

Description

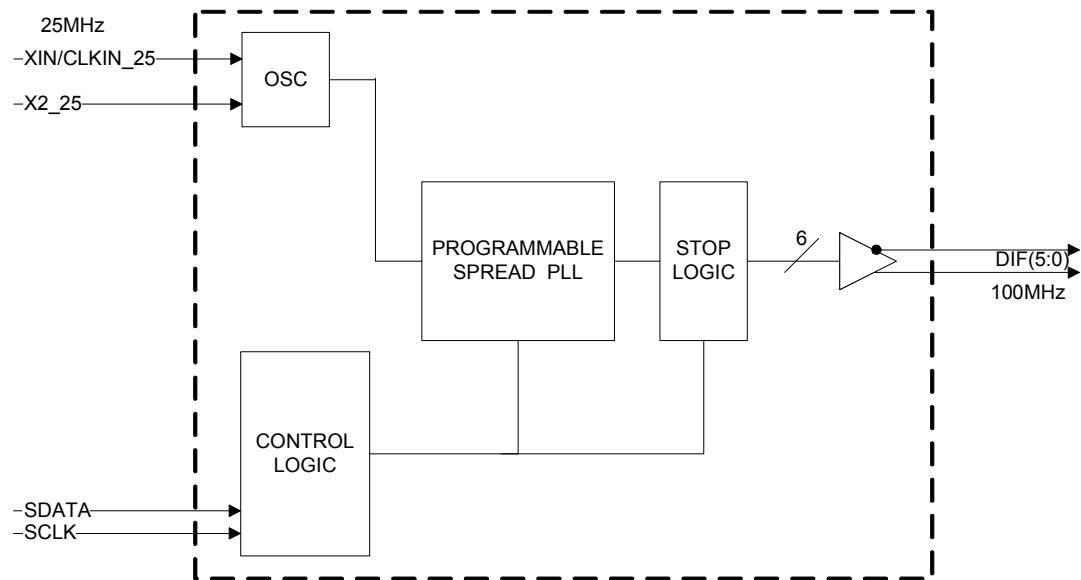
The 9FGL699 is a 6-output low-power clock synthesizer for PCIe Gen2. It runs from a 25MHz XTAL, provides spread spectrum capability, and has an SMBus for software control of the device.

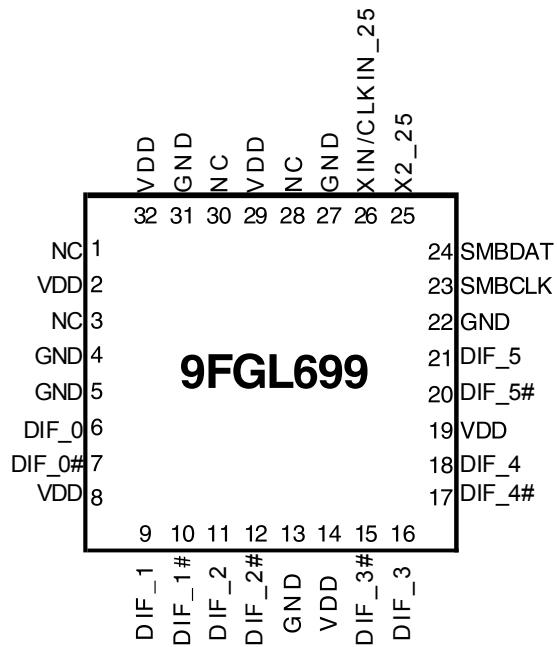
Recommended Application

6-Output Low Power Differential Synthesizer for PCIe Gen2

Output Features

- 6 - 100MHz Differential low power push pull (HCSL compatible) output pairs


Features/Benefits


- 32-pin QFN; Space-savings
- Push Pull outputs; Low power consumption, reduced component count
- PCIe Gen2; Supports latest systems
- Spread Spectrum Capability; reduced EMI when needed
- D2/D3 SMBus Write/Read SMBus address

Key Specifications

- Cycle-to-cycle jitter < 85ps
- Output-to-output skew < 100 ps
- Current consumption < 40mA
- PCIe Gen2 phase jitter < 3.0ps RMS

