Description The 9DBL0255/9DBL0455 are 2 and 4-output PCIe Clock fan-out buffers for PCIe Gen1–7 applications. Both parts have an open drain Loss of Signal (LOS) output to indicate the absence or presence of an input clock. The LOS circuit also implements Automatic Clock Parking (ACP) to cleanly park the outputs low/low when the input clock goes away. The devices implement several additional features to aid robust designs. Flexible Power Sequencing (FPS) ensures well-defined behavior under various power up scenarios, while Power Down Tolerant (PDT) ESD protection allows input pins to be driven before VDD is applied. The 9DBL0255/9DBL0455 are spread-spectrum compatible and provide direct connection to 85Ω transmission lines. They can also be used in 100Ω environments with simple external series resistors. ### **PCIe Architectures** - Common Clocked (CC) - Independent Reference Clock (SRIS, SRnS) ### **Typical Applications** - PCIe clock distribution in: - PCle Riser Cards - NVME eSSD and JBOD - · High-Performance Computing and Accelerators #### **Features** - FPS: VDD may be applied with floating input clock, or input clock may be driven before VDD is applied - ACP: Outputs automatically park low/low when LOS occurs and cleanly start when LOS is removed - PDT: Input pins may be driven before VDD is applied and will not damage the device - 2 or 4 Low-power HCSL (LP-HCSL) DIF pairs - 85Ω loads require 0 termination resistors - 100Ω loads require only 2 series resistors per output - OE# pin for each output - Spread-spectrum tolerant - Industrial temperature range (-40°C to +85°C) - Space saving 3 × 3 mm 16-VFQFPN (9DBL0255) - Space saving 4 × 4 mm 20-VFQFPN (9DBL0455) - Easy AC-coupling to other logic families. See application note AN-891. ### **Key Specifications** - Input-to-output delay < 3ns - Output-to-output skew < 50ps - Operating frequency up to 267MHz (9DBL0455) - Additive phase jitter < 6fs RMS for PCIe Gen7 - Additive phase jitter 46fs RMS (typical) at 156.25MHz (12kHz–20MHz) # **Block Diagram** ### **Contents** | escription | 1 | |--------------------------|----| | Cle Architectures | 1 | | pical Applications | | | eatures | 1 | | ey Specifications | 1 | | ock Diagram | 1 | | n Assignments | 3 | | DBL0255 Pin Descriptions | 4 | | DBL0455 Pin Descriptions | 4 | | ower Management | 5 | | osolute Maximum Ratings | 6 | | nermal Characteristics | 6 | | ectrical Characteristics | 7 | | est Loads | 11 | | ternate Terminations | 11 | | ackage Outline Drawings | 12 | | arking Diagrams | | | rdering Information | | | evision History | | ### **Pin Assignments** Figure 1. Pin Assignments for 3 × 3 mm 16-VFQFPN Package – Top View #### 16-VFQFPN, 3 × 3mm, 0.5mm pitch ^ prefix indicates internal 120kOhm pull-up resistor v prefix indicates internal 120kOhm pull-down resistor Figure 2. Pin Assignments for 4 × 4 mm 20-VFQFPN Package – Top View #### 20-VFQFPN, 4 x 4 mm, 0.5mm pitch ^ prefix indicates internal pull-up resistor v prefix indicates internal pull-down resistor # 9DBL0255 Pin Descriptions Table 1. 