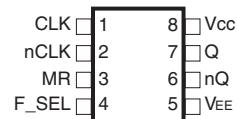

GENERAL DESCRIPTION

The 87321I is a high performance $\div 1$, $\div 2$ Differential-to-LVPECL Clock Generator and a member of the family of High Performance Clock Solutions from IDT. The CLK, nCLK pair can accept most standard differential input levels. The 87321I is characterized to operate from a 3.3V or 2.5V power supply. Guaranteed part-to-part skew characteristics make the 87321I ideal for those clock distribution applications demanding well defined performance and repeatability.


FEATURES

- One differential LVPECL output
- One CLK, nCLK input pair
- CLK, nCLK pair can accept the following differential input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL
- Maximum clock input frequency: 700MHz
- Translates any single ended input signal (LVCMS, LVTTL, GTL) to LVPECL levels with resistor bias on nCLK input
- Part-to-part skew: 600ps (maximum)
- Propagation delay: 1.8ns (maximum)
- Additive phase Jitter, RMS: 0.18ps
- Full 3.3V or 2.5V operating supply
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

BLOCK DIAGRAM

PIN ASSIGNMENT

87321I
8-Lead SOIC
3.90mm x 4.90mm x 1.37mm package body
M Package
Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Type		Description
1	CLK	Input	Pulldown	Non-inverting differential clock input.
2	nCLK	Input	Pullup	Inverting differential clock input.
3	MR	Input	Pulldown	Active High Master Reset. When logic HIGH, the internal dividers are reset causing the true outputs (Q) to go low and the inverted outputs (nQ) to go high. When logic LOW, the internal dividers and the outputs are enabled. LVCMOS / LVTTL interface levels. See Table 3.
4	F_SEL	Input	Pulldown	Selects divider value for Q, nQ outputs as described in Table 3. LVCMOS / LVTTL interface levels.
5	V _{EE}	Power		Negative supply pin.
6, 7	nQ, Q	Output		Differential output pair. LVPECL interface levels.
8	V _{CC}	Power		Positive supply pin.

NOTE: *Pullup* and *Pulldown* refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ

TABLE 3. FUNCTION TABLE

MR	F_SEL	Divide Value
1	X	Reset: Q output low, nQ output high
0	0	÷1
0	1	÷2

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{cc}	4.6V
Inputs, V_i	-0.5V to $V_{cc} + 0.5$ V
Outputs, I_o	
Continuous Current	50mA
Surge Current	100mA
Package Thermal Impedance, θ_{JA}	95°C/W (0 lfpm)
Storage Temperature, T_{STG}	-65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, $V_{cc} = 3.3V \pm 5\%$, $V_{ee} = 0V$, $T_A = -40^\circ C$ TO $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{cc}	Positive Supply Voltage		3.135	3.3	3.465	V
I_{ee}	Power Supply Current				18	mA

TABLE 4B. POWER SUPPLY DC CHARACTERISTICS, $V_{cc} = 2.5V \pm 5\%$, $V_{ee} = 0V$, $T_A = -40^\circ C$ TO $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{cc}	Positive Supply Voltage		2.375	2.5	2.625	V
I_{ee}	Power Supply Current				16	mA

TABLE 4C. LVCMOS/LVTTL DC CHARACTERISTICS, $V_{cc} = 3.3V \pm 5\%$ OR $2.5V \pm 5\%$, $V_{ee} = 0V$, $T_A = -40^\circ C$ TO $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{ih}	Input High Voltage	$V_{cc} = 3.3V$	2		$V_{cc} + 0.3$	V
		$V_{cc} = 2.5V$	1.7		$V_{cc} + 0.3$	V
V_{il}	Input Low Voltage	$V_{cc} = 3.3V$	-0.3		0.8	V
		$V_{cc} = 2.5V$	-0.3		0.7	V
V_{hys}	Input Hysteresis	MR, F_SEL	100			mV
I_{ih}	Input High Current	MR, F_SEL	$V_{cc} = V_{in} = 3.465V$ or $2.625V$		150	µA
I_{il}	Input Low Current	MR, F_SEL	$V_{cc} = 3.465V$, or $2.625V$ $V_{in} = 0V$	-5		µA

