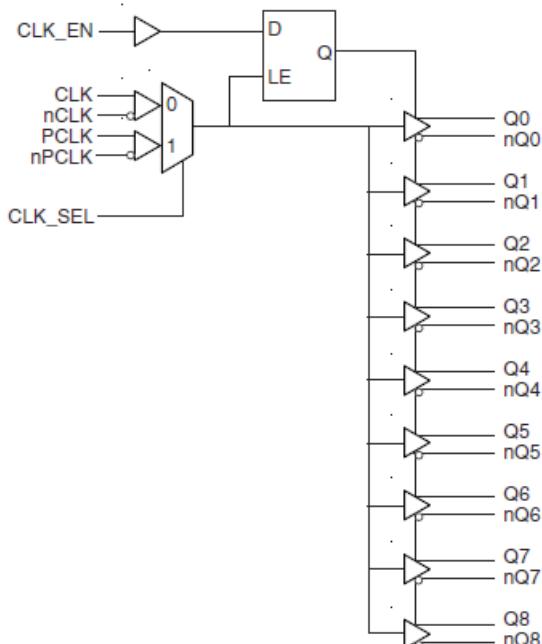
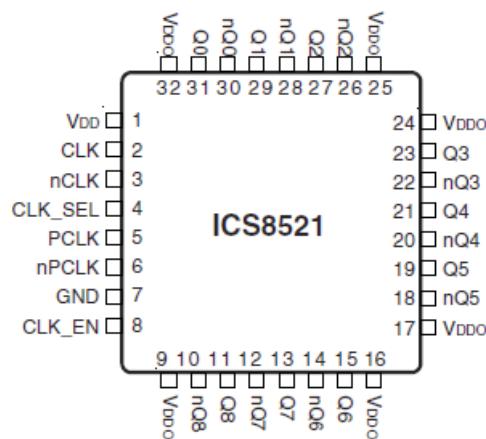


GENERAL DESCRIPTION


The 8521 is a low skew, 1-to-9 Differential-to-HSTL Fanout Buffer. The 8521 has two selectable clock inputs. The CLK, nCLK pair can accept most standard differential input levels. The PCLK, nPCLK pair can accept LVPECL, CML, or SSTL input levels. The clock enable is internally synchronized to eliminate runt pulses on the outputs during asynchronous assertion/deassertion of the clock enable pin.

Guaranteed output skew, part-to-part skew and crossover voltage characteristics make the 8521 ideal for today's most advanced applications, such as IA64 and static RAMs.


FEATURES

- 9 HSTL outputs
- Selectable differential CLK, nCLK or LVPECL clock inputs
- CLK, nCLK pair can accept the following differential input levels: LVPECL, LVDS, HSTL, SSTL, HCSL
- PCLK, nPCLK supports the following input types: LVPECL, CML, SSTL
- Maximum output frequency: 500MHz
- Output skew: 50ps (maximum)
- Part-to-part skew: 250ps (maximum)
- Propagation delay: 1.8ns (maximum)
- $V_{OH} = 1.4V$ (maximum)
- 3.3V core, 1.8V output operating supply voltages
- 0°C to 70°C ambient operating temperature
- Available in lead-free (RoHs 6) package
- Industrial temperature information available upon request
- For replacement part use 8523

BLOCK DIAGRAM

PIN ASSIGNMENT

32-Lead LQFP
7mm x 7mm x 1.4mm Package Body
Y Package
Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Type		Description
1	V_{DD}	Power		Core supply pin.
2	CLK	Input	Pulldown	Non-inverting differential clock input.
3	nCLK	Input	Pullup	Inverting differential clock input.
4	CLK_SEL	Input	Pulldown	Clock select input. When HIGH, selects PCLK, nPCLK inputs. When LOW, selects CLK, nCLK. LVTTL / LVCMOS interface levels.
5	PCLK	Input	Pulldown	Non-inverting differential LVPECL clock input.
6	nPCLK	Input	Pullup	Inverting differential LVPECL clock input.
7	GND	Power		Power supply ground.
8	CLK_EN	Input	Pullup	Synchronizing clock enable. When HIGH, clock outputs follow clock input. When LOW, Q outputs are forced low, nQ outputs are forced high. LVCMOS /LVTTL interface levels.
9, 16, 17, 24, 25, 32	V_{DDO}	Power		Output supply pins.
10, 11	nQ8, Q8	Output		Differential output pair. HSTL interface level.
12, 13	nQ7, Q7	Output		Differential output pair. HSTL interface level.
14, 15	nQ6, Q6	Output		Differential output pair. HSTL interface level.
18, 19	nQ5, Q5	Output		Differential output pair. HSTL interface level.
20, 21	nQ4, Q4	Output		Differential output pair. HSTL interface level.
22, 23	nQ3, Q3	Output		Differential output pair. HSTL interface level.
26, 27	nQ2, Q2	Output		Differential output pair. HSTL interface level.
28, 29	nQ1, Q1	Output		Differential output pair. HSTL interface level.
30, 31	nQ0, Q0	Output		Differential output pair. HSTL interface level.