Block Diagram

Power Management

OE (SMBUS)	Differential Outputs
1	DIF/DIF# = running
0	DIF/DIF# = Low/Low

Pin#	Pin Name	Type	Pin Description
1	NC	N/A	No Connection.
2	VDD	PWR	Power supply, nominal 3.3V
3	NC	N/A	No Connection.
4	GND	PWR	Ground pin.
5	GND	PWR	Ground pin.
6	DIF_0	OUT	0.7V differential true clock output
7	DIF_0#	OUT	0.7V differential Complementary clock output
8	VDD	PWR	Power supply, nominal 3.3V
9	DIF_1	OUT	0.7V differential true clock output
10	DIF_1#	OUT	0.7V differential Complementary clock output
11	DIF_2	OUT	0.7V differential true clock output
12	DIF_2#	OUT	0.7V differential Complementary clock output
13	GND	PWR	Ground pin.
14	VDD	PWR	Power supply, nominal 3.3V
15	DIF_3#	OUT	0.7V differential Complementary clock output
16	DIF_3	OUT	0.7V differential true clock output
17	DIF_4#	OUT	0.7V differential Complementary clock output
18	DIF_4	OUT	0.7V differential true clock output
19	VDD	PWR	Power supply, nominal 3.3V
20	DIF_5#	OUT	0.7V differential Complementary clock output
21	DIF_5	OUT	0.7V differential true clock output
22	GND	PWR	Ground pin.
23	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
24	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant
25	X2_25	OUT	Crystal output, Nominally 25.00MHz.
26	XIN/CLKIN_25	IN	Crystal input or Reference Clock input. Nominally 25MHz.
27	GND	PWR	Ground pin.
28	NC	N/A	No Connection.
29	VDD	PWR	Power supply, nominal 3.3V
30	NC	N/A	No Connection.
31	GND	PWR	Ground pin.
32	VDD	PWR	Power supply, nominal 3.3V

How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will **acknowledge**
- Controller (host) sends the beginning byte location = N
- IDT clock will **acknowledge**
- Controller (host) sends the byte count = X
- IDT clock will **acknowledge**
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will **acknowledge** each byte **one at a time**
- Controller (host) sends a Stop bit

Index Block Write Operation		
Controller (Host)		IDT (Slave/Receiver)
T	starT bit	
Slave Address		
WR	WRite	
		ACK
Beginning Byte = N		
		ACK
Data Byte Count = X		
		ACK
Beginning Byte N		
		ACK
O		
O		O
O		O
		O
Byte N + X - 1		
		ACK
P	stoP bit	

Read Address	Write Address
D3 _(H)	D2 _(H)

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will **acknowledge**
- Controller (host) sends the beginning byte location = N
- IDT clock will **acknowledge**
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will **acknowledge**
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends **Byte 0 through Byte X (if X_(H) was written to Byte 8)**
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Index Block Read Operation		
Controller (Host)		IDT (Slave/Receiver)
T	starT bit	
Slave Address		
WR	WRite	
		ACK
Beginning Byte = N		
		ACK
RT	Repeat starT	
Slave Address		
RD	ReaD	
		ACK
		Data Byte Count=X
		ACK
		Beginning Byte N
		O
		O
		O
		Byte N + X - 1
N	Not acknowledge	
P	stoP bit	

SMBus Table: Device Control Register, READ/WRITE ADDRESS (D3/D2)

Byte 0	Pin #	Name	Control Function	Type	0	1	Default
Bit 7	-		Reserved				0
Bit 6	-		Reserved				0
Bit 5		Spread Enable		RW	Off	-0.50%	1
Bit 4	-		Reserved				0
Bit 3	-		Reserved				0
Bit 2	-		Reserved				0
Bit 1	-		P				0
Bit 0	-		Reserved				0

SMBus Table: Output Enable Register

Byte 1	Pin #	Name	Control Function	Type	0	1	Default
Bit 7	-		Reserved				0
Bit 6	-	DIF_0 EN	Output Enable	RW	Disable	Enable	1
Bit 5	-		Reserved				0
Bit 4	-		Reserved				0
Bit 3	-	DIF_1 EN	Output Enable	RW	Disable	Enable	1
Bit 2	-		Reserved				0
Bit 1	-		Reserved				0
Bit 0	-		Reserved				0

SMBus Table: Reserved Register

Byte 2	Pin #	Name	Control Function	Type	0	1	Default
Bit 7	-		Reserved				0
Bit 6	-		Reserved				0
Bit 5	-		Reserved				0
Bit 4	-		Reserved				0
Bit 3	-		Reserved				0
Bit 2	-		Reserved				0
Bit 1	-		Reserved				0
Bit 0	-		Reserved				0