TABLE 4D. DIFFERENTIAL DC CHARACTERISTICS, $V_{cc} = 3.3V \pm 5\%$ OR $2.5V \pm 5\%$, $V_{ee} = 0V$, $T_A = -40^\circ C$ TO $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
I_{ih}	Input High Current	CLK	$V_{cc} = V_{in} = 3.465V$ or $2.625V$		150	µA
		nCLK	$V_{cc} = V_{in} = 3.465V$ or $2.625V$		5	µA
I_{il}	Input Low Current	CLK	$V_{cc} = 3.465V$, or $2.625V$ $V_{in} = 0V$	-5		µA
		nCLK	$V_{cc} = 3.465V$ or $2.625V$, $V_{in} = 0V$	-150		µA
V_{pp}	Peak-to-Peak Input Voltage; NOTE 1			0.15	1.3	V
V_{cmr}	Common Mode Input Voltage; NOTE 1, 2			$V_{ee} + 0.5$	$V_{cc} - 0.85$	V

NOTE 1: V_{il} should not be less than -0.3V.

NOTE 2: Common mode voltage is defined as V_{ih} .

TABLE 4E. LVPECL DC CHARACTERISTICS, $V_{cc} = 3.3V \pm 5\%$, $V_{ee} = 0V$, $T_A = -40^\circ C$ TO $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{oh}	Output High Voltage; NOTE 1		$V_{cc} - 1.4$		$V_{cc} - 0.9$	V
V_{ol}	Output Low Voltage; NOTE 1		$V_{cc} - 2.0$		$V_{cc} - 1.7$	V
V_{swing}	Peak-to-Peak Output Voltage Swing		0.65		1.0	V

NOTE 1: Outputs terminated with 50Ω to $V_{cc} - 2V$.

TABLE 4E. LVPECL DC CHARACTERISTICS, $V_{cc} = 2.5V \pm 5\%$, $V_{ee} = 0V$, $T_A = -40^\circ C$ TO $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{oh}	Output High Voltage; NOTE 1		$V_{cc} - 1.4$		$V_{cc} - 0.9$	V
V_{ol}	Output Low Voltage; NOTE 1		$V_{cc} - 2.0$		$V_{cc} - 1.5$	V
V_{swing}	Peak-to-Peak Output Voltage Swing		0.4		1.0	V

NOTE 1: Outputs terminated with 50Ω to $V_{cc} - 2V$.

TABLE 5A. AC CHARACTERISTICS, $V_{cc} = 3.3V \pm 5\%$, $V_{ee} = 0V$, $T_A = -40^\circ C$ TO $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{clk}	Clock Input Frequency				700	MHz
t_{pd}	Propagation Delay; CLK to Q (Dif) NOTE 1		1.2		1.8	ns
t_{jitter}	Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter Section	155.52MHz, Integration Range: (12kHz - 20MHz)		0.18		ps
$tsk(pp)$	Part-to-Part Skew; NOTE 2, 3				600	ps
t_r / t_f	Output Rise/Fall Time	20% to 80%	100		600	ps
odc	Output Duty Cycle; NOTE 4		48		53	%

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 Ifpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: Input duty cycle must be 50%.