NOTE: *Pullup* and *Pulldown* refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C_{IN}	Input Capacitance			4		pF
R_{PULLUP}	Input Pullup Resistor			51		K Ω
$R_{PULLDOWN}$	Input Pulldown Resistor			51		K Ω

TABLE 3A. CONTROL INPUT FUNCTION TABLE

Inputs			Outputs	
CLK_EN	CLK_SEL	Selected Sourced	Q0:Q8	nQ0:nQ8
0	0	CLK, nCLK	Disabled; LOW	Disabled; HIGH
0	1	PCLK, nPCLK	Disabled; LOW	Disabled; HIGH
1	0	CLK, nCLK	Enabled	Enabled
1	1	PCLK, nPCLK	Enabled	Enabled

After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as shown in Figure 1.

In the active mode, the state of the outputs are a function of the CLK, nCLK and PCLK, nPCLK inputs as described in Table 3B.

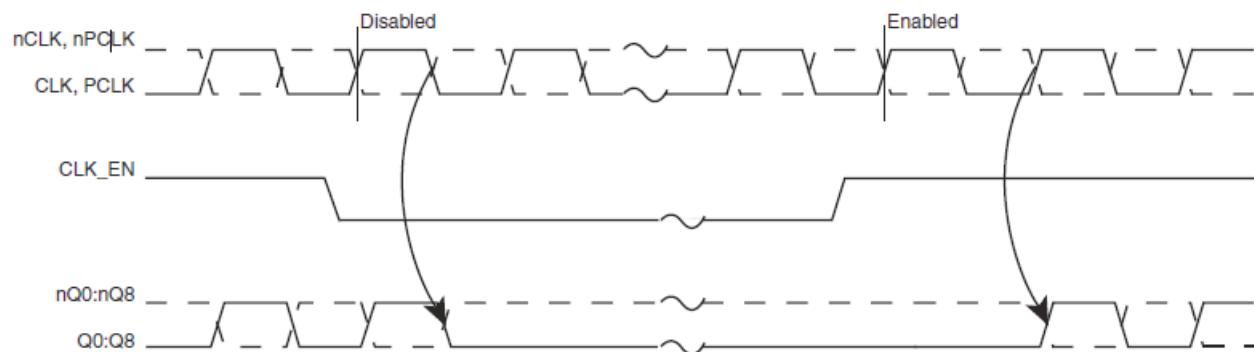


FIGURE 1. CLK_EN TIMING DIAGRAM

TABLE 3B. CLOCK INPUT FUNCTION TABLE

Inputs		Outputs		Input to Output Mode	Polarity
CLK or PCLK	nCLK or nPCLK	Q0:Q8	nQ0:nQ8		
0	1	LOW	HIGH	Differential to Differential	Non Inverting
1	0	HIGH	LOW	Differential to Differential	Non Inverting
0	Biased; NOTE 1	LOW	HIGH	Single Ended to Differential	Non Inverting
1	Biased; NOTE 1	HIGH	LOW	Single Ended to Differential	Non Inverting
Biased; NOTE 1	0	HIGH	LOW	Single Ended to Differential	Inverting
Biased; NOTE 1	1	LOW	HIGH	Single Ended to Differential	Inverting

NOTE 1: Please refer to the Application Information "Wiring the Differential Input to Accept Single Ended Levels".

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD}	4.6V
Inputs, V_I	-0.5V to $V_{DD} + 0.5V$
Outputs, I_O	
Continuous Current	50mA
Surge Current	100mA
Package Thermal Impedance, θ_{JA}	47.9°C/W (0 lfpm)
Storage Temperature, T_{STG}	-65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = 0^\circ C$ TO $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V_{DDO}	Output Supply Voltage		1.6	1.8	2.0	V
I_{DD}	Power Supply Current			60	80	mA

TABLE 4B. LVCMS/LVTTL DC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = 0^\circ C$ TO $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	CLK_EN, CLK_SEL		2		$V_{DD} + 0.3$	V
V_{IL}	CLK_EN, CLK_SEL		-0.3		0.8	V
I_{IH}	Input High Current	CLK_EN	$V_{IN} = V_{DD} = 3.465V$		5	μA
		CLK_SEL	$V_{IN} = V_{DD} = 3.465V$		150	μA
I_{IL}	Input Low Current	CLK_EN	$V_{IN} = 0V, V_{DD} = 3.465V$	-150		μA
		CLK_SEL	$V_{IN} = 0V, V_{DD} = 3.465V$	-5		μA

TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = 0^\circ C$ TO $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
I_{IH}	Input High Current	CLK	$V_{IN} = V_{DD} = 3.465V$		150	μA
		nCLK	$V_{IN} = V_{DD} = 3.465V$		5	μA
I_{IL}	Input Low Current	CLK	$V_{IN} = 0V, V_{DD} = 3.465V$	-5		μA
		nCLK	$V_{IN} = 0V, V_{DD} = 3.465V$	-150		μA
V_{PP}	Peak-to-Peak Input Voltage		0.15		1.3	V
V_{CMR}	Common Mode Input Voltage; NOTE 1, 2		0.5		$V_{DD} - 0.85$	V

NOTE 1: For single ended applications, the maximum input voltage for CLK and nCLK is $V_{DD} + 0.3V$.

NOTE 2: Common mode voltage is defined as V_{IH} .

TABLE 4D. LVPECL DC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = 0^\circ C$ TO $70^\circ C$

Symbol	Parameter	Test Conditions		Minimum	Typical	Maximum	Units
I_{IH}	Input High Current	PCLK	$V_{DD} = V_{IN} = 3.465V$			150	μA
		nPCLK	$V_{DD} = V_{IN} = 3.465V$			5	μA
I_{IL}	Input Low Current	PCLK	$V_{DD} = 3.465V$, $V_{IN} = 0V$	-5			μA
		nPCLK	$V_{DD} = 3.465V$, $V_{IN} = 0V$	-150			μA
V_{PP}	Peak-to-Peak Input Voltage			0.3		1	V
V_{CMR}	Common Mode Input Voltage; NOTE 1, 2			1.5		V_{DD}	V

NOTE 1: Common mode voltage is defined as V_{IH} .NOTE 2: For single ended applications, the maximum input voltage for PCLK and nPCLK is $V_{DD} + 0.3V$.**TABLE 4E. HSTL DC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = 0^\circ C$ TO $70^\circ C$**

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{OH}	Output High Voltage; NOTE 1		1.0		1.4	V
V_{OL}	Output Low Voltage; NOTE 1		0		0.4	V
V_{OX}	Output Crossover Voltage		$40\% \times (V_{OH} - V_{OL}) + V_{OL}$		$60\% \times (V_{OH} - V_{OL}) + V_{OL}$	V
V_{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.1	V

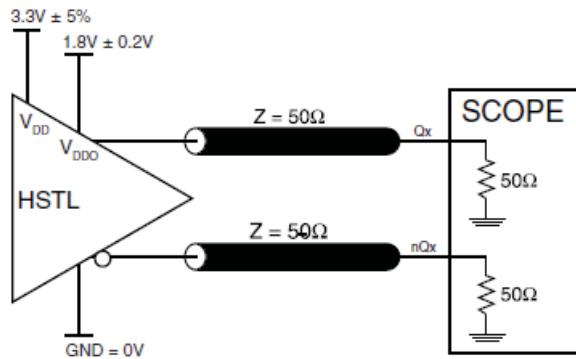
NOTE 1: Outputs terminated with 50Ω to ground.**TABLE 5. AC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = 0^\circ C$ TO $70^\circ C$**

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{MAX}	Output Frequency				500	MHz
t_{PD}	Propagation Delay; NOTE 1	$f \leq 250\text{MHz}$	1		1.8	ns
$tsk(o)$	Output Skew; NOTE 2, 4				50	ps
$tsk(pp)$	Part-to-Part Skew; NOTE 3, 4				250	ps
t_R	Output Rise Time	20% to 80% @ 50MHz	300		700	ps
t_F	Output Fall Time	20% to 80% @ 50MHz	300		700	ps
odc	Output Duty Cycle		48		52	%

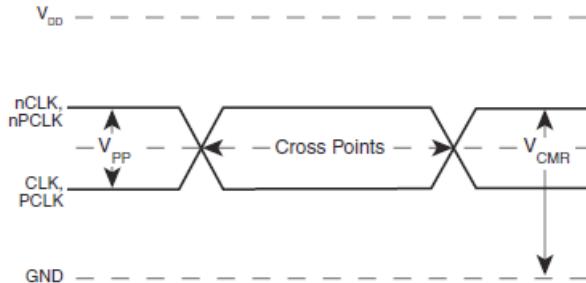
All parameters measured at 250MHz unless noted otherwise.

NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

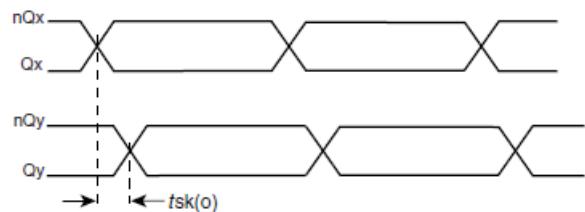
Measured from $V_{DD}/2$ to the output differential crossing point for single ended input levels.