SMBus Table: Output Enable Register

Byte 3	Pin #	Name	Control Function	Type	0	1	Default
Bit 7	-	DIF_5 EN	Output Enable	RW	Disable	Enable	1
Bit 6	-	DIF_4 EN	Output Enable	RW	Disable	Enable	1
Bit 5	-		Reserved				0
Bit 4	-		Reserved				0
Bit 3	-		Reserved				0
Bit 2	-		Reserved				0
Bit 1	-		Reserved				0
Bit 0	-		Reserved				0

SMBus Table: Reserved Register

Byte 4	Pin #	Name	Control Function	Type	0	1	Default
Bit 7	-		Reserved				0
Bit 6	-		Reserved				0
Bit 5	-		Reserved				0
Bit 4	-		Reserved				0
Bit 3	-		Reserved				0
Bit 2	-		Reserved				0
Bit 1	-		Reserved				0
Bit 0	-		Reserved				0

SMBus Table: Output amplitude adjustment

Byte 5	Pin #	Name	Control Function	Type	0	1	Default
Bit 7	-	DIF_5/6 AMP	Amplitude adjustment	RW	00=700mV		0
Bit 6	-			RW	01=800mV		
Bit 5	-	DIF_1/2/3 AMP	Amplitude adjustment	RW	10=900mV		1
Bit 4	-			RW	11=1000mV		
Bit 3	-		Reserved				0
Bit 2	-		Reserved				0
Bit 1	-	DIF_0 AMP	Amplitude adjustment	RW	00=700mV		0
Bit 0	-			RW	01=800mV		
					10=900mV		
					11=1000mV		1

SMBus Table: Reserved Register

Byte 6	Pin #	Name	Control Function	Type	0	1	Default
Bit 7	-		Reserved				0
Bit 6	-		Reserved				0
Bit 5	-		Reserved				0
Bit 4	-		Reserved				0
Bit 3	-		Reserved				0
Bit 2	-		Reserved				0
Bit 1	-		Reserved				0
Bit 0	-		Reserved				0

SMBus Table: Vendor & Revision ID Register

Byte 7	Pin #	Name	Control Function	Type	0	1	Default
Bit 7	-	RID3	REVISION ID	R	-	-	0
Bit 6	-	RID2		R	-	-	0
Bit 5	-	RID1		R	-	-	0
Bit 4	-	RID0		R	-	-	0
Bit 3	-	VID3	VENDOR ID	R	-	-	0
Bit 2	-	VID2		R	-	-	0
Bit 1	-	VID1		R	-	-	0
Bit 0	-	VID0		R	-	-	1

SMBus Table: Reserved Register

Byte 8	Pin #	Name	Control Function	Type	0	1	Default
Bit 7			Reserved				0
Bit 6			Reserved				0
Bit 5			Reserved				0
Bit 4			Reserved				0
Bit 3			Reserved				1
Bit 2			Reserved				1
Bit 1			Reserved				1
Bit 0			Reserved				1

SMBus Table: Output Enable Register

Byte 9	Pin #	Name	Control Function	Type	0	1	Default
Bit 7			Reserved				0
Bit 6	-	DIF_3 EN	Output Enable	RW	Disable	Enable	1
Bit 5	-	DIF_2 EN	Output Enable	RW	Disable	Enable	1
Bit 4			Reserved				0
Bit 3			Reserved				0
Bit 2			Reserved				0
Bit 1			Reserved				0
Bit 0			Reserved				0

Stresses above the ratings listed below can cause permanent damage to the 9FGL699. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Logic Supply Voltage	V _{DD}				4.6	V	1,2
Input Low Voltage	V _{IL}		GND-0.5			V	1
Input High Voltage	V _{IH}	Except for SMBus interface			V _{DD} +0.5V	V	1
Input High Voltage	V _{IHSMB}	SMBus clock and data pins			5.5V	V	1
Storage Temperature	T _s		-65		150	°C	1
Junction Temperature	T _j				125	°C	1
Input ESD protection	ESD prot	Human Body Model	P			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

²Operation under these conditions is neither implied nor guaranteed.

