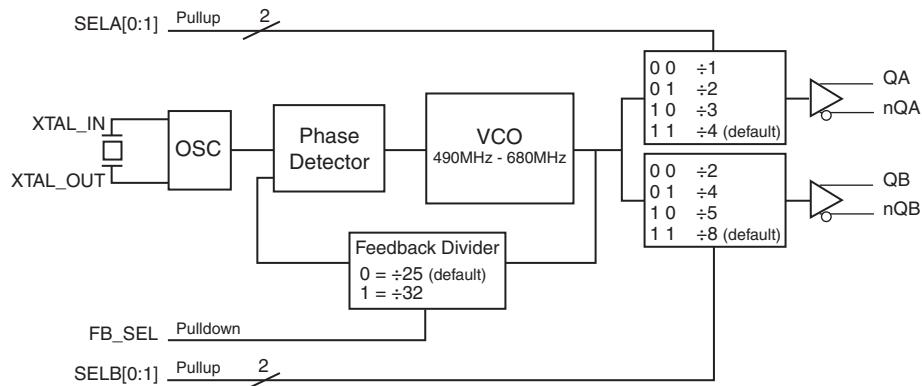


## General Description


The 843252 is a 2 differential output LVPECL Synthesizer designed to generate Ethernet reference clock frequencies. Using a 25MHz, 18pF parallel resonant crystal, the following frequencies can be generated based on the settings of 4 frequency select pins (SELA[1:0], SELB[1:0]): 625MHz, 312.5MHz, 156.25MHz, and 125MHz.

The two banks have their own dedicated frequency select pins and can be independently set for the frequencies mentioned above. The 843252 IDT's 3<sup>rd</sup> generation low phase noise VCO technology and can achieve 1ps or lower typical rms phase jitter, easily meeting Ethernet jitter requirements. The 843252 is packaged in a small 16-pin TSSOP package.

## Features

- Two differential LVPECL output pairs
- Using a 25MHz crystal, the two output banks can be independently set for 625MHz, 312.5MHz, 156.25MHz or 125MHz
- Crystal oscillator interface
- VCO frequency: 490MHz – 680MHz
- RMS Phase Jitter @ 156.25MHz, (1.875MHz – 20MHz) using a 25MHz crystal: 0.47ps (typical)
- Full 3.3V supply mode
- 0°C to 70°C ambient operating temperature
- Industrial temperature available upon request
- Available in lead-free (RoHS 6) package

## Block Diagram



## Pin Assignment

|        |   |    |          |
|--------|---|----|----------|
| nQB    | 1 | 16 | XTAL_IN  |
| QB     | 2 | 15 | XTAL_OUT |
| VCCO_B | 3 | 14 | VEE      |
| SELB1  | 4 | 13 | SELA1    |
| SELB0  | 5 | 12 | SELA0    |
| VCCO_A | 6 | 11 | Vcc      |
| QA     | 7 | 10 | VCCA     |
| nQA    | 8 | 9  | FB_SEL   |