9DBL0255 Pin Descriptions | Number | Name | Туре | Description | |--------|----------|----------------|--| | 1 | CLK_IN# | Input | Complementary input for differential reference clock. | | 2 | CLK_IN | Input | True input for differential reference clock. | | 3 | LOS# | Open Drain Out | Output indicating Loss of Input Signal. This pin is an open drain output and requires an external pull up resistor for proper functionality. A low output on this pin indicates a loss of signal on the input clock. | | 4 | NC | _ | No connection. | | 5 | vTEST_EN | Input | Test Enable Pin for forcing the outputs during board test. It has an internal pull down. See the Test Mode (9DBL0255 only) table for additional details. | | 6 | DIF1# | Output | Differential complementary clock output. | | 7 | DIF1 | Output | Differential true clock output. | | 8 | NC | _ | No connection. | | 9 | vOE1# | Input | Active low input for enabling output 1. This pin has an internal pull-down. 1 = disable output, 0 = enable output. | | 10 | GND | GND | Ground pin. | | 11 | VDD | Power | Power supply, nominally 3.3V. | | 12 | NC | _ | No connection. | | 13 | DIF0# | Output | Differential complementary clock output. | | 14 | DIF0 | Output | Differential true clock output. | | 15 | vOE0# | Input | Active low input for enabling output 0. This pin has an internal pull-down. 1 = disable output, 0 = enable output. | | 16 | NC | _ | No connection. | | 17 | EPAD | GND | Connect EPAD to ground. | # 9DBL0455 Pin Descriptions Table 2. 9DBL0455 Pin Descriptions | Number | Name | Туре | Description | |--------|-------|----------------|--| | 1 | LOS# | Open Drain Out | Output indicating Loss of Input Signal. This pin is an open drain output and requires an external pull up resistor for proper functionality. A low output on this pin indicates a loss of signal on the input clock. | | 2 | GND | GND | Ground pin. | | 3 | vOE3# | Input | Active low input for enabling output 3. This pin has an internal pull-down. 1 = disable output, 0 = enable output. | | 4 | DIF3# | Output | Differential complementary clock output. | | 5 | DIF3 | Output | Differential true clock output. | | 6 | VDD | Power | Power supply, nominally 3.3V. | Table 2. 9DBL0455 Pin Descriptions (Cont.) | Number | Name | Туре | Description | |--------|---------|--------|---| | 7 | GND | GND | Ground pin. | | 8 | DIF2# | Output | Differential complementary clock output. | | 9 | DIF2 | Output | Differential true clock output. | | 10 | vOE2# | Input | Active low input for enabling output 2. This pin has an internal pull-down. 1 = disable output, 0 = enable output. | | 11 | DIF1# | Output | Differential complementary clock output. | | 12 | DIF1 | Output | Differential true clock output. | | 13 | vOE1# | Input | Active low input for enabling output 1. This pin has an internal pull-down. 1 = disable output, 0 = enable output. | | 14 | GND | GND | Ground pin. | | 15 | VDD | Power | Power supply, nominally 3.3V. | | 16 | DIF0# | Output | Differential complementary clock output. | | 17 | DIF0 | Output | Differential true clock output. | | 18 | vOE0# | Input | Active low input for enabling output 0. This pin has an internal pull-down. 1 = disable output, 0 = enable output. | | 19 | CLK_IN# | Input | Complementary input for differential reference clock. | | 20 | CLK_IN | Input | True input for differential reference clock. | | 21 | EPAD | GND | Connect to Ground. | # **Power Management** **Table 3. Power Management** | CLK_IN | OEx# Pin | DIFx | DIFx# | |-------------------------|----------|---------|---------| | Floating ^[a] | X | Low | Low | | Stopped | X | Low | Low | | Running | 1 | Low | Low | | Running | 0 | Running | Running | [[]a] The CLK_IN has an internal network that biases the clock input to a differential '1' state. Table 4. Test Mode (9DBL0255 only) | TEST_EN | OEx# Pin | DIFx | DIFx# | | | |---------|----------|------------------|-------|--|--| | X | 0 | Normal Operation | | | | | 0 | 1 | Low | Low | | | | 1 | 1 | High | High | | | # **Absolute Maximum Ratings** The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the 