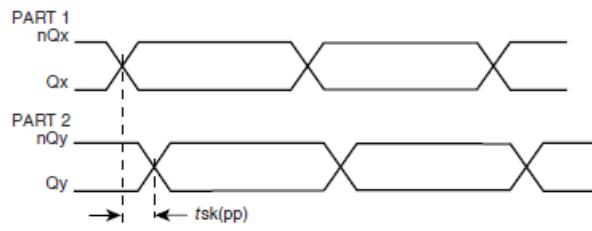

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.

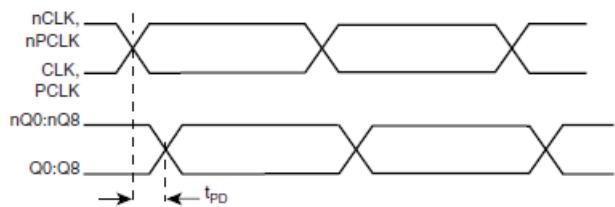
Measured at the output differential cross points.

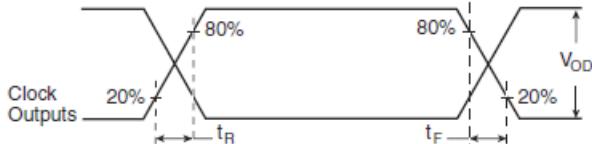

NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

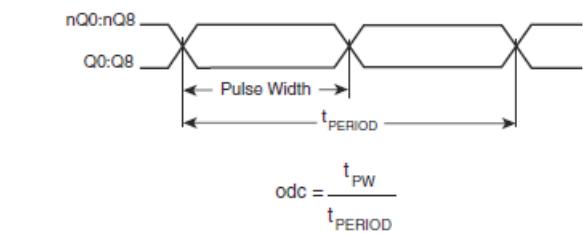
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.


PARAMETER MEASUREMENT INFORMATION


3.3V CORE/1.8V OUTPUT LOAD AC TEST CIRCUIT


DIFFERENTIAL INPUT LEVEL


OUTPUT SKEW


PART-TO-PART SKEW

PROPAGATION DELAY

OUTPUT RISE/FALL TIME

odc & t_{PERIOD}

APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 2 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_{REF} = V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio

of R1 and R2 might need to be adjusted to position the V_{REF} in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD} = 3.3V$, V_{REF} should be 1.25V and $R2/R1 = 0.609$.

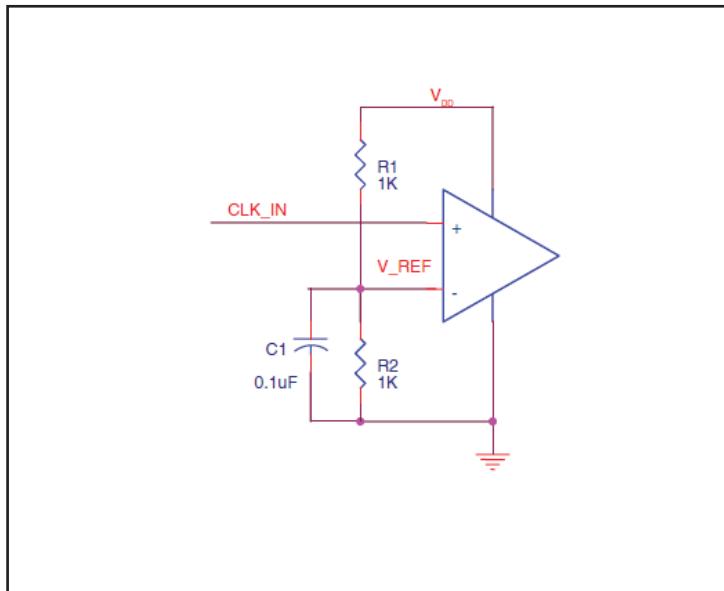
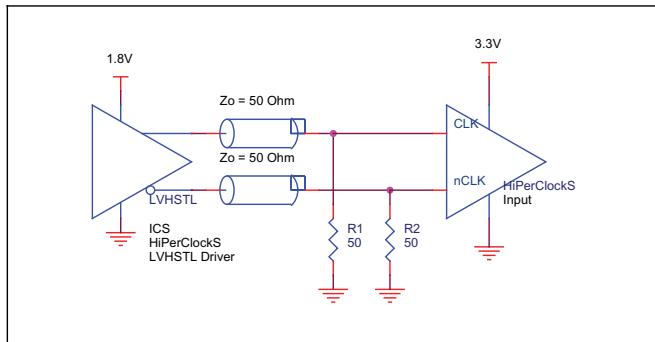
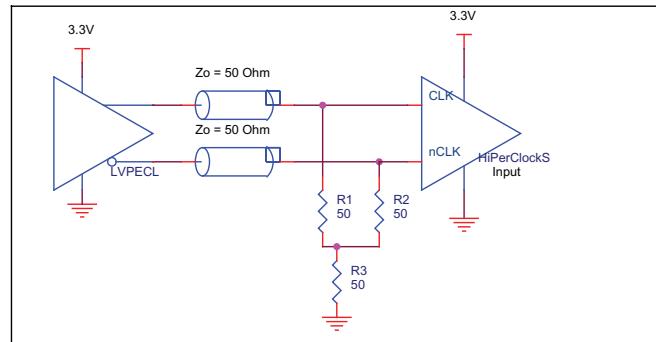
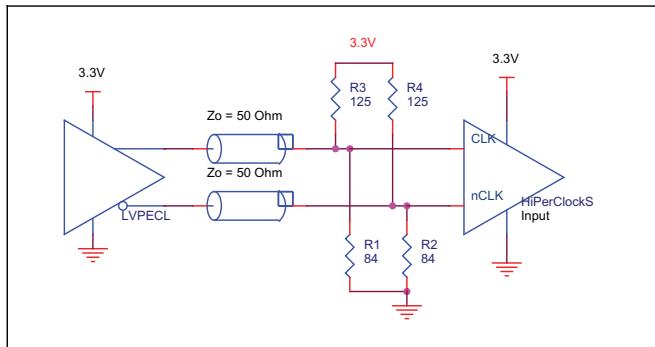
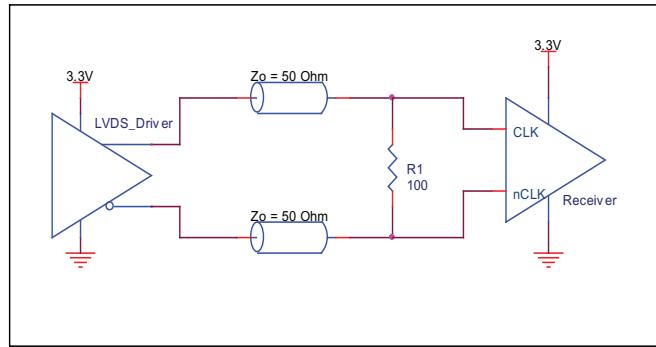



FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT


DIFFERENTIAL CLOCK INPUT INTERFACE

The CLK /nCLK accepts LVDS, LVPECL, HSTL, SSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. Figures 3A to 3E show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are


examples only. Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in *Figure 3A*, the input termination applies for HSTL drivers. If you are using an HSTL driver from another vendor, use their termination recommendation.


FIGURE 3A. CLK/nCLK INPUT DRIVEN BY HSTL DRIVER

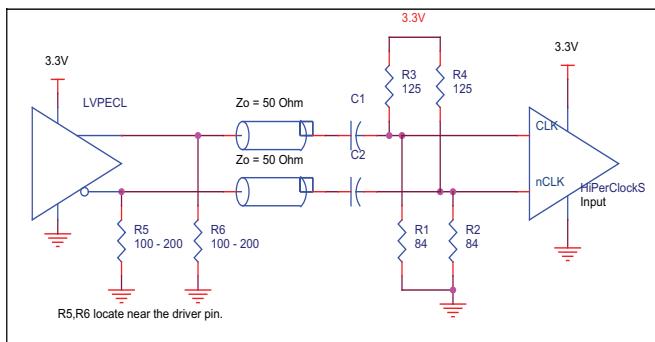

FIGURE 3B. CLK/nCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER

FIGURE 3C. CLK/nCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER

FIGURE 3D. CLK/nCLK INPUT DRIVEN BY 3.3V LVDS DRIVER

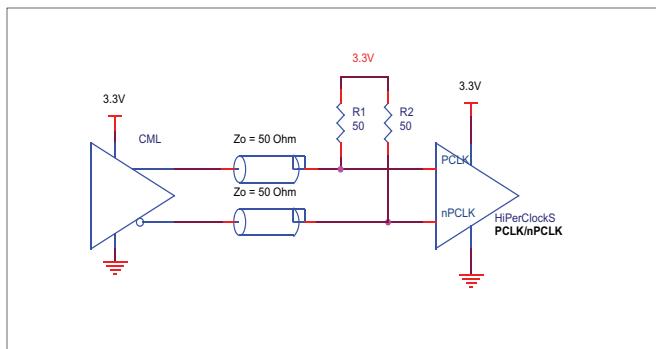
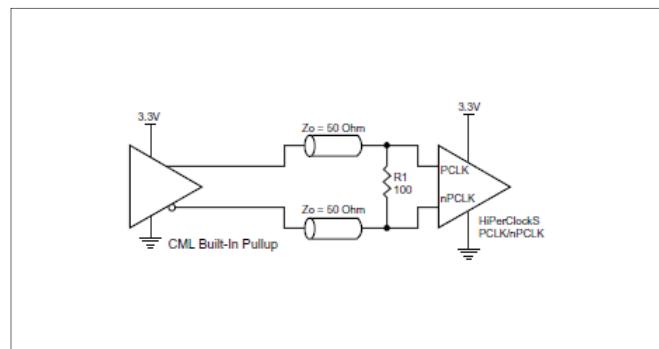
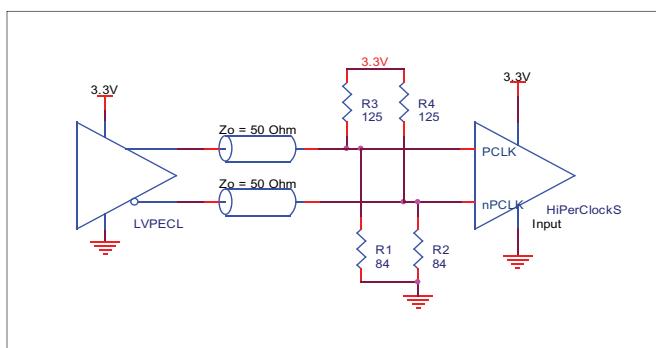
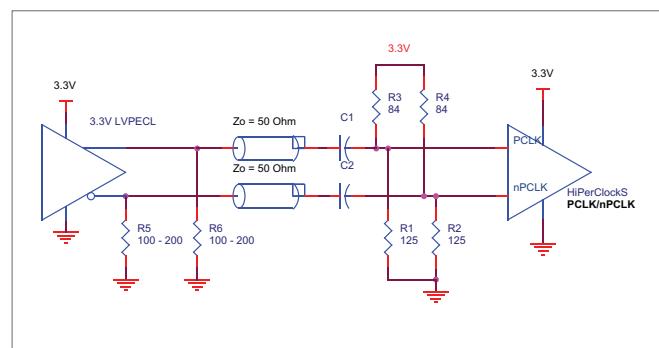


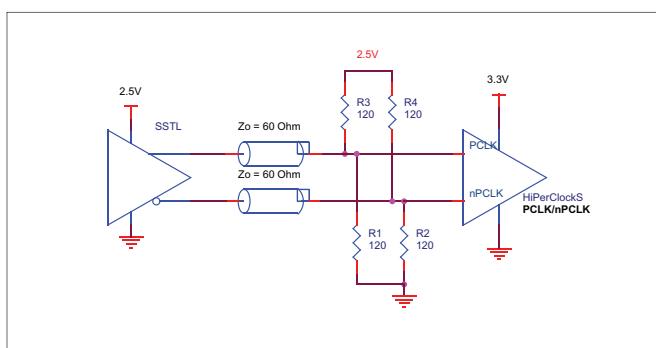
FIGURE 3E. CLK/nCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER WITH AC COUPLE


LVPECL CLOCK INPUT INTERFACE

The PCLK /nPCLK accepts LVPECL, CML, SSTL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. *Figures 4A to 4F* show interface examples for the PCLK/nPCLK input driven by the most common driver types. The input interfaces suggested