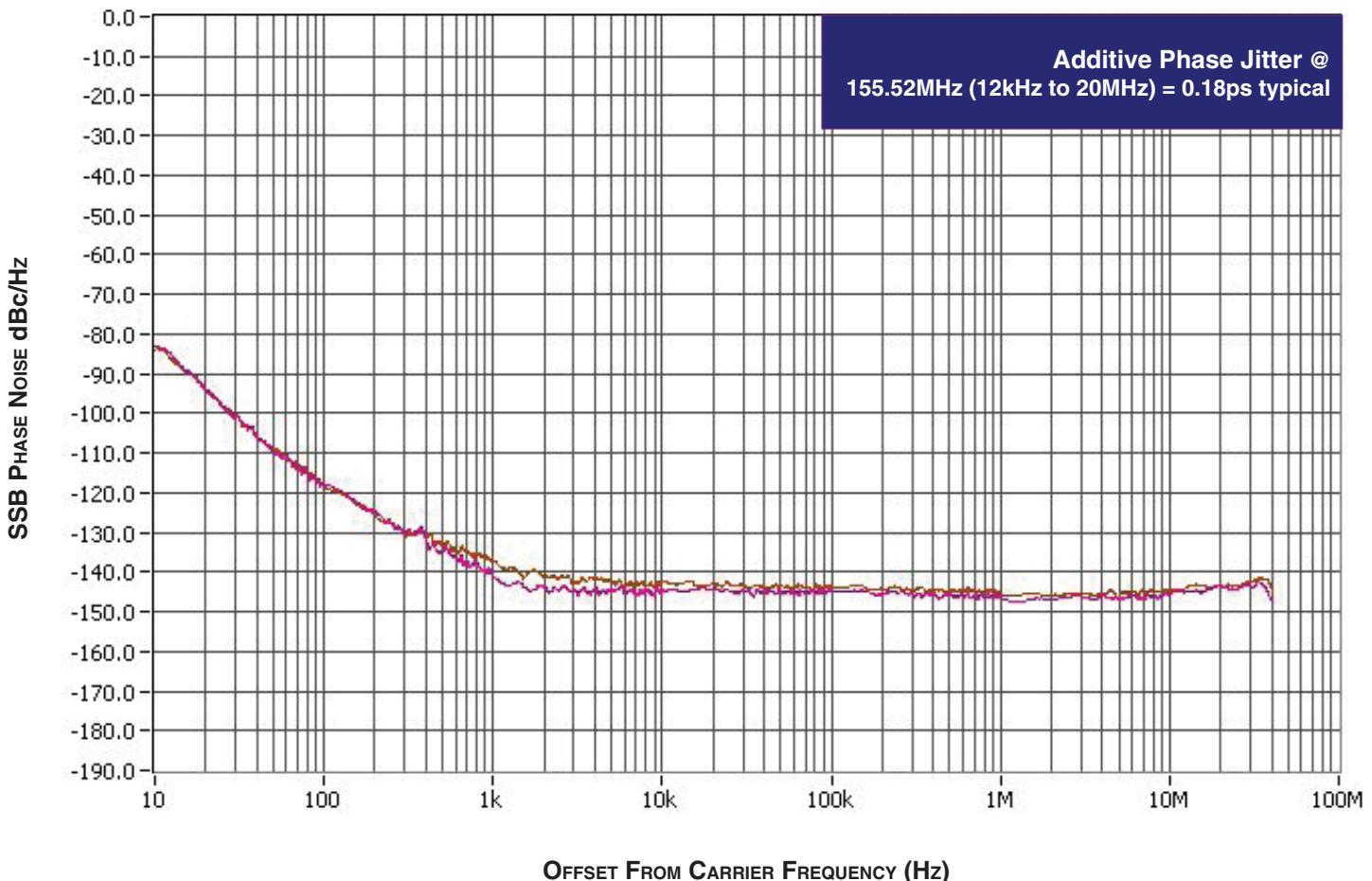
TABLE 5B. AC CHARACTERISTICS, $V_{CC} = 2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{CLK}	Clock Input Frequency				700	MHz
t_{PD}	Propagation Delay; CLK to Q (Dif) NOTE 1		1.2		1.8	ns
t_{JIT}	Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter Section	155.52MHz, Integration Range: (12kHz - 20MHz)		0.18		ps
$t_{SK(pp)}$	Part-to-Part Skew; NOTE 2, 3				600	ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	100		600	ps
odc	Output Duty Cycle; NOTE 4		45		55	%

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

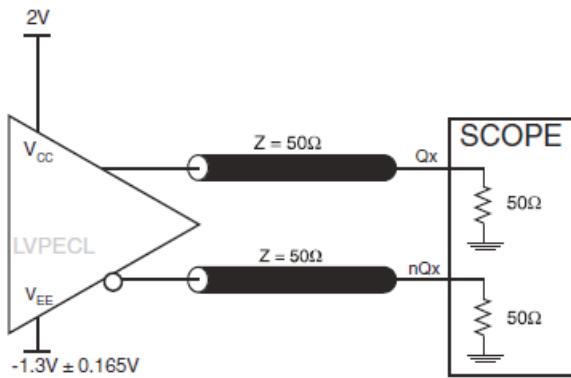
NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

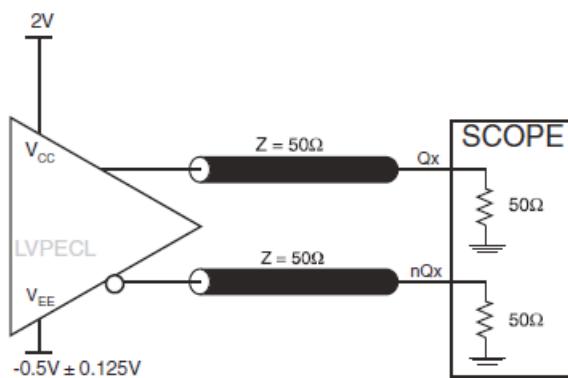

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: Input duty cycle must be 50%.

