BCR16CM-16LH
800V - 16A - Triac
Medium Power Use

Features
- \(I_{\text{T(RMS)}} \): 16 A
- \(V_{\text{DRM}} \): 800 V
- \(I_{\text{FGT}1}, I_{\text{RG}1}, I_{\text{RG}3} \): 50 mA or 35 mA (IGT item:1)
- \(T_j \): 150°C
- Planar Passivation Type
- High Commutation

Outline

Application
Power supply, motor control, heater control and other general purpose AC control applications.

Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Voltage class</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak off-state voltage</td>
<td>(V_{\text{DRM}})</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>Non-repetitive peak off-state voltage</td>
<td>(V_{\text{DSM}})</td>
<td>960</td>
<td>V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Ratings</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS on-state current</td>
<td>(I_{\text{T(RMS)}})</td>
<td>16</td>
<td>A</td>
<td>Commercial frequency, sine full wave 360°conduction, (T_c = 125^\circ\text{C})</td>
</tr>
<tr>
<td>Surge on-state current</td>
<td>(I_{\text{TS}})</td>
<td>160</td>
<td>A</td>
<td>60 Hz sinewave 1 full cycle, peak value, non-repetitive</td>
</tr>
<tr>
<td>(I_t) for fusion</td>
<td>(I_t)</td>
<td>106.5</td>
<td>A²s</td>
<td>Value corresponding to 1 cycle of half wave 60 Hz, surge on-state current</td>
</tr>
<tr>
<td>Peak gate power dissipation</td>
<td>(P_{\text{GM}})</td>
<td>5</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Average gate power dissipation</td>
<td>(P_{\text{G(AV)}})</td>
<td>0.5</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Peak gate voltage</td>
<td>(V_{\text{GM}})</td>
<td>10</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Peak gate current</td>
<td>(I_{\text{GM}})</td>
<td>2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>(T_j)</td>
<td>-40 to +150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{\text{stg}})</td>
<td>-40 to +150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>
Electrical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>BCR16CM-16LH-1 (I<sub>GT</sub> item:1)</th>
<th>BCR16CM-16LH</th>
<th>Unit</th>
<th>Test conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak off-state current</td>
<td>I<sub>DRM</sub></td>
<td>—</td>
<td>—</td>
<td>5.0</td>
<td>—</td>
</tr>
<tr>
<td>On-state voltage</td>
<td>V<sub>TM</sub></td>
<td>—</td>
<td>—</td>
<td>1.5</td>
<td>—</td>
</tr>
<tr>
<td>Gate trigger voltage<sup>Note2</sup></td>
<td>I<sub>FGT</sub>I</td>
<td>—</td>
<td>—</td>
<td>1.5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>I<sub>RGTI</sub></td>
<td>—</td>
<td>—</td>
<td>1.5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>I<sub>RGTH</sub></td>
<td>—</td>
<td>—</td>
<td>1.5</td>
<td>—</td>
</tr>
<tr>
<td>Gate trigger current<sup>Note2</sup></td>
<td>I<sub>FGT</sub>I</td>
<td>—</td>
<td>—</td>
<td>35</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>I<sub>RGTI</sub></td>
<td>—</td>
<td>—</td>
<td>35</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>I<sub>RGTH</sub></td>
<td>—</td>
<td>—</td>
<td>35</td>
<td>—</td>
</tr>
<tr>
<td>Gate non-trigger voltage</td>
<td>V<sub>GD</sub></td>
<td>0.2</td>
<td>—</td>
<td>—</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1</td>
<td>—</td>
<td>—</td>
<td>0.1</td>
</tr>
<tr>
<td>Thermal resistance</td>
<td>R<sub>th</sub>(j<sub>-</sub>c)</td>
<td>—</td>
<td>—</td>
<td>1.4</td>
<td>—</td>
</tr>
<tr>
<td>Critical-rate of fall of on-state</td>
<td>(di/dt)c</td>
<td>9</td>
<td>—</td>
<td>—</td>
<td>15</td>
</tr>
<tr>
<td>commutating current<sup>Note5</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Gate open.
2. Measurement using the gate trigger characteristics measurement circuit.
3. Case temperature is measured at the T₂ tab 1.5 mm away from the molded case.
4. The contact thermal resistance R_{th}(c_{-f}) in case of greasing is 1.0°C/1W.
5. Test conditions of the critical-rate of fall of on-state commutation current are shown in the table below.

