8 OUTPUT LOW-POWER PCIE GEN1-2-3 CLOCK GENERATOR W/ZO=1000HMS 9FGL839

Description

The 9FGL839 is an 8-output clock generator for PCI Express Gen1, Gen2, and Gen3 applications. It has integrated terminations providing direction connection to 100ohm transmission lines and saving 32 resistors compared to standard HCSL outputs. The 9FGL839 supports Common, Data and Separate Reference no-Spread (SRnS) PCIe clock architectures.

Recommended Application

100MHz PCIe Gen1-2-3 clock generator

Output Features

• 8 - Low-Power (LP) HCSL output pairs @ 100MHz

Features/Benefits

- Integrated terminations; save 32 resistors compared to standard HCSL outputs
- LP-HCSL outputs; support separate VDDIO rail and 130mW typical power consumption
- 8 OE# pins; Hardware control of each output
- 25MHz crystal input; exact synthesis
- 100MHz operation; supports PCIe and SATA applications
- VDDIO; allows outputs to run from lower voltage rail to save power
- OE# pins have 1.5V high input threshold; direct interface to 1.8-3.3V systems
- Packaged in 48-pin VFQFPN

Key Specifications

- <130mW power consumption (typical)
- Cycle-to-cycle jitter <50ps
- Output-to-output skew <100 ps
- PCIe Gen2 phase jitter <3.0ps RMS
- PCIe Gen3 phase jitter <1.0ps RMS
- PCIe Gen3 SRnS clock phase jitter <0.7ps RMS

Block Diagram

48-pin VFQFPN, 6x6 mm, 0.4mm pitch

v prefix indicates internal 120KOhm pull down resistor

vv prefix indicates internal 60KOhm pull down resistor

^ prefix indicates internal 120KOhm pull up resistor

Power Management Table

Inputs	Control Bits/Pins	Outputs	PLL State
PD#	OE# Pin	DIFx/DIFx#	FLL State
0	Х	Low/Low	OFF
1	0	Running	ON
1	1	Low/Low	ON

MLF Power Connections Table

Pin Numbe	in Number									
VDDA	VDD	VDDIO	GND	Description						
40			41	Analog PLL						
47			44	XTAL						
	5		6	Inputs						
	19, 30, 39	11, 18, 25, 31, 38	12, 17, 24, 32, 37	DIF clocks						

