 64 64 65 66 66 66 68 68 70 71			
Table 49: Register SYS_ISR_2.Table 50: Register SYS_ISR_3.Table 51: Register SYS_ISR_4.Table 52: Register SYS_IMR_0Table 53: Register SYS_IMR_1Table 54: Register SYS_IMR_2.Table 55: Register SYS_IMR_3.Table 56: Register SYS_IMR_4.Table 57: Register SYS_SYS_0.Table 58: Register SYS_BAT_0.Table 59: Register SYS_BAT_1.Table 60: Register SYS_BAT_1.Table 61: Register SYS_STS_OUT_0.Table 61: Register SYS_STS_OUT_0.Table 61: Register SYS_PWR_CYC_0.Table 63: Register SYS_PWR_CYC_1.	62 63 64 64 65 66 66 66 68 68 68 70 71 72			
Table 49: Register SYS_ISR_2.Table 50: Register SYS_ISR_3.Table 51: Register SYS_ISR_4.Table 52: Register SYS_IMR_0.Table 53: Register SYS_IMR_1.Table 54: Register SYS_IMR_2.Table 55: Register SYS_IMR_3.Table 56: Register SYS_IMR_4.Table 57: Register SYS_IMR_4.Table 58: Register SYS_BAT_0.Table 59: Register SYS_RIN_0.Table 60: Register SYS_RIN_0.Table 61: Register SYS_STS_OUT_0.Table 62: Register SYS_PWR_CYC_0.	62 63 64 64 65 66 66 67 68 68 70 71 72 72			

Datasheet

13-Jun-2023

Table 66: Register SYS_CFG_I2C_0	75
Table 67: Register CHG_CHG_0	
Table 68: Register CHG_CHG_1	77
Table 69: Register CHG_ICHG_0	
Table 70: Register CHG_IPRETERM_0	82
Table 71: Register CHG_VBREG_0	
Table 72: Register CHG_VBPRECHG_0	
Table 73: Register CHG_BAT_TS_0	
Table 74: Register CHG_VDD_PWR_0	
Table 75: Register CHG_VDD_PWR_1	
Table 76: Register CHG_IDISCHG_0	
Table 77: Register VOUT_BUCK	
Table 78: Register VOUT_BUCK_CFG	
Table 79: Register VOUT_LS_LDO0	100
Table 80: Register VOUT_LS_LDO1	104
Table 81: Register VOUT_LS_LDO2	106
Table 82: Register VOUT_LS_LDO_CFG	109
Table 83: Register VOUT_BUCK_OPT0	111
Table 84: MSL Classification	113
Table 85: Ordering Information	114

Terms and Definitions

ADC	Analog-to-digital converter
BAT	Battery
CC	Constant current
CV	Constant voltage
DCHG	Discharge
DPM	Dynamic power management
DPPM	Dynamic Power Path mode
Hi-Z	High impedance
I ² C	Inter-Integrated Circuit
IMON	Current monitor
ITER	Termination current
LDSW	Load switch
LDO	Low dropout regulator
MCU	Microcontroller unit
NTC	Negative temperature coefficient (thermistor)
OVP	Over-voltage protection
OVT	Over-temperature
PMIC	Power management integrated circuit
PoR	Power-on reset
RMEAS	External resistance programming
SNS	Sense
SYS	System
TEMP	Temperature
TSD	Thermal shutdown
USB	Universal serial bus
UVLO	Under-voltage lockout
WD	Watchdog
WLCSP	Wafer-level
WLCSP	Water-level

1 Pinout

GND						
VBAT						
VBAT_S NS						
VDD_SY S						
GND						
NC						
Charger/Power Path Buck Common Reset/Timer						
LDO0 LDO1 LDO2 Control Temp Sense						
V						

Note 1 Although Pin D1 is connected to VDD_SYS, it does not handle any current. Therefore, it does not need to be routed by large current rule.

Table 1: Pin Description

Pin #	Pin Name	Type (Table 2)	Description
A1, D3, E1, F2, F3, F4	GND	GND	Ground connection. Connect to the ground plane.
A2	VDD_PWR	POWER	Input power supply. VDD_PWR is a 20 V-tolerant input. Bypass to GND with a minimum 1 µF ceramic capacitor.
A3, A4, D1	VDD_SYS	POWER	VDD_SYS is the intermediate rail which typically supplies VDD_BUCK. Bypass to ground with a 4.7 μ F ceramic capacitor.
A5	VDD_BUCK	POWER	Input of the buck converter. Bypass to PGND_BUCK with a minimum 2.2 μ F ceramic capacitor.
A6	SW_BUCK	POWER	Buck switching node. Connect to the buck inductor.
A7	PGND_BUCK	POWER	Power ground for the buck. Connect to the buck input capacitor and ground plane.

Det		b a	-4
Dat	as	ne	ετ

Revision 3.2

Pin #	Pin Name	Type (Table 2)	Description
B1, B2	VBAT	POWER	Battery connection. Connect to the positive terminal of the battery. Bypass to ground with a minimum 1 µF ceramic capacitor.
B3	IMON	AO	Battery discharge current monitor output.
B4	TEMP_SNS	AI	Battery pack NTC monitor. Connect to a resistive network and thermistor.
B5	SYS_FLT	DOD	Open drain status output. Connect to VDDIO through a 1 k Ω to 100 k Ω pull-up resistor.
B6	SDA	DIO	I^2C interface data. Connect SDA to VDDIO through a 2 k Ω to10 k Ω pull-up resistor.
B7	FB_BUCK	AI	Buck output voltage feedback connection.
C1	VBAT_SNS	AI	Battery voltage sense connection. Connect to the positive battery terminal.
C2	ITER_CHG	AI	Termination current setting pin. Connect a resistor between ITER_CHG and ground to set the pre-charge and termination currents (ITER). Alternatively, short this pin to ground to allow ITER to be programmed by register setting.
C3	ILIM_CHG	AI	Fast-charge current setting pin. Connect a resistor between ILIM_CHG and ground to set the fast-charge current (ICHG). Alternatively, short this pin to ground to allow ICHG to be programmed by register setting.
C4	WD	DI	Watchdog input. Toggle WD within the watchdog time-out period to avoid power reset.
C5	RIN_N	DI	Manual reset input pin. RIN_N is internally pulled high. Pulling this pin low wakes up the device from Ship mode or performs a reset.
C6	SCL	DI	I^2C interface clock. Connect SCL to VDDIO through a 2 k\Omega to10 k\Omega pull-up resistor.
C7	AGND	GND	Quiet ground connection. Connect to a quiet ground area.
D2	ILIM_PWR	AI	Input current limit setting pin. Connect a resistor between ILIM_PWR and ground to set the VDD_PWR current limit (ILIM). Alternatively, short this pin to ground to allow ILIM to be programmed by register.
D4	VBAT_DIV	AO	Battery voltage divider, positive output.
D5	MODE	DI	Mode control input pin. MODE is internally pulled low. If VDD_PWR is powered, driving MODE high disables charging. If VDD_PWR is unpowered, driving MODE low enables Hi-Z mode.
D6	ROUT_N	DOD	Reset output pin. Connect this open-drain output to VDDIO through a 1 k Ω to 100 k Ω pull-up resistor.
D7	PWR_FLT	DOD	Power status indicator output. Connect this open-drain output to VDDIO through a 1 k Ω to 100 k Ω pull-up resistor. PWR_FLT pulls low when VDD_PWR is plugged into a valid power source.
E2	VTEMP	AO	Switched VDD_SYS supply for battery temp sense resistor divider.
E3	VDDIO	POWER	IO voltage.
E4	GND_DIV	AO	Battery voltage divider, ground reference.

Datasheet

Revision 3.2

Ultra-Low Quiescent Current PMIC

Pin #	Pin Name	Type (Table 2)	Description
E5	VDD_LDO2	POWER	Input to Load Switch / LDO2. Bypass to ground with a minimum 1 μF ceramic capacitor.
E6	VDD_LDO1	POWER	Input to Load Switch / LDO1. Bypass to ground with a minimum 1 μF ceramic capacitor.
E7	VDD_LDO0	POWER	Input to Load Switch / LDO0. Bypass to ground with a minimum 1 μ F ceramic capacitor.
F1	NC		
F5	VLDO2	POWER	Load Switch or LDO2 output. Bypass to ground with a minimum 1 μF ceramic capacitor.
F6	VLDO1	POWER	Load Switch or LDO1 output. Bypass to ground with a minimum 1 μ F ceramic capacitor.
F7	VLDO0	POWER	Load Switch or LDO0 output. Bypass to ground with a minimum 1 μF ceramic capacitor.

Table 2: Pin Type Definition

Pin Type	Description	Pin Type	Description
DI	Digital input	AI	Analog input
DOD	Digital output open drain	AO	Analog output
DIO	Digital input/output	PWR	Power
GND	Ground		

2 Characteristics

2.1 Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification are not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Table	3:	Absolute	Maximum	Ratings
TUDIC	ν.	Absolute	Maximum	natings

Parameter	Description	Conditions	Min	Max	Unit
Ts	Storage temperature		-65	150	°C
Vdd_pwr	VDD_PWR	1 V / µs max slew rate	-0.3	22	V
VBAT	VBAT, VBAT_SNS		-0.3	6	V
Vdd_sys	VDD_SYS, VDD_BUCK, SW_BUCK, VDD_LDOx, VTEMP		-0.3	6	V
Vio	VDDIO and all IO pins (unless otherwise stated)	Note 1	-0.3	6	V

Note 1 VDDIO and IO voltages must be less than the higher of VBAT or VDD_PWR.

2.2 Electrostatic Discharge Ratings

Table 4: Electrostatic Discharge Ratings

Parameter	Description	Conditions	Value	Unit
Vesd_hbm	Maximum ESD protection	Human body model (HBM) All exposed pins Note 1	2000	kV
Vesd_cdm	Maximum ESD protection	Charged device model (CDM) Note 2	500	kV

Note 1 Per ANSI/ESDA/JEDEC JS-001. JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.

Note 2 Per ANSI/ESDA/JEDEC JS-002. JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

2.3 Recommended Operating Conditions

Recommended operating conditions are conditions for which the device is intended to be functional, but parameter specifications may not be guaranteed. For guaranteed specifications and associated test conditions, refer to the Electrical Characteristics tables.

Parameter	Description	Conditions	Min	Тур	Max	Unit
T _A	Operating Ambient Temperature		-40		85	°C
V _{DD_PWR}	VDD_PWR voltage	Including OVP range	3.6	5	20	V
	VDD_PWR operating voltage		3.6	5	5.5	V
VBAT	Battery voltage	VDD_PWR supplied	0	3.7	4.7	V
VBAI	Battery voltage (act.bat)	VDD_PWR not supplied		4.7	V	

Table 5: Recommended Operating Conditions

Parameter	Description	Conditions	Min	Тур	Max	Unit
Vdd_ldo	VDD_LDO voltage	Load Switch (LDSW) mode	0.8		5.5	V
	VDD_LDO voltage	LDO mode	1.8		5.5	V
Vddio	IO voltage	V _{DDIO} < V _{DD_PWR} or V _{BAT} , whichever is greater	1.4	1.8	3.3	V
Vdd_buck	Buck input voltage	Note 1	2.5		5.5	V

Note 1 VDD_BUCK must be greater than buck output voltage +600 mV.

2.4 Electrical Characteristics

Electrical characteristics table limits are guaranteed by production testing, design, or correlation using standard statistical quality control methods unless otherwise stated. Typical (Typ) specifications are mean or average values 25 °C and are not guaranteed.

Unless otherwise noted: $V_{BAT} = 3.7 \text{ V}$, $V_{DD_SYS} = 3.7 \text{ V}$, $V_{DD_PWR} = 5.0 \text{ V}$, $V_{DDIO} = 1.8 \text{ V}$, and $T_A = -40 \text{ °C}$ to 85 °C.

2.4.1 Battery Charger

Table 6: Battery Charger

Parameter	Description	Conditions	Min	Тур	Max	Unit
Electrical Pe	erformance		e 0.2			
Vdd_sys_thr _dppm	VDD_SYS DPPM voltage threshold	VDD_SYS falling, above VBAT_CHG		0.2		V
Ron_chg_int	Battery charger MOSFET on resistance	Measured from VBAT to VDD_SYS		300	400	mΩ
Vdrop_bat_t o_vdd_sys	Vbat - Vdd_sys	V _{BAT} > 3 V, I _{BAT} discharge = 400 mA		120	160	mV
VBAT_SUP	Threshold to enter the battery supplement mode	Vvbat > Vvbat_uvlo		SYS <		V
Ibat_dchg_rn g	Discharge current limit setting range	Selectable 0.2 A / step	0.55		1.75	A
VBAT_CHG	Charge voltage range	Operating in voltage regulation, programmable range in 10 mV steps	3.6		4.65	V
Vbat_chg_ac c	Charge voltage accuracy	0 °C< T _J < 85 °C	-0.5		0.5	%
Існд	Fast charge current range		2		500	mA
Існд_асс	Fast charge current accuracy		-5		5	%
Iter_rng	Termination and pre-charge current setting range	Termination current programmable range maximum over I ² C	0.5		50	mA
I _{TER_ACC}	Termination charge current accuracy	Peak current below termination threshold	-10		10	%
tter_deglitch	Termination deglitch time	Charge current falling		64		ms

Datasheet

Revision 3.2

Parameter	Description	Conditions	Min	Тур	Max	Unit
Vthr_pre_to _fastchg	Pre charge to fast charge threshold voltage range		2.7		3.2	V
I _{CHG_PRE_ACC}	Pre-charge current accuracy	V _{BAT} > 2V	-10		10	%
Vrchg	Recharge threshold voltage	VBAT below VBAT_CHG	100	120	140	mV
trchg_deglit ch	Recharge threshold deglitch time	t _{FALL} = 100 ns (typ), V _{RCHG} falling		32		ms

2.4.2 Battery Temperature Monitor

Table 7: Battery Temperature Monitor

Parameter	Description	Conditions	Min	Тур	Мах	Unit		
Electrical Performance								
V _{TEMP_HI}	High temperature threshold	% of V _{DD_SYS} , V _{TEMP_SNS} falling	14.5	15	15.2	%		
VTEMP_WARM	Warm threshold	% of V_{DD_SYS} , V_{TEMP_SNS} falling	20.1	20.5	20.8	%		
VTEMP_COOL	Cool threshold	% of V_{DD_SYS} , V_{TEMP_SNS} rising	34.4	35	35.4	%		
V _{TEMP_LO}	Low temperature threshold	% of $V_{\text{DD}_\text{SYS}}, V_{\text{TEMP}_\text{SNS}}$ rising	39.3	39.8	40.2	%		
Voff_temp_s ns	TEMP_SNS disable threshold	% of V _{DD_SYS} for rising V _{TEMP_SNS}	55		60	%		
t _{TEMP_SNS_DE} GLITCH	TEMP_SNS deglitch time	TEMP_SNS at any threshold		10		ms		

2.4.3 LDO / Load Switches

Table 8: LDO0 / Loadswitch (LV)

Parameter	Description	Conditions	Min	Тур	Max	Unit		
Electrical Performance								
VIN_LDSW_0	Input voltage range for LDSW	Load Switch mode $V_{DD_{LDO}} > V_{LDO}$	0.8		5.5	V		
VIN_LDO_0	Input voltage range for LDO	LDO mode, $V_{DD_LDO} > V_{LDO}$	1.8		5.5	V		
Vout_acc_lo _0	DC output accuracy	$V_{DD_LDO} > V_{LDO} + 0.2 V$	-3		3	%		
V _{OUT_LDO_0}	Output range	Programmable range, 50 mV or 75 mV steps	0.8		3.15	V		
Vout_line_0	DC line regulation	1.8 V < V _{DD_LDO} < 5.5 V Ι _{OUT} = 500 μΑ	-0.8		0.8	%		

Datasheet

Ultra-Low Quiescent Current PMIC

Parameter	Description	Conditions	Min	Тур	Max	Unit
Vout_ld_0	DC load regulation	0 < I _{OUT} < 50 mA V _{DD_LDO} = 1.85 V V _{LDO} = 1.8 V	-3		0	%
Vout_tr2_ld_ 0	Load transient	2 µA to 50 mA 100 mA/µsec V _{DD_LDO} > 2.0 V V _{LDO} = 1.8 V	-120		60	mV
Vout_tr_ld_0	Load transient	2 µA to 50 mA 100 mA/µsec V _{DD_LDO} = 1.85 V V _{LDO} = 1.8 V	-140		60	mV
Ron_ldsw_ili M_0	On resistance of LDSW mode with current limit	$V_{DD_LDO} = 3.7 V$		0.7		Ω
Ron_ldsw_n 0_ilim_0	On resistance of LDSW mode without current limit	$V_{DD_LDO} = 3.7 V$		0.11		Ω
Rdchg_ldo_o N_0	MOSFET on resistance for LDO discharge	I _{LD} = -10 mA		32		Ω
ILIM_OUT_LDO_ 0	Output current limit for LDO mode	$V_{LDO} = 0.9 * V_{LDO(nom)}$	155			mA
IOUT_LDO_LO_ 0	Output current	V _{DD_LDO} = 1.85 V V _{LDO} = 1.8 V			50	mA
IOUT_LDO_HI_0	Output current	$V_{DD_LDO} > V_{LDO} + 0.2 V$ $V_{LDO} = 1.8 V$			150	mA
IN_LDO_ON_0	Quiescent current	LDO mode		0.75		μA
IN_LDO_OFF_0	OFF state supply current			0.001		μA
PSRR_vddldo _0	Power supply rejection ratio	@10 kHz І _{оит} = 75 mA		43		dB
tstart_ldo0	LDO start-up delay time			20		ms

Table 9: LDO1 / Loadswitch (HV)

Parameter	Description	Conditions	Min	Тур	Мах	Unit	
Electrical Pe	Electrical Performance						
VIN_LDSW_1	Input voltage range for Load Switch	Load Switch mode $V_{DD_{LDO}} > V_{LDO}$	0.8		5.5	V	
VIN_LDO_1	Input voltage range for LDO	LDO mode, $V_{DD_LDO} > V_{LDO}$	1.8		5.5	V	
Vout_acc_lo _1	DC output accuracy	$V_{DD_LDO} > V_{LDO} + 0.2 V$	-3		3	%	
Vout_ldo_1	Output range	Programmable range, 50 mV or 75 mV steps	0.8		3.3	V	

Datasheet

Revision 3.2

Parameter	Description	Conditions	Min	Тур	Max	Unit
Vout_line_1	DC line regulation	1.8 V < V _{DD_LDO} < 5.5 V Ιουτ = 500 μΑ	-0.8		0.8	%
Vout_ld_1	DC load regulation	2 μ A < I _{OUT} < 100 mA V _{DD_LDO} > V _{OUT_LDO} + 0.2 V V _{LDO} = 3.0 V	-3		0	%
Vout_tr_ld_1	Load transient	2 μA to 100 mA, 100 mA/μsec V _{DD_LDO} > V _{LDO} + 0.2 V V _{LDO} = 3.0 V	-120		60	mV
Ron_ldsw_ili M_1	On resistance of LDSW mode with current limit	$V_{DD_LDO} = 3.7 V$		1.5		Ω
Ron_ldsw_n 0_ilim_1	On resistance of LDSW mode without current limit	$V_{DD_LDO} = 3.7 V$		0.27		Ω
Rdchg_ldo_o N_1	MOSFET on resistance for LDO discharge	I _{LD} = -10 mA		32		Ω
ILIM_OUT_LDO_ 1	Output current limit (LDO MODE)	$V_{LDO} = 0.9 * V_{LDO(nom)}$	155			mA
Iout_ldo_hi1_ 1	Output current	$V_{DD_LDO} > V_{LDO} + 0.2 V$			150	mA
IIN_LDO_ON_1	Quiescent current	LDO mode		0.8		μA
IIN_LDO_OFF_1	OFF state supply current			0.001		μA
PSRR_vddldo _1	Power supply rejection ratio	@10 kHz Іоит = 75 mA		40		dB
tstart_ld01	LDO start-up delay time			20		ms