here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.


FIGURE 4A. PCLK/nPCLK INPUT DRIVEN BY AN OPEN COLLECTOR CML DRIVER


FIGURE 4B. PCLK/nPCLK INPUT DRIVEN BY A BUILT-IN PULLUP CML DRIVER

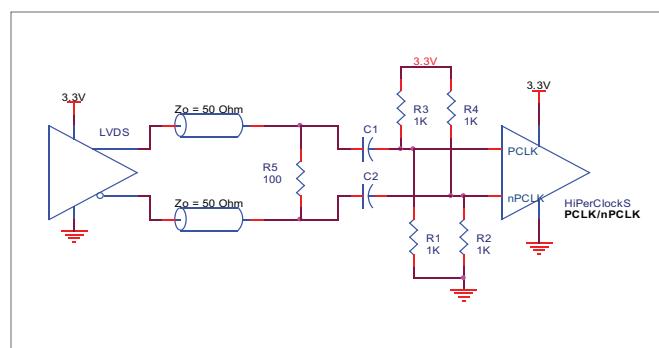

FIGURE 4C. PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER

FIGURE 4D. PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER WITH AC COUPLE

FIGURE 4E. PCLK/nPCLK INPUT DRIVEN BY AN SSTL DRIVER

FIGURE 4F. PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVDS DRIVER

POWER CONSIDERATIONS

This section provides information on power dissipation and junction temperature for the 8521. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 8521 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = $V_{DD_MAX} * I_{DD_MAX} = 3.465V * 80mA = 277.2\text{mW}$
- Power (outputs)_{MAX} = **32.8mW/Loaded Output pair**
If all outputs are loaded, the total power is $9 * 32.8\text{mW} = 295.2\text{mW}$

Total Power_{MAX} (3.465V, with all outputs switching) = $277.2\text{mW} + 295.2\text{mW} = 572.4\text{mW}$

2. Junction Temperature.

Junction temperature, T_j , is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for the devices is 125°C.