9DBL0255/9DBL0455 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability. **Table 5. Absolute Maximum Ratings** | Parameter | Symbol | Conditions | Minimum | Typical | Maximum | Unit | Notes | |---------------------------|--------------------|------------------------------|---------|---------|---------|------|-------| | Supply Voltage | V _{DDx} | | - | - | 3.9 | V | 1,2 | | Input Voltage | V _{IN} | Single-ended control inputs. | -0.5 | - | 3.9 | V | 1 | | Input High Voltage, SMBus | V _{IHSMB} | SMBus clock and data pins. | - | - | 3.9 | V | 1 | | Junction temperature | TJ | | -65 | - | 150 | °C | 1 | | Storage temperature | T _S | | - | - | 125 | °C | 1 | | Input ESD Protection | ESD prot | Human Body Model. | 2000 | - | - | V | 1 | ¹ Confirmed by design and characterization, not 100% tested in production. ### **Thermal Characteristics** **Table 6. Thermal Characteristics** | Parameter | Symbol | Conditions | Package | Typical Value | Unit | Notes | |--------------------|------------------|----------------------------------|----------|---------------|------|-------| | | θ_{JC} | Junction to case. | | 66 | °C/W | 1 | | | θ_{Jb} | Junction to base. | | 5.1 | °C/W | 1 | | Thermal Resistance | θ _{JA0} | Junction to air, still air. | 9DBL0255 | 63 | °C/W | 1 | | mema resistance | θ _{JA1} | Junction to air, 1 m/s air flow. | NLG16P3 | 56 | °C/W | 1 | | | θ _{JA3} | Junction to air, 3 m/s air flow. | | 51 | °C/W | 1 | | | θ _{JA5} | Junction to air, 5 m/s air flow. | | 49 | °C/W | 1 | | | θ_{JC} | Junction to case. | | 65.8 | °C/W | 1 | | | θ_{Jb} | Junction to base. | | 5.1 | °C/W | 1 | | Thermal Resistance | θ _{JA0} | Junction to air, still air. | 9DBL0455 | 63.2 | °C/W | 1 | | Thermal Nesistance | θ _{JA1} | Junction to air, 1 m/s air flow. | NLG20P1 | 55.9 | °C/W | 1 | | | θ _{JA3} | Junction to air, 3 m/s air flow. | | 51.4 | °C/W | 1 | | | θ _{JA5} | Junction to air, 5 m/s air flow. | | 49.2 | °C/W | 1 | ¹ EPAD soldered to board. ² Operation under these conditions is neither implied nor guaranteed. ### **Electrical Characteristics** $T_A = T_{AMB}$, supply voltages per normal operation condition. See Test Loads for loading conditions. Table 7. CLK_IN Clock Input Parameters | Parameter | Symbol | Conditions | Minimum | Typical | Maximum | Unit | Notes | |-------------------------|--------------------|---|---------|---------|---------|------|-------| | Input Crossover Voltage | V _{CROSS} | Crossover voltage. | 150 | - | 900 | mV | 1 | | Input Swing | V _{SWING} | Differential value (±150mV single-ended). | 300 | - | - | mV | 1 | | Input Slew Rate | dv/dt | Measured differentially. | 0.6 | - | 8 | V/ns | 1,2 | ¹ Confirmed by design and characterization, not 100% tested in production. Table 8. Input/Supply/Common Parameters - Normal Operating Conditions | Parameter | Symbol | Conditions | Minimum | Typical | Maximum | Unit | Notes | |--|-----------------------------|--|------------------------|---------|-------------------------|------|-------| | Supply Voltage | V _{DD} | Supply voltage. | 3.135 | 3.3 | 3.465 | V | | | Pull-up Voltage | V _{DDPup} | Pull-up voltage for LOS# pin. | - | - | 3.465 | V | | | Ambient Operating