Table 10: LDO2 / Loadswitch (HV+Power cycle)

Parameter	Description	Conditions	Min	Тур	Max	Unit		
Electrical Pe	Electrical Performance							
VIN_LDSW_2	Input voltage range for Load Switch	Load Switch mode, $V_{DD_LDO} > V_{LDO}$	0.8		5.5	V		
V _{IN_LDO_2}	Input voltage range for LDO	LDO mode, $V_{DD_LDO} > V_{LDO}$	1.8		5.5	V		
V _{OUT_ACC_LO}	DC output accuracy	$V_{DD_LDO} > V_{LDO} + 0.2 V$	-3		3	%		
V _{OUT_LDO_2}	Output range for LDO	Programmable range, 50 mV or 75 mV steps	0.8		3.3	V		
Vout_line_2	DC line regulation	1.8 V < V _{DD_LDO} < 5.5 V Ι _{Ουτ} = 500 μΑ	-0.8		0.8	%		

Datasheet

Revision 3.2

Ultra-Low Quiescent Current PMIC

Parameter	Description	Conditions	Min	Тур	Max	Unit
Vout_ld_2	DC load regulation	$2 \ \mu A < I_{OUT} < 100 \ mA$ $V_{DD_LDO} > V_{OUT_LDO} + 0.2 \ V$ $V_{LDO} = 3.0 \ V$	-3		0	%
Vout_tr_ld_2	Load transient	2 µA to 100 mA, 100 mA/µsec V _{DD_LDO} > V _{LDO} + 0.2 V V _{LDO} = 3.0 V	-120		60	mV
Ron_ldsw_ili M_2	On resistance of LDSW mode with current limit	$V_{DD_LDO} = 3.7 V$		1.5		Ω
Ron_ldsw_n 0_ilim_2	On resistance of LDSW mode without current limit	$V_{DD_LDO} = 3.7 V$		0.27		Ω
RDCHG_LDO_O N_2	MOSFET on resistance for LDO discharge	I _{LD} = -10 mA		32		Ω
ILIM_OUT_LDO_ 2	Output current limit (LDO MODE)	$V_{LDO} = 0.9 * V_{LDO(nom)}$	155			mA
IOUT_LDO_HI1_ 2	Output current	V _{DD_LDO} > V _{LDO} + 0.2 V			150	mA
IIN_LDO_ON_2	Quiescent current	LDO mode		0.8		μA
IIN_LDO_OFF_2	OFF state supply current			0.001		μΑ
PSRR_vddldo _@	Power supply rejection ratio	@10 kHz Іоит = 75 mA		35		dB
tstart_ldo2	LDO start-up delay time			20		ms

2.4.4 Digital Inputs

Table 11: Digital Input Pins (MODE, WD)

Parameter	Description	Conditions	Min	Тур	Мах	Unit		
External Ele	External Electrical Conditions							
t _{MIN_WD}	WD minimum input pulse width			25		μs		
Electrical Pe	Electrical Performance							
Vin_lo	Input low threshold				0.25*V DDIO	V		
Vin_hi	Input high threshold		0.75*V DDIO			V		
R _{PD_MODE}	Internal pull-down resistance			900		kΩ		
t_deglitch_m Ode	MODE pin deglitch time	rising/falling		100		μs		

Datasheet

Ultra-Low Quiescent Current PMIC

2.4.5 I²C Interface

Table 12: I2C interface

Parameter	Description	Conditions	Min	Тур	Max	Unit		
Electrical Pe	Electrical Performance							
fi2C_CLK	SCL frequency range		100		400	kHz		
Vout_lo	Output low threshold level	SDA 5 mA sink current			VDDI O*0.25	V		
Vin_lo	Input low threshold level	Input low threshold level for SDA and SCL			VDDI O*0.25	V		
V _{IN_HI}	Input high threshold level	Input high threshold level for SDA and SCL	VDDI O*0.75			V		
Ilkg_hilvl	leakage current	SDA and SCL, high level			1	μΑ		

2.4.6 Input Currents

Table 13: Input Currents

Parameter	Description	Conditions	Min	Тур	Мах	Unit	
Electrical Pe	Electrical Performance						
IBAT_HIZ_BUCK _ON_LDO_OFF	Battery discharge current in Hi-Z mode, no LDOs enabled	0 °C < T _J < 60 °C $V_{DD_PWR} = 0$ V or floating Hi-Z mode Buck switching No load		0.8	1.5	μΑ	
Ibat_hiz_buck _on_ldo0_on	Battery discharge current in Hi-Z mode, LDO0 enabled	$0 \text{ °C} < T_J < 60 \text{ °C}$ $V_{DD_PWR} = 0 \text{ V}$ Hi-Z mode Buck switching LDO0 enabled No load		1.6		μA	
BAT_ACT_LDO 0_LDO1_ON	Battery discharge current in Active Battery mode	$0 \text{ °C} < T_J < 85 \text{ °C}$ $V_{DD_PWR} = 0 \text{ V}$ Active Battery mode Buck switching LDO0 and LDO1 enabled I^2C enabled $V_{BAT_UVLO} < V_{BAT} < 4.65 \text{ V}$		2.5		μA	

Parameter	Description	Conditions	Min	Тур	Max	Unit
IBAT_ACT_BUC K_ON_LDO_OFF	Battery discharge current in Active Battery mode	$0 \ ^{\circ}C < T_J < 85 \ ^{\circ}C$ $V_{DD_PWR} < V_{DD_PWR_UVLO}$ Active Battery mode Buck switching LDO disabled I^2C enabled MODE = low $V_{BAT_UVLO} < V_{BAT} < 4.65 \ V$		1.1		μΑ
BAT_SHIP	Battery discharge current in Ship mode	0 °C < T _J < 85 °C V _{DD_PWR} = 0 V Ship mode		2	200	nA
lin_buck_on	Supply current for control	V _{DD_PWR_UVLO} < V _{DD_PWR} < V _{OVP} and V _{DD_PWR} > V _{BAT} + V _{SLP} Buck switching		0.8	3	mA
Iin_chg_read Y	Supply current for control	0 °C < T _J < 85 °C V _{DD_PWR} = 5 V Charge ready			1.5	mA

2.4.7 Power Path Management and Current Limit

Table 14: Power-Path	Management and ILIM
----------------------	---------------------

Parameter	Description	Conditions	Min	Тур	Max	Unit	
Electrical Performance							
IUSBSUSPEND	Input current in USB suspend mode				2.5	mA	
Vdrop_in_to_ vdd_sys	Vdd_pwr - Vdd_sys	V _{DD_PWR} = 5 V I _{IN} = 300 mA Includes ball resistance		125	170	mV	
I _{DDPWR_LIM_M}	Input Current limit	Programmable Range MAX, 50 mA steps		600		mA	
I _{DDPWR_LIM_M}	Input Current limit	Programmable Range MIN, 50 mA steps		50		mA	
Iddpwr_lim_a cc_rng_lo	Current limit accuracy	50 mA to 100 mA	-12		12	%	
Iddpwr_lim_a cc_rng_hi	Current limit accuracy	100 mA to 600 mA	-5		5	%	
Vddpwr_iin_d wn	DPM threshold	At V _{DD_PWR} , programmable range, 100 mV steps	4.2		4.9	V	
Vddpwr_iin_d wn_acc	DPM threshold accuracy		-3		3	%	

Datasheet

Ultra-Low Quiescent Current PMIC

2.4.8 Protection

Table 15: Protection

Parameter	Description	Conditions	Min	Тур	Max	Unit
Electrical Pe	erformance		I	,	•	1
Vbat_shrt_t hr	Battery short circuit threshold	Battery voltage falling V _{DD_PWR} = 5 V		2		V
Vbat_shrt_h ys	Hysteresis for VBAT_SHRT			100		mV
IBAT_SHRT	Battery short circuit charge current			ITER		mA
Vbat_uvlo_t hr	Battery under-voltage lockout threshold range	Programmable range 100 mV steps V _{BAT} falling	2.5		3	V
V _{BAT_UVLO_A} cc	Default battery under-voltage lockout accuracy	$V_{BAT_UVLO} = 2.5 V$	-3		3	%
V _{BAT_UVLO_H} ys	Battery under-voltage lockout threshold hysteresis			200		mV
VDDPWR_OVP	VDD_PWR over-voltage protection threshold voltage	Vdd_pwr rising	5.35	5.55	5.75	V
Vddpwr_ovp_ hys	Over-voltage protection hysteresis			100		mV
tdeglitch_ov P	Over-voltage protection recovery deglitch time	V _{DD_PWR} falling		32		ms
V _{SLP}	Sleep entry threshold	Vdd_pwr - Vbat Vdd_pwr falling		65	120	mV
VSLP_HYS	Sleep mode hysteresis	VDD_PWR rising	80	130	200	mV
T _{SHDN}	Thermal shutdown	TJ		118		°C
T _{HYS}	Thermal shutdown hysteresis	TJ		20		°C
tdeglitch_th_ SHDN	Thermal shutdown deglitch time	T _J rising		1		ms
Vddpwr_uvl 0_hys	VDD_PWR under-voltage lockout threshold hysteresis	VDD_PWR falling		150		mV
Vddpwr_uvl o_thr	VDD_PWR under-voltage lockout threshold	V _{DD_PWR} rising	3.4	3.6	3.8	V

Ultra-Low Quiescent Current PMIC

2.4.9 **Pushbutton Timer**

Table 16: Pushbutton Timer (RIN_N)

Parameter	Description	Conditions	Min	Тур	Max	Unit
Electrical Pe	Electrical Performance					
Vrin_n_lolvl	Low-level input voltage				0.3	V
R _{PU_RIN_N}	Internal pull-up resistance			120		kΩ

2.4.10 Digital Outputs

Table 17: Digital Output Pins (SYS_FLT, PWR_FLT, and ROUT_N)

Parameter	Description	Conditions	Min	Тур	Max	Unit
Electrical Pe	Electrical Performance					
Vout_lo	Low level output threshold	Sinking current = 5 mA			0.25*V DDIO	V
I _{LKG_TO_IN}	Leakage current into pin	High impedance state		0	12	nA
tintr	Interrupt pulse width	SYS_FLT		128		μs
trst_d	Reset pulse duration	ROUT_N		400		ms

2.4.11 Buck Regulator

Table 18: Buck

Parameter	Description	Conditions	Min	Тур	Max	Unit	
Electrical Pe	Electrical Performance						
Ron_pmos	High-side on resistance			600	800	mΩ	
R _{ON_NMOS}	Low-side on resistance			300	450	mΩ	
tstart	Start-up delay time	From BUCK_EN = 1 to switching		3		ms	
ILIM_SW_PMOS	SW current limit PMOS	Vfb_buck = 1.8 V		600		mA	
toff_виск	Off time	Vfb_buck = 1.8 V		270		ns	
fsw_виск	Switching frequency	Continuous conduction mode			3	MHz	
I _{LIM_PMOS_SO} FTSTART	PMOS switch current limit during softstart			300		mA	
Vout_fb_buc k	Buck output voltage range	Programmable range, 50 mV steps (Vout_FB_BUCK_HI > 1.9 V, VDD_BUCK > 2.7 V)	0.6		2.1	V	
Vout_fb_buc k_hi	Buck output voltage range	HI programmable range, 50 mV steps, V _{OUT_RANGE_HI} = 1	1.3		2.1	V	

Datasheet

Parameter	Description	Conditions	Min	Тур	Max	Unit
Vout_fb_buc k_lo	Buck output voltage range	LO programmable range, 50 mV steps, Vout_RANGE_HI = 0	0.6		1.3	V
Vout_vbuck_ out_acc	Buck output voltage accuracy	V _{DD_BUCK} = 5 V PFM mode I _{OUT} = 10 mA V _{FB_BUCK} = 1.8 V	-2.5	0	2.5	%
Vout_ld1_bu ck	DC output voltage load regulation	Vout = 1.8 V 100 mA < Iout < 300 mA		0.01		%/mA
Vout_ld2_bu ck	DC output voltage load regulation	V _{OUT} = 0.9 V 100 mA < I _{OUT} < 300 mA		0.02		%/mA
Vout_line_bu ck	DC output voltage line regulation	V _{OUT} = 1.8 V Ιουτ = 100 mA		0.1		%/V
tstartup_buc к	Softstart time	V _{OUT} = 1.8 V No load		50		μs
tstartup_l	Softstart time	V _{OUT} = 0.9 V No load		25		μs

2.4.12 Battery Monitors

Table 19: Battery Monitors (VBAT_DIV and IMON)

Parameter	Description	Conditions	Min	Тур	Max	Unit	
Electrical Performance							
AIMON_GAIN	IMON current gain			1		mA/A	
limon	VBAT IQ current increase with IMON enabled	0 A discharge current			4	μA	
Imon_acc_hi	IMON accuracy	Discharge current range 100 mA to 1 A	-20		20	%	
Imon_acc_lo	IMON accuracy	Discharge current range 10 mA to 100 mA	-40		40	%	
Vimon_max	IMON maximum recommended voltage	2.5 V <v<sub>BAT< 4.7 V IIMON X RIMON</v<sub>	1.4			V	
RBAT_DIV	Voltage divider resistance	From VBAT_SNS to GND_DIV		150		kΩ	
VBAT_DIV1	Voltage	2.5 V < V _{BAT} < 4.65 V 0 °C < T _J < 85 °C	VBAT* 0.585	VBAT* 0.6	VBAT* 0.615	V	
VBAT_DIV2	Voltage	2.5 V < V _{BAT} < 4.65 V 0 °C < T _J < 85 °C	VBAT* 0.285	VBAT* 0.3	VBAT* 0.315	V	

D-	4	
Da	tas	heet

2.5 Thermal Characteristics

Table 20: Thermal Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit
R _{TH_JA_A}	Junction-to-ambient thermal resistance	JEDEC 8-layer pcb, no airflow		34		°C/W
R _{PSI_JC}	Junction-to-case (top) thermal resistance	ΔJT		0.5		°C/W
R _{TH_JB}	Junction-to-board thermal resistance	1 mm from IC edge		10		°C/W
Rтн_ја_в	Junction-to-ambient thermal resistance	25 mm x 25 mm pcb, 8- layer, no airflow		79		°C/W

Ultra-Low Quiescent Current PMIC

3 Typical Performance Graphs

Unless otherwise noted, V_{BAT} = 3.6 V, T_{A} = 25 $^{\circ}\text{C}$

Figure 3: Buck Efficiency, Vout = 1.8 V

Figure 4: Buck Regulation, Vout = 1.8 V

Figure 5: Buck Efficiency, Vout = 0.9 V

Figure 6: Buck Regulation, Vout = 0.9 V

Figure 7: LDO0 Dropout, V_{IN} = 3.15 V, V_{OUT} Setting = 3.15

Figure 8: LDO0 Regulation and Dropout, V_{OUT} = 1.80 V

Figure 9: LDO1 and LDO2 Dropout, V_{IN} = 3.3 V, Figure 10: LDO0 Regulation and Dropout, V_{OUT} V_{OUT} Setting = 3.3 V = 3.15 V

Figure 11: LDO1 Regulation and Dropout, Vout Figure 12: LDO2 Load Regulation, Vout = 3.30 V = 3.30 V

D-	4	
Da	tas	heet

Figure 13: LDO1 Regulation and Dropout, V_{OUT} Figure 14: LDO2 Regulation and Dropout, V_{OUT} = 1.80 V = 1.80 V

Figure 15: Typical Buck Startup, V_{BAT} = 3.6 V, VBUCK = 1.8 V and 0.9 V, 0 A

Figure 17: VBAT I $_{Q}$, Buck Switching, No Load, Hi-Z Mode

Figure 16: VBAT Ia, Ship Mode

Figure 18: VDD_LDO IQ, No Load

Figure 19: Charger Efficiency, VDD_PWR = 5 V

4 Functional Description

4.1 Overview

In a typical application, DA9072 manages two power inputs: a battery at pin VBAT and a USB supply at pin VDD_PWR. The larger of these supplies feeds the unregulated system output voltage at pin VDD_SYS. VDD_SYS in turn is used as the input supply to the linear charger, buck, and LDOs. Due to its extremely low I_Q (< 1 μ A), the buck can remain always on as the primary system power rail without draining the battery excessively.

When USB power is present, VDD_SYS is near 5 V and the linear charger is active. When USB power in not connected, VDD_SYS tracks the battery voltage. DA9072 actively manages this power path, reducing charging current and input current as necessary, and allowing VDD_SYS to draw current from both supplies during peak loads.

The DA9072 includes multiple configurable protection features including battery and input overcurrent. All settings can be controlled by l²C, but stand-alone operation is also possible with features such as a pushbutton input timer, resistor programmable charge settings, and the MODE pin to enable and disable charging.

As there are two input sources, DA9072 has multiple regions of operation, see Figure 20.

n	ata	ich	eet
	αισ	ເວເ	CCL

4.2 Battery-Powered Operation

Ship mode is an ultra-low leakage standby state that minimizes battery depletion while the product sits on the shelf. Typical battery current in Ship mode is 5 nA.

There are two methods to enter Ship mode:

- 1. By register write:
 - a. Disconnect VDD_PWR
 - b. Set MODE pin high
 - c. Set EN_SHIPMODE bit (register 0x000D[0]) = 0x1

DA9072 enters Ship mode immediately. **Note**: If VDD_PWR is plugged in, Ship mode entry is delayed until power is removed.

- 2. By pushbutton timer pin, RIN_N:
 - a. Disconnect VDD_PWR
 - b. Set MODE pin high
 - c. Enable RIN_N control of Ship mode: set RIN_N_RST_REC (register 0x0010 [1:0]) = 0x01
 - d. Pull RIN_N pin low for longer than the reset period, set by RIN_N_PER_RST (register 0x0010 [7:6])

The IC enters Ship mode when RIN_N is released (internally pulled up).

To exit Ship mode, apply VDD_PWR or toggle RIN_N low for longer than 50 ms. On waking from Ship mode, all pre-programmed OTP values are loaded.

4.2.1 Active Battery and High Impedance Modes

Under battery power there are two modes of operation, both controlled by the MODE pin. A rising edge on MODE puts DA9072 in Active Battery mode. In this mode, all functions are active.

Conversely, a falling edge on MODE puts DA9072 into Hi-Z mode, intended to be used during system standby states with low power consumption.

In Hi-Z mode, the following communication functions are placed in a high impedance state to reduce leakage from the battery:

- I²C interface
- SYS_FLT and PWR_FLT status outputs
- watchdog timer (WD)

All other functions and outputs remain active, with the exception of TSD.

The Thermal Shutdown function is not active in Hi-Z mode. Hi-Z mode should not be used in high power dissipation or heavy load conditions.

Hi-Z mode can also be entered by setting the HZ_MODE bit (register 0x000D [1]) = 0x1; or by using RIN_N pushbutton by setting RIN_N_RST_REC (register 0x0010 [1:0]) = 0x2 and pulling RIN_N low for more than the RIN_N reset time (set by register RIN_N_PER_RST 0x0010 [7:6]).

DA9072 exits Hi-Z mode at a MODE pin rising edge or when VDD_PWR is applied. When VDD_PWR is removed, DA9072 enters Active Battery mode regardless of the MODE pin state.

