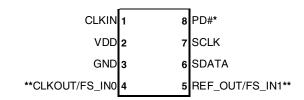


Low EMI, Spread Modulating, Clock Generator


Features:

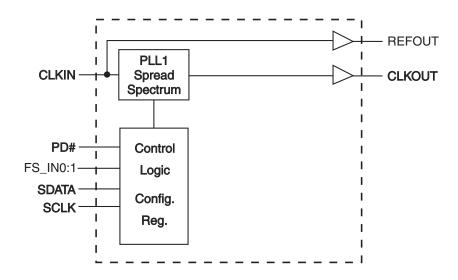
- ICS91718 is a Spread Spectrum Clock targeted for Mobile PC and LCD panel applications.
 Generates an EMI optimized clock signal (EMI peak reduction of 7-14 dB on 3rd-19th harmonics) through use of Spread Spectrum techniques.
- ICS91718 operates with input frequencies at 14.318 - 80 MHz.
- Spread modulation frequency range is 20kHz to 40kHz.
- Spread percentage/type programming through I²C.

Specifications:

- Supply Voltages: V_{DD} = 3.3V ±0.3V
- Cyc to Cyc jitter: <150ps
- Output duty cycle 45/55%
- Guarantees +85°C operational condition
- 8-pin SOIC (150 mil) package

Pin Configuration

8-pin SOIC & TSSOP


Notes:

- * Internal pull-up resistor
- ** Internal pull-down resistor

Input Select Functionality

FS_IN1	FS_IN0	MHz	SPREAD %
0	0	14.318 in	-1.0% down sprd
U	U	48.00 out	-1.0% down spru
0	1	14.318 in	-1.0% down sprd
U	I	66.66 out	-1.0% down spru
4	0	48.00 in/out	-1.0% down sprd
1	U	66.66 in/out	-1.0% down spru
-1	1	48.00 in/out	+/-1.0% center sprd
'	'	66.66 in/out	+/-1.0 % certier spru

Block Diagram

Pin Descriptions

PIN#	PIN NAME	PIN TYPE	DESCRIPTION		
1	CLKIN	INPUT Input clock			
2	VDD	POWER	Power supply, nominal 3.3V		
3	GND	POWER	Ground pin.		
4			CLKOUT modulated clock output FS_IN0 latched input, selects modulation percentage/type		
5	REF_OUT/FS_IN1**	I/O	REF_OUT, unmodulated reference clock output FS_IN1 latched input, selects modulation percentage/type		
6	SDATA	I/O	Data pin for I2C circuitry 5V tolerant		
7	SCLK	INPUT	Clock pin of I2C circuitry 5V tolerant		
8	PD#*	INPUT	Asynchronous active low input pin used to power down the device into a low power state. The internal clocks are disabled and the VCO and the crystal are stopped. The latency of the power down will not be greater than 1.8ms.		

^{*} Internal Pull-Up Resistor

^{**} Internal Pull-Down Resistor

Table 1: Frequency Configuration Table (See I2C Byte 0)

	FS4	FS3	FS2	FS1	FS0	Sprd Type	Sprd %
	0	0	0	0	0		0.80
	0	0	0	0	1		1.00
	0	0	0	1	0	DOWN	1.25
	0	0	0	1	1	SPREAD	1.50
	0	0	1	0	0	(-)	1.75
14in/48out	0	0	1	0	1		2.00
	0	0	1	1	0		2.50
	0	0	1	1	1		0.60
	0	1	0	0	0	CENTER	1.00
	0	1	0	0	1	SPREAD	1.25
	0	1	0	1	0	(+/-)	1.50
	0	1	0	1	1		2.00
	0	1	1	0	0	DOWN	1.25
14in/66out	0	1	1	0	1	SPREAD	1.00
	0	1	1	1	0		1.50
	0	1	1	1	1	(-)	2.00
	1	0	0	0	0		0.80
	1	0	0	0	1		1.00
	1	0	0	1	0	DOWN	1.25
	1	0	0	1	1	SPREAD	1.50
	1	0	1	0	0		1.75
	1	0	1	0	1	(-)	2.00
	1	0	1	1	0		2.50
48in/48out	1	0	1	1	1		3.00
66in/66out	1	1	0	0	0		0.30
	1	1	0	0	1		0.40
	1	1	0	1	0	CENTER	0.50
	1	1	0	1	1	CENTER SPREAD	0.60
	1	1	1	0	0		0.80
	1	1	1	0	1	(+/-)	1.00
	1	1	1	1	0		1.25
	1	1	1	1	1		1.50

For 14.318 in 48.008 out default is...00001 For 14.318 in 66.66 out default is...01101 For 48/48 and 66/66 default is....10001

General I²C serial interface information

The information in this section assumes familiarity with I^2C programming. For more information, contact ICS for an I^2C programming application note.