IN #	PIN NAME	TYPE	DESCRIPTION
1	OE0#	IN	Active low input for enabling DIF pair 0.
	010#		1 =disable outputs, 0 = enable outputs
2	OE1#	IN	Active low input for enabling DIF pair 1.
-	0211		1 =disable outputs, 0 = enable outputs
3	OE2#	IN	Active low input for enabling DIF pair 2.
0	022#		1 =disable outputs, 0 = enable outputs
4	OE3#	IN	Active low input for enabling DIF pair 3.
			1 =disable outputs, 0 = enable outputs
5	VDD	PWR	Power supply, nominal 3.3V
6	GND	PWR	Ground pin.
7	OE4#	IN	Active low input for enabling DIF pair 4
	51		1 =disable outputs, 0 = enable outputs
8	OE5#	IN	Active low input for enabling DIF pair 5.
0	0231		1 =disable outputs, 0 = enable outputs
9	OE6#	IN	Active low input for enabling DIF pair 6.
5	020#		1 =disable outputs, 0 = enable outputs
10	OE7#	IN	Active low input for enabling DIF pair 7.
10			1 =disable outputs, 0 = enable outputs
11	VDDIO	PWR	Power supply for differential outputs
12	GND	PWR	Ground pin.
13	DIF0	OUT	Differential true clock output
14	DIF0#	OUT	Differential Complementary clock output
15	DIF1	OUT	Differential true clock output
16	DIF1#	OUT	Differential Complementary clock output
17	GND	PWR	Ground pin.
18	VDDIO	PWR	Power supply for differential outputs
19	VDD	PWR	Power supply, nominal 3.3V
20	DIF2	OUT	Differential true clock output
21	DIF2#	OUT	Differential Complementary clock output
22	DIF3	OUT	Differential true clock output
23	DIF3#	OUT	Differential Complementary clock output
24	GND	PWR	Ground pin.
25	VDDIO	PWR	Power supply for differential outputs
26	DIF4	OUT	Differential true clock output
27	DIF4#	OUT	Differential Complementary clock output
28	DIF5	OUT	Differential true clock output
29	DIF5#	OUT	Differential Complementary clock output
30	VDD	PWR	Power supply, nominal 3.3V
31	VDDIO	PWR	Power supply for differential outputs
	GND	PWR	Ground pin.
33	DIF6	OUT	Differential true clock output
34	DIF6#	OUT	Differential Complementary clock output
35	DIF7	OUT	Differential true clock output
36	DIF7#	OUT	Differential Complementary clock output
37	GND	PWR	Ground pin.
38	VDDIO	PWR	Power supply for differential outputs
39	VDD	PWR	Power supply, nominal 3.3V
40	VDDA	PWR	3.3V power for the PLL core.
41	GNDA	PWR	Ground pin for the PLL core.
42	PD#	IN	Asynchronous active low input pin used to power down the device. The internal clocks
			are disabled and the VCO and the crystal osc. (if any) are stopped.
43	NC	N/A	No Connection.
44	GNDXTAL	PWR	GND for XTAL
45	X1_25	IN	Crystal input, Nominally 25.00MHz.
46	X2	OUT	Crystal output.
47	VDDXTAL	PWR	Power supply for XTAL, nominal 3.3V
			This pin is the Test Input Mode pin. A '0' on this pin puts the part in normal operating
48	vvTIM	IN	mode. A '1' on this pin puts the part in Test Input Mode, bypassing the PLL. This pin
			should be either pulled to ground with an external 10Kohm resistor or grounded

Stresses above the ratings listed below can cause permanent damage to the 9FGL839. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	N TYP MAX		UNITS	NOTES
3.3V Core Supply Voltage	VDD, VDDA	VDD for core logic and PLL			4.6	V	1,2
IO Supply Voltage	VDDIO	VDD for differential IO			4.6	V	1,2
Input Low Voltage	VIL		GND-0.5			V	1
Input High Voltage	V _{IH}	Except for SMBus interface			V _{DD} +0.5	V	1
Input High Voltage	VIHSMB	SMBus clock and data pins (if present)			5.5	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

Electrical Characteristics–Input/Supply/Common Parameters

 $T_A = T_{COM \text{ or }} T_{IND}$; Supply Voltage $V_{DD/} V_{DDA} = 3.3 \text{ V} + -5\%$, VDDIO = 1.05V to 3.3V + -5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Ambient Operating	T _{COM}	Commmercial range	0		70	°C	1
Temperature	T _{IND}	Industriall range	-40		85	°C	1
Input High Voltage	VIHOE	OE# pins	1.5		$V_{DD} + 0.3$	V	1
Input High Voltage	VIH	Single-ended inputs, except SMBus, low threshold and tri-level inputs			V _{DD} + 0.3	v	1
Input Low Voltage	V _{IL}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	GND - 0.3	ID - 0.3		v	1
	I _{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5	+/-3	5	uA	1
Input Current	I _{INP}	Single-ended inputs $V_{IN} = 0 \text{ V}$; Inputs with internal pull-up resistors $V_{IN} = \text{VDD}$; Inputs with internal pull-down resistors	-200	+/-75	200	uA	1
Input Frequency	Fin	V _{DDA} , V _{DD}		25		MHz	2
Pin Inductance	L _{pin}			6	7	nH	1
0	C _{IN}	Logic Inputs	1.5	4	5	pF	1
Capacitance	C _{OUT}	Output pin capacitance		5	6	pF	1
Clk Stabilization	From V _{PP} Power-Lip and after input clock		0.5	1	ms	1,2	
OE# Latency	OE# Latency t _{LATOE#} DIF start after OE# assertion DIF stop after OE# deassertion		1	2	4	clocks	1
Tfall	t _F	Fall time of control inputs			10	ns	1,2
Trise	t _R	Rise time of control inputs			10	ns	1,2

¹Guaranteed by design and characterization, not 100% tested in production.