The behavior of the MODE pin depends on whether VDD_PWR is connected, shown in Table 21. The MODE pin is internally pulled low.

Table 21: MODE Functionality

VDD_PWR	MODE = 0	MODE = 1
Disconnected	Hi-Z mode (edge triggered)	Active Battery mode
Connected	Charge enabled if CE_N = 0	
Charge disabled if CE_N = 1	Charge disabled	

4.2.2 Battery Protection

DA9072 includes several types of battery protection. The battery is protected during discharge from over-current conditions by the IBAT_DCHG function and from over-discharge conditions by the VBAT_UVLO (under-voltage lockout) functions.

During charging, the temperature sense (TEMP_SNS) function protects against over-temperature, and highly accurate voltage regulation and charging current prevent over-voltage and over-current conditions.

4.2.2.1 VBAT Over-Current Protection

The battery discharge over-current protection threshold, I_{BAT_DCHG_RNG}, is programmable from 0.55 A to 1.75 A by IDISCHG_OCP (register 0x0029 [4:2]). Over-current protection clamps the maximum battery current at the set threshold and is available in all modes of operation. Battery current starts to be limited approximately 150 mA below the protection clamp. When an over-current condition occurs during charging, safety timers and charge termination are suspended.

In an over-current fault, a VBAT_OCP interrupt is generated at SYS_FLT pin and indicated by the event bit ISR_VBAT_OCP (register 0x0004 [2]).

All battery current flows from VBAT to VDD_SYS. Therefore, set the IBAT_DCHG threshold higher than the maximum expected system current from VDD_SYS. However, if the threshold is set higher than the battery can support, battery voltage may drop below VBAT_UVLO before the current is limited. When the IBAT_DCHG function clamps the battery current, VDD_SYS droops. This may cause secondary fault conditions such as VDD_SYS UVLO.

4.2.2.2 VBAT Under-Voltage and Short Protection

The battery under-voltage protection threshold (V_{BAT_UVLO_THR}) can be set from 2.5 V to 3.0 V by bits BUVLO (register 0x000E [2:0]). This should be set at or above the battery's minimum discharge voltage specification. VBAT_UVLO protects the battery from over-discharge by disconnecting the discharge path when the battery voltage falls below the UVLO threshold.

When a VBAT_UVLO occurs in battery powered modes (VDD_PWR not connected), the DA9072 outputs, including VDD_SYS, shut down and all registers are reset to their default PoR values.

VBAT_UVLO generates an interrupt at SYS_FLT and is indicated by the ISR_VBAT_UVLO event bit (register 0x0004 [0]).

With VDD_PWR connected, VBAT_UVLO is ignored, making pre-charge level charging available down to 0 V at VBAT. In this case, a separate fault condition applies: VBAT_SHORT. The VBAT_SHORT threshold is typically 2.0 V and is indicated by event bit ISR_VBAT_SHORT (register 0x0004[3]).

4.2.2.3 Battery Temperature Sensing

The TEMP_SNS function uses the battery's NTC thermistor to monitor battery temperature. If the battery is too cold or hot, either the fast charge current (or target voltage) is reduced or charging is terminated. Table 22 summarizes what protective measures are taken in each temperature range.

Temperature Range	Voltage at TEMP_SNS	Charger Action	Interrupt name
T _{BAT} < T _{LO}	$V_{\text{TEMP}_{SNS}} > V_{\text{TEMP}_{LOR}}$	Charging terminated	TS COLD
T _{COLD} < T _{BAT} < T _{COOL}	Vtemp_lo > Vtemp_sns > Vtemp_cool	Charge current = 0.5 * ICHG setting	TS COOL
T _{COOL} < T _{BAT} < T _{WARM}	Vtemp_cool > Vtemp_sns > Vtemp_warm	Normal charging	
Twarm < Tbat < Thi	Vtemp_warm > Vtemp_sns > Vtemp_hi	Target voltage (V _{BAT_CHG}) reduced by 140 mV	TS WARM
T _{HI} < T _{BAT}	VTEMP_SNS < VTEMP_HI	Charging terminated	ТЅ НОТ
	Vtemp_sns > Voff_temp_sns	Temp sense disabled, Optional Fault	TS OFF

Table 22: Battery Thermal Protection Measures

Setting the Resistor Divider

The four temperature thresholds are fixed percentages of VTEMP, see Section 2.4.2. VTEMP is enabled in short pulses to allow the battery temperature to be monitored without drawing unnecessary current through the resistor divider. VTEMP is derived from the VDD_SYS voltage. The TEMP_SNS voltage is measured after a deglitch time of 10 msec, which precludes any need for filtering at TEMP_SNS. To avoid measurement error, no filter capacitance larger than 10 nF should be added to TEMP_SNS pin.

Temperature monitoring can be disabled by TS_EN_CHG (register 0x0026 [0]) and TS_EN_DISCHG bits (register 0x0026 [1]), or by pulling TEMP_SNS above the V_{OFF_TEMP_SNS} threshold (TS_OFF state). The TS_OFF state disables temperature sensing and can optionally be flagged as a fault condition by setting register bit TS_OFF_MODE (register 0x0026:[2]) = 0x1. When TEMP_SNS is pulled high to enter TS_OFF state, the state is latched until TEMP_SNS is disabled.

Temp sense is disabled in Hi-Z mode. Each temp sense threshold generates an interrupt at SYS_FLT and each has an event bit at register SYS_ISR_1 (0x0004 [7:4]) and SYS_ISR_2 (0x0005 [6]).

The battery NTC interfaces to the TEMP_SNS input through a resistive divider, see Figure 21.

Figure 21: Battery Temperature Sensing with NTC

The resistor divider values (RHI and RLO) are selected as shown below so that the cold and hot TEMP_SNS thresholds are reached at the corresponding NTC values.

-	4		
112	tas	nc	DOT.
20			

Equation 1:

$$R_{(LO)} = \frac{R_{(COLD)} \times R_{(HOT)} \times \left(\frac{1}{0.398} - \frac{1}{0.15}\right)}{R_{(HOT)} \times \left(\frac{1}{0.15} - 1\right) - R_{(COLD)} \times \left(\frac{1}{0.398} - 1\right)}$$

Equation 2:

$$R_{(HI)} = \frac{\left(\frac{1}{0.398} - 1\right)}{\left(\frac{1}{R_{(LO)}} + \frac{1}{R_{(COLD)}}\right)}$$

Where

- $R_{(HOT)}$ = the NTC resistance at the hot temperature
- R_(COLD) = the NTC resistance at the cold temperature

The cool and warm thresholds are not independently programmable and are fixed once the cold and hot values are determined. The cool and warm thresholds can be determined by the NTC value at the threshold:

Equation 3:

$$R_{(COOL)} = \frac{R_{(LO)} \times R_{(HI)} \times 0.35}{R_{(LO)} - R_{(LO)} \times 0.35 - R_{(HI)} \times 0.35}$$

Equation 4:

$$R_{(WARM)} = \frac{R_{(LO)} \times R_{(HI)} \times 0.205}{R_{(LO)} - R_{(LO)} \times 0.205 - R_{(HI)} \times 0.205}$$

Where

- R_(COOL) = the NTC resistance at the cool temperature
- R_(WARM) = the NTC resistance at the warm temperature

Temp Sense Modes of Operation

The DA9072 provides two modes of battery temperature sense control: Auto mode and Host Control mode. In Auto mode, the DA9072 enables the VTEMP voltage every 2 s or every 50 ms depending on the VDD_PWR state. At the start of each cycle, the VTEMP voltage is activated for 10 ms after which the TEMP_SNS voltage is checked. This timing is shown in Figure 22.

Auto mode does not rely on the host to operate; therefore, it is ideally suited to provide continuous safety monitoring.

In battery powered operation, VTEMP is enabled for only 0.5 % of the time which reduces the typical current required for temperature sensing to less than 1 μ A.

While VDD_PWR is applied, the Temp Sense function is in Auto mode and host control of the VTEMP period is not available. This is illustrated in the Active Power section of Figure 22.

If lower current consumption is needed, temperature sensing can be controlled by the host. In hostcontrolled mode, an I²C command activates the same 10 ms VTEMP and TEMPS_SNS cycle.

	Da	tas	heet
--	----	-----	------

Active Battery (Discharging)

Active Power (Charging)

Host Controlled Mode

Figure 22: Battery Temperature Sense Timing

4.3 Analog Battery Monitor Functions

DA9072 incorporates two features to support accurate fuel gauging: battery discharge current monitor (IMON) and battery voltage (VBAT_DIV). These provide analog discharge current and battery voltage information scaled for compatibility with typical ADC inputs.

Filter capacitors on IMON and VBAT_DIV should not be used, or should be minimized, in order to minimize any time lag when using these outputs for fuel gauging.

4.3.1 Battery Discharge Current Monitoring

The IMON function sources a current proportional to the battery discharge current at a 1 mA/A scale. An external resistor from pin IMON to GND should be selected to optimize the dynamic range based on battery current range and maximum tolerance of both DA9072 and the ADC inputs. To maintain accuracy, a maximum voltage of 1.4 V is allowed at the IMON pin.

The IMON function is enabled and disabled by bit IDISCHG_MON_EN (register 0x002A [1]). When enabled, the function draws an additional 4 μ A of quiescent current from VBAT.

Datasheet

4.3.2 Battery Voltage Monitoring

The VBAT_DIV function divides down the Kelvin sensed battery voltage (from VBAT_SNS) and provides a selectable output, via VBAT_DIV_RATIO (register 0x000E [4]), scaled at 60 % or 30 % of VBAT. Use the dedicated ground at GND_DIV as the reference point for the VBAT_DIV output.

This is ideal for driving the differential input of an external ADC in battery monitoring functions.

VBAT_DIV is enabled and disabled by bit VBATDIV_EN (register 0x000F [0]). When enabled, the total resistance from VBAT_SNS to GND is 150 k Ω . To maintain accuracy, a high impedance connection is recommended at VBAT_DIV. When disabled the VBAT_DIV resistor divider is disconnected from VBAT to eliminate current drain.

Table 23: VBAT_DIV Ratios

VBAT_DIV_RATIO Bit (Register 0x000E [4])	VBAT_DIV Ratio
0	0.6 *VBAT
1	0.3 *VBAT

4.4 Battery Charging

4.4.1 Battery Charging Process

When USB power is connected ($V_{DD_PWR} > V_{DD_PWR_UVLO}$), DA9072 is in one of four states, see Table 24. Charging is enabled and disabled by the MODE pin and CE_N bit (register 0x0020:[0]). This status is indicated by the STS_CHG bits (register 0x0002 [5:4]).

MODE Pin	CE_N Bits	ICHG Pin	VBAT Pin	Charge Status	STS_CHG Bits
Either High		N/A	N/A	Charge ready	0x0
L	L	> I _{TER}	$<= V_{BAT_CHG}$	Charge in- progress	0x1
L	L	< I _{ter}	>= V _{RCHG}	Charge done	0x2
L	L	N/A	N/A	Fault	0x3

Table 24: Charge Status

STS_CHG bits are read only and shows immediate charge status only. The bits do not hold status value and change the value immediately when the charge status changes.

From the charge ready state, charging begins when the CE_N bit is low and the MODE input is pulled low. There is approximately 2.5 ms delay between enabling charging and charge starting.

Charging current operates in three regions based on battery voltage: pre-charge, fast charge (CC), and constant voltage (CV). These regions are shown in the typical charging example of Figure 23. The charge status (shown as CHG_STS in the graph) is also shown transitioning from the **charge ready** to **charge in-progress** to **charge done** states.

D -			
Da	tas	ne	et

Figure 23: Typical Charging Example

4.4.2 Charge in Progress

Assuming a depleted battery, the battery is initially charged at I_{CHG_PRE} until V_{BAT} reaches the precharge threshold, at which point the charge current is increased to I_{CHG} . The charger continues to charge at constant current (CC) until V_{BAT} approaches the target voltage programmed by VBCHG (register 0x0024:[6:0]). The battery is then charged at near constant voltage (CV) and the charge current gradually falls. Charging ends when the charge current falls below I_{TER} (I_{TER} current is the same as I_{CHG_PRE} , see Section 4.7.1). If the VDD_PWR remains connected, recharging starts when VBAT falls below the recharge threshold, V_{BAT_CHG} - 120 mV (typical).

Charging modes are shown in Table 25.

V _{BAT} Voltage	Charge Current	Charge Mode	Pre-Charge Timer	Main Timer
V _{BAT} < V _{CHG_PRE}	I _{CHG_PRE}	Pre-charge	Running	Running
VCHG_PRE < VBAT < VBAT_CHG	Існд	CC (fast charge)	Reset	Running
VBAT = VBAT_CHG	< Iснg	CV	Reset	Running
VBAT = VBAT_CHG	= I _{TER}	Termination	Reset	Reset

Table 25: Charging Modes

From the charge ready state, the device enters charge in-progress state when all conditions below are met.

- V_{DD_PWR} > V_{BAT} + V_{SLP} (not in Sleep mode)
- VBAT < VRCHG
- RMEAS sequence completed, if enabled by RMEAS_EN (register 0x0020 [1])
- 50 ms TEMP_SNS delay, if periodic sampling is enabled by TS_DISCHG_MODE_SEL (register 0x0026 [5])
- MODE input is pulled low and CE_N register is set to 0

If these conditions are met, charging starts automatically at the appropriate level when VDD_PWR is connected.

4.4.3 **Pre-Charge and Termination Current**

In Pre-Charge mode, a constant low-level charge current is supplied to the battery, up to 50 mA. Termination current is the charge current in CV mode at which charging is terminated. Both precharge current and termination current are identical and cannot be controlled independently. The current setting is selectable by the IPRETERM bits (register 0x0023 [6:0]) within a range of 0.5 mA to 50 mA. Pre-charge and termination currents can also be set by an external resistor connected to the ITER_CHG pin.

Charge termination can be disabled by setting the termination enable bit, TE (register 0x0021 [4]) = 0. TS_WARM (register 0x0021 [5]) and TS_COOL (register 0x0021 [6]) conditions can also optionally disable termination. This may be useful in conditions where the available charging current is reduced due to system load, or when charge current is reduced due to fault conditions.

The pre-charge-to-fast-charge threshold voltage is programmable between 2.7 V and 3.2 V via BPRECHG bits (register 0x0025 [2:0)]. The threshold has 200 mV of hysteresis. When VBAT rises above the pre-charge threshold voltage, fast charging begins.

Pre-charging is indicated by an SYS_FLT interrupt and ISR_PRECHG event bit (register 0x0005 [2]).

4.4.4 Fast Charge Current

In Fast Charge mode, a constant charging current is supplied to the battery at up to 500 mA. Fast charge current is selectable by the ICHG bits (register 0x0022 [6:0]). This can also be set by an external resistor connected to ILIM_CHG pin. Charge current is programmable from 5 mA to 500 mA with an accuracy of +/-5 % over the full range. Fast charge current settings down to 2 mA are available with some OTP variants.

When VBAT reaches VBAT_CHG the device ends CC fast charge operation and starts CV operation.

4.4.5 CV Voltage Regulation and Termination

CV mode begins when the battery voltage rises into the regulation range. The regulated battery voltage, VBAT_CHG, is set between 3.6 V and 4.65 V by the VBCHG bits (register 0x0024 [6:0]. Regulation accuracy is +/-0.5 % in CV mode.

When the DA9072 enters CV mode, charge current begins gradually decreasing, while battery voltage remains regulated at VBAT_CHG. When charge current drops to the termination current level, charging is terminated and the charge status, STS_CHG, changes to charge done.

Charge done is indicated by an SYS_FLT interrupt and event bit ISR_CHG_DONE (register 0x0005 [3]).

To ensure that the charging current is below the termination level, termination does not occur until the peak current is below the threshold. In noisy conditions or at very low termination currents, the average battery current at termination may be a few mA below the set threshold.

4.4.6 Charge Done and Recharge

To prevent rapid iterations of charging and discharging from the charge done state, there is 120 mV of hysteresis below the CV regulation level, VRCH. Charging does not restart until VBAT falls below this threshold. In addition, there is a 32 msec deglitch time for noise immunity.

Recharging starts automatically, when VBAT falls below the VRCH threshold. Recharging is indicated by an SYS_FLT interrupt and event bit ISR_RECHG_START (register 0x0005 [4]).

4.4.7 Charge Faults

The DA9072 identifies multiple conditions as charge faults, indicated by the STS_CHG status bits (register 0x0002 [5:4]). These conditions may reduce the charge current, reduce the target battery voltage, or take other actions. All are indicated by an interrupt and event bit. When the charger is unable to provide the programmed charge current to the battery, such as when VDD_PWR is in current limit, the termination current is ignored and charging is allowed to continue until the safety timer expires. All of the fault and event interrupts that affect charging are summarized in Table 26.

Datasheet
VBAT_UVLO and VBAT_SHORT are included in the table although they are not indicated as faults when VDD_PWR is present. Normal pre-charging continues in both cases.

Table 26: Charge Faults

Fault	Charging	Action	STS_CHG	Termination	Safety timer
VDD_PWR OVP	Suspend	VDD_PWR open	Fault	-	Reset
VDD_PWR UVLO	Suspend	VDD_PWR open	Fault	-	Reset
VDD_PWR DPM	Continue	VDD_PWR current limit decreased	Fault	Disable	x2
VDD_PWR ILIM	Continue	VDD_PWR current limited	Fault	Disable	x2
VBAT DPPM	Continue	Charge current reduced	Fault	Disable	x2
VBAT OCP	Suspend	VBAT current limited	Fault	-	Suspend
Sleep mode	Suspend		Fault	-	Suspend
Supplement mode	Suspend	Battery discharging	Fault	-	Suspend
TS COLD	Suspend		Fault	-	Suspend
TS HOT	Suspend		Fault	-	Suspend
TS COOL	Continue	Charge current reduced to half	In- progress	Disable	x2
TS WARM	Continue	VBAT_CHG reduced by 140 mV	In- progress	Disable	x1
TS OFF (fault option)	Suspend		Fault	-	Reset
Safety timer	Suspend		Fault	-	Reset
Over-temp.	Suspend		Fault	-	Reset
VDD_SYS UVLO	Suspend	Power cycle	Fault		Reset
VBAT Short	Pre-charge		In- progress		x1

There are several option bits available to modify the fault behavior described above. Termination can be enabled during TS_WARM and TS_COOL, a TS_HOT fault can trigger a power cycle, and a TS_OFF condition can trigger a fault or simply disable the battery Temp Sense feature.

4.4.8 Safety Timers

The safety timer starts counting as soon as a charge cycle begins, ensuring that the charge cycle is terminated even if the battery fails to reach the termination condition. The duration of the timer, t_{MAXCHG}, is set by bit TMR (register 0x0021 [1:0]) between 30 minutes and 9 hours. If the safety timer expires before charging is terminated, SYS_FLT toggles, and the ISR_CHG_TMR event bit (register 0x005 [5]) is set to 1.

In Pre-Charge mode, the timer period is 10 % of the safety timer setting. The pre-charge timer counts during pre-charging and is reset at the transition to Fast-Charge mode. If the charger is still in pre-charge at the end of the pre-charge timer period, the charge cycle is terminated. The main safety time is running during both fast charge and pre-charge modes.

Datasheet	Revision 3.2	13-Jun-2023

Ultra-Low Quiescent Current PMIC

To reset the safety timer and resume charging after the timer has expired, toggle the MODE pin or the CE_N bit (register 0x0020 [0]), or remove and re-connect VDD_PWR.

Charge faults may cause the timer duration to be doubled, suspended, or reset, see Table 27. The timer doubling function can be doubled using the TMRX2_EN bit (register 0x0021:[3]).