Temperature | T _{AMB} | Industrial range. | -40 | 25 | 85 | °C | | | Input High Voltage | V _{IH} | Single-ended inputs. | 0.75 V _{DDx} | - | V _{DDx} + 0.3 | V | | | Input Low Voltage | V _{IL} | Single-ended inputs. | -0.3 | - | 0.25 V _{DDx} | V | | | Output High Voltage | V _{OH} | LOS# output (1kΩ pull resistor, | 0.9 V _{DDPup} | - | V_{DDPup} | V | | | Output Low Voltage | V _{OL} | $V_{DDPup} = 3.3V.$ | -0.3 | - | 0.15 V _{DDPup} | V | | | | I _{IN} | Single-ended inputs, $V_{IN} = GND$, $V_{IN} = V_{DD}$. | -5 | - | 5 | μA | | | Input Current | I _{INP} | Single-ended inputs. $V_{IN} = 0V$; inputs with internal pull-up resistors. $V_{IN} = V_{DD}$; inputs with internal pull-down resistors. | -50 | - | 100 | μΑ | | | In a set Francisco | _ | 9DBL0255 | 10 | - | 220 | MHz | | | input Frequency | F _{IN} | 9DBL0455 | 10 | - | 267 | | | | Pin Inductance | L _{pin} | | | - | 7 | nΗ | 1 | | | C _{IN} | Logic inputs, except CLK_IN. | 1.5 | - | 5 | pF | 1 | | Capacitance | C _{INCLK_IN} | CLK_IN differential clock inputs. | 1.5 | - | 2.7 | pF | 1 | | Pull-up Voltage Ambient Operating Temperature Input High Voltage Input Low Voltage Output High Voltage Output Low Voltage Input Current Input Frequency Pin Inductance Capacitance Clk Stabilization | C _{OUT} | Output pin capacitance. | - | - | 6 | pF | 1 | | Clk Stabilization | t _{STAB} | From V _{DD} valid, input clock stabilization and OE# pins low. | - | 224 | 300 | μs | 1,2 | | LOS# De-assertion Time | t _{LOS#_De-assert} | Time for LOS# to de-assert after return of input clock. | - | 224 | 300 | μs | 1 | | LOS# Assertion Time | t _{LOS} #_Assert | Time for LOS# to assert after loss of input clock. | - | 73 | 100 | ns | 1 | $^{^2}$ Slew rate measured through $\pm 75 \text{mV}$ window centered around differential zero. Table 8. Input/Supply/Common Parameters - Normal Operating Conditions | Parameter | Symbol | Conditions | Minimum | Typical | Maximum | Unit | Notes | |-------------|----------------------|--|---------|---------|---------|--------|-------| | OE# Latency | t _{LATOE} # | DIF start after OE# assertion. DIF stop after OE# deassertion. | 1 | - | 3 | clocks | 1,3 | | Tfall | t _F | Fall time of single-ended control inputs. | - | - | 5 | ns | 2 | | Trise | t _R | Rise time of single-ended control inputs. | - | - | 5 | ns | 2 | ¹ Confirmed by design and characterization, not 100% tested in production. **Table 9. Current Consumption** | Parameter | Symbol | Conditions | Minimum | Typical | Maximum | Unit | Notes | |--|--------------------|------------------------------|---------|---------|---------|------|-------| | Operating Supply
Current (9DBL0255) | I _{DD} | 220MHz, all outputs running. | - | 26 | 36 | mA | | | | | 100MHz, all outputs running. | - | 14 | 20 | mA | | | Operating Supply
Current (9DBL0455) | I _{DD} | 267MHz, all outputs running | - | 48 | 65 | mA | | | | | 100MHz, all outputs running. | - | 24 | 33 | mA | | | Powerdown Current | I _{DDRPD} | Input clock stopped. | - | 1.7 | 2.5 | mA | 1 | ¹ Input clock stopped. Table 10. Output Duty Cycle, Jitter, and Skew Characteristics | Parameter | Symbol | Conditions | Minimum | Typical | Maximum | Unit | Notes | |------------------------|------------------|---|---------|---------|---------|-------|-------| | Duty Cycle Distortion | t _{DCD} | Measured differentially, 100MHz. | 0 | 0.4 | 0.7 | % | 1,3 | | Skew, Input to Output | | $V_T = 50\%$, $V_{SWING} > 600$ mV (±300mV single-ended). | 1.5 | 2.2 | 3.0 | ns | 1,2,5 | | | t _{pd} | $V_T = 50\%, 400 \text{mv} \le V_{SWING} \le 600 \text{mV}$