²Control input must be monotonic from 20% to 80% of input swing.

³Time from deassertion until outputs are >200 mV

$T_A = T_{COM \text{ or }} T_{IND}; \text{ Supply Voltage } V_{DD/} V_{DDA} = 3.3 \text{ V } +/-5\%, \text{ VDDIO} = 1.05 \text{ V to } 3.3 \text{ V } +/-5\%$

	5 DD/ DD/	,					
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	МАХ	UNITS	NOTES
Slew rate	Trf	Scope averaging on	1	2	3	V/ns	1, 2, 3
Slew rate matching	ΔTrf	Slew rate matching, Scope averaging on		7.6	20	%	1, 2, 4
Voltage High	VHigh	Statistical measurement on single-ended signal using oscilloscope math function. (Scope		590	850	mV	1
Voltage Low	VLow	averaging on)	-150	9	150	ni v	1
Max Voltage	Vmax	Measurement on single ended signal using		609	1150	mV	1
Min Voltage	Vmin	absolute value. (Scope averaging off)	-300	-19		ШV	1
Vswing	Vswing	Scope averaging off	300	1162		mV	1, 2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	292	550	mV	1, 5
Crossing Voltage (var)	∆-Vcross	Scope averaging off		23	140	mV	1, 6

¹Guaranteed by design and characterization, not 100% tested in production. $C_L = 2pF$. (100 Ω differential trace impedance).

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate of Clock / falling edge rate of Clock#. It is measured in a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope uses for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of V_cross_min/max (V_cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V_cross_delta to be smaller than V_cross abs.

Electrical Characteristics–Current Consumption

 $T_A = T_{COM \text{ or }} T_{IND}$; Supply Voltage $V_{DD}/V_{DDA} = 3.3 \text{ V} + -5\%$, VDDIO = 1.05V to 3.3V + -5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES		
Operating Current	I _{ddvdd, vdda}	$C_L = 2pF$; VDD/VDDA rail, all outputs on		35	42	mA	1		
		$C_L = 2pf$; VDDIO rail, all outputs on		14	20	mA	1		
Powerdown Current	IDDVDD, VDDA	Power Down, VDD/VDDA Rail		5.3	8	mA	1		
	IDVDDIO	Power Down, VDDIO Rail		0.001	0.1	mA	1		

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics–Skew and Differential Jitter Parameters

 $T_A = T_{COM \text{ or }} T_{IND}$; Supply Voltage $V_{DD/} V_{DDA} = 3.3 \text{ V} + -5\%$, VDDIO = 1.05V to 3.3V + -5%

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS	NOTES
DIF{x:0]	t _{SKEW_ALL}	Output-to-Output Skew across all outputs		50	100	ps	1,2,3
Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45	49.4	55	%	1,3
Jitter, Cycle to cycle	t _{jcyc-cyc}	PLL mode		17.5	50	ps	1,3,4

Notes for preceding table:

¹ Measured into fixed 2 pF load cap. Input to output skew is measured at the first output edge following the corresponding input.

² Measured from differential cross-point to differential cross-point. This parameter can be tuned with external feedback path, if present.

6

³ Guaranteed by design and characterization, not 100% tested in production.