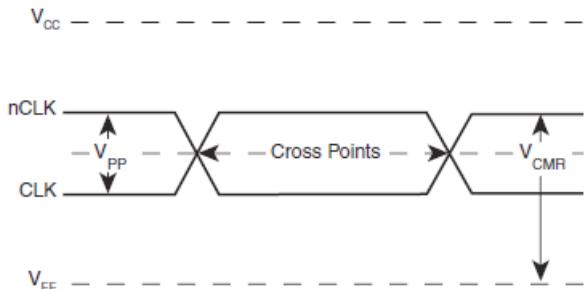
ADDITIVE PHASE JITTER

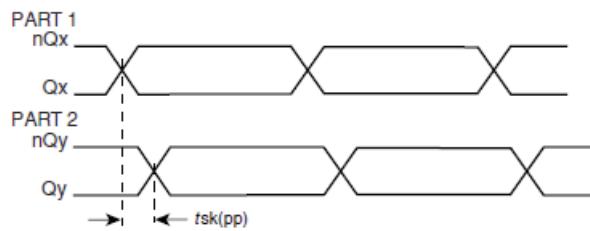
The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the ***dBc Phase Noise***. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels

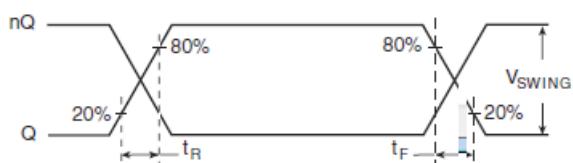

(dBm) or a ratio of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a ***dBc*** value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

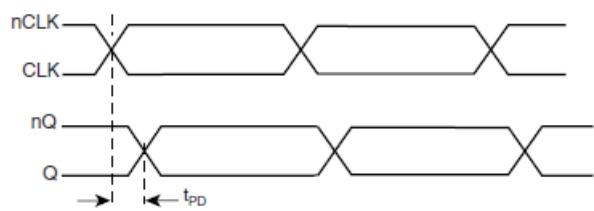

As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device.

This is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment.


PARAMETER MEASUREMENT INFORMATION


3.3V OUTPUT LOAD AC TEST CIRCUIT


2.5V OUTPUT LOAD AC TEST CIRCUIT


DIFFERENTIAL INPUT LEVEL

PART-TO-PART SKEW

OUTPUT RISE/FALL TIME

PROPAGATION DELAY

PARAMETER MEASUREMENT INFORMATION, CONTINUED

$$odc = \frac{t_{PW}}{t_{PERIOD}} \times 100\%$$

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_{REF} = V_{cc}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio

of R1 and R2 might need to be adjusted to position the V_{REF} in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{cc} = 3.3V$, V_{REF} should be 1.25V and $R2/R1 = 0.609$.

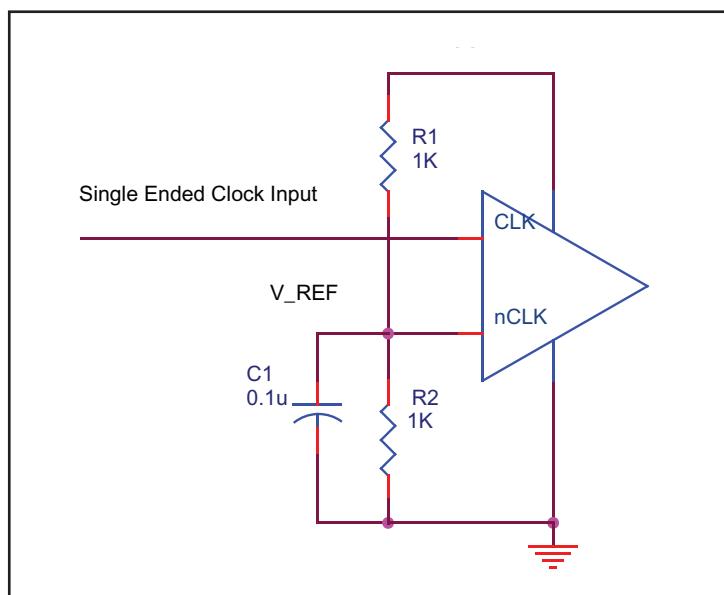


FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT

DIFFERENTIAL CLOCK INPUT INTERFACE

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both V_{swing} and V_{oh} must meet the V_{pp} and V_{cmr} input requirements. Figures 2A to 2E show interface examples for the HiPerClockS CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only.

Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in Figure 2A, the input termination applies for IDT HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

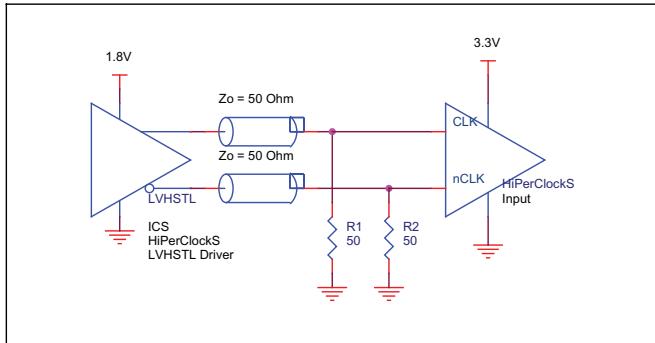


FIGURE 2A. HiPerClockS CLK/nCLK Input Driven by IDT HiPerClockS LVHSTL Driver

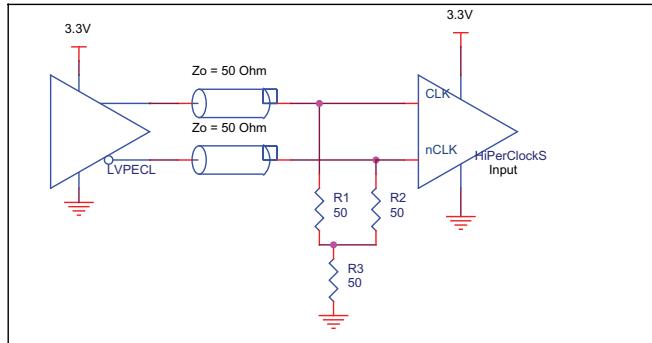


FIGURE 2B. HiPerClockS CLK/nCLK Input Driven by 3.3V LVPECL Driver

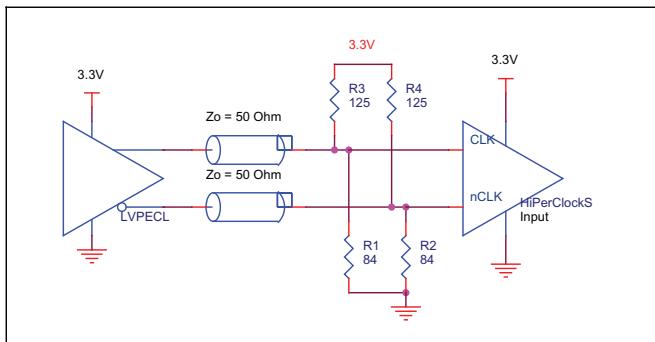


FIGURE 2C. HiPerClockS CLK/nCLK Input Driven by 3.3V LVPECL Driver

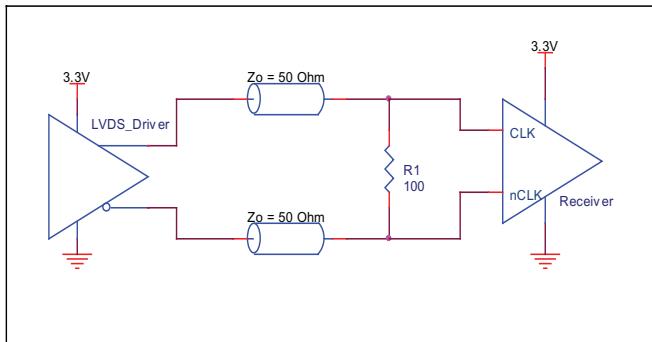


FIGURE 2D. HiPerClockS CLK/nCLK Input Driven by 3.3V LVDS Driver

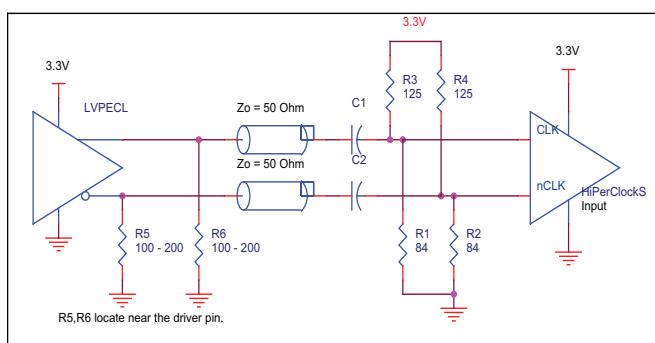


FIGURE 2E. HiPerClockS CLK/nCLK Input Driven by 3.3V LVPECL Driver with AC Couple

RECOMMENDATIONS FOR UNUSED INPUT PINS

INPUTS:

LVCMS CONTROL PINS

All control pins have internal pulldowns; additional resistance is not required but can be added for additional protection. A 1kΩ resistor can be used.