The equation for T_j is as follows: $T_j = \theta_{JA} * P_{d_total} + T_A$

T_j = Junction Temperature

θ_{JA} = junction-to-ambient thermal resistance

P_{d_total} = Total device power dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 6 below. Therefore, T_j for an ambient temperature of 70°C with all outputs switching is:

$70^\circ\text{C} + 0.572\text{W} * 42.1^\circ\text{C/W} = 94.1^\circ\text{C}$. This is well below the limit of 125°C.

This calculation is only an example. T_j will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

Table 6. Thermal Resistance θ_{JA} for 32-pin LQFP, Forced Convection

θ_{JA} by Velocity (Linear Feet per Minute)			
	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	67.8°C/W	55.9°C/W	50.1°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	47.9°C/W	42.1°C/W	39.4°C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.			

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

HSTL output driver circuit and termination are shown in *Figure 5*.

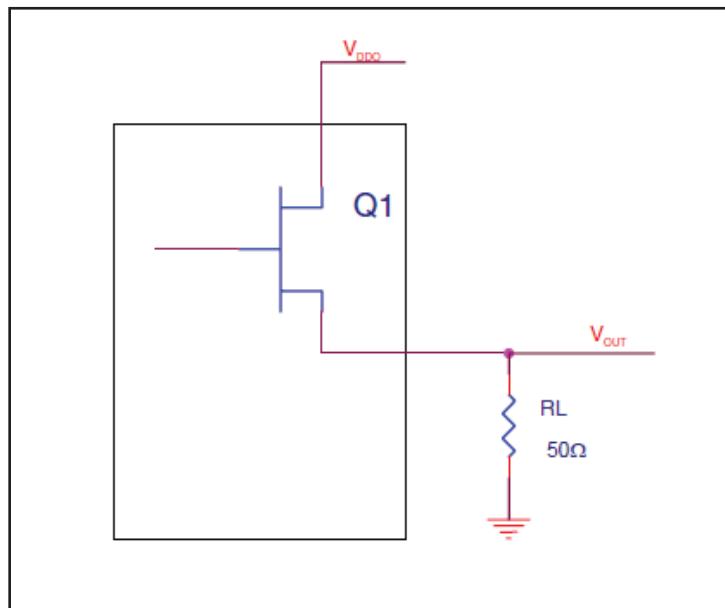


FIGURE 5. HSTL DRIVER CIRCUIT AND TERMINATION

To calculate worst case power dissipation due to the load, use the following equations which assume a 50Ω load.

P_{d_H} is power dissipation when the output drives high.

P_{d_L} is the power dissipation when the output drives low.

$$P_{d_H} = (V_{OH_MAX}/R_L) * (V_{DDO_MAX} - V_{OH_MAX})$$

$$P_{d_L} = (V_{OL_MAX}/R_L) * (V_{DDO_MAX} - V_{OL_MAX})$$

$$P_{d_H} = (1.0V/50\Omega) * (2V - 1.0V) = 20mW$$

$$P_{d_L} = (0.4V/50\Omega) * (2V - 0.4V) = 12.8mW$$

$$\text{Total Power Dissipation per output pair} = P_{d_H} + P_{d_L} = 32.8mW$$

RELIABILITY INFORMATION

TABLE 6. θ_{JA} vs. AIR FLOW TABLE FOR 32 LEAD LQFP

θ_{JA} by Velocity (Linear Feet per Minute)			
	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	67.8°C/W	55.9°C/W	50.1°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	47.9°C/W	42.1°C/W	39.4°C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.			