TMR	Pre-Charge Timer	Main Timer
0x0	3 min	30 min
0x1	18 min	3 h
0x2	54 min	9 h
0x3	(Disable)	(Disable)

Table 27: Safety Timer Register Settings (0x0021)

4.5 USB Powered Operation and Power Path Management

The DA9072 monitors battery voltage and current as well as VDD_PWR input voltage and current during all modes of operation. At all levels of operation, the appropriate charge current is maintained while protecting the battery, system connections, and the input supply from over-voltage and overcurrent and other potential fault conditions.

The DA9072 power path management features ensure smooth transitions from charging, to reduced charging, to battery supplementing the load during load peaks.

4.5.1 Under-Voltage Lockout

The UVLO threshold for VDD_PWR is 3.6 V (typical). Below this voltage, VDD_PWR is disconnected from the power path and DA9072 is in battery powered operation. VDD_PWR UVLO causes SYS_FLT to toggle and sets event bit ISR_VDD_PWR_UVLO (register 0x0003 [1]) = 1.

The UVLO threshold has typically 150 mV of hysteresis on the rising edge. When VDD_PWR rises above this threshold, charging is re-enabled. UVLO recovery also toggles the SYS_FLT interrupt and sets the UVLO recovery event bit.

4.5.2 Sleep Mode

Sleep mode behavior is similar to UVLO, but the falling threshold is relative to VBAT. When VDD_PWR falls within 65 mV (typical) of VBAT, Sleep mode is activated. In Sleep mode, VDD_PWR is disconnected from the power path, SYS_FLT toggles, and event bit ISR_SLP (register 0x0005 [0]) = 1. When VDD_PWR falls into the range of Sleep mode, DPPM mode is already active (VDD_PWR < VBAT_CHG) and the charge current is already reduced to zero, see Section 4.5.5.

4.5.3 VDD_PWR Current Limit

The VDD_PWR current limit (I_{DDPWR_LIM}) feature protects both the DA9072 and the USB supply from excessive current. The current limit threshold is programmable from 50 mA to 600 mA in 50 mA steps via bits ILIM (register 0x0027 [3:0]. When the input current reaches the set threshold, VDD_PWR current is clamped and event bit ISR_VDD_PWR_ILIM (register 0x0003 [4]) = 0x1. If the load at VDD_SYS increases the VDD_SYS voltage drops, eventually triggering a VDD_SYS UVLO.

The dynamic power management (DPM) function, when enabled, reduces the current limit threshold as USB input voltage is reduced.

4.5.4 Input Voltage Dynamic Power Management

If the charge current and system load exceed the current capability of the VDD_PWR input source, the input voltage drops. Dynamic power management (DPM) prevents the input from dropping below the nominal USB range and into Dynamic Power Path mode (DPPM) by scaling down the VDD_PWR current limit (I_{DDPWR_LIM}) until it matches current capability of the USB source.

Datasheet

This feature becomes active when VDD_PWR falls below VDDPWR_IIN_DWN, which is programmable between 4.2 V and 4.9 V by bit VDD_PWR_DPM (register 0x0028:[2:0]). The DPM feature can be disabled by setting bit VDD_PWR_DPM_DIS (register 0x0028 [4]) = 0x1. However, when DPM is disabled, the USB power source may be pulled down, triggering Sleep mode or input UVLO.

The event bit ISR_VDD_PWR_DPM (register 0x0003 [3]) is set to 0x1 and the SYS_FLT pin toggles whenever the DA9072 is in this current-limited mode. In Charging mode, termination is ignored to allow the battery to be charged with any remaining current.

4.5.5 Dynamic Power Path Mode

Dynamic Power Path mode (DPPM) manages the situation in which the total charging and system current exceeds the VDD_PWR current limit. When the input current is clamped, V_{DD_SYS} drops until it reaches $V_{DD_SYS_THR_DPPM}$ (DPPM threshold). In DPPM, charging current is reduced to service the system current at VDD_SYS. DPPM is only active during charging and toggles SYS_FLT and set an interrupt bit ISR_VBAT_DPPM (register 0x0004 [1]) = 0x1.

If V_{DD_SYS} drops further due to increasing load, the DA9072 eventually enters Battery Supplement mode.

4.5.6 Battery Supplement Mode

The DA9072 enters Battery Supplement mode when V_{DD_SYS} falls below V_{BAT}. Battery Supplement mode occurs in USB powered operation, regardless of whether the battery is charging or not. Similar to DPPM mode, the total current at VDD_SYS exceeds the VDD_PWR current limit, causing VDD_SYS to drop until it reaches the VBAT voltage. In this mode, the battery supplies current to VDD_SYS, thus supplementing the input current to supply the system demands. In Battery Supplement mode, the discharge current from the battery is limited by the over-discharge protection.

Battery Supplement mode toggles the SYS_FLT pin and sets an event bit ISR_BAT_SPPL (register 0x0005 [1]) = 0x1. The device exits Battery Supplement mode when the system load is reduced and V_{DD_SYS} rises above V_{BAT}.

4.5.7 Input Over-Voltage Protection

The DA9072 protects itself (and downstream connections to VDD_SYS) against input over-voltage conditions by disconnecting VDD_PWR from the power path. Over-voltage protection (OVP) kicks in immediately when VDD_PWR exceeds the OVP threshold. Over-voltage events are common at USB plug-in due to the inductance of the long cable, where the transient overshoot may exceed 10 V depending on cable length, quality, and input capacitance. The VDD_PWR input is capable of withstanding up to 20 V and remains in OVP until the voltage returns to nominal levels. During OVP, VDD_PWR is disconnected from the power path and DA9072 is in normal battery powered operation.

When an over-voltage occurs, the event bit ISR_VDD_PWR_OVP (reg 0x0003 [0]) = 0x1 and SYS-FLT toggles.

4.5.8 VDD_PWR Input Supply Impedance

The DA9072 charging path is typically supplied by a 5 V USB source. USB cable resistance can range from hundreds of milliohms to ohms. At higher charging currents, this parasitic input impedance may cause VDD_PWR to drop from 5 V into the DPM range.

High USB cable resistance can lead to oscillations in DPM or Sleep mode. As VDD_PWR drops, the DA9072 attempts to reduce current demand, which in turn causes VDD_PWR and current draw to increase again. Follow the guidelines in Figure 24 to ensure that the DA9072's internal hysteresis is be sufficient to overcome these effects. The worst case is at highest battery voltage, the VBAT_CHG regulation point.

It is recommended to always enable the DPM function, with the threshold set at least 0.4 V above the VBAT_CHG voltage. Referring to Figure 24, with a DPM setting of 4.5 V and VBAT = 4.2 V, the system has the potential to oscillate at any current greater than 75 mA. Note that this would only

Datasheet

Ultra-Low Quiescent Current PMIC

occur if VDD_PWR drops into the DPM or sleep region. For this example, a DPM setting of 4.6 V or 4.7 V is recommended for currents above 75 mA. Note

Figure 24: VDD_PWR DPM Setting Recommendations (Based on Typical USB Cable Impedance)

4.6 Power Cycling

The power cycle function disables all outputs (buck, and LDOs) for a programmable time period and then restarts. Power cycling can be initiated by a fault condition, RIN_N pushbutton, VDD_PWR insertion, or I command. The primary purpose of power cycling is to clear a serious fault condition such as IC over-temperature (OVT) or to reset the host.

4.6.1 Requested Power Cycle

The power cycle settings are configured at by SYS_PWR_CYC_0 (register 0x0012). There are three methods to request a power cycle: by register write to PWR_CYC_FRC, by holding the RIN_N push button low for the reset period, or by inserting and removing VDD_PWR. The setting options are summarized in Table 28.

PWR_CYC_EN 0x0012 [0]	PWR_CYC_MODE 0x0012 [1]	RIN_N RESET Wake-Up Timer	VDD_PWR Insertion / Removal	PWR_CYC_FRC 0x0012 [2]
0x0	N/A	Disable	Disable	Disable
0x1	0x0	Disable	Enable	Enable
0x1	0x1	Enable	Disable	Enable

Table 28: Power Cycle Trigger Settings

After any of these three host or user-initiated power cycles the buck and LDO outputs are disabled. When auto-restart occurs, only the buck restarts. All register settings are preserved at restart with the exception of the output enable registers. There is also a READ clear event bit STS_PWR_CYC (register 0x0002 [1]) to indicate that a power cycle has occurred.

Datasheet

Revision 3.2

Two timers apply to power cycling: the wait timer and the period timer. The wait time allows the host to take action before power is shut down and can be set between 0 s and 2 s. The period timer controls how long the outputs are powered down before restart and can be set between 5 s and 20 s. Both timers are programmable, the wait timer by PWR_CYC_WAIT_PER (register 0x0012 [7:6]) and the period timer by PWR_CYC_PER (register 0x0012 [5:4]).

The power cycle timing using the RIN_N pushbutton is shown in Figure 25. The RESET time is set by bits RIN_N_PER_RST (register 0x0010 [7:6]). The RIN_N push button timer can be used for power cycling only when VDD_PWR is present.

Figure 25: Power Cycle by Push Button Timer

Alternately, the VDD_PWR plug can be used to initiate a power cycle as shown in Figure 26. VDD_PWR must go low and high three times within 8 s. After the 8 s period, the power cycle begins.

Figure 26: Power Cycle by VDD_PWR Insertion

The force power cycle bit PWR_CYC_FRC (register 0x0012 [2]) follows the same power cycle period and behavior but does not impose any wait time; power cycle shutdown occurs immediately.

4.6.2 Fault Triggered Power Cycle

The DA9072 also initiates a power cycle in response to various fault conditions, listed in Table 29. Those not listed as **always on** trigger a power cycle only if that option is enabled. Fault triggered power cycles are intended to protect the system from a potentially damaging condition. The behavior is different to a user-initiated power cycle.

When a fault triggered power cycle occurs, the wait time is skipped and all outputs are shut down immediately. When the power cycle period ends, the initial OTP register values are re-loaded at restart, including any outputs that are enabled by default.

Datasheet	Revision 3.2	13-Jun-2023
CFR0011-120-00	41 of 117	© 2023 Renesas Electronics

A fault triggered power cycle also disables VDD_SYS, creating a complete power system restart (a host or user-initiated power cycle does not disable VDD_SYS).

Table 29: Power Cycle Faults

Power Cycle Fault Triggers	0x0013 Register Bit	I ² C Selectable	Register Reset
Battery Temp Sense HOT	0	YES	YES
Thermal Shutdown (OVT)	NA	Always On	YES
VBAT UVLO (in Active Battery mode)	NA	Always On	YES
VDD_SYS UVLO	NA	Always On	YES

There are also three power cycle faults associated with the buck, listed in Table 30. Any of these faults cause an immediate power cycle. Buck faults do not re-load the OTP register values and only the buck restarts after a buck fault power cycle.

Power Cycle Fault Triggers	0x0013 Register Bit	I2C Selectable	Register Reset
BUCK OCP	4	YES	NO
BUCK OVP	NA	Always On	NO
BUCK UVP	6	YES	NO

Table 30: BUCK Power Cycle Faults

4.7 Standalone Mode

The DA9072 can operate without I²C communication using external resistors to program three settings. Fast charge current, input current limit, and termination and pre-charge current can be set by external resistors at the ITER_CHG, ILIM_PWR and ILIM_CHG pins, respectively.

This feature is enabled by the RMEAS_EN bit (register 0x0020 [1]). Whenever VDD_PWR is plugged-in, these three external resistors are evaluated and the control registers are set appropriately. If the pins are connected to ground the internal register values are used.

If used, all three resistors must be installed. If any of the three pins are grounded all three currents are determined by their respective register values.

The specification of RMEAS_EN register is described in Table 31.

RMEAS_EN (0x0020 [1])	External Resistance [Ω]	Setting
0	N/A	Register settings used
1	0	Register settings used
1	> 0	Calculated from external resistance

4.7.1 Termination and Pre-Charge Current Programming

The pre-charge (I_{CHG_PRE}) and termination (I_{TER}) currents are the same value and set with the same resistor. When using the external resistor setting method, they can be set to 5 %, 10 %, 15 %, or 20 % of the fast charge current, I_{CHG} .

Datasheet

Revision 3.2

Connect a resistor (R_{ITER_CHG}) from the ITER_CHG pin to ground. Table 32 shows the recommended resistor values to set the pre-charge and termination currents.

Table 32: ITER	_CHG Pin	Recommended	Resistor Values
----------------	----------	-------------	------------------------

% of Існа (Тур)	Resistance (kΩ)
5	68
10	22
15	8.2
20	2.2
Register setting at 0x0023 is used	0

Once VDD_PWR is connected, ICHG_PRE and ITER values can be read at register 0x0020 [5:4].

I_{CHG_PRE} cannot be set higher than 50 mA, or lower than 0.5 mA. Settings which are out of range result in the minimum or maximum current setting. For example, with a 400 mA fast charge current, a 20 % setting would result in 80 mA, but the actual pre-charge current is the maximum value, 50 mA.

4.7.2 Input Current Limit Programming

VDD_PWR input current limit (I_{DDPWR_LIM}) is programmed by a resistor connected from the ILIM_PWR pin to ground. The resistor value is calculated as: $R_{ILIM_PWR}(\Omega) = \frac{1000}{IDDPWR_LIM(A)}$

Not all current limit register settings are available in Resistor Setting mode. The available current limit settings and corresponding resistor values are shown in Table 33.

IDDPWR_LIM (Typ)	Resistance (kΩ)
Register setting at 0x0027 is used	0
600 mA	1.6
500 mA	2.0
400 mA	2.7
300 mA	3.6
200 mA	5.1
150 mA	6.8
100 mA	10.0
50 mA	20.0

Table 33: ILIM_PWR Pin Recommended Resistor Values

4.7.3 Charge Current Programming

Fast charge current (I_{CHG}) is programmed by a resistor connected from the ILIM_CHG pin to ground. The resistor value is calculated as: $R_{ILIM_CHG}(\Omega) = \frac{1000}{ICHG(A)}$

Not all fast charge register settings are available. The available current limit settings and corresponding resistor values are shown in Table 34.

Table 34: ILIM_	CHG Pin Recommended Resistor Va	lues
-----------------	---------------------------------	------

Існь (Тур)		Resistance (kΩ)	
Register setting at 0x0022 is used		0	
500 mA		2.0	
400 mA		2.7	
Datasheet	Revisi	on 3.2	13-Jun-2023

Існд (Тур)	Resistance (kΩ)
300 mA	3.6
200 mA	5.1
150 mA	6.8
100 mA	10.0
70 mA	15.0
50 mA	20.0
40 mA	27.0
30 mA	36.0
20 mA	51.0
15 mA	68.0
10 mA	100.0
7 mA	150.0
5 mA	200.0

4.8 Host and Pushbutton Communication

The DA9072 features multiple digital pins for host and user communication, see Table 35, with connections shown in Figure 27.

Pin Name	Description
SCL / SDA	I ² C interface
MODE	Mode control input Used to enter Hi-Z mode and control charging (Edge triggered for Hi-Z control; level triggered for charge control)
RIN_N	Pushbutton interface Used to wake up from Ship mode and Hi-Z mode Also used to generate a low-active reset pulse on ROUT_N
SYS_FLT	IRQ interrupt output flag Also functions as a charging status indicator
PWR_FLT	Power input status flag Can also be configured as a voltage shifted RIN_N output
ROUT_N	Host reset output which is controlled by RIN_N
WD	Watchdog input

Table 35: Digital Pins for Host and Pushbutton Interface

Figure 27: Digital Pin Connections

4.8.1 Watchdog Input and Timer

A programmable watchdog timer, WD, is available to detect a stall in the host. The WD function is enabled or disabled by bit WD_EN (register 0x0014 [1:0]). Each time the host initiates I²C or toggles the watchdog input, the timer resets. If no host activity is detected within the timeout period, the DA9072 toggles the SYS_FLT flag and sets the WD event bit, ISR_WD (register 0x0007 [4]), to 1.

If the register reset on timeout option is enabled, bit WD_RST_REGS_EN (register 0x0014 [7]) the outputs are disabled for a period of typically 20 msec and then re-enabled to reset the host. The watchdog is automatically re-activated and the pre-programmed OTP values are loaded (except for RIN_N_RST_ROUT_EN and RIN_N_RST_REC at register 0x0010 [3:0]).

The watchdog timeout period, t_{WATCHDOG} in Figure 28, is programmable to 25 s or 50 s via WD_TMR_PER (register 0x0014 [5:4]). Optionally, the WD function can also toggle the ROUT_N pin, this is enabled by WD_ROUT_EN (register 0x0014 [6]).

The WD_EN bits (register 0x0014 [1:0]) selects when the watchdog timer is enabled in different modes, see Table 36.

WD_EN	Charge Mode	Active Battery Mode	Hi-Z Mode
0x00	Disable	Disable	Disable
0x01	Enable	Disable	Disable
0x02	Enable	Enable	Disable
0x03	Enable	Enable	Enable

The WD_CLR_SEL bits (register 0x0014 [3:2]) select which activity the WD uses to clear the timer, see Table 37.

WD_CLR_SEL	Description
0x00	Only I ² C clears the timer
0x01	Only WD pin clears the timer
0x02	Both I ² C and WD pin clear the timer
0x03	Reserved

Table 37: Watchdog Timer Clear Settings

Datasheet

Revision 3.2

Figure 28 shows how to periodically feed the watchdog and what happens when the processor stalls.

Figure 28: Watchdog Behavior

4.8.2 VDDIO

VDDIO is the I/O supply rail for DA9072. I²C communication (SDA, SCL), MODE, WD, ROUT_N, SYS_FLT, and PWR_FLT pins are all referenced to the VDDIO level.

VDDIO is an input pin, which can be supplied with any voltage between 1.4 V and 3.3 V as required to interface with the host. However, the VDDIO voltage must not be higher than the VDD_PWR and VBAT voltages. Therefore, it is recommended to use the buck or LDO output to supply VDDIO. The VDDIO pin should be bypassed with a 1 μ F capacitor, placed close to the pin and grounded to AGND.

4.8.3 Interrupt Events and Status Control

DA9072 has an interrupt interface for 35 individual events. Some of these events are categorized as charge fault events, see Section 4.4.7.

There is a read-only event bit for each interrupt in the SYS_ISR_<n> registers 0x0003 through 0x0007. A high state indicates that an event has occurred. The bit is kept in a high state, even if the fault condition is removed, until the bit is cleared. These are read-to-clear bits which are read once to identify the event and read a second time to reset the bit to 0.

The DA9072 provides two open drain output pins to indicate system status and interrupts, SYS_FLT and PWR_FLT. These should be pulled up to VDDIO with a 1 k Ω to 100 k Ω resistor. Both pins have configuration options, set by PWR_FLT_MODE (register 0x0011 [4]) and SYS_FLT_MODE (register 0x0011 [0]).

The PWR_FLT output can be configured as an indicator of the VDD_PWR status, or as a levelshifted RIN_N monitor, see Figure 29 and Figure 30.

When used as a level shifted RIN_N monitor, there is a typical delay of 1.5 ms between RIN_N and PWR_FLT signals.

In the case of VDD_PWR status indicator, PWR_FLT goes low only when VDD_PWR is within a valid range. In both cases a high state is high impedance.

Figure 29: PWR_FLT Configured as RIN_N Monitor

Revision 3.2

13-Jun-2023

Figure 30: PWR_FLT Configured as VDD_PWR Status Indicator

The SYS_FLT output indicates interrupt events with a 128 µs pulse and can be configured to indicate charging in progress. SYS_FLT is configured by SYS_FLT_MODE (register 0x0011 [0]), see Table 38.

