Features

- \(I_{T\text{(RMS)}} \): 8 A
- \(V_{DRM} \): 600 V
- \(I_{FGT}, I_{RGT}, I_{RGTI} \): 10 mA
- \(V_{iso} \): 1800 V
- Insulated Type
- Planar Type
- UL Recognized : File No. E223904

Outline

RENESAS Package code: PRSS0003AF-A
(Package name: TO-220FL)

Applications

Switching mode power supply, washing machine, motor control, heater control, and other general purpose AC power control applications

Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Voltage class</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak off-state voltageNote1</td>
<td>(V_{DRM})</td>
<td>12</td>
<td>V</td>
<td>Commercial frequency, sine full wave 360° conduction, (T_c = 82°C)</td>
</tr>
<tr>
<td>Non-repetitive peak off-state voltageNote1</td>
<td>(V_{DSM})</td>
<td>720</td>
<td>V</td>
<td>60 Hz sine wave 1 full cycle, peak value, non-repetitive</td>
</tr>
<tr>
<td>RMS on-state current</td>
<td>(I_{T\text{(RMS)}})</td>
<td>8</td>
<td>A</td>
<td>Commercial frequency, sine full wave 360° conduction, (T_c = 82°C)</td>
</tr>
<tr>
<td>Surge on-state current</td>
<td>(I_{TSM})</td>
<td>80</td>
<td>A</td>
<td>60 Hz sine wave 1 full cycle, peak value, non-repetitive</td>
</tr>
<tr>
<td>(I^2t) for fusion</td>
<td>(I^2t)</td>
<td>26</td>
<td>A^2s</td>
<td>Value corresponding to 1 cycle of half wave 60 Hz, surge on-state current</td>
</tr>
<tr>
<td>Peak gate power dissipation</td>
<td>(P_{GM})</td>
<td>5</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Average gate power dissipation</td>
<td>(P_{G\text{(AV)}})</td>
<td>0.5</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Peak gate voltage</td>
<td>(V_{GM})</td>
<td>10</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Peak gate current</td>
<td>(I_{GM})</td>
<td>2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>(T_j)</td>
<td>-40 to +125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{stg})</td>
<td>-40 to +125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>—</td>
<td>1.5</td>
<td>g</td>
<td>Typical value</td>
</tr>
<tr>
<td>Isolation voltageNote4</td>
<td>(V_{iso})</td>
<td>1800</td>
<td>V</td>
<td>(Ta = 25°C, AC) 1 minute, (T1 \bullet T2 \bullet G) terminal to case</td>
</tr>
</tbody>
</table>
Electrical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Test conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak off-state current</td>
<td>I_{DRM}</td>
<td>—</td>
<td>—</td>
<td>2.0</td>
<td>mA</td>
<td>$T_j = 125^\circ C$, V_{DRM} applied</td>
</tr>
<tr>
<td>On-state voltage</td>
<td>V_{TM}</td>
<td>—</td>
<td>—</td>
<td>1.6</td>
<td>V</td>
<td>$T_c = 25^\circ C$, $I_{TM} = 12$ A, instantaneous measurement</td>
</tr>
<tr>
<td>Holding current</td>
<td>I_H</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>mA</td>
<td>$T_j = 25^\circ C$, $V_D = 12$ V, $R_{GT1} = \infty \Omega$</td>
</tr>
<tr>
<td>Gate trigger voltage Note2</td>
<td>V_{FGT1}</td>
<td>—</td>
<td>—</td>
<td>1.5</td>
<td>V</td>
<td>$T_j = 25^\circ C$, $V_D = 6$ V, $R_L = 6 \Omega$, $R_G = 330 \Omega$</td>
</tr>
<tr>
<td></td>
<td>V_{RG1}</td>
<td>—</td>
<td>—</td>
<td>1.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{RG2}</td>
<td>—</td>
<td>—</td>
<td>1.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Gate trigger current Note2</td>
<td>I_{FGT1}</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>mA</td>
<td>$T_j = 25^\circ C$, $V_D = 6$ V, $R_L = 6 \Omega$, $R_G = 330 \Omega$</td>
</tr>
<tr>
<td></td>
<td>I_{RG1}</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_{RG2}</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Gate non-trigger voltage</td>
<td>V_{GD}</td>
<td>0.2</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>$T_j = 125^\circ C$, $V_D = 1/2 V_{DRM}$</td>
</tr>
<tr>
<td>Thermal resistance Note3</td>
<td>$R_{th(j-c)}$</td>
<td>—</td>
<td>—</td>
<td>4.3</td>
<td>°C/W</td>
<td>Junction to case</td>
</tr>
</tbody>
</table>

Notes:
1. Gate open.
2. Measurement using the gate trigger characteristics measurement circuit.
3. The contact thermal resistance $R_{th(c-f)}$ in case of greasing is $0.5^\circ C/W$.
4. Make sure that your finished product containing this device meets your safe isolation requirements.

