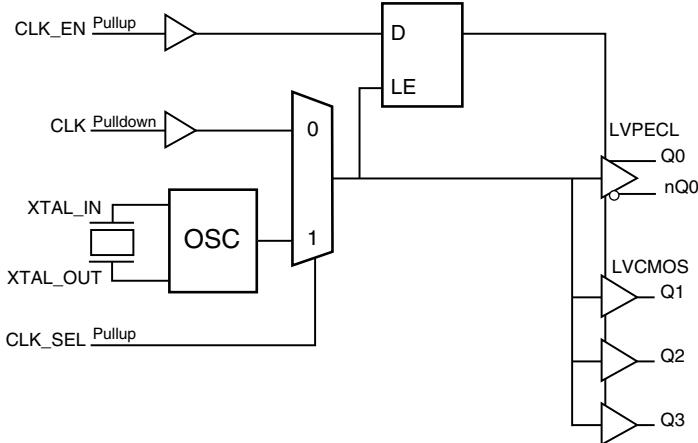
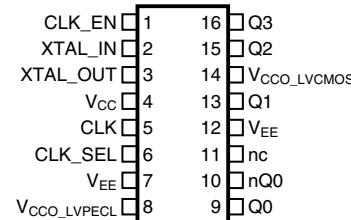


General Description


The ICS8534I-13 is a low skew, high performance 1-to-4 Crystal Oscillator/LVCMOS-to-3.3V, 2.5V LVPECL/LVCMOS fanout buffer. The ICS8534I-13 has selectable single-ended clock or crystal inputs. The single-ended clock input accepts LVCMOS or LVTTL input levels and translate them to 3.3V LVPECL levels. The output enable is internally synchronized to eliminate runt pulses on the outputs during asynchronous assertion/deassertion of the clock enable pin.

Guaranteed output and part-to-part skew characteristics make the ICS8534I-13 ideal for those applications demanding well defined performance and repeatability.


Features

- One differential LVPECL output, and three single-ended LVCMOS outputs
- Selectable LVCMOS/LVTTL CLK or crystal inputs
- CLK can accept the following input levels: LVCMOS, LVTTL
- Crystal frequency range: 12MHz – 40MHz
- Maximum output frequency: 266MHz
- Propagation delay: 2.1ns (maximum), 3.3V LVPECL output
- Additive phase jitter, RMS: 0.221ps (typical), 3.3V LVPECL output
- Full 3.3V or 2.5V operating supply
- -40°C to 85°C ambient operating temperature
- Lead-free (RoHS 6) packaging

Block Diagram

Pin Assignment

ICS8534I-13
16-Lead SOIC, 150MIL
3.9mm x 9.9mm x 1.375mm package body
M Package
Top View

Pin Description and Pin Characteristic Tables

Table 1. Pin Descriptions

Number	Name	Type	Description
1	CLK_EN	Input	Pullup Synchronizing clock enable. When HIGH, clock outputs follows clock input. When LOW, Q outputs are forced low, nQ0 output is forced high. LVCMOS / LVTTL interface levels.
2, 3	XTAL_IN, XTAL_OUT	Input	Crystal oscillator interface. XTAL_IN is the input. XTAL_OUT is the output.
4	V _{CC}	Power	Positive supply pin.
5	CLK	Input	Pulldown Clock input. LVCMOS / LVTTL interface levels.
6	CLK_SEL	Input	Pullup Clock select input. When HIGH, selects XTAL inputs. When LOW, selects CLK input. LVCMOS / LVTTL interface levels.
7, 12	V _{EE}	Power	Negative supply pins.
8	V _{CCO_LVPECL}	Power	Output power supply mode for LVPECL clock outputs.
9, 10	Q0, nQ0	Output	Differential clock outputs. LVPECL interface levels.
11	nc	Unused	No connect.
13, 15, 16	Q1, Q2, Q3	Output	Single ended clock outputs. LVCMOS / LVTTL interface levels.
14	V _{CCO_LVCMOS}	Power	Output power supply mode for LVCMOS / LVTTL clock outputs.

NOTE: *Pullup* and *Pulldown* refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions		Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance	Crystal Not Included			4		pF
C _{PD}	Power Dissipation Capacitance (per output)	Q[1:3]	V _{CC} , V _{CC_LVCMOS} = 3.465V		8		pF
			V _{CC} , V _{CC_LVCMOS} = 2.625V		5		pF
R _{PULUP}	Input Pullup Resistor				51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor				51		kΩ
R _{OUT}	Output Impedance	Q[1:3]	V _{CC} , V _{CC_LVCMOS} = 3.465V		15		Ω
			V _{CC} , V _{CC_LVCMOS} = 2.625V		20		Ω

Function Tables

Table 3A. Control Input Function Table

Inputs			Outputs		
CLK_EN	CLK_SEL	Selected Source	Q0	nQ0	Q[1:3]
0	0	CLK	Disabled; LOW	Disabled; HIGH	Disabled; LOW
0	1	XTAL_IN, XTAL_OUT	Disabled; LOW	Disabled; HIGH	Disabled; LOW
1	0	CLK	Enabled	Enabled	Enabled
1	1	XTAL_IN, XTAL_OUT	Enabled	Enabled	Enabled

NOTE: After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock or crystal oscillator edge as shown in Figure 1.

NOTE: In the active mode, the state of the outputs are a function of the CLK input as described in Table 3B.