Test conditions

1. Junction temperature
 T_j = 125°C
2. Peak off-state voltage
 V_D = 400 V
3. Rate of rise of off-state commutating voltage
 (dv/dt)c < 100 V/μs

Commuting voltage and current waveforms (inductive load)

![Diagram showing commutation voltage and current waveforms]
Performance Curves

Maximum On-State Characteristics

On-State Voltage (V) vs. On-State Current (A)

On-State Voltage (V)

On-State Current (A)

Rated Surge On-State Current

Surge On-State Current (A) vs. Conduction Time (Cycles at 60Hz)

Gate Characteristics (I, II and III)

Gate Voltage (V) vs. Gate Current (mA)

Gate Voltage (V)

Gate Current (mA)

Gate Trigger Current vs. Junction Temperature

Gate Trigger Current (mA) vs. Junction Temperature (°C)

Gate Trigger Voltage vs. Junction Temperature

Gate Trigger Voltage (V) vs. Junction Temperature (°C)

Gate Trigger Current vs. Gate Current Pulse Width

Gate Trigger Current (mA) vs. Gate Current Pulse Width (μs)
Maximum Transient Thermal Impedance Characteristics (Junction to case)

Conduction Time (Cycles at 60Hz)

Maximum On-State Power Dissipation

360° Conduction
Resistive, inductive loads

RMS On-State Current (A)

Allowable Ambient Temperature vs.
On-State Power Dissipation (W)

Maximum On-State Power Dissipation

RMS On-State Current (A)

Allowable Case Temperature vs.
RMS On-State Current

RMS On-State Current (A)

Allowable Ambient Temperature vs.
RMS On-State Current

All fins are black painted aluminum and greased

RMS On-State Current (A)
Rate of Rise of Off-State Voltage (V/μs)

Breakover Voltage vs. Rate of Rise of Off-State Voltage (Tj=125°C)

- I Quadrant
- III Quadrant

Typical Example:
Tj = 125°C

Breakover Voltage vs. Rate of Rise of Off-State Voltage (Tj=150°C)

- I Quadrant
- III Quadrant

Typical Example:
Tj = 150°C

Holding Current vs. Junction Temperature

- Holding Current (mA)
- Junction Temperature (°C)

Latching Current vs. Junction Temperature

- Latching Current (mA)
- Junction Temperature (°C)

Typical Example:
Vd=12V

Typical Example:
Tj = 125°C

III Quadrant
I Quadrant

III Quadrant
I Quadrant

Typical Example:
Tj = 150°C
Gate Trigger Characteristics Test Circuits

Commutation Characteristics (Tj=125°C)

Rate of Decay of On-State Commutating Current (A/ms)

Commutation Characteristics (Tj=150°C)

Rate of Decay of On-State Commutating Current (A/ms)

Recommended peripheral components for Triac

Test Procedure I

Test Procedure II

Test Procedure III

C1 = 0.1 to 0.47 μF
R1 = 47 to 100 Ω
C0 = 0.1 μF
R0 = 100 Ω
Package Dimensions

Ordering code: #BH0

<table>
<thead>
<tr>
<th>Package Name</th>
<th>JEDEC Package Code</th>
<th>RENESAS Code</th>
<th>Previous Code</th>
<th>MASS[Typ.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO-220ABA</td>
<td>TO-220AB</td>
<td>PRSS0004AT-A</td>
<td>TO-220ABA</td>
<td>2.1g</td>
</tr>
</tbody>
</table>

Ordering code: #BB0

<table>
<thead>
<tr>
<th>Package Name</th>
<th>JEITA Package Code</th>
<th>RENESAS Code</th>
<th>Previous Code</th>
<th>MASS[Typ.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO-220AB</td>
<td>SC-46</td>
<td>PRSS0004AG-A</td>
<td>TO-220ABS</td>
<td>2.1g</td>
</tr>
</tbody>
</table>

EOL announced
Ordering Information

<table>
<thead>
<tr>
<th>Orderable Part Number</th>
<th>Package</th>
<th>Quantity</th>
<th>Remark</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCR16CM-16LH#BH0</td>
<td>TO-220ABA</td>
<td>50 pcs./ tube</td>
<td>Straight type</td>
<td>Mass Production</td>
</tr>
<tr>
<td>BCR16CM-16LH-1#BH0</td>
<td>TO-220ABA</td>
<td>50 pcs./ tube</td>
<td>Straight type, I GT item:1</td>
<td></td>
</tr>
<tr>
<td>BCR16CM-16LH#BB0</td>
<td>TO-220ABS</td>
<td>50 pcs./ tube</td>
<td>Straight type</td>
<td>EOL announced</td>
</tr>
<tr>
<td>BCR16CM-16LH-1#BB0</td>
<td>TO-220ABS</td>
<td>50 pcs./ tube</td>
<td>Straight type, I GT item:1</td>
<td></td>
</tr>
<tr>
<td>BCR16CM-16LH□□#BB0</td>
<td>TO-220ABS</td>
<td>50 pcs./ tube</td>
<td>□□: Lead form type</td>
<td></td>
</tr>
</tbody>
</table>

Notes: 6. Please confirm the specification about the shipping in detail.
Notice

1. Descriptions of circuits, software, and related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below.

- **“Standard”**: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
- **“High Quality”**: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

6. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; surgery equipment; etc.) or may cause serious property damage (space system; underwater repeaters; nuclear power control systems; aircraft control systems; key plants systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third party arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.) and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

8. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

Note 1: “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

Note 2: “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

© 2019 Renesas Electronics Corporation. All rights reserved.

Colophon 7.2