How to Write:

- · Controller (host) sends a start bit.
- Controller (host) sends the write address D4 (41)
- ICS clock will acknowledge
- · Controller (host) sends a dummy command code
- ICS clock will acknowledge
- · Controller (host) sends a dummy byte count
- ICS clock will acknowledge
- Controller (host) starts sending first byte (Byte 0) through byte 6
- ICS clock will acknowledge each byte one at a time.
- · Controller (host) sends a Stop bit

How to Write:							
Controller (Host)	ICS (Slave/Receiver)						
Start Bit							
Address							
D4 _(H)							
	ACK						
Dummy Command Code							
	ACK						
Dummy Byte Count							
	ACK						
Byte 0							
	ACK						
Byte 1							
	ACK						
Byte 2	401/						
D. t. O	ACK						
Byte 3	ACK						
Puto 4	ACK						
Byte 4	ACK						
Byte 5	ACA						
Бую о	ACK						
Byte 6	7.57						
2,100	ACK						
Byte 7							
,	ACK						
Stop Bit							

How to Read:

- · Controller (host) will send start bit.
- Controller (host) sends the read address D5 (H)
- ICS clock will acknowledge
- ICS clock will send the byte count
- Controller (host) acknowledges
- ICS clock sends first byte (Byte 0) through byte 7
- Controller (host) will need to acknowledge each byte
- · Controller (host) will send a stop bit

How to	Read:
Controller (Host)	ICS (Slave/Receiver)
Start Bit	
Address	
D5 _(H)	
	ACK
	Byte Count
ACK	
	Byte 0
ACK	
	Byte 1
ACK	
	Byte 2
ACK	
	Byte 3
ACK	
	Byte 4
ACK	
	Byte 5
ACK	
	Byte 6
ACK	
	Byte 7
Stop Bit	

Notes:

- 1. The ICS clock generator is a slave/receiver, I²C component. It can read back the data stored in the latches for verification. **Read-Back will support Intel PIIX4 "Block-Read" protocol**.
- 2. The data transfer rate supported by this clock generator is 100K bits/sec or less (standard mode)
- 3. The input is operating at 3.3V logic levels.
- 4. The data byte format is 8 bit bytes.
- 5. To simplify the clock generator I²C interface, the protocol is set to use only "Block-Writes" from the controller. The bytes must be accessed in sequential order from lowest to highest byte with the ability to stop after any complete byte has been transferred. The Command code and Byte count shown above must be sent, but the data is ignored for those two bytes. The data is loaded until a Stop sequence is issued.
- 6. At power-on, all registers are set to a default condition, as shown.

BYTE		Affected Pin		ш	Bit Control		
0	Pin #	Name	Control Function	ΤYΡ	0	1	PWD
Bit 7	-	N/A	FS0	RW			1
Bit 6	-	N/A	FS1	RW			0
Bit 5		N/A	FS2	RW	See RON	M TABLE	0
Bit 4		N/A	FS3	RW			0
Bit 3		N/A	FS4	RW			0
Bit 2		N/A	PD# Tri_Sate	RW	Hi-Z	LOW	1
Bit 1		N/A	Spread Enable	RW	OFF	ON	1
Bit 0		HW/SW Control	Spread Spectrum Control FS 2:4 Hard/Software Select	RW	HW	SW	0

BYTE		Affected Pin		ш	Bit Co	ontrol	
1	Pin #	Name	Control Function	ΤΥΡ	0	1	PWD
Bit 7	5	REF_OUT	REF_OUT ENABLE	RW	Disable	Enable	1
Bit 6	5	REF_OUT	Slew Rate REF-OUT	RW	Nominal	Fast	1
Bit 5		FS_IN1 Readback	FS_IN1 Readback	RW	-	-	1
Bit 4		FS_IN0 Readback	FS_IN0 Readback	RW	-	-	1
Bit 3	4	CLK_OUT	Slew Rate CLK-OUT	RW	Nominal	Fast	1
Bit 2	4	CLK_OUT	CLK_OUT_Enable	RW	Disable	Enable	1
Bit 1		Reserved	Reserved	R	-	-	1
Bit 0		Reserved	Reserved	R	-	-	1