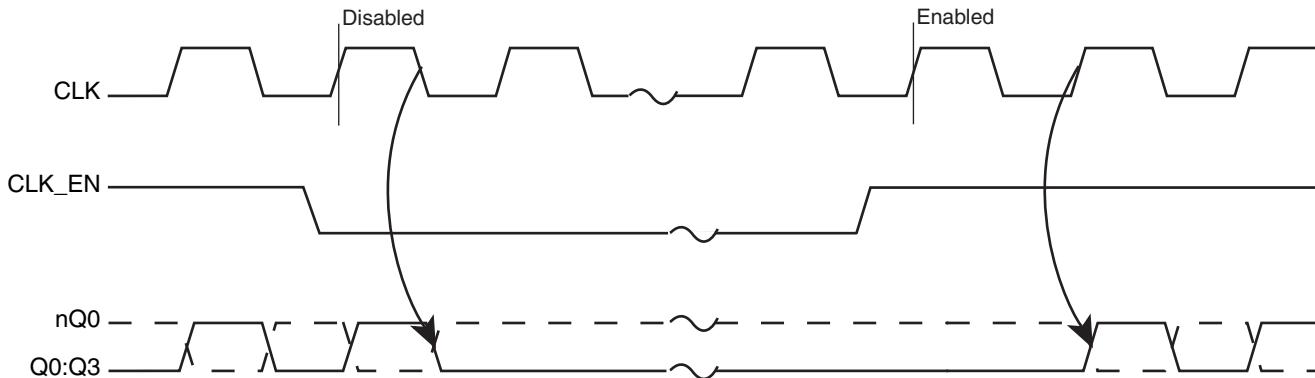


Figure 1. CLK_EN Timing Diagram

Table 3B. Control Input Function Table

Inputs		Outputs		
CLK	Q0	nQ0	Q[1:3]	
0 (default)	LOW	HIGH	LOW	
1	HIGH	LOW	HIGH	

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V_{CC}	4.6V
Inputs, V_I (LVC MOS)	-0.5 to $V_{CC} + 0.5V$
Outputs, V_O (LVC MOS)	-0.5 to $V_{CC_LVC MOS} + 0.5V$
Inputs, V_I (LVPECL)	-0.5 to $V_{CC} + 0.5V$
Outputs, I_O (LVPECL)	
Continuous Current	50mA
Surge Current	100mA
Package Thermal Impedance, θ_{JA}	76°C/W (0 mps)
Storage Temperature, T_{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{CC} = V_{CCO_LVPECL} = V_{CCO_LVC MOS} = 3.3V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{CC}	Power Supply Voltage		3.135	3.3	3.465	V
V_{CCO_LVPECL} $V_{CCO_LVC MOS}$	Power Supply Voltage		3.135	3.3	3.465	V
I_{EE}	Power Supply Current				65	mA
I_{CCO_LVPECL}	Power Supply Current	No Load			25	mA
$I_{CCO_LVC MOS}$	Power Supply Current	No Load			5	mA

Table 4B. Power Supply DC Characteristics, $V_{CC} = V_{CCO_LVPECL} = V_{CCO_LVC MOS} = 2.5V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{CC}	Power Supply Voltage		2.375	2.5	2.625	V
V_{CCO_LVPECL} $V_{CCO_LVC MOS}$	Power Supply Voltage		2.375	2.5	2.625	V
I_{EE}	Power Supply Current				60	mA
I_{CCO_LVPECL}	Power Supply Current	No Load			22	mA
$I_{CCO_LVC MOS}$	Power Supply Current	No Load			4	mA

Table 4C. LVCMOS/LVTTL DC Characteristics, $V_{CC} = V_{CCO_LVCMOS} = 2.5V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage		$V_{CC} = 3.3V$	2		$V_{CC} + 0.3$	V
			$V_{CC} = 2.5V$	1.7		$V_{CC} + 0.3$	V
V_{IL}	Input Low Voltage		$V_{CC} = 3.3V$	-0.3		0.8	V
			$V_{CC} = 2.5V$	-0.3		0.7	V
V_{HYS}	Input Hysteresis	CLK_EN, CLK_SEL		100			mV
I_{IH}	Input High Current	CLK	$V_{CC} = V_{IN} = 3.465V$ or $2.625V$			150	μA
		CLK_EN, CLK_SEL	$V_{CC} = V_{IN} = 3.465V$ or $2.625V$			5	μA
I_{IL}	Input Low Current	CLK	$V_{CC} = 3.465V$ or $2.625V$, $V_{IN} = 0V$	-5			μA
		CLK_EN, CLK_SEL	$V_{CC} = 3.465V$ or $2.625V$, $V_{IN} = 0V$	-150			μA
V_{OH}	Output High Voltage; NOTE 1		$V_{CCO_LVCMOS} = 3.465V$	2.6			V
			$V_{CCO_LVCMOS} = 2.625V$	1.8			V
V_{OL}	Output Low Voltage; NOTE 1		$V_{CCO_LVCMOS} = 3.465V$ or $2.625V$			0.55	V

NOTE 1: Outputs terminated with 50Ω to $V_{CCO_LVCMOS}/2$. See Parameter Measurement Information Section, *LVCMOS Output Load Test Circuit Diagram*.

Table 4D. LVPECL DC Characteristics, $V_{CC} = V_{CCO_LVPECL} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{OH}	Output High Voltage: NOTE 1		$V_{CCO_LVPECL} - 1.4$		$V_{CCO_LVPECL} - 0.9$	V
V_{OL}	Output Low Voltage: NOTE 1		$V_{CCO_LVPECL} - 2.1$		$V_{CCO_LVPECL} - 1.7$	V
V_{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.0	V

NOTE 1: Outputs termination with 50Ω to $V_{CCO_LVPECL} - 2V$.

Table 4E. LVPECL DC Characteristics, $V_{CC} = V_{CCO_LVPECL} = 2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{OH}	Output High Voltage: NOTE 1		$V_{CCO_LVPECL} - 1.4$		$V_{CCO_LVPECL} - 0.9$	V
V_{OL}	Output Low Voltage: NOTE 1		$V_{CCO_LVPECL} - 2.1$		$V_{CCO_LVPECL} - 1.5$	V
V_{SWING}	Peak-to-Peak Output Voltage Swing		0.4		1.0	V

NOTE 1: Outputs termination with 50Ω to $V_{CCO_LVPECL} - 2V$.

Table 5. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental			
Frequency		12		40	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance (C_O)				7	pF
Drive Level				1	mW
Load Capacitance (C_L)		12		18	pF

NOTE: Characterized using an 18pF parallel resonant crystal.