Table 38: SYS_FLT Configuration

SYS_FLT_MODE Setting	Charge Indicator	IRQ Interrupt Polarity
0	Disabled	Active-low
1	SYS_FLT low when charge in progress	Active-low when charge is not in-progress Active-high when charge is in-progress

The SYS_FLT interrupt flag can be masked for each individual interrupt by setting its mask bit to 1. Mask registers, SYS_IMR_<n>, are at registers 0x0008 through 0x000C. Masking an interrupt masks the SYS_FLT flag but does not mask the event bit.

Once an interrupt has occurred, the SYS_FLT flag does not toggle a second time for the same interrupt. The event bit must first be read cleared before SYS_FLT responds to that event again.

4.8.4 **Pushbutton Reset Timer and Reset Output**

The RIN_N input can be used to manually control DA9072 in Ship mode, Hi-Z mode, or when the host has stalled. The pin has three functions: enter/exit Ship mode, enter Hi-Z mode, and toggle the ROUT_N reset output. RIN_N is active in all modes of operation. The pin is internally pulled high and can be pulled directly to ground with an external pushbutton to activate the timer.

When RIN_N is pulled low, a reset timer begins counting. There are three programmable RIN_N timers; each associated with an event bit. Each time the RIN_N timer passes the programmable count the SYS_FLT flag toggles, and a WAKE event bit is set. In this way, requests to the host can be generated by pressing the button for different durations. The first two timers are WAKE1 and WAKE2; the third timer is the RESET timer. If RIN_N is held low for the set RESET time, the DA9072 can be set to enter Ship mode, enter Hi-Z, or initiate a power cycle. The WAKE and RESET periods are set as shown in Table 39.

Timer Name	Timer Control Bits	Programmable Period
WAKE1	RIN_N_PER_WAKE1 0x0010 [4]	50 ms 500 ms
WAKE2	RIN_N_PER_WAKE2 0x0010 [5]	1.0 s 1.5 s
RESET	RIN_N_PER_RST 0x0010 [7:6]	4 s 8 s 10 s 14 s

Table 39: RIN_N Pushbutton Wake-Up Timer Control

The timer status bits,ISR_RIN_N_WAKE2, ISR_RIN_N_WAKE1, and ISR_RIN_N_RST, are at 0x0007. As with all other events, the SYS_FLT flag can be masked. The RIN_N timing is described in Figure 31.

Datasheet

Figure 31: RIN_N Pushbutton Reset Timer Timing Diagram

The RESET behavior is configurable with the options shown in Table 40.

Bits	Configuration Description
RIN_N_RST_REC 0x0010 [1:0]	0: RESET event has no effect 1: Enter Ship mode at RESET 2: Enter Hi-Z mode at RESET
PWR_CYC_MODE 0x0012 [1]	0: Power cycle triggered by VDD_PWR insertion / removal 1: Power cycle triggered by RESET timer when VDD_PWR present
RIN_N_RST_ROUT_EN 0x0010 [3:2]	0: Disable ROUT_N toggle at RESET 1: Enable ROUT_N toggle at RESET 2: Enable ROUT_N toggle at RESET only when VDD_PWR is present

The RIN_N timer can also be used to exit Ship mode. A WAKE1 event triggers Ship mode exit, with WAKE2 and RESET being ignored.

If ROUT_N is enabled, a RESET event causes the ROUT_N output to toggle low for 400 ms (typ). ROUT_N is an open-drain output, pull up this pin to the logic rail with a 1 k Ω to 100 k Ω resistor.

4.8.5 System Status Register

The System Status register (0x0002) indicates the status of four system functions:

- BUCK: High = enabled with no faults
- Charge Status: Ready, Charge in Progress, Charge Done, or Fault
- MODE: Logic state of the MODE pin
- Power Cycle: High indicates that a power cycle has occurred

Only the power cycle bit shows previous events and is read-clear. The others are READ only, reflecting the current status.

4.8.6 I²C Programming

DA9072 includes an I²C compatible interface which allows READ/WRITE access to all registers. The interface is disabled in some modes and is configurable, see Table 41.

	0	40	-	h	~	et
L		Ld	-	п	е	eι

Table 41:	I ² C	Interface	Configuration
-----------	------------------	-----------	---------------

I2C_HIZ_EN 0x0015 [0]	Ship Mode	Hi-Z Mode	Active Battery Mode	Charge Mode
0	disabled	disabled	active	active
1	disabled	active	active	active

I²C communication uses the SDA and SCL are open drain I/O pins. Pull these up to VDDIO with a 1 k Ω to 100 k Ω resistor. SCL is the serial clock generated by the host and SDA is the serial address and data input/output.

DA9072 is compatible with the standard I²C protocol but only operates as a slave. The I²C bus supports a frequency range of 400 kHz (Fast mode) to 100 kHz (Slow mode). The transfer protocol is the same whether operating in Fast or Slow mode.

The device supports 8-bit addressing only. The I^2C slave ID is 7-bit and can be set at register 0x0040 [6:0], with a range of 00 to 7F.

When active, the I²C bus is monitored at all times for a valid SLAVE address, and an ACKNOWLEDGE (ACK) bit is generated if the SLAVE address is true.

This indicates to the master that the communication link has been established. The master then generates SCL clock cycles to transmit or receive data. After receiving data, an ACK is generated either by the DA9072 or the master. Basic communication is described below and in Figure 32.

- A START condition is initiated by a high to low transition on the SDA line while the SCL is in the high state
- A STOP condition is indicated by a low to high transition on the SDA line while the SCL is in the high state
- An ACK is indicated by the receiver pulling the SDA line low during the following clock cycle

Figure 32: I²C Start and Stop Conditions

Each data sequence is 9-bit, consisting of 8-bit data and 1-bit ACK. Data sequences can be repeated indefinitely. At the end of the data transfer, the master generates a STOP condition.

The bus returns to IDLE if during a message a new START or STOP condition occurs. Data is transmitted as MSB first for both READ and WRITE operations.

4.9 Buck Regulator

DA9072 includes a nano-ampere quiescent current buck regulator with adjustable output voltage, up to 300 mA load capability, and Power Saving mode for excellent efficiency at light load. It also features dynamic voltage scaling (DVS) capability and multiple protection features.

4.9.1 Buck Output Voltage Programmability

The DA9072 buck regulator output voltage is programmable in 50 mV steps between 0.6 V and 2.1 V. The output voltage is set by BUCK_VOUT (register 0x0030 [4:0]). The voltage can be set within two ranges based on the value of the VOUT_RANGE_HI bit (register 0x0030 [6]). The output voltage can be changed within one of the two range settings while the buck is enabled (0.6 V to 1.3 V or 1.3 V to 2.1 V). The range setting, however, can only be changed while the buck is disabled.

Datas	1.0.04
Datas	neer
Patac	

If a command is received outside of the allowable range (that is above 1.3 V for VOUT_RANGE_HI = 0 or below 1.3 V for VOUT_RANGE_HI = 1), BUCK_VOUT<3:0> is forced to 01110 (1.3 V) digitally.

Although the output voltage can be set up to 2.1 V, there is a headroom requirement of 600 mV for VDD_BUCK. Therefore, if the output voltage is set to 2.0 V or 2.1 V then VBAT UVLO must be set to 2.6 V or 2.7 V respectively to ensure proper operation.

4.9.2 Buck Enable and Soft Start Operation

DA9072 buck integrates a soft start circuit to minimize output voltage over-shoot and input voltage droop during start-up. Writing 1 to BUCK_EN (register 0x0030 [7]) enables the buck and switching starts after a typical delay of 3 ms. During soft-start, the cycle-by-cycle peak current limit is reduced to 300 mA (typ) to limit inrush current. Although the startup time is not controlled directly, a smooth startup can be expected with timing variations due to input and output voltage conditions.

Due to the reduced current limit in startup, starting the buck regulator into a heavy load is not recommended.

4.9.3 **Power Saving Mode Operation**

The DA9072 buck regulator features Power Saving mode that greatly reduces the quiescent current in light load conditions. When the load decreases to a certain level, the buck regulator enters Discontinuous mode (DCM) and operates with pulse frequency modulation (PFM). The low-side FET is turned off based on a zero-crossing comparator to prevent negative inductor current, which can result in additional conduction loss. If both high and low-side FETs remain off for a certain delay time after the inductor current crosses zero, the buck enters Power Saving mode. In this mode, most of the internal circuitry is shut down to reduce quiescent current. The lighter the load, the longer the duration Power Saving mode lasts; therefore, achieving the lowest quiescent current and improving light load efficiency. At no-load the buck regulator consumes only 900 nA of quiescent current typically.

At heavier loads, the buck operates in Continuous Conduction mode (CCM) with constant off-time. The off timer imposes a minimum off time on the switching cycle, placing a ceiling on the switching frequency.

4.9.4 Dynamic Voltage Control

The DVC feature allows the buck output voltage to ramp up or down to a new target value in a controlled manner. When a new voltage setting is applied, the register setting value is incremented or decremented by one bit every 4 ms, which results in an output voltage slew rate of 50 mV / 4 ms. Since the buck output voltage can only be changed within the high or low range while enabled, DVC also has this restriction. DVC can be enabled and disabled by bits DVC_STEP (register 0x0050 [1:0]).

The buck works in DCM under light load; therefore, it cannot quickly discharge the output voltage during DCM. When a voltage ramp down is commanded in DCM, the slew rate depends on the load. In CCM, the falling slew rate is the same (50 mV / 4 ms) as the rising slew rate.

Different DVC slew rates are available by OTP.

4.9.5 Over-Current Protection

Over-current protection (OCP) monitors the peak current through high-side FET on a cycle-by-cycle basis. When the sensed current exceeds the current limit threshold, the high-side FET is turned off immediately to limit the inductor current. The high-side FET is turned on again after the constant-off time expires. Exceeding the current limit threshold triggers the ISR_BUCK_OCP event bit (register 0x0006 [0]) and pin SYS_FLT toggles.

In current limit conditions the output voltage drops, potentially causing an under-voltage fault. Both over-current and under-voltage can be set to initiate a power cycle, restarting the buck after a

Datasheet

Revision 3.2

13-Jun-2023

programmable wait time. The power cycle triggers are configured by register SYS_PWR_CYC_1 (0x0013 [0], [4], [6]).

4.9.6 Output Under-Voltage Protection

When a buck output short or heavy loading occurs, inductor current increases until the peak reaches the cycle-by-cycle current limit. As the output is shorted, the inductor current down slope is very small during low-side FET on time. In this condition, the inductor current can potentially increase with each cycle. To prevent the inductor current from running away in a short circuit condition, the buck output voltage is monitored. If an over-current condition happens and the buck output drops 400 mV below the reference voltage, the ISR_BUCK_UVP event bit (register 0x006 [2]) is set. Under-voltage protection (UVP) can be set to trigger a power cycle by bit BUCK_UVP_PWR_CYC_EN (register 0x0013 [6]).

UVP is not active during startup. Therefore, a short circuit during startup may not trigger a fault event or a power cycle.

4.9.7 Output Over-Voltage Protection

Over-voltage protection (OVP) protects the load from unexpected output overshoots. When the buck output voltage is 200 mV greater than the target voltage, the high side FET is immediately turned off. Simultaneously, the output discharge FET is turned on to discharge the output capacitor. An ISR_BUCK_OVP event bit (register 0x0006 [1]) is set and the SYS_FLT flag toggles. The buck remains off with the output pulled down until the fault is cleared. BUCK_OVP is set to initiate a power cycle by default (OTP setting).

4.9.8 Automatic Output Voltage Discharge

To speed up the discharging of the buck output capacitor and ensure a safe restart, the buck regulator provides automatic output voltage discharge when the buck is disabled or shuts down due to a fault. Automatic output discharge when the buck is forced off by a fault is enabled by default (OTP setting).. Automatic discharge when the buck is disabled is set by bit BUCK_PD_CFG2 (register 0x0031 [5]). The output of the buck regulator is discharged through the FB_BUCK pin with resistance of 33 Ω (typical).

4.9.9 External Component Selection

The choice of inductor and output capacitor is a trade-off between light load efficiency and load transient response. In general, the combination of a smaller L and larger COUT improves load transient performance and reduces the voltage ripple at light loads. A larger L improves light load efficiency by reducing the frequency of switching cycles and therefore switching losses.

The inductor must have a saturation rating which exceeds the maximum value of the current limit ($I_{\text{LIM}_SW_PMOS}$). In order to optimize efficiency, decide the inductor value first and then select the inductor with the lowest DCR possible given the PCB constraints.

For recommended component values, see Table 42.

Table 42: External Buck Components

Component	Value
L	2.2 μH
COUT	10 μF

4.10 LDO / Load Switches

Each of the three LDOs is configurable as either a load switch or an LDO and capable of delivering 150 mA to the load in either mode. All LDOs have uncommitted inputs which can be connected to VDD_SYS, the buck output, or another suitable source. If using the buck output, confirm that the buck provides sufficient headroom and current capability.

In LDO mode, LDO0 can be programmed between 0.8 V and 3.15 V in 25 mV or 50 mV steps. LDO1 and LDO2 can be set between 0.8 V and 3.3 V in 50 mV or 75 mV steps. To ensure good regulation and full load capability, 200 mV of headroom is recommended at VDD_LDO<n>, with load capability decreasing with lower headroom. With sufficient headroom the LDOs are current limited at a minimum of 215 mA. LDO0 is designed to operate with lower headroom.

To achieve the best performance from the LDOs, it is recommended that the input bypass cap is placed as close as possible to the LDO input pins (VDD_LDO<n>). A 1 μ F input capacitor is typically sufficient for each LDO, provided that there is at least that much capacitance at the VDD_SYS or BUCK output.

Each LDO is enabled and output voltage set by registers VOUT_LS_LDO<n> (0x0032 through 0x0034). The LDOs can be configured as load switches by bits SEL_LDSW_<n> (register 0x0035 [2:0]). There is an approximately 20 ms delay between the I²C enable command and LDO startup.

When the LDOs are operating as load switches, there are two modes of operation: Current Limit Enabled mode and Full-On mode. Full-On mode disables the load switch current limit, while providing a much lower on-resistance.

In Current Limit mode, current limit is active with the same limit as the LDO mode limit. Each load switch can operate over a wider range compared to LDO mode, with a minimum input voltage of 0.8 V.

In either mode, the load switch current capability is reduced at lower input voltages. At the minimum input voltage, expect a maximum load-switch capability of 1 mA.

4.11 Thermal Protection

DA9072 is protected from internal overheating by the over-temperature shutdown function. When the junction temperature reaches T_{SHDN} , the device initiates a power cycle and the safety timer is reset.

When the power cycle ends, VDD_SYS recovers for several milliseconds. After this period, if the junction temperature is still above T_{SHDN} , a power cycle is initiated again. In this way, the DA9072 continually attempts to restart with an active duty cycle of less than 1 %, sufficient to allow the IC to cool down. When the junction temperature has dropped below $T_{SHDN} - T_{HYS}$, power cycling stops. When an over-temperature fault occurs, SYS_FLT toggles and the ISR_OVT bit (register 0x0007 [3]) is set to 1.

To avoid tripping thermal shutdown, limit power dissipation to no more than:

$$P_{DISS} < \frac{118^{\circ}\mathrm{C} - T_A}{R_{TH \ IA}}$$

Where T_A is the ambient temperature, R_{TH_JA} is the combined thermal resistance of the package and PCB. Typical values for R_{TH_JA} vary with PCB size, layer count, airflow, and other factors. A typical value of 40 °C/W is a good starting point. P_{DISS} can be estimated as:

$$P_{DISS} = P_{BUCK} + P_{LDO0} + P_{LDO1} + P_{LDO2} + P_{CHG}$$

Where:

- PLDO0 = (VDD_LDO0 VLDO0) * ILDO0
- PLD01 = (VDD_LD01 VLD01) * ILD01
- PLDO2 = (VDD_LDO2 VLDO2) * ILDO2
- Pchg = (Vdd_pwr Vbat) * Ichg
- P_{BUCK} = V_{O_BUCK} * I_{OUT_BUCK} * (1/η 1) DCR * I_{OUT_BUCK}
 - \circ where η is the efficiency of the buck converter and DCR is the inductor's DC resistance.

_		-		
	tas	ha	-1	
Da	Tas	ne	ег	
			•••	

Revision 3.2

13-Jun-2023

4.12 PCB Layout Guidelines

To ensure proper operation and maximize optimal thermal performance following these guidelines.

The first priority is to reduce and isolate high frequency switching noise so that it does not disturb sensitive nodes. For the buck regulator, the primary sources of noise are at the input capacitor ground and VDD_BUCK nodes. Connect the input capacitor as close as possible to the PGND_BUCK and VDD_BUCK pins. This reduces the parasitic inductance responsible for many of the voltage spikes during switching. Route the current carrying traces (VDD_BUCK, PGND, VOUT) directly to the pads of all capacitors, not through vias or separate traces. This applies to both input and output capacitors and is good practice in general. Where possible these current carrying traces should be wide or large copper areas to reduce impedance and improve thermal resistance. Route these traces on the top layer only. Connect VDD_SYS and VDD_BUCK close to, or at, the pins to further reduce impedance.

The second largest noise sources are the SW nodes. Although the current here is not switching, the fast voltage swings can introduce noise through capacitive coupling. To reduce this, use the smallest area possible for the SW nodes, while keeping in mind the current handling requirements. SW_BUCK should be routed on the second layer with multiple vias, which allows the best routing for the buck input caps. As much as possible, surround the SW nodes with GND copper to help shield the nearby FB traces.

Route all signal traces such as FB, SDA, and SCL away from the SW nodes, buck input caps, and the inductor. Shield these sensitive traces with GND copper or route on a lower layer with a ground plane to provide shielding.

To create a good shield, flood one inner layer with copper and connected as a common ground to the GND pins of the IC (A1, D3, E1, F2, F3, and F4) and external GND connections. Layer 2 is recommended. Connect PGND_BUCK directly to the buck input cap before connecting to the ground plane. Multiple ground planes, for example a mid-layer and bottom layer plane, are helpful to control high frequency noise and improve thermal performance.

Important: Do not use the AGND node as a ground plane. Instead, connect all AGNDs to a small area or by star connection to the AGND pin. Connect the AGND pin to the larger ground plane in a quiet location.

For an example of top and second layer routing, see Figure 33 and Figure 34. The buck input cap is C21. The cap is placed close to the IC with no vias between the pin and the cap. C23 is the buck output cap, connected on the top layer. L20 is the buck inductor; its SW node is routed on layer 2 and connected by multiple vias.

Layer-2 is a mostly filled GND plane, which provides shielding around the SW nodes routed on this layer. The isolated AGND area is on the right side of Figure 34. AGND is connected to the GND area at a single point on another layer, not shown here.

Note 1 Figure 33 and Figure 34 are the PCB layout of DA9073. For DA9072, L30 and the SW node area on layer-2 can be removed and filled with GND plane.