TERMINATION FOR 3.3V LVPECL OUTPUTS

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

F_{OUT} and nF_{OUT} are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission

lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 3A and 3B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

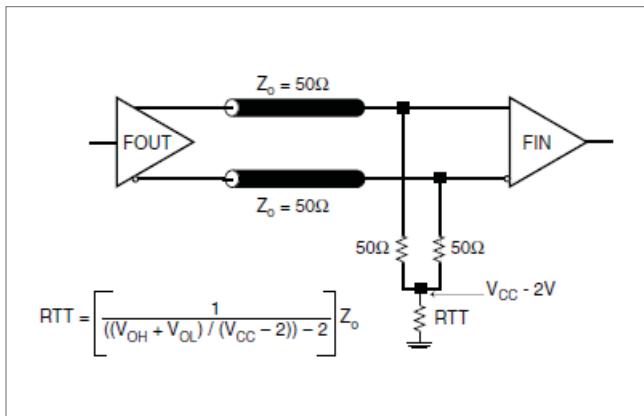


FIGURE 3A. LVPECL OUTPUT TERMINATION

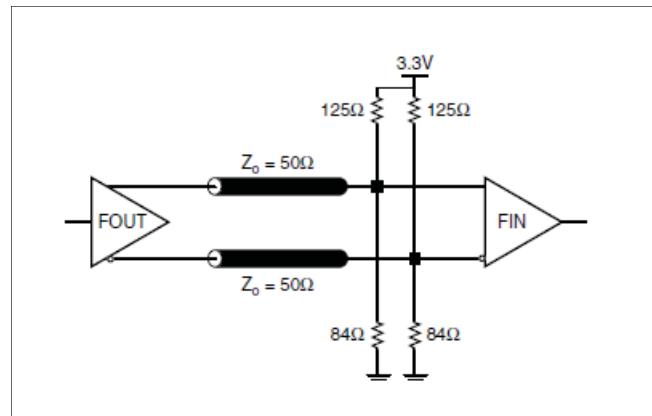


FIGURE 3B. LVPECL OUTPUT TERMINATION

TERMINATION FOR 2.5V LVPECL OUTPUTS

Figure 4A and Figure 4B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to $V_{cc} - 2V$. For $V_{cc} = 2.5V$, the $V_{cc} - 2V$ is very close to ground

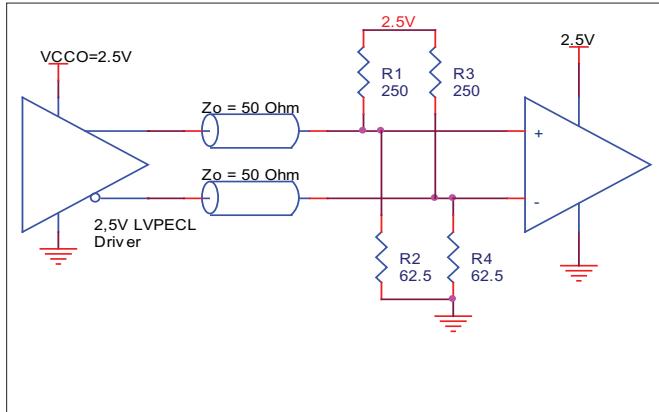


FIGURE 4A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE

level. The R3 in Figure 4B can be eliminated and the termination is shown in Figure 4C.