(±200 mV to ±300 mV single-ended). | 2.8 | 3.7 | ns | 1,2,6 | | | | | V_T = 50%, 300mv \leq V_{SWING} $<$ 400mV (±150mV to ±200 mV single-ended). | 2.9 | 3.9 | 4.9 | ns | 1,2 | | Skew, Output to Output | | V _T = 50%, 9DBL0255. | - | 2 | 15 | ps | 2,4 | | | t _{sk3} | V _T = 50%, 9DBL0455. | - | 14 | 25 | ps | 1,2,4 | ¹ Applies to all differential outputs, confirmed by design and characterization. ² Control input must be monotonic from 20% to 80% of input swing. ³ Time from deassertion until outputs are > 200mV, assuming input clock is running. ² Measured from differential waveform. ³ Duty cycle distortion is the difference in duty cycle between the output and the input clock. ⁴ All outputs equally loaded. $^{^{5}}$ The maximum absolute difference between minimum and maximum t_{pd} at any given V_{SWING} in this range is 1.15ns. ⁶ The maximum absolute difference between minimum and maximum t_{od} at any given V_{SWING} in this range is 1.4ns. ### Table 11. LP-HCSL Outputs - 9DBL0255 T_{AMB} = over the specified operating range. Supply voltages per normal operation conditions. See Test Loads for loading conditions. | Parameter | Symbol | Conditions | Minimum | Typical | Maximum | Limit | Unit | Notes | |------------------------|------------|--|---------|---------|---------|----------|------|-------| | Slew Rate | dV/dt | Scope averaging on. | 3.0 | 3.4 | 3.9 | 1–5 | V/ns | 1,2,3 | | Slew Rate Matching | ∆dV/dt | Single-ended measurement. | - | 5 | 11 | 20 | % | 1,4,7 | | Max Voltage | Vmax | Measurement on single-ended | 800 | 843 | 885 | 660–1150 | | 7,8 | | Min Voltage | Vmin | signal using absolute value (scope averaging off). | -104 | -74 | -47 | -300–150 | mV | 7,8 | | Crossing Voltage (abs) | Vcross_abs | Scope averaging off. | 324 | 367 | 421 | 250–550 | mV | 1,5,7 | | Crossing Voltage (var) | Δ-Vcross | Scope averaging off. | - | 21 | 71 | 140 | mV | 1,6,7 | #### Table 12. LP-HCSL Outputs - 9DBL0455 T_{AMB} = over the specified operating range. Supply voltages per normal operation conditions. See Test Loads for loading conditions. | Parameter | Symbol | Conditions | Minimum | Typical | Maximum | Limit | Unit | Notes | |------------------------|------------|--|---------|---------|---------|----------|------|-------| | Slew Rate | dV/dt | Scope averaging on. | 3.8 | 4.4 | 5 | 1–5 | V/ns | 1,2,3 | | Slew Rate Matching | ∆dV/dt | Single-ended measurement. | - | 7 | 15 | 20 | % | 1,4,7 | | Max Voltage | Vmax | Measurement on single-ended | 804 | 846 | 888 | 660–1150 | | 7,8 | | Min Voltage | Vmin | signal using absolute value (scope averaging off). | -154 | -109 | -62 | -300–150 | mV | 7,8 | | Crossing Voltage (abs) | Vcross_abs | Scope averaging off. | 278 | 347 | 415 | 250–550 | mV | 1,5,7 | | Crossing Voltage (var) | Δ-Vcross | Scope averaging off. | - | 18 | 25 | 140 | mV | 1,6,7 | #### Notes for LP-HCSL Outputs tables: ¹ Confirmed by design and characterization, not 100% tested in production. ² Measured from differential waveform. ³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a ±150mV window around differential 0V. ⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a ±75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. ⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling). ⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute. #### **Table 13. Additive Phase Jitter for Fanout Buffers** T_{AMB} = over the specified operating range. Supply voltages per normal operation conditions. See Test Loads for loading conditions. | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Limit | Units | Notes | |--|-----------------------------|-------------------------------|------|------|------|-------|------------|------------| | | t _{jphPCleG1-CC} | PCle Gen 1 (2.5 GT/s) | - | 856 | 1294 | 86000 | fs (pk-pk) | 1, 2 | | | | PCle Gen 2 Hi Band (5.0 GT/s) | - | 73 | 110 | 3100 | fs (RMS) | 1, 2 | | | ^t jphPCleG2-CC | PCle Gen 2 Lo Band (5.0 GT/s) | - | 22 | 32 | 3000 | fs (RMS) | 1, 2 | | Additive PCIe Phase Jitter | t _{jphPCleG3-CC} | PCIe Gen 3 (8.0 GT/s) | - | 24 | 37 | 1000 | fs (RMS) | 1, 2 | | (Common Clocked