TRANSISTOR COUNT

The transistor count for 8521 is: 944

PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP

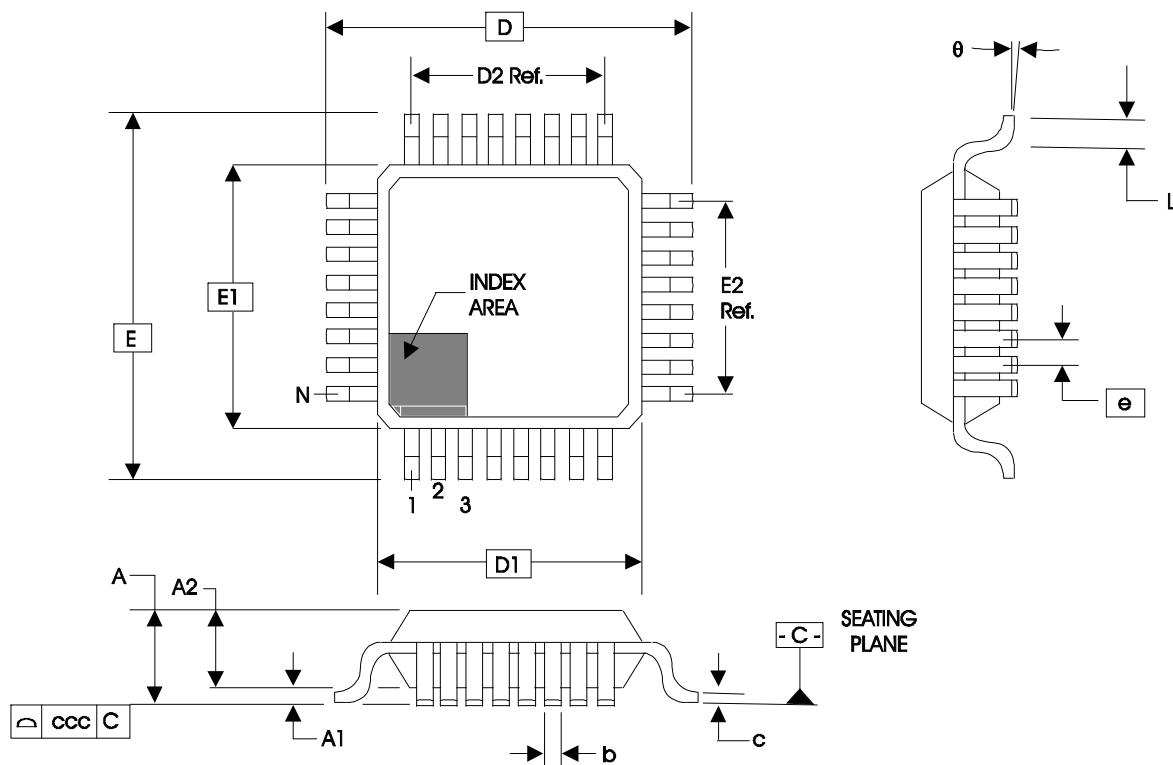


TABLE 6. PACKAGE DIMENSIONS

JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS			
SYMBOL	BBA		
	MINIMUM	NOMINAL	MAXIMUM
N	32		
A	--	--	1.60
A1	0.05	--	0.15
A2	1.35	1.40	1.45
b	0.30	0.37	0.45
c	0.09	--	0.20
D	9.00 BASIC		
D1	7.00 BASIC		
D2	5.60 Ref.		
E	9.00 BASIC		
E1	7.00 BASIC		
E2	5.60 Ref.		
e	0.80 BASIC		
L	0.45	0.60	0.75
θ	0°	--	7°
ccc	--	--	0.10

Reference Document: JEDEC Publication 95, MS-026

TABLE 7. ORDERING INFORMATION

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8521BYLF	ICS8521BYLF	32 Lead, Lead-Free LQFP	Tray	0°C to 70°C
8521BYLFT	ICS8521BYLF	32 Lead, Lead-Free LQFP	Tape and Reel	0°C to 70°C
8521BYLN	ICS8521BYLN	32 Lead Lead-Free/Annealed	Tray	0°C to 70°C
8521BYLNT	ICS8521BYLN	32 Lead Lead-Free/Annealed	Tape and Reel	0°C to 70°C

REVISION HISTORY SHEET				
Rev	Table	Page	Description of Change	Date
B		3	Updated Figure 1 - CLK_EN Timing Diagram.	10/16/01
B		3	Updated Figure 1 - CLK_EN Timing Diagram.	11/1/01
C	T4E	5	LVHSTL table - changed V_{OH} maximum from 1.2V to 1.4V.	01/02/03
D	T2 T4B	2 4 8 9	Changed LVHSTL to HSTL throughout data sheet to conform with JEDEC terminology.	7/16/03
			Pin Characteristics table - changed CIN 4pF max. to 4pF typical.	
			LVCMOS table - changed VIH from 3.765V max. to VDD + 0.3V max.	
			Added Differential Input Interface section.	
D	T7	4 9 14	Absolute Maximum Ratings - updated Output rating.	7/7/04
			Updated LVPECL Clock Input Interface section.	
			Ordering Information - added "Lead-Free/Annealed" part number.	
E	T7	14 16	Updated datasheet's header/footer with IDT from ICS. Removed ICS prefix from Part/Order Number column. Added Contact Page.	7/25/10
E	T7	14	Ordering Information Table - deleted non-lead free marking, added lead-free marking. Updated datasheet's header/footer.	8/24/12
E			Updated datasheet format.	6/12/15
E			Product Discontinuation Notice - Last time buy expires May 6, 2017. PDN CQ-16-01	6/21/16

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.