Figure 33: Example PCB Layout, Top Layer

Figure 34: Example PCB Layout, Layer-2

	4		-4
Da	tas	ne	ет
	-uu		~

Ultra-Low Quiescent Current PMIC

5 Registers

5.1 Register Map

5.1.1 System

Table 43: System Register Map

System									
Register	Addr	7	6	5	4	3	2	1	0
SYS_STS_0	0x00 02	Reserved	STS_BUCK	STS_CHG<1:0>		Reserved	Reserved	STS_PWR_CYC	STS_MODE
SYS_ISR_0	0x00 03	Reserved		ISR_VDD_SYS_ UVLO	ISR_VDD_PWR_ILI M			ISR_VDD_PWR_ UVLO	ISR_VDD_PWR _OVP
SYS_ISR_1	0x00 04	ISR_TS_HOT	ISR_TS_WARM	ISR_TS_COOL	ISR_TS_COLD	ISR_VBAT_SH ORT	ISR_VBAT_UCP	ISR_VBAT_DPP M	ISR_VBAT_UVL O
SYS_ISR_2	0x00 05	Reserved	ISR_TS_OFF	ISR_CHG_TMR	ISR_RECHG_STAR T	ISR_CHG_DON E	ISR_PRECHG	ISR_BAT_SPPL	ISR_SLP
SYS_ISR_3	0x00 06	Reserved	Reserved	Reserved	Reserved	Reserved	ISR_BUCK_UVP	ISR_BUCK_OVP	ISR_BUCK_OC P
SYS_ISR_4		ISR_PWR_PL GGD	ISR_MODE_FALL	ISR_MODE_RIS E	ISR_WD	ISR_OVT			ISR_RIN_N_WA KE1
SYS_IMR_0	0x00 08	Reserved	Reserved		IMR_VDD_PWR_ILI M	IMR_VDD_PWR _DPM	IMR_VDD_PWR_UV LO_RCV	IMR_VDD_PWR _UVLO	IMR_VDD_PWR _OVP
SYS_IMR_1	0x00 09	IMR_TS_HOT	IMR_TS_WARM	IMR_TS_COOL		IMR_VBAT_SH ORT		IMR_VBAT_DPP M	IMR_VBAT_UV LO

Datasheet

Revision 3.2

Ultra-Low Quiescent Current PMIC

Register	Addr	7	6	5	4	3	2	1	0
SYS_IMR_2	0x00 0A	Reserved	IMR_TS_OFF	IMR_CHG_TMR	IMR_RECHG_STAR T	IMR_CHG_DON E	IMR_PRECHG	IMR_BAT_SPPL	IMR_SLP
SYS_IMR_3	0x00 0B	Reserved	Reserved	Reserved	Reserved	Reserved	IMR_BUCK_UVP	IMR_BUCK_OVP	IMR_BUCK_OC P
SYS_IMR_4		IMR_PWR_PL GGD	IMR_MODE_FALL	IMR_MODE_RIS E	IMR_WD	IMR_OVT	IMR_RIN_N_RST	IMR_RIN_N_WA KE2	IMR_RIN_N_W AKE1
SYS_SYS_0	0x00 0D	INIT_REGS	Reserved	Reserved	Reserved	Reserved	Reserved 1	HZ_MODE	EN_SHIPMODE
SYS_BAT_0	0x00 0E	Reserved	Reserved	Reserved	VBAT_DIV_RATIO	Reserved	BUVLO<2:0>		
SYS_BAT_1	0x00 0F	Reserved	Reserved	Reserved	TS_TRIG	Reserved	Reserved	IDISCHG_MON_ EN	VBATDIV_EN
	0x00 10	RIN_N_PER_R	\$121.05	RIN_N_PER_W RIN_N_PER_WAKE AKE2 1		RIN_N_RST_ROUT_EN<1:0>		RIN_N_RST_REC<1:0>	
SYS_STS_O UT_0	0x00 11	Reserved	Reserved	Reserved	PWR_FLT_MODE	Reserved	Reserved	Reserved	SYS_FLT_MOD E
SYS_PWR_C YC_0	0x00 12	PWR_CYC_WA	IT_PER<1:0>	PWR_CYC_PER	<1:0>	Reserved	PWR_CYC_FRC	PWR_CYC_MO DE	PWR_CYC_EN
SYS_PWR_C YC_1	0x00 13		BUCK_UVP_PWR_ CYC_EN		BUCK_OCP_PWR_ CYC_EN	Reserved 0	Reserved		BTS_PWR_CY C_EN
SYS_WD_0	0x00 14	WD_RST_REG S_EN	WD_ROUT_EN	WD_TMR_PER<	1:0>	WD_CLR_SEL<	SEL<1:0> WD_EN<1:0>		
SYS_I2C_0	0x00 15	Reserved	Reserved	Reserved	Reserved	Reserved	I2C_RDCLR_DIS	I2C_RST_TMR_ EN	I2C_HIZ_EN

Datasheet

Revision 3.2

© 2023 Renesas Electronics

RENESAS

DA9072

Ultra-Low Quiescent Current PMIC

Config										
Register	r Addr 7 6 5 4 3 2 1 0									
SYS_CFG_l2 C_0	0x00 40	Reserved	I2C_SLAVE_ADDR<6	3:0>						

5.1.2 Charger

Table 44: Charger Register Map

Charger and Powe	Charger and Power Path									
Register	Addr	7	6	5	4	3	2	1	0	
CHG_CHG_0	0x002 0	Reserve d	Reserved	IPRETERM_REXT<1:0>		ICHG_MAX<1	:0>	RMEAS_EN	CE_N	
CHG_CHG_1	0x002 1	Reserve d	TE_TS_COO L	TS_COO TE_TS_WARM TE TMRX2_EN Reserved TMR<1:0>						
CHG_ICHG_0	0x002 2	Reserve d	ICHG<6:0>	IG<6:0>						
CHG_IPRETERM_ 0	0x002 3	Reserve d	IPRETERM<	6:0>						
CHG_VBREG_0	0x002 4	Reserve d	VBCHG<6:0>							
CHG_VBPRECHG _0	0x002 5	Reserve d	Reserved	eserved Reserved VBPRECHG_COMP_D Reserved VBPRECHG<2:0>						
CHG_BAT_TS_0	0x002 6	Reserve d	Reserved	TS_DISCHG_MODE_S EL	Reserved 0	TS_WARM_E N	TS_OFF_MOD E	TS_EN_DISCHG	TS_EN_CHG	

Datasheet

Revision 3.2

© 2023 Renesas Electronics

Ultra-Low Quiescent Current PMIC

Register	Addr	7	6	5	4	3	2	1	0
CHG_VDD_PWR_ 0	0x002 7	Reserve d	Reserved	Reserved	Reserved	ILIM<3:0>			
CHG_VDD_PWR_ 1	0x002 8	Reserve d	Reserved	VDD_PWR_OVP_DIS	VDD_PWR_DPM_DIS	ILIM_EN	VDD_PWR_DPM<2:0>		
CHG_IDISCHG_0	0x002 9	Reserve d	Reserved	Reserved	IDISCHG_OCP<2:0>			IDISCHG_OCP_HIZ_ EN	IDISCHG_OCP_E N

5.1.3 Buck and LDO Control

Table 45: Buck and LDO Control Register Map

VOUT Registers										
Register	Addr	7	6	5	4	3	2	1	0	
VOUT_BUCK	0x0030	BUCK_EN	VOUT_RANGE_HI	Reserved BUCK_VOUT<4:0>						
VOUT_BUCK_CFG	0x0031	Reserved	Reserved	BUCK_PD_CFG2 Reserved 0 Reserved Reserved SEL_ILIM_DLT<1:0>						
VOUT_LS_LDO0	0x0032	EN_LS_LDO_0	Reserved	LS_LDO_0<5:0>						
VOUT_LS_LDO1	0x0033	EN_LS_LDO_1	Reserved	LS_LDO_1<5:0>						
VOUT_LS_LDO2	0x0034	EN_LS_LDO_2	Reserved	LS_LDO_2<5:0>						
VOUT_LS_LDO_CFG	0x0035	Reserved	SEL_FULLON_2	SEL_FULLON_1	SEL_FULLON_C	Reserved	SEL_LDSW_2	SEL_LDSW_1	SEL_LDSW_0	
VOUT OPT Registers										
VOUT_BUCK_OPT0	0x0050	Reserved 0	Reserved 0	Reserved 0	Reserved 1	Reserved 1	Reserved 0	DVC_STEP<1:0>	>	

Datasheet

Revision 3.2

Ultra-Low Quiescent Current PMIC

5.2 **Register Definitions**

5.2.1 System

Table 46: Register SYS_STS_0

dress	POR Value
02	0x00

7	6	5	4	3	2	1	0
Reserved	STS_BUCK	STS_CHG<1:0>		Reserved	Reserved	STS_PWR_CYC	STS_MODE

Field Name	Bits	POR	Description					
STS_BUCK	[6]	0x0	Buck power	ck power good status				
			Charge statu	arge status				
			Value	Description				
	[5:4]		0x0 (POR)	Charge ready				
STS_CHG			0x1	Charge in progress				
			0x2	Charge done				
			0x3	Fault				
STS_PWR_CYC	[1]	0x0	Power cycle	Power cycle status register. Cleared after being read				
STS_MODE	[0]	0x0	MODE pin st	AODE pin status				

Datasheet

RENESAS

DA9072

Ultra-Low Quiescent Current PMIC

Table 47: Register SYS_ISR_0

7	6	5	4	3	2	1	0
Reserved	Reserved	ISR_VDD_SYS_UVLO	ISR_VDD_PWR_ILIM	ISR_VDD_PWR_DPM	ISR_VDD_PWR_UVLO_RCV	ISR_VDD_PWR_UVLO	ISR_VDD_PWR_OVP

Field Name	Bits	POR	Description
ISR_VDD_SYS_UVLO	[5]	0x0	VDD_SYS UVLO IRQ status
ISR_VDD_PWR_ILIM	[4]	0x0	VDD_PWR ILIM IRQ status
ISR_VDD_PWR_DPM	[3]	0x0	VDD_PWR DPM IRQ status
ISR_VDD_PWR_UVLO_RCV	[2]	0x0	VDD_PWR UVLO recovery IRQ status
ISR_VDD_PWR_UVLO	[1]	0x0	VDD_PWR UVLO IRQ status
ISR_VDD_PWR_OVP	[0]	0x0	VDD_PWR OVP IRQ status

Table 48: Register SYS_ISR_1

7	6	5	4	3	2	1	0
ISR_TS_HOT	ISR_TS_WARM	ISR_TS_COOL	ISR_TS_COLD	ISR_VBAT_SHORT	ISR_VBAT_OCP	ISR_VBAT_DPPM	ISR_VBAT_UVLO

Datasheet

Ultra-Low Quiescent Current PMIC

Field Name	Bits	POR	Description	
ISR_TS_HOT	[7]	0x0	Battery temperature sensor IRQ status. TS_HOT	
ISR_TS_WARM	[6]	0x0	Battery temperature sensor IRQ status. TS_WARM	
ISR_TS_COOL	[5]	0x0	Battery temperature sensor IRQ status. TS_COOL	
ISR_TS_COLD	[4]	0x0	Battery temperature sensor IRQ status. TS_COLD	
ISR_VBAT_SHORT	[3]	0x0	VBAT short IRQ status	
ISR_VBAT_OCP	[2]	0x0	VBAT OCP IRQ status	
ISR_VBAT_DPPM	[1]	0x0	VBAT DPPM IRQ status	
ISR_VBAT_UVLO	[0]	0x0	AT UVLO IRQ status	

Table 49: Register SYS_ISR_2

Registe	ame POR Value
SYS_IS	2 0x00

7	6	5	4	3	2	1	0
Reserved	ISR_TS_OFF	ISR_CHG_TMR	ISR_RECHG_START	ISR_CHG_DONE	ISR_PRECHG	ISR_BAT_SPPL	ISR_SLP

Field Name	Bits	POR	Description	
ISR_TS_OFF	[6]	0x0	attery temperature sensor IRQ status. TS_OFF	
ISR_CHG_TMR	[5]	0x0	Charge safety timer IRQ status	
ISR_RECHG_START	[4]	0x0	Recharge started IRQ status	
ISR_CHG_DONE	[3]	0x0	Charge done IRQ status	

Datasheet	Revision 3.2	13-Jun-2023
CFR0011-120-00	61 of 117	© 2023 Renesas Electronics

Ultra-Low Quiescent Current PMIC

ISR_PRECHG	[2]	0x0	re-charge IRQ status	
ISR_BAT_SPPL	[1]	0x0	Battery Supplement mode IRQ status	
ISR_SLP	[0]	0x0	Sleep mode IRQ status	

Table 50: Register SYS_ISR_3

er Name POR Value
SR_3 0x00

7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	Reserved	Reserved	ISR_BUCK_UVP	ISR_BUCK_OVP	ISR_BUCK_OCP

Field Name	Bits	POR	Description
ISR_BUCK_UVP	[2]	0x0	Buck UVP IRQ status
ISR_BUCK_OVP	[1]	0x0	Buck OVP IRQ status
ISR_BUCK_OCP	[0]	0x0	Buck OCP IRQ status

Table 51: Register SYS_ISR_4

R	egister Name POR Value		etatue
S	YS_ISR_4 0x00	1	RQ status

7	6	5	4	3	2	1	0
ISR_PWR_PLGGD	ISR_MODE_FALL	ISR_MODE_RISE	ISR_WD	ISR_OVT	ISR_RIN_N_RST	ISR_RIN_N_WAKE2	ISR_RIN_N_WAKE1

Datasheet

Revision 3.2

Ultra-Low Quiescent Current PMIC

Field Name	Bits	POR	Description	
ISR_PWR_PLGGD	[7]	0x0	VDD_PWR insertion/removal power cycle IRQ status	
ISR_MODE_FALL	[6]	0x0	MODE pin falling edge IRQ status	
ISR_MODE_RISE	[5]	0x0	ODE pin rising edge IRQ status	
ISR_WD	[4]	0x0	Vatchdog timer IRQ status	
ISR_OVT	[3]	0x0	Over-temperature IRQ status	
ISR_RIN_N_RST	[2]	0x0	RIN_N RESET timer IRQ status	
ISR_RIN_N_WAKE2	[1]	0x0	I_N WAKE2 timer IRQ status	
ISR_RIN_N_WAKE1	[0]	0x0	RIN_N WAKE1 timer IRQ status	

Table 52: Register SYS_IMR_0

A	Address Register	gister Name POR Value
);	0x0008 SYS_IM	S_IMR_0 0x3F

7	,	6	5	4	3	2	1	0
F	Reserved	Reserved	IMR_VDD_SYS_UVLO	IMR_VDD_PWR_ILIM	IMR_VDD_PWR_DPM	IMR_VDD_PWR_UVLO_RCV	IMR_VDD_PWR_UVLO	IMR_VDD_PWR_OVP

Field Name	Bits	POR	Description	
IMR_VDD_SYS_UVLO	[5]	0x1	VDD_SYS UVLO IRQ mask	
IMR_VDD_PWR_ILIM	[4]	0x1	VDD_PWR ILIM IRQ mask	
IMR_VDD_PWR_DPM	[3]	0x1	DD_PWR DPM IRQ mask	
IMR_VDD_PWR_UVLO_RCV	[2]	0x1	D_PWR UVLO recovery IRQ mask	

Datasheet	Revision 3.2	13-Jun-2023
CFR0011-120-00	63 of 117	© 2023 Renesas Electronics

Ultra-Low Quiescent Current PMIC

IMR_VDD_PWR_UVLO	[1]	0x1	VDD_PWR UVLO IRQ mask
IMR_VDD_PWR_OVP	[0]	0x1	VDD_PWR OVP IRQ mask

Table 53: Register SYS_IMR_1

7	6	5	4	3	2	1	0
IMR_TS_HOT	IMR_TS_WARM	IMR_TS_COOL	IMR_TS_COLD	IMR_VBAT_SHORT	IMR_VBAT_OCP	IMR_VBAT_DPPM	IMR_VBAT_UVLO

Field Name	Bits	POR	Description	
IMR_TS_HOT	[7]	0x1	Battery temperature sensor IRQ mask. TS_HOT	
IMR_TS_WARM	[6]	0x1	ttery temperature sensor IRQ mask. TS_WARM	
IMR_TS_COOL	[5]	0x1	Battery temperature sensor IRQ mask. TS_COOL	
IMR_TS_COLD	[4]	0x1	Battery temperature sensor IRQ mask. TS_COLD	
IMR_VBAT_SHORT	[3]	0x1	VBAT short IRQ mask	
IMR_VBAT_OCP	[2]	0x1	VBAT OCP IRQ mask	
IMR_VBAT_DPPM	[1]	0x1	VBAT DPPM IRQ mask	
IMR_VBAT_UVLO	[0]	0x1	VBAT UVLO IRQ mask	

Table 54: Register SYS_IMR_2

Address Register Name POR Value IRQ mask
0x000A SYS_IMR_2 0x7F

Datasheet	Revision 3.2	13-Jun-2023
CEP0011-120-00	64 of 117	© 2023 Ponecas Electronics

7	6	5	4	3	2	1	0
Reserved	IMR_TS_OFF	IMR_CHG_TMR	IMR_RECHG_START	IMR_CHG_DONE	IMR_PRECHG	IMR_BAT_SPPL	IMR_SLP

Field Name	Bits	POR	Description	
IMR_TS_OFF	[6]	0x1	Battery temperature sensor IRQ mask. TS_OFF	
IMR_CHG_TMR	[5]	0x1	narge safety timer IRQ mask	
IMR_RECHG_START	[4]	0x1	echarge started IRQ mask	
IMR_CHG_DONE	[3]	0x1	harge done IRQ mask	
IMR_PRECHG	[2]	0x1	e-charge started IRQ mask	
IMR_BAT_SPPL	[1]	0x1	Battery Supplement mode IRQ mask	
IMR_SLP	[0]	0x1	Sleep mode IRQ mask	

Table 55: Register SYS_IMR_3

Address	Register Name POR Value	IRQ mask
x000B	SYS_IMR_3 0x3F	INQ MASK

7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	Reserved	Reserved	IMR_BUCK_UVP	IMR_BUCK_OVP	IMR_BUCK_OCP

Field Name	Bits	POR	Description
IMR_BUCK_UVP	[2]	0x1	Buck UVP IRQ mask
IMR_BUCK_OVP	[1]	0x1	Buck OVP IRQ mask

Datasheet	Revision 3.2	13-Jun-2023
CFR0011-120-00	65 of 117	© 2023 Renesas Electronics

DA9072

Ultra-Low Quiescent Current PMIC

IMR_BUCK_OCP	[0] 0x1	Buck OCP IRQ mask
--------------	---------	-------------------

Table 56: Register SYS_IMR_4

Q mask

7		6	5	4	3	2	1	0
IN	MR_PWR_PLGGD	IMR_MODE_FALL	IMR_MODE_RISE	IMR_WD	IMR_OVT	IMR_RIN_N_RST	IMR_RIN_N_WAKE2	IMR_RIN_N_WAKE1

Field Name	Bits	POR	Description
IMR_PWR_PLGGD	[7]	0x1	VDD_PWR insertion/removal power cycle IRQ mask
IMR_MODE_FALL	[6]	0x1	MODE pin falling edge IRQ mask
IMR_MODE_RISE	[5]	0x1	MODE pin rising edge IRQ mask
IMR_WD	[4]	0x1	Watchdog timer IRQ mask
IMR_OVT	[3]	0x1	Over-temperature IRQ mask
IMR_RIN_N_RST	[2]	0x1	RIN_N RESET timer IRQ mask
IMR_RIN_N_WAKE2	[1]	0x1	RIN_N WAKE2 timer IRQ mask
IMR_RIN_N_WAKE1	[0]	0x1	RIN_N WAKE1 timer IRQ mask

Table 57: Register SYS_SYS_0

Datasheet	Revision 3.2	13-Jun-2023
CFR0011-120-00	66 of 117	© 2023 Renesas Electronics

Ultra-Low Quiescent Current PMIC

7	6	5	4	3	2	1	0
INIT_REGS	Reserved	Reserved	Reserved	Reserved	Reserved 1	HZ_MODE	EN_SHIPMODE