AC Electrical Characteristics

Table 6A. LVPECL AC Characteristics, $V_{CC} = V_{CCO_LVPECL} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{OUT}	Output Frequency				266	MHz
t_{PD}	Propagation Delay: Note 1		1.5		2.1	ns
j_{IT}	Buffer Additive Phase Jitter, RMS	155.52MHz, Integration Range: 12kHz - 20MHz		0.221		ps
$t_{SK(pp)}$	Part-to-Part Skew; NOTE 2, 3			150	600	ps
t_R / t_F	Output Rise/Fall Time	20% - 80%	200		1050	ps
odc	Output	XTAL	46		54	%
	Duty Cycle	CLK	45		55	%

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: All parameters measured at $f \leq 266$ MHz unless noted otherwise.

NOTE 1: Measured from the $V_{CC}/2$ of the input to the differential output crosspoint.

NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature, same frequency and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the LVPECL output differential crosspoint.

NOTE 3: This parameter is defined in accordance with JDEC Standard 65.

Table 6B. LVPECL AC Characteristics, $V_{CC} = V_{CCO_LVPECL} = 2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{OUT}	Output Frequency				266	MHz
t_{PD}	Propagation Delay: Note 1		1.4		2.2	ns
j_{IT}	Buffer Additive Phase Jitter, RMS	155.52MHz, Integration Range: 12kHz - 20MHz		0.178		ps
$t_{SK(pp)}$	Part-to-Part Skew; NOTE 2, 3			100	450	ps
t_R / t_F	Output Rise/Fall Time	20% - 80%	115		1115	ps
odc	Output	XTAL	46		54	%
	Duty Cycle	CLK	44		56	%

For NOTES, see Table 6A above.

Table 6C. LVC MOS AC Characteristics, $V_{CC} = V_{CCO_LVC MOS} = 3.3V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{OUT}	Output Frequency				266	MHz
t_{PD}	Propagation Delay: Note 1		2.7		3.85	ns
f_{JIT}	Buffer Additive Phase Jitter, RMS	155.52MHz, Integration Range: 12kHz - 20MHz		0.273		ps
$t_{SK(b)}$	Bank Skew; NOTE 2, 4				75	ps
$t_{SK(pp)}$	Part-to-Part Skew; NOTE 3, 4			150	500	ps
t_R / t_F	Output Rise/Fall Time	20% - 80%	450		1000	ps
odc	Output Duty Cycle	XTAL	47		53	%
		CLK	35		65	%

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: All parameters measured at $f \leq 266$ MHz unless noted otherwise.

NOTE 1: Measured from the $V_{CC}/2$ of the input to $V_{CCO_LVC MOS}/2$ of the output.

NOTE 2: Defined as skew within a bank of outputs at the same voltage and with equal load conditions.

NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature, same frequency and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the $V_{CCO_LVC MOS}/2$.

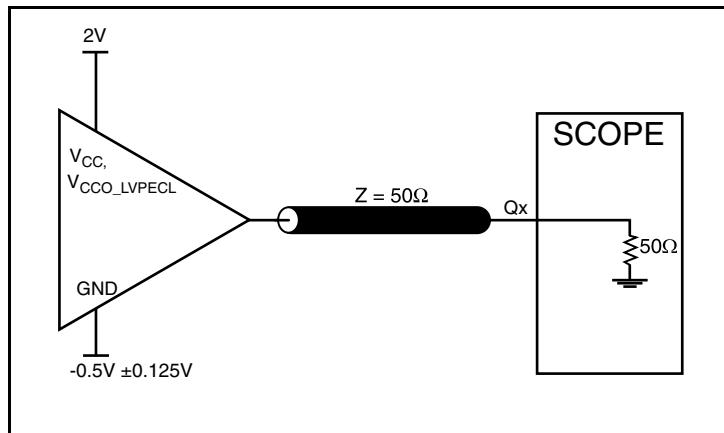
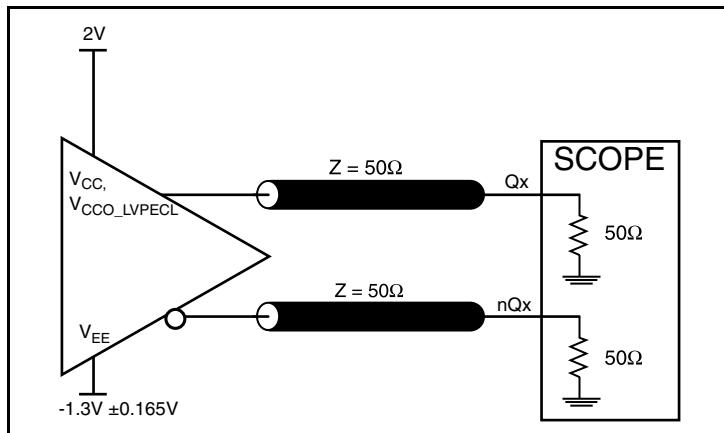
NOTE 4: This parameter is defined in accordance with JDEC Standard 65.

Table 6D. LVC MOS AC Characteristics, $V_{CC} = V_{CCO_LVC MOS} = 2.5V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{OUT}	Output Frequency				266	MHz
t_{PD}	Propagation Delay: Note 1		2.75		4.10	ns
f_{JIT}	Buffer Additive Phase Jitter, RMS	155.52MHz, Integration Range: 12kHz - 20MHz		0.181		ps
$t_{SK(b)}$	Bank Skew; NOTE 2, 4				75	ps
$t_{SK(pp)}$	Part-to-Part Skew; NOTE 3, 4			210	800	ps
t_R / t_F	Output Rise/Fall Time	20% - 80%	250		1700	ps
odc	Output Duty Cycle	XTAL	47		53	%
		CLK	30		70	%