Electrical Characteristics–Input/Supply/Common Output Parameters

TA = T_{COM}; Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Ambient Operating Temperature	T _{COM}	Commercial range	0		70	°C	1
Input Frequency	f _{in}	X1 pin		25.000		MHz	1
Pin Inductance	L _{pin}				7	nH	1
Capacitance	C _{IN}	Logic Inputs	1.5		5	pF	1
	C _{IN XTAL}	Crystal inputs			6	pF	1
	C _{OUT}	Output pin capacitance			6	pF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization to 1st clock			1.8	ms	1,2
SS Modulation Frequency	f _{MODIN}	Allowable Frequency (Triangular Modulation)	30	31.500	33	kHz	1
Tfall	t _f	Fall time of control inputs			5	ns	1,2
Trise	t _r	Rise time of control inputs			5	ns	1,2
SMBus Input Low Voltage	V _{ILSMB}				0.8	V	1
SMBus Input High Voltage	V _{IHSMB}		2.1		V _{DDSMB}	V	1
SMBus Output Low Voltage	V _{OLSMB}	@ I _{PULLUP}			0.4	V	1
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	1
Nominal Bus Voltage	V _{DDSMB}	3V to 5V +/- 10%	2.7		5.5	V	1
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{MAXSMB}	Maximum SMBus operating frequency			100	kHz	1

¹Guaranteed by design and characterization, not 100% tested in production.

²Control input must be monotonic from 20% to 80% of input swing.

$T_A = T_{COM}$; Supply Voltage VDD = 3.3 V +/-5%, See Test Loads for loading conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	Trf	Scope averaging on	1		4	V/ns	1, 2, 3
Slew rate matching	Δ Trf	Slew rate matching, Scope averaging on			20	%	1, 2, 4
Voltage High	VHigh	Statistical measurement on single-ended signal using oscilloscope math function. (Scope averaging on)	660		850	mV	1
Voltage Low	VLow		-150		150		1
Max Voltage	Vmax	Measurement on single ended signal using absolute			1150	mV	1
Min Voltage	Vmin	value. (Scope averaging off)	P				1
Vswing	Vswing	Scope averaging off	300			mV	1, 2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	300		550	mV	1, 5
Crossing Voltage (var)	Δ -Vcross	Scope averaging off			140	mV	1, 6

¹Guaranteed by design and characterization, not 100% tested in production. $C_L = 2pF$ with $R_S = 33\Omega$ for $Z_0 = 50\Omega$ (100 Ω differential trace impedance).

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate of Clock / falling edge rate of Clock#. It is measured in a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope uses for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of V_cross_min/max (V_cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V_cross_delta to be smaller than V_cross abs.

Electrical Characteristics–Current Consumption

$TA = T_{COM}$; Supply Voltage VDD = 3.3 V +/-5%, See Test Loads for loading conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	$I_{DD3.3}$	VDD, All outputs active @100MHz			40	mA	1

¹Guaranteed by design and characterization, not 100% tested in production.

P

Electrical Characteristics–Output Duty Cycle, Jitter, and Skew Characteristics

$TA = T_{COM}$; Supply Voltage VDD = 3.3 V +/-5%, See Test Loads for Loading Conditions

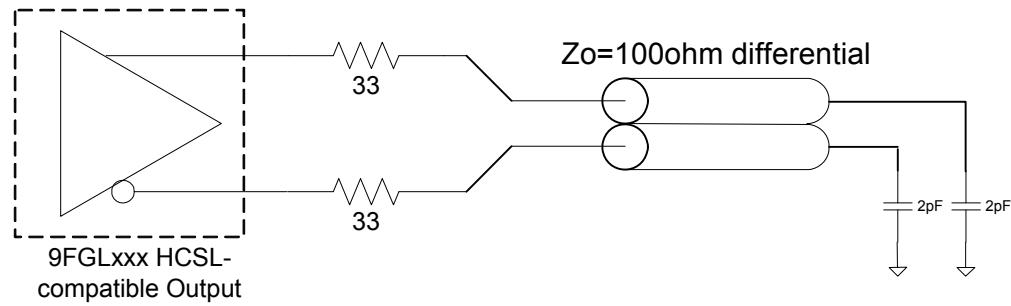
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Duty Cycle	t_{DC}	Measured differentially, PLL Mode	45		55	%	1
Skew, Output to Output	t_{sk3}	$V_T = 50\%$			100	ps	1
Jitter, Cycle to cycle	$t_{j_{cyc-cyc}}$	PLL mode			85	ps	1,3

¹Guaranteed by design and characterization, not 100% tested in production.