Architecture) | t _{jphPCleG4-CC} | PCIe Gen 4 (16.0 GT/s) | - | 24 | 37 | 500 | fs (RMS) | 1, 2, 3, 4 | | · | t _{jphPCleG5-CC} | PCIe Gen 5 (32.0 GT/s) | - | 10 | 15 | 150 | fs (RMS) | 1, 2, 3, 5 | | | t _{jphPCleG6-CC} | PCIe Gen 6 (64.0 GT/s) | - | 6 | 9 | 100 | fs (RMS) | 1, 2, 3, 6 | | | t _{jphPCleG7-CC} | PCIe Gen 7 (64.0 GT/s) | - | 4 | 6 | 67 | fs (RMS) | 1, 2, 3, 7 | | | ^t jphPCIeG2-IR | PCIe Gen 2 Band (5.0 GT/s) | - | 59 | 90 | N/A | fs (RMS) | 1, 2, 8 | | | ^t jphPCIeG3-IR | PCIe Gen 3 (8.0 GT/s) | - | 24 | 36 | N/A | fs (RMS) | 1, 2, 8 | | Additive PCIe Phase Jitter | ^t jphPCIeG4-IR | PCIe Gen 4 (16.0 GT/s) | - | 24 | 37 | N/A | fs (RMS) | 1, 2, 8 | | (IR Architecture) | ^t jphPCIeG5-IR | PCIe Gen 5 (32.0 GT/s) | - | 7 | 10 | N/A | fs (RMS) | 1, 2, 8 | | | ^t jphPCleG6-IR | PCIe Gen 6 (64.0 GT/s) | - | 5 | 7 | N/A | fs (RMS) | 1, 2, 8 | | | ^t jphPCleG7-IR | PCIe Gen 7 (64.0 GT/s) | - | 3 | 5 | N/A | fs (RMS) | 1, 2, 8 | | Additive Phase Jitter
(12kHz-20MHz) | ^t jphPCle12k-20M | 156.25MHz | - | 46 | 54 | N/A | fs (RMS) | N/A | - 1. The Refclk jitter is measured after applying the filter functions found in the *PCI Express Base Specification 7.0*, Revision 0.7. For the exact measurement setup, see Test Loads. The worst case results for each data rate are summarized in this table. Equipment noise is removed from all measurements. - 2. Jitter measurements should be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of 20GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately, jitter measurements can be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the 2.5GT/s data rate, the RMS jitter is converted to peak-to-peak jitter using a multiplication factor of 8.83. - 3. SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2MHz taking care to minimize removal of any non-SSC content. - 4. 0.7 ps RMS should be used in channel simulations to account for additional noise in a real system. - 5. 0.25 ps RMS should be used in channel simulations to account for additional noise in a real system. - 6. 0.15 ps RMS should be used in channel simulations to account for additional noise in a real system. - 7. 0.10 ps RMS should be used in channel simulations to account for additional noise in a real system. - 8. The PCI Express Base Specification 7.0, Revision 0.7 provides the filters necessary to calculate SRIS jitter values; it does not provide specification limits, therefore, the reference to this footnote in the Limit column. SRIS values are informative only. A common practice is to split the common clock budget in half. For 16GT/s data rates and above, the user must choose whether to use the output jitter specification, or the input jitter specification, which includes an allocation for the jitter added by the channel. Using 32GT/s, the Refclk jitter budget is 150fs RMS. One half of the Refclk jitter budget is 106fs RMS. At the clock input, the system must deliver 250fs RMS. One half of this value is 177fs RMS. If the clock is placed next to the PCle device in an SRIS system, the channel is very short and the user can choose to use this more relaxed value as the jitter limit. ### **Test Loads** Figure 3. LOS# Test Load Figure 4. AC/DC Test Load Figure 5. Jitter Measurement Circuit **Table 14. Parameters for Output Test Loads** | Clock Source | e Rs (Ω) | Ζο (Ω) | L (inches) | C _L (pF) | |--------------|----------|--------|------------|---------------------| | SMA100B | Internal | 85 | 5 | 2 | | SMA100B | 7.5 | 100 | 5 | 2 | ### **Alternate Terminations** The 9DBL family can easily drive LVPECL, LVDS, and CML logic. See <u>"AN-891 Driving LVPECL, LVDS, and CML Logic with "Universal" Low-Power HCSL Outputs"</u> for details. ### **Package Outline Drawings** The package outline drawings are located at the end of this document and are accessible from the Renesas website (see Ordering Information for POD links). The package information is the most current data available and is subject to change without revision of this document. ### **Marking Diagrams** - Line 1 indicates the last three characters of Asm lot number. - Line 2 indicates the following: - "YY" is the last digits of the year; "WW" is the work week number when the part was assembled. - Line 3 indicates the truncated part number. - Lines 1 and 2 indicate the part number. - Line 3 indicates the following: - "Y" is the last digit of the year; "WW" is the work week number when the part was assembled. - "**" denotes the lot sequence. - "\$" denotes the mark code. # **Ordering Information** | Part Number | Carrier Type | Number of Outputs | Package | Temperature Range | |---------------|---------------|---------------------|------------------------|-------------------| | 9DBL0255NLGI | Tray | 2 2 2 2mm 46 VEOEDN | | | | 9DBL0255NLGI8 | Tape and Reel | 2 | 3 × 3mm, 16-VFQFPN | -40° to +85°C | | 9DBL0455NLGI | Tray | 1 | 4 × 4 mm, 20-VFQFPN | -40 t0 +65 C | | 9DBL0455NLGI8 | Tape and Reel | 4 | 4 ^ 4 IIIII, 20-VFQFFN | | [&]quot;G" denotes Pb-free, RoHS complaint configuration. # **Revision History** | Revision Date | Description of Change | |--------------------|--| | March 5, 2025 | Updated datasheet title and description to PCle Gen1-7 from PCle Gen1-5. Updated Key Specifications to "Additive phase jitter < 6fs for PCle Gen 7" from "Additive phase Jitter < 15fs RMS for PCle Gen 5". | | January 27, 2025 | Updated the specifications and footnotes in Table 13. | | February 3, 2023 | Updated POD link for 20-VFQFPN in Ordering Information. | | March 17, 2021 | Updated front page description text and features bullets. Modified block diagram to indicate pin that are 9DBL0255 only and 9DBL0455 only. Updated Package Outline Drawings section and Ordering Information table. Reformatted to Renesas. | | September 30, 2019 | Merged 9DBL0255 and 9DBL0455 into one single document. | | August 23, 2019 | Initial release. | # **Package Outline Drawing** PSC-4169-03 NLG16P3 16-VFQFPN 3.0 x 3.0 x 0.9 mm Body, 0.50mm Pitch Rev.06, Apr 17, 2025 Top View Side View Side View Recommended Land Pattern (PCB Top View, NSMD Design) #### Notes: - 1. JEDEC compatible. - 2. All dimensions are in mm. and angle are in degrees. - 3. Use ± 0.05 mm for the non-toleranced dimensions. - 4. Numbers in () are for references only. # **Package Outline Drawing** Rev.03, Apr 17, 2025 PSC-4170-01 NLG20P1 20-VFQFPN 4.0 x 4.0 x 0.9 mm Body, 0.5mm Pitch RECOMMENDED LAND PATTERN (PCB Top View, NSMD Design) 2.10 - 1. JEDEC compatible. - 2. All dimensions are in mm and angles are in degrees. - 3. Use ±0.05 mm for the non-toleranced dimensions. - 4. Numbers in () are for references only. #### **IMPORTANT NOTICE AND DISCLAIMER** RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. (Disclaimer Rev.1.01) #### **Corporate Headquarters** TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com #### **Trademarks** Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. #### **Contact Information** For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.