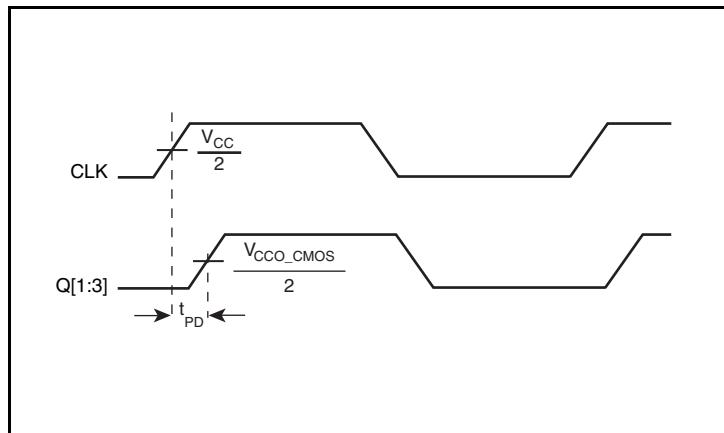
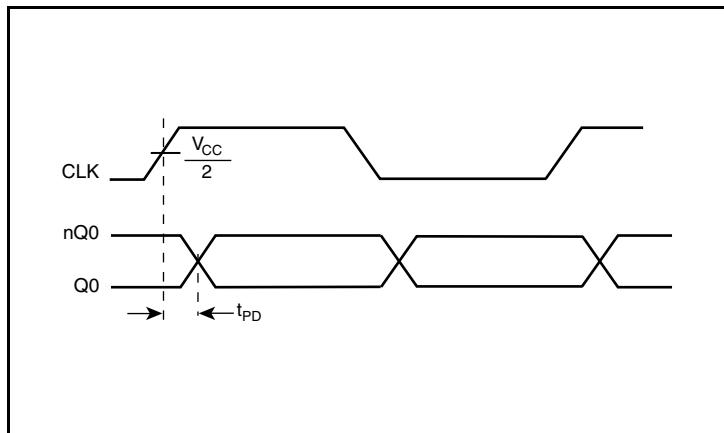
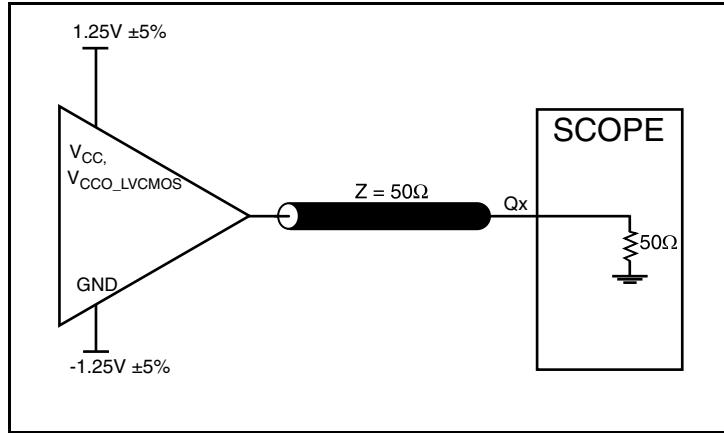
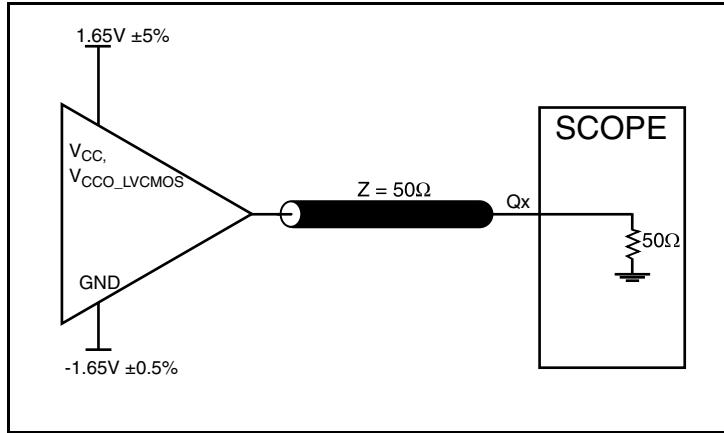
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: All parameters measured at $f \leq 266$ MHz unless noted otherwise.

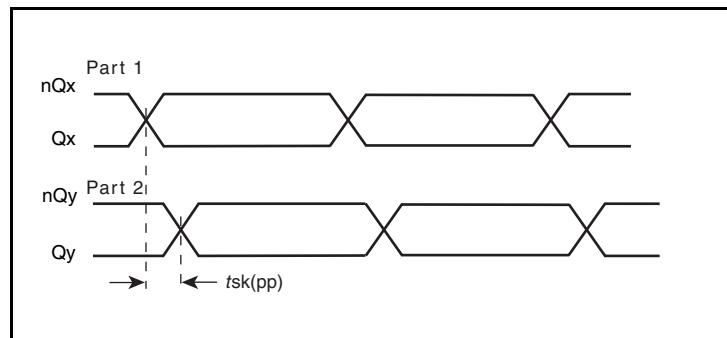


NOTE 1: Measured from the $V_{CC}/2$ of the input to $V_{CCO_LVC MOS}/2$ of the output.

NOTE 2: Defined as skew within a bank of outputs at the same voltage and with equal load conditions.

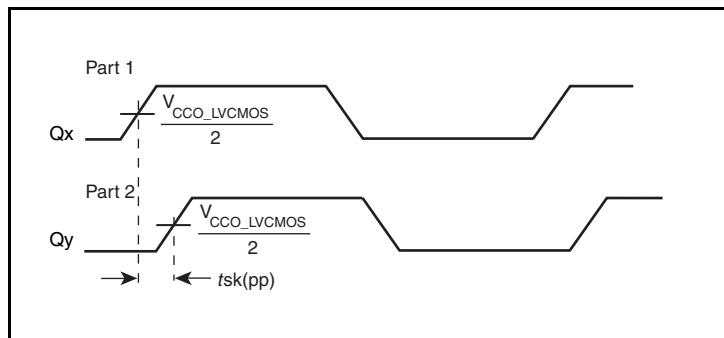
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature, same frequency and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the $V_{CCO_LVC MOS}/2$.

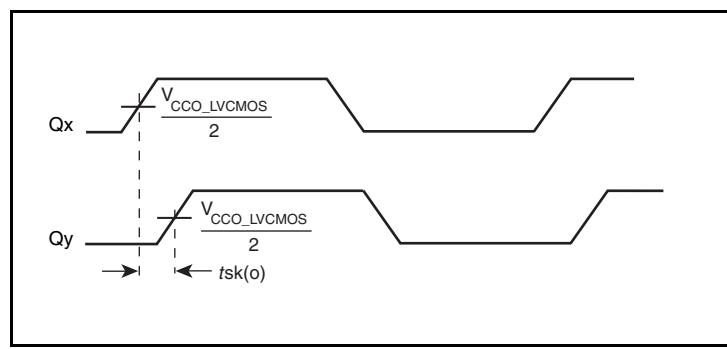




NOTE 4: This parameter is defined in accordance with JDEC Standard 65.