BYTE		Affected Pin		ñ	Bit Control		
2	Pin#	Name	Control Function	ΤΥP	0	1	PWD
Bit 7	Х	-	RESERVED	-	-	-	1
Bit 6	Х	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 5	Х	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 4	Х	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 3	Х	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 2	Х	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 1	Х	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 0	Х	RESERVED	RESERVED	RW	Disable	Enable	1

BYTE		Affected Pin		Й	Bit Co	ontrol	
3	Pin #	Name	Control Function	TYPE	0	1	PWD
Bit 7	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 6	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 5	Х	RESERVED	RESERVED	RW	Freerun	Not Freerun	1
Bit 4	Χ	RESERVED	RESERVED	RW	Freerun	Not Freerun	1
Bit 3	Х	RESERVED	RESERVED	RW	Freerun	Not Freerun	1
Bit 2	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 1	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 0	Χ	RESERVED	RESERVED	RW	Disable	Enable	1

BYTE	Affected Pin			ш	Bit Co	ontrol	
4	Pin #	Name	Control Function	₹	0	1	PWD
Bit 7	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 6	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 5	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 4	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 3	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 2	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 1	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 0	Χ	RESERVED	RESERVED	RW	Disable	Enable	1

BYTE		Affected Pin		Й	Bit Co	ontrol	
5	Pin #	Name	Control Function	ΤΥΡ	0	1	PWD
Bit 7	Χ	RESERVED	RESERVED	-	-	-	1
Bit 6	Χ	RESERVED	RESERVED	-	-	-	1
Bit 5	Χ	RESERVED	RESERVED	-	-	-	1
Bit 4	Χ	RESERVED	RESERVED	-	-	-	1
Bit 3	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 2	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 1	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 0	Χ	RESERVED	RESERVED	RW	Disable	Enable	1

BYTE		Affected Pin		ш	Bit Co	ontrol	
6	Pin#	Name	Control Function	ТҮР	0	1	PWD
Bit 7	Χ	Revision ID Bit 3	(Reserved)	R	-	-	1
Bit 6	Χ	Revision ID Bit 2	(Reserved)	R	1	1	1
Bit 5	Χ	Revision ID Bit 1	(Reserved)	R	-	-	1
Bit 4	Χ	Revision ID Bit 0	(Reserved)	R	•	-	1
Bit 3	Χ	Vendor ID Bit 3	(Reserved)	R	1	ı	1
Bit 2	Χ	Vendor ID Bit 2	(Reserved)	R	-	-	1
Bit 1	Χ	Vendor ID Bit 1	(Reserved)	R	•	-	1
Bit 0	Χ	Vendor ID Bit 0	(Reserved)	R	-	-	1

BYTE		Affected Pin		Ä	Bit Control		
7	Pin #	Name	Control Function	ТҮР	0	1	PWD
Bit 7	Χ	DEVICE ID7	(Reserved)	R	-	-	0
Bit 6	Χ	DEVICE ID6	(Reserved)	R	1	-	0
Bit 5	Χ	DEVICE ID5	(Reserved)	R	ı	-	0
Bit 4	Χ	DEVICE ID4	(Reserved)	R	ı	-	0
Bit 3	Χ	DEVICE ID3	(Reserved)	R	•	-	0
Bit 2	Χ	DEVICE ID2	(Reserved)	R	•	-	0
Bit 1	Χ	DEVICE ID1	(Reserved)	R	-	-	0
Bit 0	Χ	DEVICE ID0	(Reserved)	R	-	-	1

BYTE		Affected Pin		ய Bit Control			
8	Pin #	Name	Control Function	TYP	0	1	PWD
Bit 7	Х	Byte Count7	(Reserved)	R	-	-	0
Bit 6	Χ	Byte Count6	(Reserved)	R	-	-	0
Bit 5	Χ	Byte Count5	(Reserved)	R	-	-	0
Bit 4	Χ	Byte Count4	(Reserved)	R	-	-	0
Bit 3	Χ	Byte Count3	(Reserved)	R	-	-	0
Bit 2	Χ	Byte Count2	(Reserved)	R	-	-	1
Bit 1	Χ	Byte Count1	(Reserved)	R	-	-	1
Bit 0	Χ	Byte Count0	(Reserved)	R	-	-	1