³ Measured from differential waveform

TA = T_{COM}; Supply Voltage VDD = 3.3 V +/-5%, See Test Loads for loading conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Phase Jitter, PCI Express	$t_{phPCleG1}$	PCIe Gen 1			86	ps (p-p)	1,2,3,6
	$t_{phPCleG2}$	PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz			3	ps (ms)	1,2,6
		PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)			3.1	ps (ms)	1,2,6

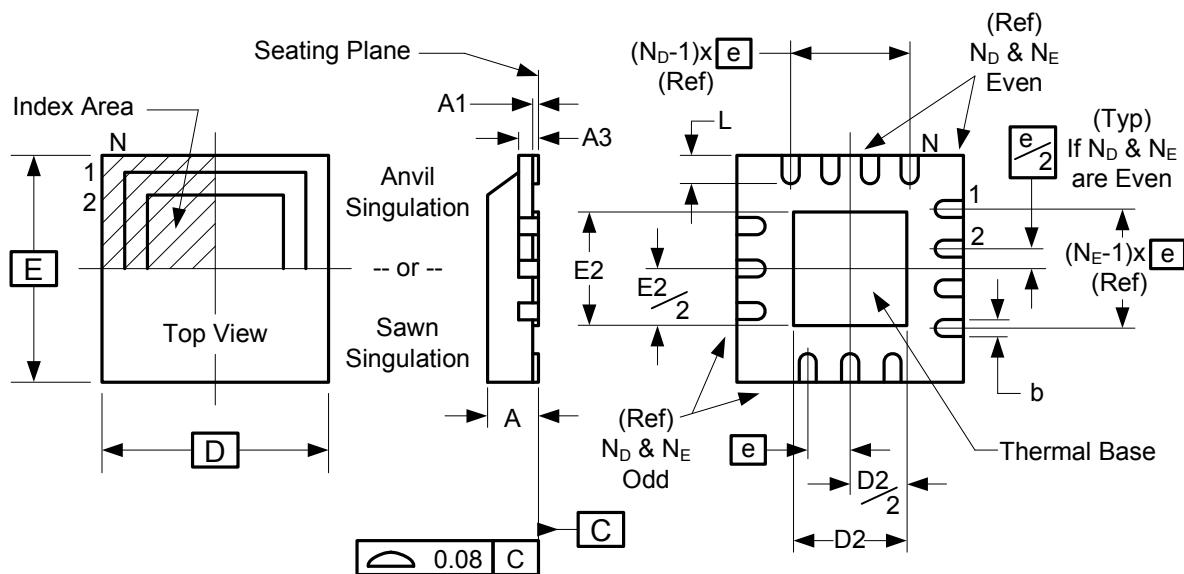

¹ Guaranteed by design and characterization, not 100% tested in production.

² See <http://www.pcisig.com> for complete specs

³ Sample size of at least 100K cycles. This figure extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.


⁶ Applies to all differential outputs

Low-Power Differential Output Test Load


Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Thermal Resistance Junction to Ambient	θ_{JA}	Still air		34		°C/W
	θ_{JA}	1 m/s air flow		29		°C/W
	θ_{JA}	3 m/s air flow		27		°C/W
Thermal Resistance Junction to Case	θ_{JC}			32		°C/W

Marking Diagram

Notes:

1. 'LOT' is the lot number.
2. 'COO' is country of origin.
3. YYWW is the last two digits of the year and week that the part was assembled.
4. "L" denotes RoHS compliant package.

Symbol	Millimeters	
	Min	Max
A	0.8	1.0
A1	0	0.05
A3	0.20 Reference	
b	0.18	0.3
e	0.50 BASIC	
D x E BASIC	5.00 x 5.00	
D2 MIN./MAX.	3.00	3.30
E2 MIN./MAX.	3.00	3.30
L MIN./MAX.	0.30	0.50
N	32	
N _D	8	
N _E	8	

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
9FGL699AKLF	see page 11	Trays	32-pin MLF	0 to +70° C
9FGL699AKLFT		Tape and Reel	32-pin MLF	0 to +70° C

"LF" suffix to the part number are the Pb-Free configuration, RoHS compliant.

"A" is the device revision designator (will not correlate with the datasheet revision).

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Rev.	Issue Date	WHO	Description	Page #
A	04/05/12	AT	Released to Final	
B	01/31/13	AT	Updated Cycle-to-cycle jitter max spec from 125ps to 85ps per latest characterization data.	9

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.