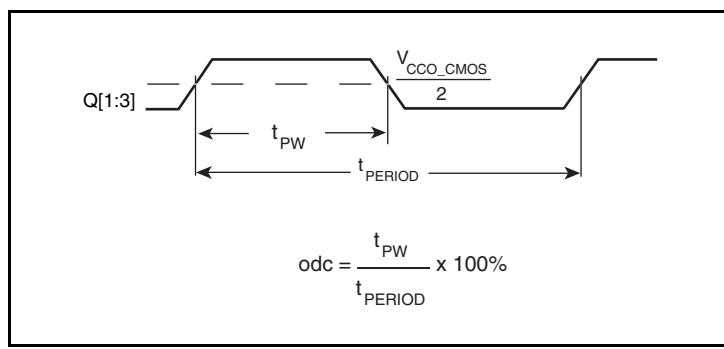
Parameter Measurement Information

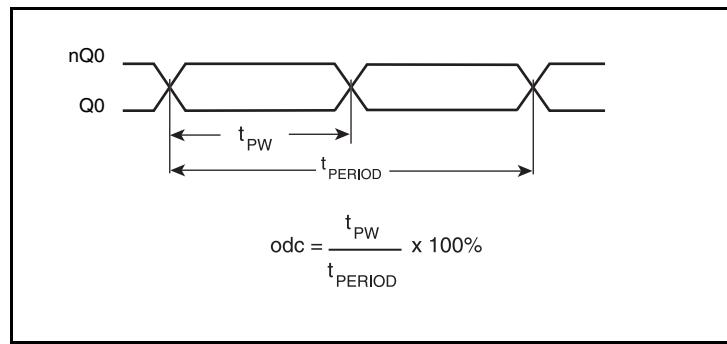


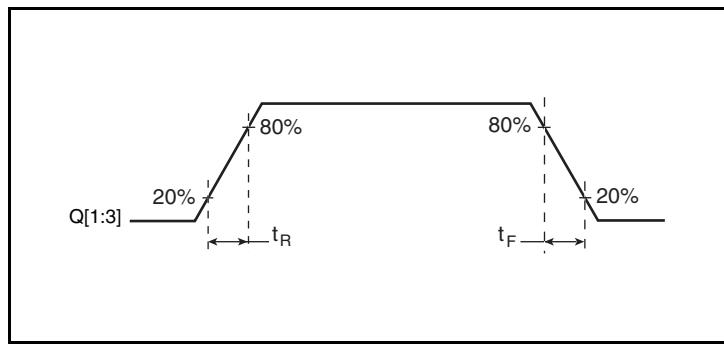
3.3V LVPECL Output Load Test Circuit

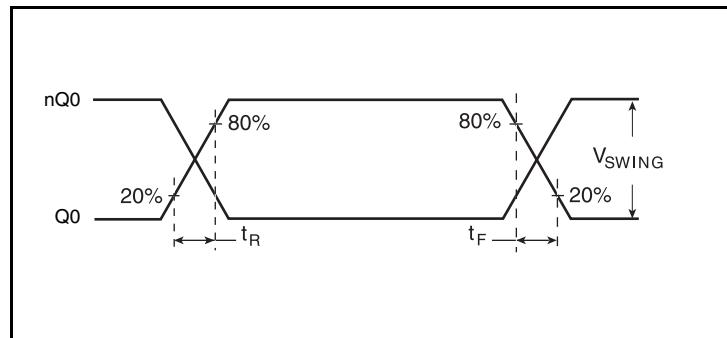

2.5V LVPECL Output Load Test Circuit


Parameter Measurement Information (continued)


LVPECL Part-to-Part Skew


LVCmos Part-to-Part Skew


LVCmos Bank Skew


LVCmos Output Duty Cycle/Pulse Width/Period

LVPECL Output Duty Cycle/Pulse Width/Period

LVCmos Output Rise/Fall Time

LVPECL Output Rise/Fall Time

Applications Information

Recommendations for Unused Input and Output Pins

Inputs:

Crystal Inputs

For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a $1\text{k}\Omega$ resistor can be tied from XTAL_IN to ground.

CLK Inputs

For applications not requiring the use of the clock input, it can be left floating. Though not required, but for additional protection, a $1\text{k}\Omega$ resistor can be tied from CLK to ground.

LVC MOS Control Pins

All control pins have internal pullup resistors; additional resistance is not required but can be added for additional protection. A $1\text{k}\Omega$ resistor can be used.

Outputs:

LVC MOS Outputs

All unused LVC MOS outputs can be left floating. There should be no trace attached.

LVPECL Outputs

The unused LVPECL output pair can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

Crystal Input Interface

The ICS8534I-13 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using a 25MHz, 18pF parallel resonant crystal and were chosen to minimize the ppm error. These same capacitor values will tune any 18pF parallel resonant crystal over the frequency range and other parameters specified in this data sheet. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

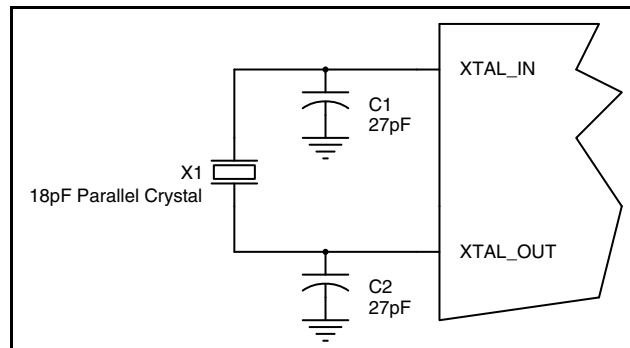


Figure 2. Crystal Input Interface

Overdriving the XTAL Interface

The XTAL_IN input can be overdriven by an LVCMOS driver or by one side of a differential driver through an AC coupling capacitor. The XTAL_OUT pin can be left floating. The amplitude of the input signal should be between 500mV and 1.8V and the slew rate should not be less than 0.2V/ns. For 3.3V LVCMOS inputs, the amplitude must be reduced from full swing to at least half the swing in order to prevent signal interference with the power rail and to reduce internal noise. Figure 3A shows an example of the interface diagram for a high speed 3.3V LVCMOS driver. This configuration requires that the sum of the output impedance of the driver (R_o) and the series resistance (R_s) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This