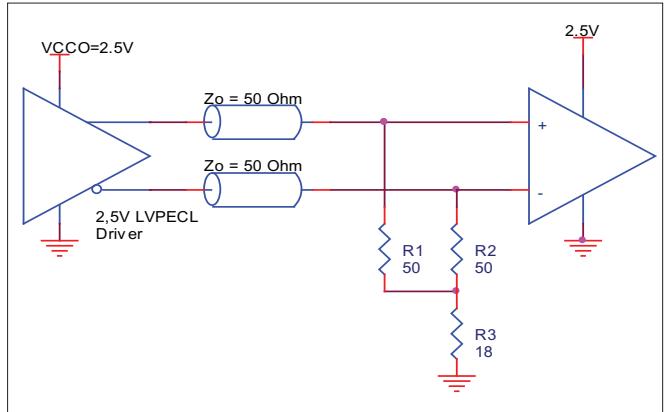


FIGURE 4B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE

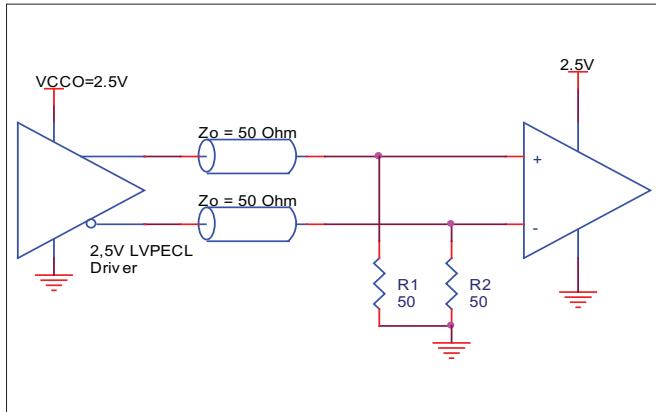


FIGURE 4C. 2.5V LVPECL TERMINATION EXAMPLE

POWER CONSIDERATIONS

This section provides information on power dissipation and junction temperature for the 87321I. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 87321I is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipation into the load.

- Power (core)_{MAX} = $V_{CC,MAX} * I_{EE,MAX} = 3.465V * 18mA = 62.37mW$
- Power (outputs)_{MAX} = **30mW/Loaded Output pair**

Total Power_{MAX} (3.465V, with outputs switching) = $62.37mW + 30mW = 92.37mW$

2. Junction Temperature.

Junction temperature, T_J , is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS™ devices is 125°C.

The equation for T_J is as follows: $T_J = \theta_{JA} * P_{d_total} + T_A$

T_J = Junction Temperature

θ_{JA} = Junction-to-Ambient Thermal Resistance

P_{d_total} = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 95.0°C/W per Table 6 below.

Therefore, T_J for an ambient temperature of 85°C with output switching is:

$85^\circ C + 0.092W * 95^\circ C/W = 93.7^\circ C$. This is well below the limit of 125°C.

This calculation is only an example. T_J will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (multi-layer).

TABLE 6. THERMAL RESISTANCE θ_{JA} FOR 8-PIN SOIC, FORCED CONVECTION

θ_{JA} by Velocity (Linear Feet per Minute)			
	0	200	500
Multi-Layer PCB, JEDEC Standard Test Boards	95.0°C/W	88.4°C/W	83.7°C/W

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

LVPECL output driver circuit and termination are shown in *Figure 5*.

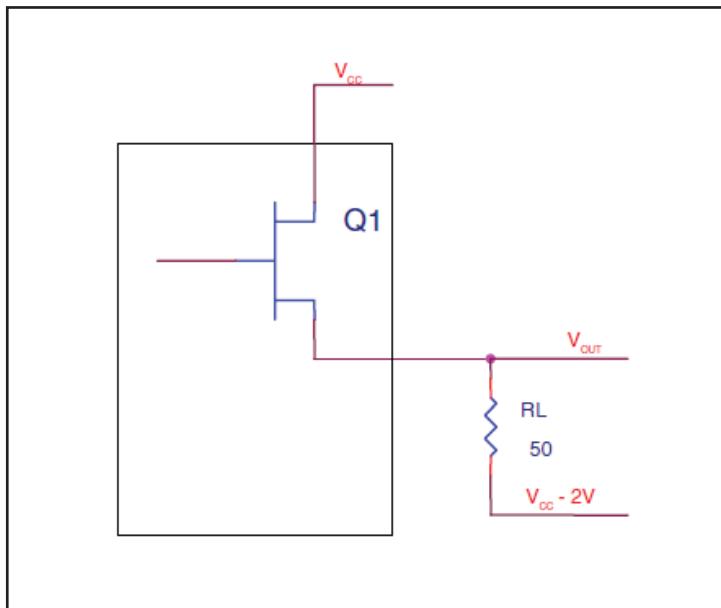


FIGURE 5. LVPECL DRIVER CIRCUIT AND TERMINATION

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of $V_{cc} - 2V$.