**843252**

**16-Lead TSSOP**  
**4.4mm x 5.0mm x 0.925mm package body**  
**G Package**

## Pin Description and Pin Characteristics

Table 1. Pin Descriptions

| Number | Name                | Type   |          | Description                                                                                                                                                          |
|--------|---------------------|--------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1, 2   | nQB, QB             | Output |          | Bank B differential output pair. LVPECL interface levels.                                                                                                            |
| 3      | V <sub>CCO_B</sub>  | Power  |          | Output supply pin for QB, nQB outputs.                                                                                                                               |
| 4, 5   | SELB1,<br>SELB0     | Input  | Pullup   | Division select pins for Bank B. LVC MOS/LVTTL interface levels.                                                                                                     |
| 6      | V <sub>CCO_A</sub>  | Power  |          | Output supply pin for QA, nQA outputs.                                                                                                                               |
| 7, 8   | QA, nQA             | Output |          | Bank A differential output pair. LVPECL interface levels.                                                                                                            |
| 9      | FB_SEL              | Input  | Pulldown | Feedback divide select. When LOW, the feedback divider is set for $\div 25$ . When HIGH, the feedback divider is set for $\div 32$ . LVC MOS/LVTTL interface levels. |
| 10     | V <sub>CCA</sub>    | Power  |          | Analog supply pin.                                                                                                                                                   |
| 11     | V <sub>CC</sub>     | Power  |          | Core supply pin.                                                                                                                                                     |
| 12, 13 | SELA0,<br>SELA1     | Input  | Pullup   | Division select pins for Bank A. LVC MOS/LVTTL interface levels.                                                                                                     |
| 14     | V <sub>EE</sub>     | Power  |          | Negative supply pin.                                                                                                                                                 |
| 15, 16 | XTAL_OUT<br>XTAL_IN | Input  |          | Crystal oscillator interface XTAL_IN is the input, XTAL_OUT is the output.                                                                                           |

NOTE: *Pullup* and *Pulldown* refer to internal input resistors. See Table 2, *Pin Characteristics*, for typical values.

Table 2. Pin Characteristics

| Symbol                | Parameter               | Test Conditions | Minimum | Typical | Maximum | Units |
|-----------------------|-------------------------|-----------------|---------|---------|---------|-------|
| C <sub>IN</sub>       | Input Capacitance       |                 |         | 4       |         | pF    |
| R <sub>PULLUP</sub>   | Input Pullup Resistor   |                 |         | 51      |         | kΩ    |
| R <sub>PULLDOWN</sub> | Input Pulldown Resistor |                 |         | 51      |         | kΩ    |

## Function Tables

Table 3A. Bank A Frequency Table

| Inputs                  |        |        |        | Feedback Divider | Bank A Output Divider | M/N Multiplication Factor | QA, nQA Output Frequency (MHz) |
|-------------------------|--------|--------|--------|------------------|-----------------------|---------------------------|--------------------------------|
| Crystal Frequency (MHz) | FB_SEL | SEL_A1 | SEL_A0 |                  |                       |                           |                                |
| 25                      | 0      | 0      | 0      | 25               | 1                     | 25                        | 625                            |
| 25                      | 0      | 0      | 1      | 25               | 2                     | 12.5                      | 312.5                          |
| 20                      | 0      | 0      | 1      | 25               | 2                     | 12.5                      | 250                            |
| 22.5                    | 0      | 1      | 0      | 25               | 3                     | 8.333                     | 187.5                          |
| 25                      | 0      | 1      | 1      | 25               | 4                     | 6.25                      | 156.25                         |
| 24                      | 0      | 1      | 1      | 25               | 4                     | 6.25                      | 150                            |
| 20                      | 0      | 1      | 1      | 25               | 4                     | 6.25                      | 125                            |
| 19.44                   | 1      | 0      | 0      | 32               | 1                     | 32                        | 622.08                         |
| 19.44                   | 1      | 0      | 1      | 32               | 2                     | 16                        | 311.04                         |
| 15.625                  | 1      | 0      | 1      | 32               | 2                     | 16                        | 250                            |
| 18.75                   | 1      | 1      | 0      | 32               | 3                     | 10.667                    | 200                            |
| 19.44                   | 1      | 1      | 1      | 32               | 4                     | 8                         | 155.52                         |
| 18.75                   | 1      | 1      | 1      | 32               | 4                     | 8                         | 150                            |
| 15.625                  | 1      | 1      | 1      | 32               | 4                     | 8                         | 125                            |