Absolute Maximum Ratings

Supply Voltage..... 3.7 V

Power Dissipation 0.5 W

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input/Supply/Common Output Parameters

 $T_A = 0 - 85$ °C; Supply Voltage $V_{DD} = 3.3 \text{ V +/-5}\%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Voltage	V_{IH}		2		$V_{DD} + 0.3$	V
Input Low Voltage	V_{IL}		V _{SS} - 0.3		0.8	V
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-5		5	∠A
Input Low Current	I _{IL1}	V _{IN} = 0 V; Inputs with no pull-up resistors	-5			∠A
Supply Current		$f_{IN} = 14.318MHz$		27	35	mA
Supply Culletti	l _{DD}	$f_{IN} = 66.66MHz$		42	50	mA
Powerdown Current	I _{DD3.3PD}			3	5	mA
Pin Inductance	L_{pin}				7	nΗ
Din Canasitanas	C_{IN}	Logic Inputs			5	рF
Pin Capacitance ¹	C _{OUT}	Output pin capacitance			6	рF
Transition time ¹	T _{trans}	To 1st crossing of target frequency			3	ms
Settling time ¹	T _s	From 1st crossing to 1% target frequency			3	ms
Clk Stabilization ¹	T _{STAB}	From V _{DD} = 3.3 V to 1% target frequency		1	3	ms
Delay ¹	t_{PZH}, t_{PZL}	Output enable delay (all outputs)	1		10	ns

¹Guaranteed by design, not 100% tested in production.

AC Electrical Characteristics

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{V}$

PARAMETER	DESCRIPTION	TEST CONDITION	MIN	TYP	MAX	UNITS
F _{IN}	Input Frequency	Input Clock	14.318		80	MHz
f _{OUT}	Output Frequency	Spread Off	14.318		80	MHz
t _R	Output Rise Time	15 pF load, 0.8V - 2.4V	0.5		1	ns
t _F	Output Fall Time	15 pF load, 2.4 - 0.8V	0.5		1	ns
I _{OD}	Output Duty Cycle	15 pf load	45		55	%
t _{ID}	Input Duty Cycle		45		55	%
t _{JCYC}	Jitter, Cycle-to-Cycle				250	ps

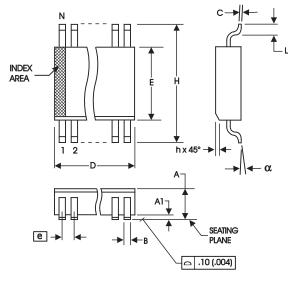
Electrical Characteristics - CLOCK_OUT

 $T_A = 0 - 85$ °C; $V_{DD} = 3.3V + /-5\%$; $C_L = 10-20 \ pF$ (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Current Source						
Output Impedance	Zo ¹	$V_O = V_x$	3000			(
Output High Voltage	V_{OH3}	$I_{OH} = -1 \text{ mA}$	2.4			V
Output Low Voltage	V_{OL3}	$I_{OL} = 1 \text{ mA}$			0.4	
Rise Time	t _{r3}	$V_{OL} = 0.41V, V_{OH} = 0.86V$	0.5		1	ns
Fall Time	t _{f3}	$V_{OH} = 0.86V V_{OL} = 0.41V$	0.5		1	ns
Duty Cycle	d _{t3}	V _T = 50%	45	51	55	%
Jitter, Cycle to cycle	t _{jcyc-cyc} 1	$V_T = 50\%$			250	ps