- For logic high, $V_{out} = V_{oh_max} = V_{cc_max} - 0.9V$
 $(V_{cc_max} - V_{oh_max}) = 0.9V$
- For logic low, $V_{out} = V_{ol_max} = V_{cc_max} - 1.7V$
 $(V_{cc_max} - V_{ol_max}) = 1.7V$

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

$$Pd_H = [(V_{oh_max} - (V_{cc_max} - 2V))/R_L] * (V_{cc_max} - V_{oh_max}) = [(2V - (V_{cc_max} - V_{oh_max}))/R_L] * (V_{cc_max} - V_{oh_max}) = [(2V - 0.9V)/50\Omega] * 0.9V = 19.8mW$$

$$Pd_L = [(V_{ol_max} - (V_{cc_max} - 2V))/R_L] * (V_{cc_max} - V_{ol_max}) = [(2V - (V_{cc_max} - V_{ol_max}))/R_L] * (V_{cc_max} - V_{ol_max}) = [(2V - 1.7V)/50\Omega] * 1.7V = 10.2mW$$

Total Power Dissipation per output pair = $Pd_H + Pd_L = 30mW$

RELIABILITY INFORMATION

TABLE 7. θ_{JA} VS. AIR FLOW TABLE FOR 8 LEAD SOIC

θ_{JA} by Velocity (Linear Feet per Minute)			
	0	200	500
Multi-Layer PCB, JEDEC Standard Test Boards	95.0°C/W	88.4°C/W	83.7°C/W

TRANSISTOR COUNT

The transistor count for 87321I is: 309

PACKAGE OUTLINE - M SUFFIX FOR 8 LEAD SOIC

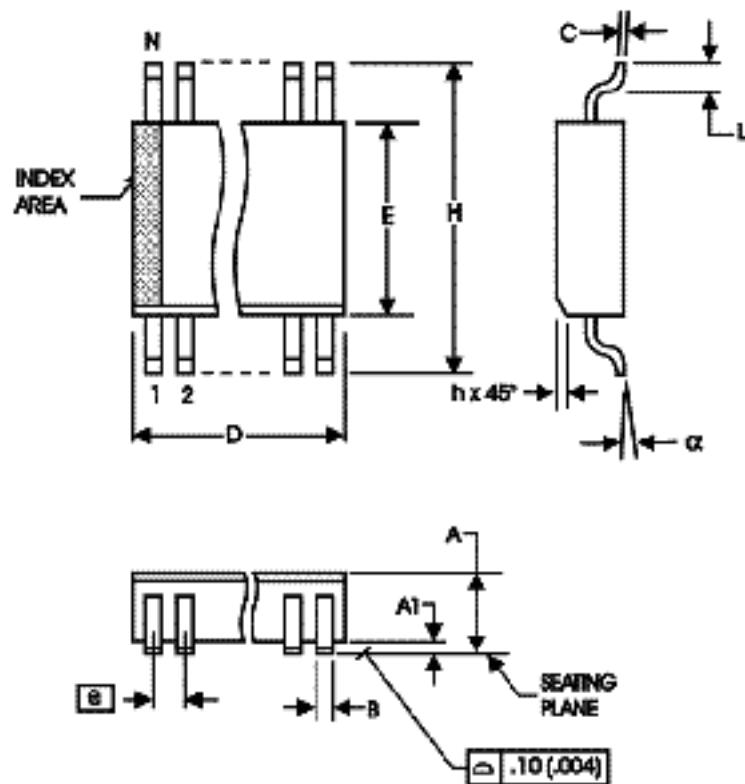


TABLE 8. PACKAGE DIMENSIONS

SYMBOL	Millimeters	
	MINIMUM	MAXIMUM
N	8	
A	1.35	1.75
A1	0.10	0.25
B	0.33	0.51
C	0.19	0.25
D	4.80	5.00
E	3.80	4.00
e	1.27 BASIC	
H	5.80	6.20
h	0.25	0.50
L	0.40	1.27
α	0°	8°

Reference Document: JEDEC Publication 95, MS-012

TABLE 9. ORDERING INFORMATION

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
87321AMILF	87321AIL	8 lead "Lead-Free" SOIC	tube	-40°C to 85°C
87321AMILFT	87321AIL	8 lead "Lead-Free" SOIC	tape & reel	-40°C to 85°C

REVISION HISTORY SHEET

Rev	Table	Page	Description of Change	Date
A	T9	16	PDN CQ-13-02 - removed leaded devices	2/11/15
A	T9	1 16	General Description - Removed HiPerClocks. Ordering Information - removed quantity from tape and reel. Deleted LF note below the table. Updated header and footer.	1/25/16

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.