**Table 3B. Bank B Frequency Table**

| Inputs                  |        |       |       | Feedback Divider | Bank B Output Divider | M/N Multiplication Factor | QB, nQB Output Frequency (MHz) |
|-------------------------|--------|-------|-------|------------------|-----------------------|---------------------------|--------------------------------|
| Crystal Frequency (MHz) | FB_SEL | SELB1 | SELB0 |                  |                       |                           |                                |
| 25                      | 0      | 0     | 0     | 25               | 2                     | 12.5                      | 312.5                          |
| 20                      | 0      | 0     | 0     | 25               | 2                     | 12.5                      | 250                            |
| 25                      | 0      | 0     | 1     | 25               | 4                     | 6.25                      | 156.25                         |
| 24                      | 0      | 0     | 1     | 25               | 4                     | 6.25                      | 150                            |
| 20                      | 0      | 0     | 1     | 25               | 4                     | 6.25                      | 125                            |
| 25                      | 0      | 1     | 0     | 25               | 5                     | 5                         | 125                            |
| 25                      | 0      | 1     | 1     | 25               | 8                     | 3.125                     | 78.125                         |
| 24                      | 0      | 1     | 1     | 25               | 8                     | 3.125                     | 75                             |
| 20                      | 0      | 1     | 1     | 25               | 8                     | 3.125                     | 62.5                           |
| 19.44                   | 1      | 0     | 0     | 32               | 2                     | 16                        | 311.04                         |
| 15.625                  | 1      | 0     | 0     | 32               | 2                     | 16                        | 250                            |
| 19.44                   | 1      | 0     | 1     | 32               | 4                     | 8                         | 155.52                         |
| 18.75                   | 1      | 0     | 1     | 32               | 4                     | 8                         | 150                            |
| 15.625                  | 1      | 0     | 1     | 32               | 4                     | 8                         | 125                            |
| 15.625                  | 1      | 1     | 0     | 32               | 5                     | 6.4                       | 100                            |
| 19.44                   | 1      | 1     | 1     | 32               | 8                     | 4                         | 77.76                          |
| 18.75                   | 1      | 1     | 1     | 32               | 8                     | 4                         | 75                             |
| 15.625                  | 1      | 1     | 1     | 32               | 8                     | 4                         | 62.5                           |

**Table 3C. Output Bank A Configuration Select Function Table**

| Inputs |       | Outputs            |
|--------|-------|--------------------|
| SELA1  | SELA0 | QA, nQA            |
| 0      | 0     | $\div 1$           |
| 0      | 1     | $\div 2$           |
| 1      | 0     | $\div 3$           |
| 1      | 1     | $\div 4$ (default) |

**Table 3D. Output Bank B Configuration Select Function Table**

| Inputs |       | Outputs            |
|--------|-------|--------------------|
| SELB1  | SELB0 | QB, nQB            |
| 0      | 0     | $\div 2$           |
| 0      | 1     | $\div 4$           |
| 1      | 0     | $\div 5$           |
| 1      | 1     | $\div 8$ (default) |

**Table 3E. Feedback Divider Configuration Select Function Table**

| Input  |                     |
|--------|---------------------|
| FB_SEL | Feedback Divide     |
| 0      | $\div 25$ (default) |
| 1      | $\div 32$           |

## Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

| Item                                                 | Rating                   |
|------------------------------------------------------|--------------------------|
| Supply Voltage, $V_{CC}$                             | 4.6V                     |
| Inputs, $V_I$                                        | -0.5V to $V_{CC} + 0.5V$ |
| Outputs, $I_O$<br>Continuos Current<br>Surge Current | 50mA<br>100mA            |
| Package Thermal Impedance, $\theta_{JA}$             | 92.4°C/W (0 mps)         |
| Storage Temperature, $T_{STG}$                       | -65°C to 150°C           |

## DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics,  $V_{CC} = V_{CCO\_A} = V_{CCO\_B} = 3.3V \pm 5\%$ ,  $V_{EE} = 0V$ ,  $T_A = 0^\circ C$  to  $70^\circ C$

| Symbol                         | Parameter             | Test Conditions | Minimum         | Typical | Maximum  | Units |
|--------------------------------|-----------------------|-----------------|-----------------|---------|----------|-------|
| $V_{CC}$                       | Core Supply Voltage   |                 | 3.135           | 3.3     | 3.465    | V     |
| $V_{CCA}$                      | Analog Supply Voltage |                 | $V_{CC} - 0.10$ | 3.3     | $V_{CC}$ | V     |
| $V_{CCO\_A}$ ,<br>$V_{CCO\_B}$ | Power Supply Voltage  |                 | 3.135           | 3.3     | 3.465    | V     |
| $I_{CCA}$                      | Analog Supply Current |                 |                 |         | 10       | mA    |
| $I_{EE}$                       | Power Supply Current  |                 |                 |         | 145      | mA    |

Table 4B. LVC MOS/LV TTL DC Characteristics,  $V_{CC} = V_{CCO\_A} = V_{CCO\_B} = 3.3V \pm 5\%$ ,  $V_{EE} = 0V$ ,  $T_A = 0^\circ C$  to  $70^\circ C$

| Symbol   | Parameter          | Test Conditions         | Minimum                        | Typical | Maximum        | Units   |
|----------|--------------------|-------------------------|--------------------------------|---------|----------------|---------|
| $V_{IH}$ | Input High Voltage |                         | 2                              |         | $V_{CC} + 0.3$ | V       |
| $V_{IL}$ | Input Low Voltage  |                         | -0.3                           |         | 0.8            | V       |
| $I_{IH}$ | Input High Current | FB_SEL                  | $V_{CC} = V_{IN} = 3.465V$     |         | 150            | $\mu A$ |
|          |                    | SELA[1:0],<br>SELB[1:0] | $V_{CC} = V_{IN} = 3.465V$     |         | 5              | $\mu A$ |
| $I_{IL}$ | Input Low Current  | FB_SEL                  | $V_{CC} = 3.465V, V_{IN} = 0V$ | -5      |                | $\mu A$ |
|          |                    | SELA[1:0],<br>SELB[1:0] | $V_{CC} = 3.465V, V_{IN} = 0V$ | -150    |                | $\mu A$ |

**Table 4C. LVPECL DC Characteristics,  $V_{CC} = V_{CCO\_A} = V_{CCO\_B} = 3.3V \pm 5\%$ ,  $V_{EE} = 0V$ ,  $T_A = 0^\circ C$  to  $70^\circ C$** 

| Symbol      | Parameter                         | Test Conditions | Minimum            | Typical | Maximum            | Units |
|-------------|-----------------------------------|-----------------|--------------------|---------|--------------------|-------|
| $V_{OH}$    | Output High Voltage; NOTE 1       |                 | $V_{CCO\_X} - 1.4$ |         | $V_{CCO\_X} - 0.9$ | V     |
| $V_{OL}$    | Output Low Voltage; NOTE 1        |                 | $V_{CCO\_X} - 2.0$ |         | $V_{CCO\_X} - 1.7$ | V     |
| $V_{SWING}$ | Peak-to-Peak Output Voltage Swing |                 | 0.6                |         | 1.0                | V     |

NOTE 1: Output termination with  $50\Omega$  to  $V_{CCO\_A, B} - 2V$ .