can be done in one of two ways. First, R_1 and R_2 in parallel should equal the transmission line impedance. For most 50Ω applications, R_1 and R_2 can be 100Ω . This can also be accomplished by removing R_1 and changing R_2 to 50Ω . The values of the resistors can be increased to reduce the loading for a slower and weaker LVCMOS driver. Figure 3B shows an example of the interface diagram for an LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the XTAL_IN input. It is recommended that all components in the schematics be placed in the layout. Though some components might not be used, they can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a quartz crystal as the input.

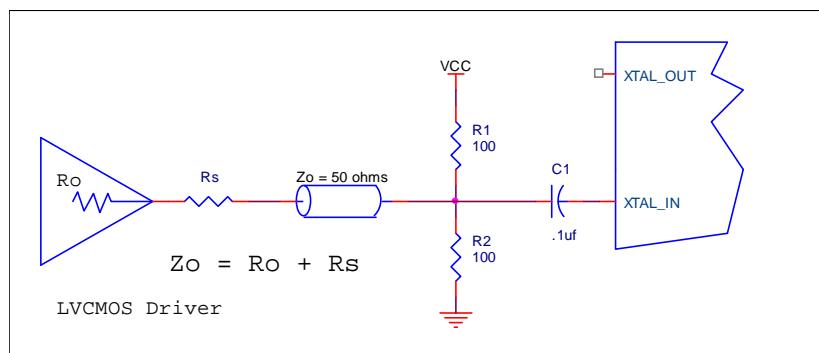


Figure 3A. General Diagram for LVCMOS Driver to XTAL Input Interface

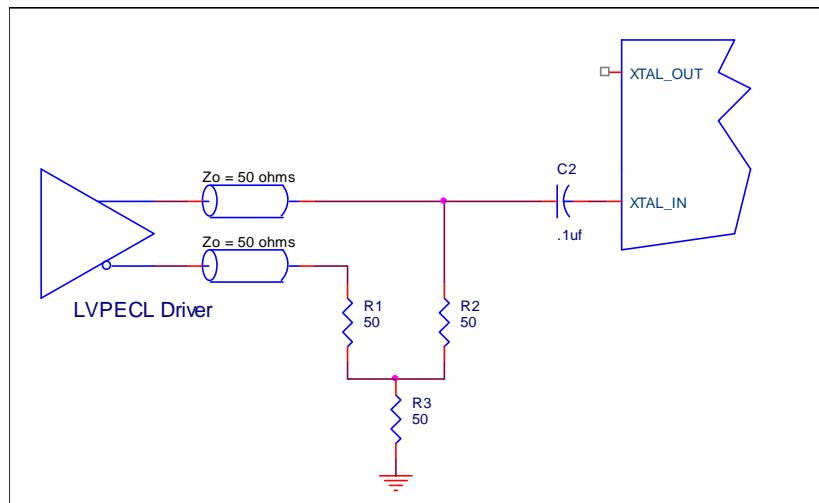


Figure 3B. General Diagram for LVPECL Driver to XTAL Input Interface

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential output is a low impedance follower output that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for

functionality. These outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 4A and 4B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

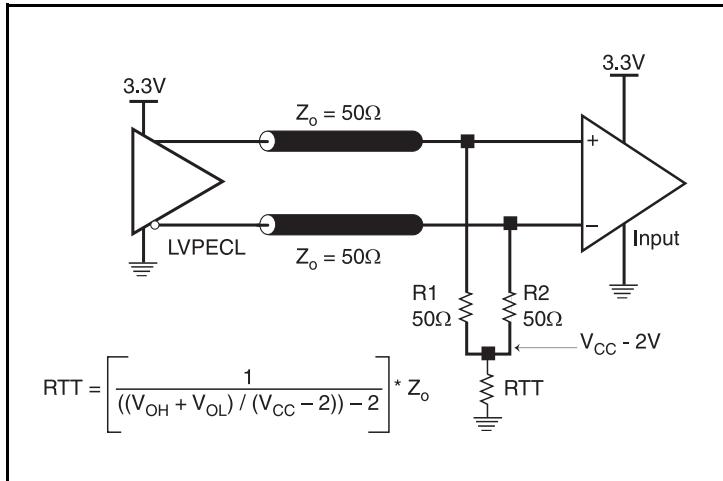


Figure 4A. 3.3V LVPECL Output Termination

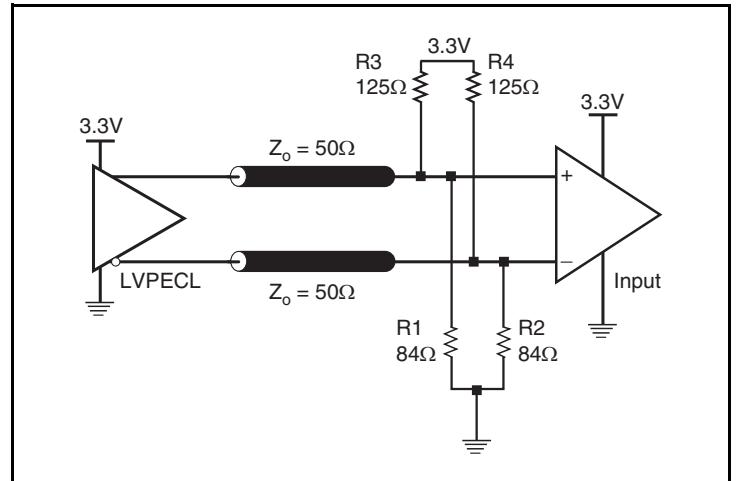


Figure 4B. 3.3V LVPECL Output Termination

Termination for 2.5V LVPECL Outputs

Figure 5A and Figure 5B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to $V_{CCO} - 2V$. For $V_{CCO} = 2.5V$, the $V_{CCO} - 2V$ is very close to

-LVC MOS ground level. The R3 in Figure 5B can be eliminated and the termination is shown in Figure 5C.