⁴ Measured from differential waveform

$T_A = T_{COM \text{ or }} T_{IND}$; Supply Voltage $V_{DD/}V_{DDA} = 3.3 \text{ V} + 1.5\%$, VDDIO = 1.05V to 3.3V + 1.5%

<u> </u>		3 DD/ - DDA				-			
P.	ARAMETER	SYMBOL	CONDITIONS	MIN	TYP	МАХ	INDUSTRY LIMIT	UNITS	Notes
	t _{jphPCleG1}	PCIe Gen 1		23	40	86	ps (p-p)	1,2,3	
	+	PCle Gen 2 Lo Band 10kHz < f < 1.5MHz		0.6	0.8	3	ps (rms)	1,2	
F	Phase Jitter	t _{jph} PCleG2	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		1.9	2.5	3.1	ps (rms)	1,2
		t _{jphPCleG3COM}	PCIe Gen3, (Common Clock and Data Clock)		0.4	0.6	1	ps (rms)	1,2
	t _{jphPCleG3}	PCIe Gen3 (Separate Reference no Spread - SRnS)		0.4	0.6	0.7	ps (rms)	1,2	

¹ Applies to all outputs.

² See http://www.pcisig.com for complete specs

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

Clock Periods–Differential Outputs

				Measurement Window			Window				
	Center	1 Clock		0.1s	0.1s	0.1s	1us	1 Clock			
SSC OFI		-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes	
DIF	100.00	9.91450		9.99950	10.00000	10.00050		10.08550	ns	1,2,3	

Notes:

- 1. "LOT" is the lot number.
- 2. YYWW is the last two digits of the year and week that the part was assembled.
- 3. "L" denotes RoHS compliant package.
- 4. "I" denotes industrial temperature range.
- 4. "COO" denotes country of origin.

Thermal Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	θ_{JA}	Still air		34		°C/W
Ambient	θ _{JA}	1 m/s air flow		31		°C/W
	θ _{JA}	2 m/s air flow		29		°C/W
Thermal Resistance Junction to Case	θ _{JC}			31.7		°C/W

b 0.15 0.25 0.40 BASIC е 6.00 x 6.00 D x E BASIC D2 MIN./MAX. 4.10 4.30 E2 MIN./MAX. 4.10 4.30 L MIN./MAX. 0.45 0.35 Ν 48 12 N_D N_E 12

Ordering Information

Part / Order Number	Shipping Package	Package	IDT Package Code	Temperature
9FGL839AKLF	Trays	48-pin VFQFPN	NDG48	0 to +70°C
9FGL839AKLFT	Tape and Reel	48-pin VFQFPN	NDG48	0 to +70°C
9FGL839AKILF	Trays	48-pin VFQFPN	NDG48	-40 to +85°C
9FGL839AKILFT	Tape and Reel	48-pin VFQFPN	NDG48	-40 to +85°C

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

"A" is the device revision designator (will not correlate with the datasheet revision).

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

9

IDT® 8 OUTPUT LOW-POWER PCIE GEN1-2-3 CLOCK GENERATOR W/ZO=1000HMS

Rev.	Issuer	Issue Date	Description	Page #
A	RDW	1/6/2012	 Updated Features/Benefits Updated Power Connections Table Updated Electrical Tables to Final, removed references to 125M Adding mark information and Thermal Data 	1,2, 5-8
В	RDW	7/21/2014	 1a. Updated DS title from "Frequency Synthesizer" to "Clock Generator" and updated "PCIe Gen2/3" to "PCIe Gen1-2-3". 1b. Updated general description and features/benefits 2. Updated IDDVDD, VDDA max parameter from 40mA to 42mA. 3. Updated IDDVDD, VDDA power down max parameter from 6mA to 8mA. 4. Reduced max cycle to cycle jitter from 85ps to 50ps. 5. Added INDUSTRY LIMIT to phase jitter table and specified MAX separately. Added separate line for SRnS spec. 6. Reduced VHigh min from 500mV to 480mV. Min Vswing is still >1000mV against PCIe SIG 300mV limit 	1, 5-8

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.