Field Name	Bits	POR	Description
INIT_REGS	[7]	0x0	Initialize register trigger
HZ_MODE	[1]	0x0	Hi-Z mode entry control. Automatically cleared when HZ mode exit
EN_SHIPMODE	[0]	0x0	Ship mode entry control

Table 58: Register SYS_BAT_0

Address	Register Name	POR Value	System configuration
0x000E	SYS_BAT_0	0x06	System configuration

7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	Reserved	Reserved	BUVLO<2:0>		

Field Name	Bits	POR	Description	Description				
BUVLO [2:0]			Battery UVL	O threshold				
			Value	Description				
		0x0	Reserved					
	[2:0]	0x6	0x1	2.5 V				
			0x2	2.6 V				
			0x3	2.7 ∨				
			0x4	2.8 V				
Datasheet		1	<u> </u>	Revision 3.2	13-Jun-2023			

Ultra-Low Quiescent Current PMIC

0x5	2.9 ∨
0x6 (POR)	3.0 V
0x7	Reserved

Table 59: Register SYS_BAT_1

ustom o	onfiguration
ystem config	uration

7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	TS_TRIG	Reserved	Reserved	Reserved	Reserved

Field Name	Bits	POR	Description
TS_TRIG	[4]	0x0	Trigger register for one-shot battery temp sense enable

Table 60: Register SYS_RIN_N_0

7	6	5	4	3	2	1	0
RIN_N_PER_RST<1:	0>	RIN_N_PER_WAKE2	RIN_N_PER_WAKE1	RIN_N_RST_ROUT_	EN<1:0>	RIN_N_RST_REC<1:	0>

Field Name	Bits	POR	Description
RIN_N_PER_RST	[7:6]	0x1	RIN_N RESET timer period

Datasheet	Revision 3.2	13-Jun-2023
CFR0011-120-00	68 of 117	© 2023 Renesas Electronics

Ultra-Low Quiescent Current PMIC

			Value	Description
			0x0	4 s
			0x1 (POR)	8 s
			0x2	10 s
			0x3	14 s
			RIN_N WAK	E2 timer period
			Value	Description
RIN_N_PER_WAKE2	[5]	0x1	0x0	1.0 s
			0x1 (POR)	1.5 s
			RIN_N WAK	E1 timer period
			Value	Description
RIN_N_PER_WAKE1	[4]	0x0	0x0 (POR)	50 ms
			0x1	500 ms
			ROUT_N pu	Ise output enable for RESET wake-up
			Value	Description
			0x0	Disable
RIN_N_RST_ROUT_EN	[3:2]	0x1	0x1 (POR)	Enable
			0x2	Enable only when VDD_PWR is present
			0x3	Reserved
RIN_N_RST_REC	[1:0]	0x2	Reset timer I	Hi-Z / Ship mode transition control

Datasneet

© 2023 Renesas Electronics

RENESAS

Ultra-Low Quiescent Current

PMIC

DA9072

Value	Description
0x0	Reset timer is not used for both
0x1	Enter Ship mode after RIN_N reset timer hit
0x2 (POR)	Enter Hi-Z mode after RIN_N reset timer hit
0x3	Reserved

Table 61: Register SYS_STS_OUT_0

ister Name POR Value Status
_STS_OUT_0 0x01

7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	PWR_FLT_MODE	Reserved	Reserved	Reserved	SYS_FLT_MODE

Field Name	Bits	POR	Description	
			PWR_FLT m	node select
	F 43	4] Value Description 0x0 (POR) Power good indicator 0x1 Voltage shifted RIN_N output	Description	
PWR_FLT_MODE	[4]		Power good indicator	
			Voltage shifted RIN_N output	
			SYS_FLT m	ode select
	[0]		Value	Description
SYS_FLT_MODE	[0]	0x1	0x0	IRQ I/F enabled and charge status indicator disabled
			0x1 (POR)	IRQ I/F enabled and charge status indicator enabled

Datasheet	Revision 3.2	13-Jun-2023
CFR0011-120-00	70 of 117	© 2023 Renesas Electronics

RENESAS

DA9072

Ultra-Low Quiescent Current PMIC

Table 62: Register SYS_PWR_CYC_0

7	6	5	4	3	2	1	0
PWR_CYC_WAIT_P	ER<1:0>	PWR_CYC_PER<1:0	>	Reserved	PWR_CYC_FRC	PWR_CYC_MODE	PWR_CYC_EN

Field Name	Bits	POR	Description		
			Power cycle	wait period setting	
			Value Description	Description	
	[7.0]	00	0x0	0 s	
PWR_CYC_WAIT_PER	[7:6]	0x2	0x1	0.5 s	
			0x2 (POR)	1.0 s	
			0x3	2.0 s	
			Power cycle	period setting	
			Value	Description	
	15 41		0x0	5 s	
PWR_CYC_PER	[5:4]	0x1	0x1 (POR)	10 s	
			0x2	15 s	
			0x3	20 s	
PWR_CYC_FRC	[2]	0x0	Write 1 to force power cycling		
PWR_CYC_MODE	[1]	0x0	Power cycle trigger select		

Datasheet

Revision 3.2

© 2023 Renesas Electronics

Ultra-Low Quiescent Current PMIC

			Value	Description
			0x0 (POR)	VDD_PWR insertion/removal
			0x1	RESET wake-up timer when VDD_PWR present
PWR_CYC_EN	[0]	0x1	Power cycle	enable

Table 63: Register SYS_PWR_CYC_1

ress	Register Name POR Value
13	SYS_PWR_CYC_1 0x00

7		6	5	4	3	2	1	0
R	eserved	BUCK_UVP_PWR _CYC_EN	Reserved 0	BUCK_OCP_PWR_CY C_EN	Reserved 0	Reserved	Reserved 0	BTS_PWR_CYC _EN

Field Name	Bits	POR	Description
BUCK_UVP_PWR_CYC_EN	[6]	0x0	Power cycle enable triggered by Buck UVP
BUCK_OCP_PWR_CYC_EN	[4]	0x0	Power cycle enable triggered by Buck OCP
BTS_PWR_CYC_EN	[0]	0x0	Power cycle enable triggered by TS_HOT

Table 64: Register SYS_WD_0

Address
4

Datasheet
DA9072 Ultra-Low Quiescent Current

PMIC

7	6	5	4	3	2	1	0
WD_RST_REGS_EN	WD_ROUT_EN	WD_TMR_PER<1:0>		WD_CLR_SEL<1:0>		WD_EN<1:0>	

Field Name	Bits	POR	Description	Description					
WD_RST_REGS_EN	[7]	0x0	Register res	Register reset on watchdog timeout enable					
WD_ROUT_EN	[6]	0x0	Reset output	Reset output on watchdog timeout enable					
			Watchdog ti	mer timeout period					
			Value	Description					
		0x1	0x0	25 s					
WD_TMR_PER	[5:4]		0x1 (POR)	50 s					
			0x2	Reserved					
			0x3	Reserved					
		0x0	Watchdog ti	mer clear condition					
			Value	Description					
			0x0 (POR)	Only I2C clears the timer					
WD_CLR_SEL	[3:2]		0x1	Only WD pin clears the timer					
			0x2	Both I2C and WD pin clear the timer					
			0x3	Reserved					
		0x0	Watchdog ti	mer enable					
WD_EN	[1:0]		Value	Description					
			0x0 (POR)	Disable					

Datasheet	Revision 3.2	13-Jun-2023
CFR0011-120-00	73 of 117	© 2023 Renesas Electronics

Ultra-Low Quiescent Current PMIC

0x1	Enable only when VDD_PWR present
0x2	Disable in Hi-Z mode
0x3	Always enable

Table 65: Register SYS_I2C_0

Address	POR Value
x0015	0x00

7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	Reserved	Reserved	I2C_RDCLR_DIS	I2C_RST_TMR_EN	I2C_HIZ_EN

Field Name	Bits	POR	Description
I2C_RDCLR_DIS	[2]	0x0	I2C read clear disable for ISR registers and STS_PWR_CYC register
I2C_RST_TMR_EN	[1]	0x0	I2C reset timer enable
I2C_HIZ_EN	[0]	0x0	I2C enable in Hi-Z mode

Datasheet	Revision 3.2	13-Jun-2023
CFR0011-120-00	74 of 117	© 2023 Renesas Electronics

Ultra-Low Quiescent Current PMIC

5.2.2 Config

Table 66: Register SYS_CFG_I2C_0

ddress	Register Name POR Value
x0040	SYS_CFG_I2C_0 0x68

-	7	6	5	4	3	2	1	0	
	Reserved	I2C_SLAVE_ADDR<6:0>							

Field Name	Bits	POR	Description
I2C_SLAVE_ADDR	[6:0]	0x68	I2C slave addr

Ultra-Low Quiescent Current PMIC

5.2.3 Charger

5.2.3.1 Charger and Power Path

Table 67: Register CHG_CHG_0

S	POR Value
	0x01

7	6	5	4	3	2	1	0
Reserved	Reserved	IPRETERM_REXT<1:0>		ICHG_MAX<1:0>		RMEAS_EN	CE_N

Field Name	Bits	POR	Description					
			Charge term	ination/pre-charge current range by RITER_CHG. Read-only.				
		0x0	Value	Description				
	[5:4]		0x0 (POR)	5 % of ICHG				
IPRETERM_REXT			0x1	10 % of ICHG				
			0x2	15 % of ICHG				
			0x3	20 % of ICHG				
			Maximum ch	arge current limit.				
			Value	Description				
ICHG_MAX	[3:2]	0×0	0x0 (POR)	No limit				
			0x1	20 mA				
			0x2	70 mA				

Datasheet	Revision 3.2	13-Jun-2023
CFR0011-120-00	76 of 117	© 2023 Renesas Electronics

Ultra-Low Quiescent Current PMIC

			0x3	200 mA						
RMEAS_EN	[1]	0x0	External resi	ternal resistance programming enable. Write-locked when CE_N is 0.						
		0x1	Charge enab	narge enable						
	101		Value	Description						
CE_N	[0]		0x0	Enable charging						
			0x1 (POR)	Disable charging						

Table 68: Register CHG_CHG_1

7	6	5	4	3	2	1	0
Reserved	TE_TS_COOL	TE_TS_WARM	TE	TMRX2_EN	Reserved	TMR<1:0>	

Field Name	Bits	POR	Description					
TE_TS_COOL	[6]	0x0	Termination e	Termination enable during TS COOL. Write-locked when CE_N is 0.				
TE_TS_WARM	[5]	0x0	Termination e	enable during TS WARM. Write-locked when CE_N is 0.				
TE	[4]	0x1	Charge curre	harge current termination enable. Write-locked when CE_N is 0.				
TMRX2_EN	[3]	0x1	Safety timer	Safety timer half rate enable. Write-locked when CE_N is 0.				
			Safety timer	period. Write-locked when CE_N is 0.				
TMR	[1:0]	0x1	Value	Description				
			0x0	30 m				

Datasheet	Revision 3.2	13-Jun-2023
CFR0011-120-00	77 of 117	© 2023 Renesas Electronics

	0x1 (POR)	3 h
	0x2	9 h
	0x3	Timer disabled

Table 69: Register CHG_ICHG_0

7	6	5	4	3	2	1	0
Reserved	ICHG<6:0>						

Field Name	Bits	POR	Description		
		0x41	Charge curre 2.0-4.8 mA s	ent (mA) ettings are available when SEL_ICHG_LOW=1.	
			Value	Description	
			0x0	5 (2)	
			0x1	6 (2.4)	
ICHG	[6:0]		0x2	7 (2.8)	
			0x3	8 (3.2)	
			0x4	9 (3.6)	
			0x5	10 (4)	
			0x6	11 (4.4)	

Datasheet	Revision 3.2	13-Jun-2023
CFR0011-120-00	78 of 117	© 2023 Renesas Electronics

Ultra-Low Quiescent Current PMIC

0.7	12 (4 9)
0x7	12 (4.8)
0x8	13
0x9	14
0x0A	15
0x0B	16
0x0C	17
0x0D	18
0x0E	19
0x0F	20
0x10	21
0x11	22
0x12	23
0x13	24
0x14	25
0x15	26
0x16	27
0x17	28
0x18	29
0x19	30
0x1A	31
0x1B	32

Datasheet

Ultra-Low Quiescent Current PMIC

Datasheet

Ultra-Low Quiescent Current PMIC

	200
0x50	200
0x51	210
0x52	220
0x53	230
0x54	240
0x55	250
0x56	260
0x57	270
0x58	280
0x59	290
0x5A	300
0x5B	310
0x5C	320
0x5D	330
0x5E	340
0x5F	350
0x60	360
0x61	370
0x62	380
0x63	390
0x64	400

Datasheet

Ultra-Low Quiescent Current PMIC

	G	0x65	410
	C	0x66	420
	C	0x67	430
	C	0x68	440
	C	0x69	450
		0x6A	460
		0x6B	470
		0x6C	480
		0x6D	490
		0x6E	500
	C	0x6F	Reserved
		0x7F	Reserved

Table 70: Register CHG_IPRETERM_0

Address	Register Name	POR Value	Pro charge / termination ourrent
0x0023	CHG_IPRETERM_0		Pre-charge / termination current

7	6	5	4	3	2	1	0
Reserved	IPRETERM<6:0>						

Field Name	Bits	POR	escription		
IPRETERM	[6:0]	0x4	re-charge / termination current		
Datasheet			Revision 3.2		
CEB0011 120 00			92 of 117	© 2022 Banagas Electronica	

Ultra-Low Quiescent Current PMIC

Value	Description
0x0	0.5
0x1	1
0x2	1.5
0x3	2
0x4 (POR)	2.5
0x5	3
0x6	3.5
0x7	4
0x8	4.5
0x9	5
0x0A	Reserved
0x3F	Reserved
0x40	6
0x41	7
0x42	8
0x43	9
0x44	10
0x45	11
0x46	12
0x47	13

Da	tas	heet	

Ultra-Low Quiescent Current PMIC

1	
0x48	14
0x49	15
0x4A	16
0x4B	17
0x4C	18
0x4D	19
0x4E	20
0x4F	21
0x50	22
0x51	23
0x52	24
0x53	25
0x54	26
0x55	27
0x56	28
0x57	29
0x58	30
0x59	31
0x5A	32
0x5B	33
0x5C	34

Datasheet

Ultra-Low Quiescent Current PMIC

0x5D	35
-	
0x5E	36
0x5F	37
0x60	38
0x61	39
0x62	40
0x63	41
0x64	42
0x65	43
0x66	44
0x67	45
0x68	46
0x69	47
0x6A	48
0x6B	49
0x6C	50
0x6D	Reserved
0x7F	Reserved

Datasheet

DA9072

Ultra-Low Quiescent Current PMIC

Table 71: Register CHG_VBREG_0

Address	Register Name	POR Value	Pottony regulation voltage	
0x0024	CHG_VBREG_0	0x3C	Battery regulation voltage	

7	6	5	4	3	2	1	0
Reserved	VBCHG<6:0>						

Field Name	Bits	POR	Descripti	Description				
			Battery re	Battery regulation voltage				
			Value	Description				
			0x0	3.6				
			0x1	3.61				
			0x2	3.62				
			0x3	3.63				
VBCHG	[6:0]	0x3C	0x4	3.64				
			0x5	3.65				
			0x6	3.66				
			0x7	3.67				
			0x8	3.68				
			0x9	3.69				
			0x0A	3.7				

Datasheet	Revision 3.2	13-Jun-2023
CFR0011-120-00	86 of 117	© 2023 Renesas Electronics

Ultra-Low Quiescent Current PMIC

Datasheet

Revision 3.2

© 2023 Renesas Electronics

Ultra-Low Quiescent Current PMIC

0.00	
0x20	3.92
0x21	3.93
0x22	3.94
0x23	3.95
0x24	3.96
0x25	3.97
0x26	3.98
0x27	3.99
0x28	4
0x29	4.01
0x2A	4.02
0x2B	4.03
0x2C	4.04
0x2D	4.05
0x2E	4.06
0x2F	4.07
0x30	4.08
0x31	4.09
0x32	4.1
0x33	4.11
0x34	4.12
	0x22 0x23 0x24 0x25 0x26 0x27 0x28 0x29 0x2A 0x2B 0x2C 0x2E 0x30 0x31 0x33

Datasheet

Revision 3.2

© 2023 Renesas Electronics

Ultra-Low Quiescent Current PMIC

0x35	4.13
0x36	4.14
0x37	4.15
0x38	4.16
0x39	4.17
0x3A	4.18
0x3B	4.19
0x3C (POR)	4.2
0x3D	4.21
0x3E	4.22
0x3F	4.23
0x40	4.24
0x41	4.25
0x42	4.26
0x43	4.27
0x44	4.28
0x45	4.29
0x46	4.3
0x47	4.31
0x48	4.32
0x49	4.33
1	

Datasheet

Ultra-Low Quiescent Current PMIC

Г		
	0x4A	4.34
	0x4B	4.35
	0x4C	4.36
	0x4D	4.37
	0x4E	4.38
	0x4F	4.39
	0x50	4.4
	0x51	4.41
	0x52	4.42
	0x53	4.43
	0x54	4.44
	0x55	4.45
	0x56	4.46
	0x57	4.47
	0x58	4.48
	0x59	4.49
	0x5A	4.5
	0x5B	4.51
	0x5C	4.52
	0x5D	4.53
	0x5E	4.54

Datasheet

Ultra-Low Quiescent Current PMIC

0x5F	4.55
0×60	4.56
0x61	4.57
0x62	4.58
0x63	4.59
0x64	4.6
0x65	4.61
0×66	4.62
0x67	4.63
0x68	4.64
0x69	4.65
0x6A	Reserved
0x7F	Reserved

Table 72: Register CHG_VBPRECHG_0

Address	Register Name	POR Value	Battery pre-charge voltage
0x0025	CHG_VBPRECHG_0	0x06	

7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	VBPRECHG_COMP_DIS	Reserved	VBPRECHG<2:0>		

Datasheet	Revision 3.2	13-Jun-2023
CFR0011-120-00	91 of 117	© 2023 Renesas Electronics

Ultra-Low Quiescent Current PMIC

Field Name	Bits	POR	Description	
			Pre-charge o	comparator disable. Charger operates in Pre-charge mode when VBAT short detected. Write-locked when CE_N is
VBPRECHG_COMP_DIS	[4]	0x0	Value	Description
			0x0 (POR)	Pre-charge threshold is as specified by VBPRECHG
			0x1	Charger ignores pre-charge threshold
			Battery pre-c	charge voltage (V)
			Value	Description
			0x0	Reserved
			0x1	2.7
	10.01	0x6	0x2	2.8
VBPRECHG	[2:0]		0x3	2.9
			0x4	3
			0x5	3.1
			0x6 (POR)	3.2
			0x7	Reserved

Table 73: Register CHG_BAT_TS_0

Address	Register Name	POR Value	Battery temperature sense	
0x0026	CHG_BAT_TS_0	0x01	ballery temperature sense	

Datasheet

DA9072

Ultra-Low Quiescent Current PMIC

7	6	5	4	3	2	1	0
Reserved	Reserved	TS_DISCHG_MODE_SEL	Reserved 0	TS_WARM_EN	TS_OFF_MODE	TS_EN_DISCHG	TS_EN_CHG