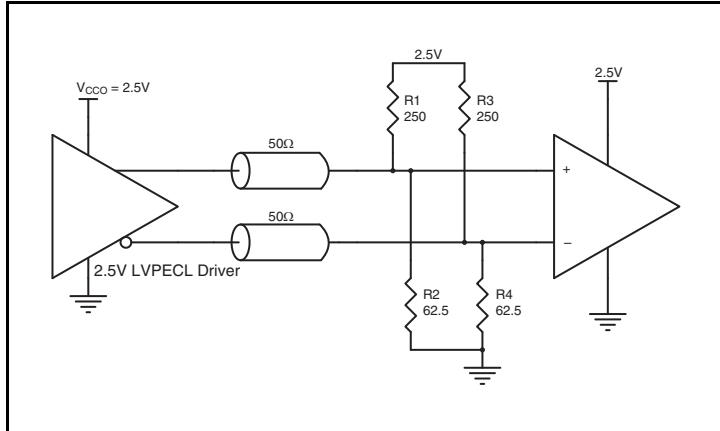


Figure 5A. 2.5V LVPECL Driver Termination Example

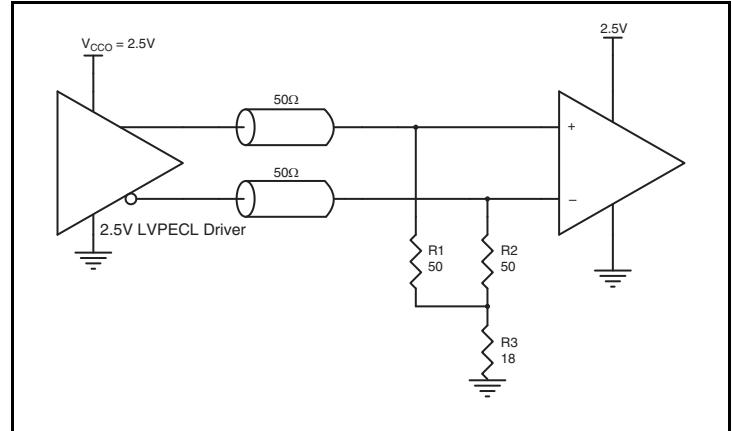


Figure 5B. 2.5V LVPECL Driver Termination Example

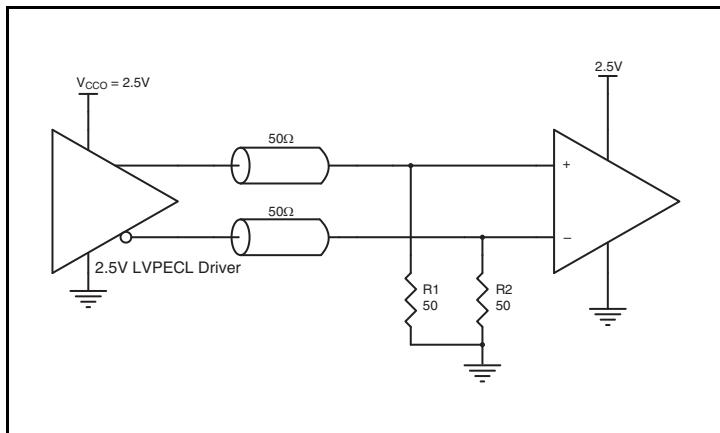


Figure 5C. 2.5V LVPECL Driver Termination Example

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS8534I-13. Equations and example calculations are also provided.

1. Power Dissipation

The total power dissipation for the ICS8534I-13 is the sum of the core power plus the power dissipated due to loading.

The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated due to loading.

Core and LVPECL Output Power Dissipation

- Power (core)_{MAX} = $V_{CC_MAX} * I_{EE_MAX} = 3.465V * 65mA = 225.225mW$
- Power (outputs)_{MAX} = **30mW/Loaded Output pair**
If all outputs are loaded, the total power is $1 * 30mW = 30mW$

LVC MOS Output Power Dissipation

- Output Impedance R_{OUT} Power Dissipation due to Loading 50Ω to $V_{CC_LVC MOS}/2$
Output Current $I_{OUT} = V_{CC_MAX} / [2 * (50\Omega + R_{OUT})] = 3.465V / [2 * (50\Omega + 15\Omega)] = 26.7mA$
- Power Dissipation on the R_{OUT} per LVC MOS output
 $Power(R_{OUT}) = R_{OUT} * (I_{OUT})^2 = 15\Omega * (26.7mA)^2 = 10.7mW$ per output
- Total Power Dissipation on the R_{OUT}
Total Power (R_{OUT}) = $10.7mW * 3 = 32.1mW$

Total Power Dissipation

- **Total Power**
= LVPECL Power (core)_{MAX} + LVPECL Power (outputs)_{MAX} + Total Power (R_{OUT})
= $225.225mW + 30mW + 32.1mW$
= $287.325mW$

2. Junction Temperature.

Junction temperature, T_j , is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is $125^\circ C$. Limiting the internal transistor junction temperature, T_j , to $125^\circ C$ ensures that the bond wire and bond pad temperature remains below $125^\circ C$.