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - REF


 $T_A = 0 - 85$ °C; VDD=3.3V +/-5%; $C_L = 10$ -20 pF (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Frequency	F _{O1}					MHz
Output Impedance	R_{DSP1}^{1}	$V_{O} = V_{DD}^{*}(0.5)$	20		60	
Output High Voltage	V_{OH}^{-1}	I _{OH} = -1 mA	2.4			V
Output Low Voltage	V_{OL}^{1}	I _{OL} = 1 mA			0.4	V
Output High Current	I_{OH}^{-1}	V _{OH@MIN} = 1.0 V, V _{OH@MAX} = 3.135 V	-29		-23	mA
Output Low Current	I_{OL}^{1}	$V_{OL @MIN} = 1.95 \text{ V}, V_{OL @MAX} = 0.4 \text{ V}$	29		27	mA
Rise Time	t_{r1}^{-1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	0.5		1	ns
Fall Time	t_{f1}^1	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	0.5		1	ns
Duty Cycle	d_{t1}^{1}	$V_T = 1.5 \text{ V}$	45		55	%
Accumulated Jitter	t _{jlongterm}	$V_T = 1.5 \text{ V } 10 \text{us}.$			2	ns
Jitter	t _{jcyc-cyc} 1	$V_T = 1.5 \text{ V}$			500	ps

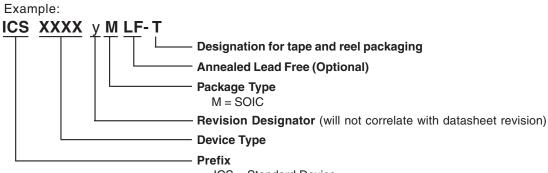
¹Guaranteed by design, not 100% tested in production.

² I_{OWT} can be varied and is selectable thru the MULTSEL pin.

150mil Body, .50mil pitch

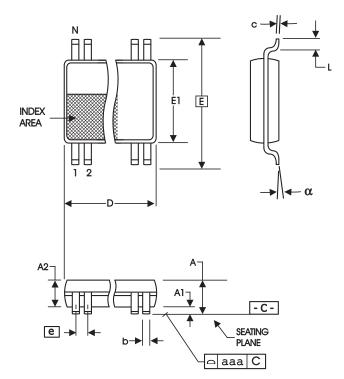
150 mil (Narrow Body) SC	ЭIC)
--------------------------	-----	---

100 mm (marrow Body) colo							
	In Millimeters		In Inches				
SYMBOL	COMMON D	IMENSIONS	COMMON DIMENSION:				
	MIN	MAX	MIN	MAX			
Α	1.35	1.75	.0532	.0688			
A1	0.10	0.25	.0040	.0098			
В	0.33	0.51	.013	.020			
С	0.19	0.25	.0075	.0098			
D	SEE VAF	RIATIONS	SEE VARIATIONS				
E	3.80	4.00	.1497	.1574			
е	1.27 E	BASIC	0.050	BASIC			
Н	5.80	6.20	.2284	.2440			
h	0.25	0.50	.010	.020			
L	0.40	1.27	.016	.050			
N	SEE VAF	RIATIONS	SEE VAI	RIATIONS			
а	0°	8°	0°	8°			


VARIATIONS

N	D mm.		D (inch)		
	MIN	MAX	MIN	MAX	
8	4.80	5.00	.1890	.1968	

Reference Doc.: JEDEC Publication 95, MS-012


Ordering Information

ICS91718yMLF-T

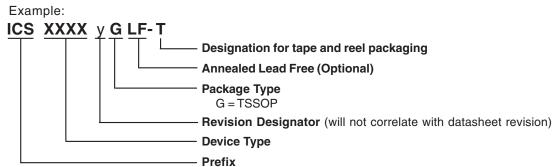
ICS = Standard Device

0500D--07/15/04

4.40 mm. Body, 0.65 mm. Pitch TSSOP (173 mil) (25.6 mil)

	(**************************************	(====,			
	In Milli	meters	In Inches		
SYMBOL	COMMON D	IMENSIONS	COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
Α		1.20		.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.19	0.30	.007	.012	
С	0.09	0.20	.0035	.008	
D	SEE VAF	RIATIONS	SEE VARIATIONS		
E	6.40 BASIC		0.252	BASIC	
E1	4.30	4.50	.169	.177	
е	0.65 E	BASIC	0.0256	BASIC	
L	0.45	0.75	.018	.030	
N	SEE VARIATIONS		SEE VARIATIONS		
а	0°	8°	0°	8°	
aaa		0.10		.004	

VARIATIONS


	N	Dr	nm.	D (inch)		
		MIN	MAX	MIN	MAX	
	8	2.90	3.10	.114	.122	

Reference Doc.: JEDEC Publication 95, MO-153

10-0035

Ordering Information

ICS91718yGLF-T

ICS = Standard Device

0500D—07/15/04

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.