Field Name	Bits	POR	Description			
			Temp Sense	mode selection during discharging		
	[6]	00	Value	Description		
TS_DISCHG_MODE_SEL	[5]	0x0	0x0 (POR)	Periodic sampling with 2 s period		
			0x1	Host triggered sampling		
TS_WARM_EN	[3]	0x0	TS WARM function enable. Write-locked when CE_N is 0, or when TS_EN is not 0.			
			TS OFF mod	le control. Write-locked when CE_N is 0, or when TS_EN is not 0.		
	[0]		Value	Description		
TS_OFF_MODE	[2]	0x0	0x0 (POR)	Battery TS feature is disabled when TS_OFF		
			0x1	Charger fault condition when TS_OFF		
TS_EN_DISCHG	[1]	0x0	Battery temperature sense enable during discharging			
TS_EN_CHG	[0]	0x1	Battery temp	Battery temperature sense enable during charging		

Table 74: Register CHG_VDD_PWR_0

V[

7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	Reserved	ILIM<3:0>			
Datasheet		Revision 3.2 13-Ju					

DA9072

Ultra-Low Quiescent Current PMIC

Field Name	Bits	POR	Description	
			Input current	t limit (mA)
			Value	Description
			0x0	2.5
			0x1	50
			0x2 (POR)	100
			0x3	150
			0x4	200
			0x5	250
	LIM [3:0]		0x6	300
ILIM		0x2	0x7	350
			0x8	400
			0x9	450
			0xA	500
			0xB	550
			0xC	600
			0xD	Reserved
			0xE	Reserved
			0xF	Reserved

Datasheet

© 2023 Renesas Electronics

DA9072

Ultra-Low Quiescent Current PMIC

Table 75: Register CHG_VDD_PWR_1

7	6	5	4	3	2	1	0
Reserved	Reserved	VDD_PWR_OVP_DIS	VDD_PWR_DPM_DIS	ILIM_EN	VDD_PWR_DPM<2:	0>	

Field Name	Bits	POR	Description			
VDD_PWR_OVP_DIS	[5]	0x0	VDD_PWR (VDD_PWR OVP disable		
VDD_PWR_DPM_DIS	[4]	0x0	VDD_PWR I	DPM disable		
ILIM_EN	[3]	0x1	Input current	limit enable		
			VDD_PWR I	DPM threshold voltage (V)		
			Value	Description		
		0x4	0x0	4.2		
			0x1	4.3		
	10.01		0x2	4.4		
VDD_PWR_DPM	[2:0]		0x3	4.5		
			0x4 (POR)	4.6		
			0x5	4.7		
			0x6	4.8		
			0x7	4.9		

Datasheet	Revision 3.2	13-Jun-2023
CFR0011-120-00	95 of 117	© 2023 Renesas Electronics

DA9072

Ultra-Low Quiescent Current PMIC

Table 76: Register CHG_IDISCHG_0

Address	Register Name	POR Value	Battery discharge current limit
0x0029	CHG_IDISCHG_0	0x0D	

7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	IDISCHG_OCP<2:0>			IDISCHG_OCP_HIZ_EN	IDISCHG_OCP_EN

Field Name	Bits	POR	Description					
			Battery discl	Battery discharge over-current protection setting (A)				
			Value	Description				
			0x0	0.55				
		0x3	0x1	0.75				
	14.01		0x2	0.95				
IDISCHG_OCP	[4:2]		0x3 (POR)	1.15				
			0x4	1.35				
			0x5	1.55				
			0x6	1.75				
			0x7	Reserved				
IDISCHG_OCP_HIZ_EN	[1]	0x0	Battery discharge over-current protection enable, even during HiZ					
IDISCHG_OCP_EN	[0]	0x1	Battery discl	Battery discharge over-current protection enable				

Datasheet

© 2023 Renesas Electronics

Ultra-Low Quiescent Current PMIC

5.2.4 Buck and LDO Control

5.2.4.1 VOUT User Registers

Table 77: Register VOUT_BUCK

Address	Register Name	POR Value	Buck enable and VOUT control
0x0030	VOUT_BUCK	0x5C	

7	6	5	4	3	2	1	0
BUCK_EN	VOUT_RANGE_HI	Reserved	BUCK_VOUT<4:0>				

Field Name	Bits	POR	Description					
BUCK_EN	[7]	0x0	BUCK enab					
VOUT_RANGE_HI			-	uck output range control. his register can be written when buck is disabled or when BUCK_EN is being written to 0.				
	[6]	0x1	Value	Description				
			0x0	0.60 V <= VBUCK <= 1.30 V				
			0x1 (POR)	1.30 V <= VBUCK <= 2.10 V				
				voltage setting (0.6 V to 2.1 V in 50 mV steps). 30 V can be set when VOUT_RANGE_HI=0 and 1.3 V to 2.1 V can be set when VOUT_RANGE_HI=1.				
BUCK_VOUT	[4:0]	0x1C	Value	Description				
	-		0x00	0.60 V				
			0x01	0.65 V				

Datasheet	Revision 3.2	13-Jun-2023
CFR0011-120-00	97 of 117	© 2023 Renesas Electronics

Ultra-Low Quiescent Current PMIC

1	
0x02	0.70 V
0x03	0.75 V
0x04	0.80 V
0x05	0.85 V
0x06	0.90 V
0x07	0.95 V
0x08	1.00 V
0x09	1.05 V
0x0A	1.10 V
0x0B	1.15 V
0x0C	1.20 V
0x0D	1.25 V
0x0E	1.30 V
0x0F	1.35 V
0x10	1.40 V
0x11	1.45 V
0x12	1.50 V
0x13	1.55 V
0x14	1.60 V
0x15	1.65 V
0x16	1.70 V
	0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x08 0x09 0x0A 0x0B 0x0C 0x0C 0x0C 0x0C 0x0C 0x0C 0x0F 0x10 0x11 0x12 0x13 0x14 0x15

Datasheet

DA9072

Ultra-Low Quiescent Current PMIC

0x17	1.75 V
0x18	1.80 V
0x19	1.85 V
0x1A	1.90 V
0x1B	1.95 V
0x1C (POR)	2.00 V
0x1D	2.05 V
0x1E	2.10 V
0x1F	Reserved

Table 78: Register VOUT_BUCK_CFG

Address	Name POR Value	Buck config	
(0031	UCK_CFG 0x00	Buck coning	

7	6	5	4	3	2	1	0
Reserved	Reserved	BUCK_PD_CFG2	Reserved 0	Reserved	Reserved	SEL_ILIM_DLT<1:0>	

Field Name	Bits	POR	Description	ription				
	[5]	0x0	Output disch	arge enable at buck disable				
			Value	Description				
BUCK_PD_CFG2			0x0 (POR)	Enable				
			0x1	Disable				
Datasheet			<u> </u>	Revision 3.2	13-Jun-2023			

DA9072

Ultra-Low Quiescent Current PMIC

SEL_ILIM_DLT [1:		0x0	Buck peak c	Buck peak current limit setting		
			Value	Description		
	14.01		0x0 (POR)	Default -50 mA		
	[1:0]		0x1	Default current limit		
			0x2	Default +50 mA		
			0x3	Default +100 mA		

Table 79: Register VOUT_LS_LDO0

Address	Register Name	POR Value	LS LDO 0 control
0x0032	VOUT_LS_LDO0	0x24	

7	6	5	4	3	2	1	0
EN_LS_LDO_0	Reserved	LS_LDO_0<5:0>					

Field Name	Bits	POR	Description	escription				
EN_LS_LDO_0	[7]	0x0	LS_LDO_0 e	_LDO_0 enable. LDO becomes active 20 ms after LDO0 is enabled.				
	[5:0]	0x24	•	e setting, cannot be written to when LS_LDO0 is enabled. / in 25 mV steps and 1.6 V to 3.15 V in 50 mV steps.				
			Value	Description				
LS_LDO_0			0x0	0.8				
			0x1	0.825				
			0x2	0.85				

Datasheet	Revision 3.2	13-Jun-2023	
CFR0011-120-00	100 of 117	© 2023 Renesas Electronics	

Ultra-Low Quiescent Current PMIC

0x3	0.875
0x4	0.9
0x5	0.925
0x6	0.95
0x7	0.975
0x8	1
0x9	1.025
0x0A	1.05
0x0B	1.075
0x0C	1.1
0x0D	1.125
0x0E	1.15
0x0F	1.175
0x10	1.2
0x11	1.225
0x12	1.25
0x13	1.275
0x14	1.3
0x15	1.325
0x16	1.35
0x17	1.375

Datasheet

Revision 3.2

© 2023 Renesas Electronics

Ultra-Low Quiescent Current PMIC

1	
0x18	1.4
0x19	1.425
0x1A	1.45
0x1B	1.475
0x1C	1.5
0x1D	1.525
0x1E	1.55
0x1F	1.575
0x20	1.6
0x21	1.65
0x22	1.7
0x23	1.75
0x24 (POR)	1.8
0x25	1.85
0x26	1.9
0x27	1.95
0x28	2
0x29	2.05
0x2A	2.1
0x2B	2.15
0x2C	2.2
P	

Datasheet

Revision 3.2

© 2023 Renesas Electronics

Ultra-Low Quiescent Current PMIC

2D	2.25
2E	2.3
2F	2.35
30	2.4
31	2.45
32	2.5
33	2.55
34	2.6
35	2.65
36	2.7
37	2.75
38	2.8
39	2.85
3A	2.9
3B	2.95
3C	3
3D	3.05
3E	3.1
3F	3.15
	2E 2F 30 31 32 33 34 35 36 37 38 39 38 39 3A 39 3A 38 39 30 30 31 32 33 34 35 36 37 38 39 30 38 39 30 30 30 30 31 32 33 34 35 36 37 38 39 30 30 30 30 30 30 30 31 32 33 34 35 36 37 38 39 30 30 30 30 30 30 30 30 30 30

Datasheet

DA9072

Ultra-Low Quiescent Current PMIC

Table 80: Register VOUT_LS_LDO1

7	6	5	4	3	2	1	0
EN_LS_LDO_1	Reserved	LS_LDO_1<5:0>					

Field Name	Bits	POR	Descriptior	escription				
EN_LS_LDO_1	[7]	0x0	LS_LDO_1	S_LDO_1 enable. LDO becomes active 20 ms after LS_LDO_1 is enabled.				
				DO1 voltage setting, cannot be written to when LS_LDO1 is enabled. .8 V to 2.4 V in 50 mV steps and 2.4 V to 3.3 V in 75 mV steps.				
			Value	Description				
	[5:0]	0x28	0x0	0.8				
			0x1	0.85				
			0x2	0.9				
LS_LDO_1			0x3	0.95				
			0x4	1				
			0x5	1.05				
			0x6	1.1				
			0x7	1.15				
			0x8	1.2				
			0x9	1.25				

Datasheet

© 2023 Renesas Electronics

Ultra-Low Quiescent Current PMIC

0x0A	1.3
0x0B	1.35
0x0C	1.4
0x0D	1.45
0x0E	1.5
0x0F	1.55
0x10	1.6
0x11	1.65
0x12	1.7
0x13	1.75
0x14	1.8
0x15	1.85
0x16	1.9
0x17	1.95
0x18	2
0x19	2.05
0x1A	2.1
0x1B	2.15
0x1C	2.2
0x1D	2.25
0x1E	2.3
1	

Datasheet

Ultra-Low Quiescent Current PMIC

0x1F	2.35
0x20	2.4
0x21	2.475
0x22	2.55
0x23	2.625
0x24	2.7
0x25	2.775
0x26	2.85
0x27	2.925
0x28 (POR)	3
0x29	3.075
0x2A	3.15
0x2B	3.225
0x2C	3.3
0x2D	Reserved
0x3F	Reserved

Table 81: Register VOUT_LS_LDO2

Datasheet

Ultra-Low Quiescent Current PMIC

7	6	5	4	3	2	1	0
EN_LS_LDO_2	Reserved	LS_LDO_2<5:0>					

Field Name	Bits	POR	Descriptio	Description		
EN_LS_LDO_2	[7]	0x0	LS_LDO_2 enable. LDO becomes active 20 ms after LS_LDO_2 is enabled.			
				age setting, cannot be written to when LS_LDO2 is enabled. 4 V in 50 mV steps and 2.4 V to 3.3 V in 75 mV steps.		
			Value	Description		
			0x0	0.8		
			0x1	0.85		
			0x2	0.9		
			0x3	0.95		
		0x14	0x4	1		
LS_LDO_2	S_LDO_2 [5:0]		0x5	1.05		
			0x6	1.1		
			0x7	1.15		
			0x8	1.2		
			0x9	1.25		
			0x0A	1.3		
			0x0B	1.35		
			0x0C	1.4		

Datasheet	Revision 3.2	13-Jun-2023
CFR0011-120-00	107 of 117	© 2023 Renesas Electronics

Ultra-Low Quiescent Current PMIC

 0x0D 1.
 0x0E 1.
0x0F 1.
0x10 1.
0x11 1.
0x12 1.
0x13 1.
0x14 (POR) 1.
0x15 1.
0x16 1.
0x17 1.
0x18 2
0x19 2.
0x1A 2.
0x1B 2.
0x1C 2.
0x1D 2.
0x1E 2.
0x1F 2.
0x20 2.
 0x21 2.
0x13 1. 0x14 (POR) 1. 0x15 1. 0x16 1. 0x17 1. 0x18 2. 0x19 2. 0x1D 2. 0x1D 2. 0x1F 2. 0x20 2.

Datasheet

Ultra-Low Quiescent Current PMIC

0x22	2.55
0x23	2.625
0x24	2.7
0x25	2.775
0x26	2.85
0x27	2.925
0x28	3
0x29	3.075
0x2A	3.15
0x2B	3.225
0x2C	3.3
0x2D	Reserved
0x3F	Reserved

Table 82: Register VOUT_LS_LDO_CFG

7	6	5	4	3	2	1	0
Reserved	SEL_FULLON_2	SEL_FULLON_1	SEL_FULLON_0	Reserved	SEL_LDSW_2	SEL_LDSW_1	SEL_LDSW_0

Datasheet	Revision 3.2	13-Jun-2023
CFR0011-120-00	109 of 117	© 2023 Renesas Electronics

Ultra-Low Quiescent Current PMIC

Field Name	Bits	POR	Description			
			LS_LDO2 ci	urrent limit enable, cannot be written to when LS_LDO2 is enabled.		
	101		Value	Description		
SEL_FULLON_2	[6]	0x0	0x0 (POR)	Enable		
			0x1	Disable		
			LS_LDO1 cu	urrent limit enable, cannot be written to when LS_LDO1 is enabled.		
			Value	Description		
SEL_FULLON_1	[5]	0x0	0x0 (POR)	Enable		
			0x1	Disable		
			LS_LDO0 cu	LS_LDO0 current limit enable, cannot be written to when LS_LDO0 is enabled.		
			Value	Description		
SEL_FULLON_0	[4]	0x0	0x0 (POR)	Enable		
			0x1	Disable		
			LS_LDO2 fu	nction select, cannot be written to when LS_LDO2 is enabled.		
	101	0x0	Value	Description		
SEL_LDSW_2	[2]		0x0 (POR)	LDO		
			0x1	LDSW		
		0x0	LS_LDO1 fu	nction select, cannot be written to when LS_LDO1 is enabled.		
	F 4 1		Value	Description		
SEL_LDSW_1	[1]		0x0 (POR)	LDO		
			0x1	LDSW		

Datasheet	Revision 3.2	13-Jun-2023
CFR0011-120-00	110 of 117	© 2023 Renesas Electronics

DA9072

Ultra-Low Quiescent Current PMIC

SEL_LDSW_0	[0]	0x0	LS_LDO0 fu	S_LDO0 function select, cannot be written to when LS_LDO0 is enabled.		
			Value	Description		
			0x0 (POR)	LDO		
			0x1	LDSW		

5.2.4.2 VOUT Opt Registers

Table 83: Register VOUT_BUCK_OPT0

Address Register Name	POR Value
Register Name	POR Value
D50 VOUT_BUCK_OPT	0x1B

7	6	5	4	3	2	1	0
Reserved 0	Reserved 0	Reserved 0	Reserved 1	Reserved 1	Reserved 0	DVC_STEP<1:0>	

Field Name	Bits	POR	Description	Description				
	[1:0]	0x3	DVC step co	ntrol				
			Value	Description				
			0x0	No DVC				
DVC_STEP			0x1	50 mV / 1 ms				
			0x2	50 mV / 2 ms				
			0x3 (POR)	50 mV / 4 ms				

Datasheet

Ultra-Low Quiescent Current PMIC

6 Package Information

6.1 Package Outlines

Figure 35: WLCSP-42 Package Outline Drawing, V3 Version

Figure 36: WLCSP-42 Package Outline Drawing, OH version

6.2 Moisture Sensitivity Level

The Moisture Sensitivity Level (MSL) is an indicator for the maximum allowable time period (floor lifetime) in which a moisture sensitive plastic device, once removed from the dry bag, can be exposed to an environment with a maximum temperature of 30 °C and a maximum relative humidity of 60 % RH before the solder reflow process. The MSL classification is defined in Table 84.

The device package is qualified for MSL 1.

Table 84: MSL Classification

MSL Level	Floor Lifetime	Conditions
MSL 1	Unlimited	30 °C / 85 % RH

6.3 Soldering Information

Refer to the IPC/JEDEC standard J-STD-020 for relevant soldering information. This document can be downloaded from http://www.jedec.org.

7 Ordering Information

The ordering number consists of the part number followed by a suffix indicating the OTP variant (xx), package type, and packing method. For details and availability, please consult Renesas Electronics' customer support portal or your local sales representative.

Table 85: Ordering Information

Part Number	Package	Size (mm)	Shipment Form	Pack Quantity
DA9072-xxV32	WLCSP	2.97 x 2.66	T&R	2000
DA9072-xxV36	WLCSP	2.97 x 2.66	Waffle	90
DA9072-xxOH2	WLCSP	2.97 x 2.66	T&R	2000
DA9072-xxOH6	WLCSP	2.97 x 2.66	Waffle	90

8 Application Information

8.1 Recommended External Components

Component values shown are typical values (not de-rated). For capacitors assume X5R type or better with a DC voltage rating of 2x the maximum applied voltage. For inductors, the saturation current rating is equal or greater than the current limit value. The Electrical Specifications are based on the typical values where applicable.

Parameter	Description	Conditions	Min	Тур	Max	Unit
CVDD_SYS	VDD_SYS capacitance		3.3	4.7	100	μF
Cvdd_pwr	VDD_PWR capacitance		1.0	4.7	10	μF
С _{VBAT}	VBAT capacitance		1.0	2.2	10	μF
C _{VOUT_BUCK}	Buck output capacitance			10		μF
C _{VDD_BUCK}	Buck input capacitance		1.0	2.2		μF
L _{виск}	Buck inductor			2.2		μH
C _{VOUT_LDO}	LDO output capacitance		1.0	2.2	2.2	μF
	LDO input capacitance			1.0		μF

Status Definitions

Revision	Datasheet Status	Product Status	Definition
1. <n></n>	Target	Development	This datasheet contains the design specifications for product development. Specifications may be changed in any manner without notice.
2. <n></n>	Preliminary	Qualification	This datasheet contains the specifications and preliminary characterization data for products in pre-production. Specifications may be changed at any time without notice in order to improve the design.
3. <n></n>	Final	Production	This datasheet contains the final specifications for products in volume production. The specifications may be changed at any time in order to improve the design, manufacturing and supply. Major specification changes are communicated via Customer Product Notifications. Datasheet changes are communicated via www.renesas.com.
4. <n></n>	Obsolete	Archived	This datasheet contains the specifications for discontinued products. The information is provided for reference only.

RoHS Compliance

Renesas Electronics' suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.

Important Notice and Disclaimer

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

© 2023 Renesas Electronics Corporation. All rights reserved.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu

Koto-ku, Tokyo 135-0061, Japan

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: https://www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Da	tas	hee	t
Pu	LU U		4

13-Jun-2023

CFR0011-120-00