The equation for T_j is as follows: $T_j = \theta_{JA} * P_{d_total} + T_A$

T_j = Junction Temperature

θ_{JA} = Junction-to-Ambient Thermal Resistance

P_{d_total} = Total Device Power Dissipation (example calculation is in section 1 above)

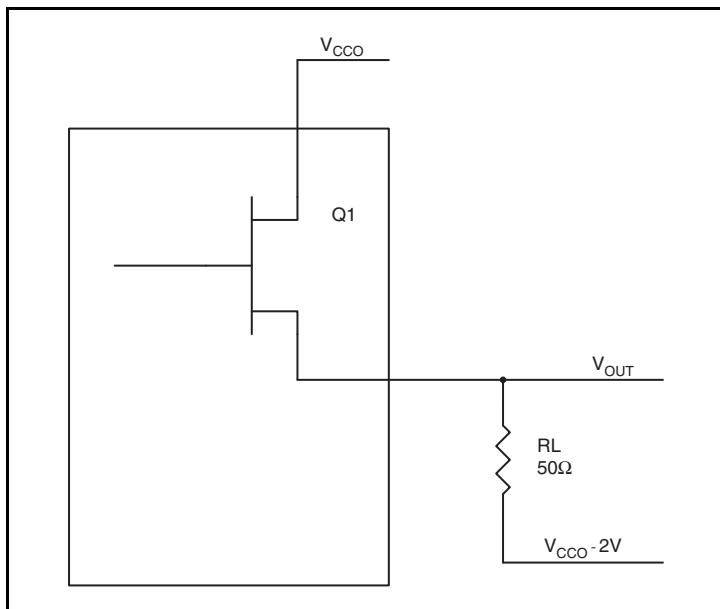
T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is $76^\circ C/W$ per Table 7 below.

Therefore, T_j for an ambient temperature of $85^\circ C$ with all outputs switching is:

$85^\circ C + 0.287W * 76^\circ C/W = 106.8^\circ C$. This is below the limit of $125^\circ C$.

This calculation is only an example. T_j will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).


Table 7. Thermal Resistance θ_{JA} for 16 Lead SOIC, Forced Convection

θ_{JA} by Velocity			
Meters Per Second	0	1	2
Multi-Layer PCB, JEDEC Standard Test Boards	76.0°C/W	69.78°C/W	67.49°C/W

3. Calculations and Equations.

The purpose of this section is to calculate the power dissipation for the LVPECL output pair.

LVPECL output driver circuit and termination are shown in *Figure 6*.

Figure 6. LVPECL Driver Circuit and Termination

To calculate power dissipation per output pair due to loading, use the following equations which assume a 50Ω load, and a termination voltage of $V_{CCO} - 2V$.

For logic high, $V_{OUT} = V_{OH_MAX} = V_{CCO_MAX} - 0.9V$

$$(V_{CCO_MAX} - V_{OH_MAX}) = 0.9V$$

For logic low, $V_{OUT} = V_{OL_MAX} = V_{CCO_MAX} - 1.7V$

$$(V_{CCO_MAX} - V_{OL_MAX}) = 1.7V$$

P_{d_H} is power dissipation when the output drives high.

P_{d_L} is the power dissipation when the output drives low.

$$P_{d_H} = [(V_{OH_MAX} - (V_{CCO_MAX} - 2V))/R_L] * (V_{CCO_MAX} - V_{OH_MAX}) = [(2V - (V_{CCO_MAX} - V_{OH_MAX}))/R_L] * (V_{CCO_MAX} - V_{OH_MAX}) = [(2V - 0.9V)/50W] * 0.9V = 19.8mW$$

$$P_{d_L} = [(V_{OL_MAX} - (V_{CCO_MAX} - 2V))/R_L] * (V_{CCO_MAX} - V_{OL_MAX}) = [(2V - (V_{CCO_MAX} - V_{OL_MAX}))/R_L] * (V_{CCO_MAX} - V_{OL_MAX}) = [(2V - 1.7V)/50W] * 1.7V = 10.2mW$$

$$\text{Total Power Dissipation per output pair} = P_{d_H} + P_{d_L} = 30mW$$

Reliability Information

Table 8. θ_{JA} vs. Air Flow Table for a 16 Lead SOIC

θ_{JA} by Velocity			
Meters Per Second	0	1	2
Multi-Layer PCB, JEDEC Standard Test Boards	76.0°C/W	69.78°C/W	67.49°C/W

Transistor Count

The transistor count for ICS8534I-13 is: 550

Package Outline and Package Dimensions

Package Outline - G Suffix for 16 Lead SOIC

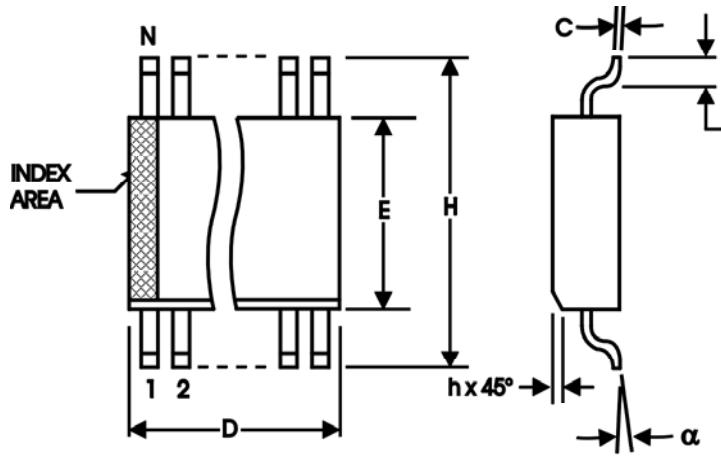
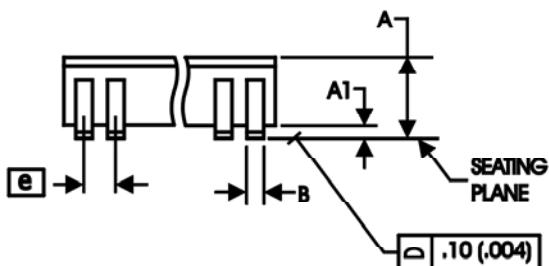



Table 9. Package Dimensions

Symbol	Millimeters	
	Minimum	Maximum
N	16	
A	1.35	1.75
A1	0.10	0.25
B	0.33	0.51
C	0.19	0.25
D	0.80	10.00
E	3.80	4.00
e	1.27 BASIC	
H	5.80	6.20
h	0.25	0.50
L	0.40	1.27
α	0°	8°

Reference Document: JEDEC Publication 95, MS-012

Ordering Information

Table 10. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8534BMI-13LF	8534BMI-13L	16 Lead, "Lead-Free" SOIC	Tube	-40°C to 85°C
8534BMI-13LFT	8534BMI-13L	16 Lead, "Lead-Free" SOIC	Tape & Reel	-40°C to 85°C

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.