For safety, it is advisable that heatsink is electrically floating.
Performance Curves

Maximum On-State Characteristics

On-State Current (A) vs. On-State Voltage (V)

- Tj = 150°C
- Tj = 25°C

Rated Surge On-State Current

Surge On-State Current (A) vs. Conduction Time (Cycles at 60Hz)

Gate Characteristics (I, II and III)

Gate Voltage (V) vs. Gate Current (mA)

- V_GM = 10V
- P_GM = 0.5W
- P_GM = 5W
- I GM = 2A
- V_GT = 1.5V
- V_GD = 0.2V

Gate Trigger Current vs. Junction Temperature

Gate Trigger Current (Tj = t°C) vs. Junction Temperature (°C)

- IRGT I
- IRGT II
- IRGT III

Gate Trigger Voltage vs. Junction Temperature

Gate Trigger Voltage (Tj = t°C) vs. Junction Temperature (°C)

- Typical Example

Maximum Transient Thermal Impedance Characteristics (Junction to case)

Transient Thermal Impedance (°C/W) vs. Conduction Time (Cycles at 60Hz)

- Typical Example

On-State Voltage (V)

0 1 2 3 4

On-State Current (A)

10^2 10^1 10^0

Gate Voltage (V)

10^1 10^2 10^3 10^4

Gate Current (mA)

10^{-1}

Gate Trigger Voltage (Tj = t°C) vs. Junction Temperature (°C)

10^1 10^2 10^3 10^4

Junction Temperature (°C)

-40 0 40 80 120 160

Conduction Time (Cycles at 60Hz)

10^{-1} 10^0 10^1 10^2
Maximum Transient Thermal Impedance Characteristics (Junction to ambient)

Conduction Time (Cycles at 60Hz)

Allowable Case Temperature vs. RMS On-State Current

Case Temperature (°C)

RMS On-State Current (A)

Curves apply regardless of conduction angle

360° Conduction Resistive, inductive loads

Allowable Ambient Temperature vs. RMS On-State Current

Ambient Temperature (°C)

RMS On-State Current (A)

Curves apply regardless of conduction angle

Resistive, inductive loads

Natural convection

No Fins

Repetitive Peak Off-State Current vs. Junction Temperature

Repetitive Peak Off-State Current (J = 1°C)

Junction Temperature (°C)

Typical Example

Maximum On-State Power Dissipation

On-State Power Dissipation (W)

RMS On-State Current (A)

360° Conduction Resistive, inductive loads

All fins are black painted aluminum and greased

120 × 120 × 12.3

100 × 100 × 12.3

60 × 60 × 12.3

Curves apply regardless of conduction angle

Resistive, inductive loads

Natural convection
Holding Current vs. Junction Temperature

Breakover Voltage vs. Junction Temperature

Breakover Voltage vs. Rate of Rise of Off-State Voltage (Tj = 125°C)

Gate Trigger Current vs. Gate Current Pulse Width

Gate Trigger Characteristics Test Circuits

Test Procedure I

Test Procedure II

Test Procedure III
Package Dimensions

<table>
<thead>
<tr>
<th>Package Name</th>
<th>JEITA Package Code</th>
<th>RENESAS Code</th>
<th>Previous Code</th>
<th>Mass [Typ.]</th>
<th>Unit: mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO-220FL</td>
<td>—</td>
<td>PRSS0003AF-A</td>
<td>TO-220FL</td>
<td>1.5g</td>
<td></td>
</tr>
</tbody>
</table>

	10.0 ± 0.3	3.0 ± 0.3	1.15 ± 0.2	0.75 ± 0.15	2.8 ± 0.2
	3.8 ± 0.3	1.15 ± 0.2	0.85 ± 0.3	0.40 ± 0.15	
	12.5 ± 0.5	0.75 ± 0.15	0.40 ± 0.2	0.5 ± 0.2	
	3.2 ± 0.2	0.40 ± 0.2	0.7 ± 0.2	1.1 ± 0.2	
	2.54 ± 0.25	0.7 ± 0.2	2.54 ± 0.25	1.1 ± 0.2	
	2.54 ± 0.25		2.54 ± 0.25		

Ordering Information

<table>
<thead>
<tr>
<th>Orderable Part Number</th>
<th>Packing</th>
<th>Quantity</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCR8LM-12LA#B00</td>
<td>Tube</td>
<td>50 pcs.</td>
<td>Straight type</td>
</tr>
<tr>
<td>BCR8LM-12LA-A8#B00</td>
<td>Tube</td>
<td>50 pcs.</td>
<td>A8 Lead form</td>
</tr>
</tbody>
</table>

Note: Please confirm the specification about the shipping in detail.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in this design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 “Standard” Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment, and industrial robots etc.
 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

 Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implants etc.) or may cause serious property damage (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain-use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging-degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damage or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics product or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics product or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the use of these circuits, software, or information.

 Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

 (Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

 (Note 2) “Renesas Electronics product” means any product developed or manufactured by or for Renesas Electronics.