**Table 5. Crystal Characteristics**

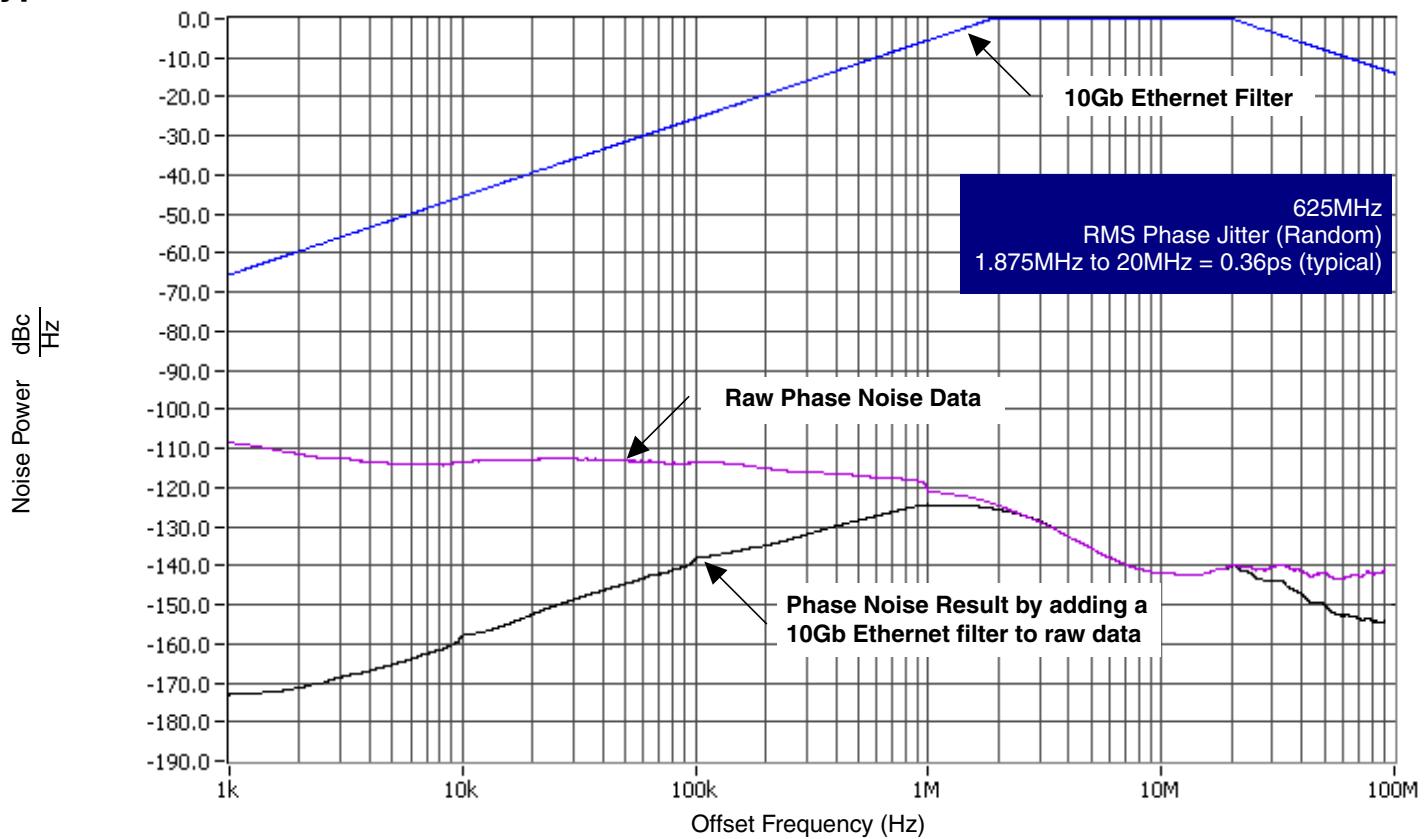
| Parameter                          | Test Conditions    | Minimum | Typical | Maximum | Units    |
|------------------------------------|--------------------|---------|---------|---------|----------|
| Mode of Oscillation                | Fundamental        |         |         |         |          |
| Frequency                          | FB_SEL = $\div 25$ | 19.6    |         | 27.2    | MHz      |
|                                    | FB_SEL = $\div 32$ | 15.313  |         | 21.25   | MHz      |
| Equivalent Series Resistance (ESR) |                    |         |         |         | $\Omega$ |
| Shunt Capacitance                  |                    |         |         |         | 7 pF     |
| Drive Level                        |                    |         |         |         | 1 mW     |

NOTE: Characterized using an 18pF parallel resonant crystal.

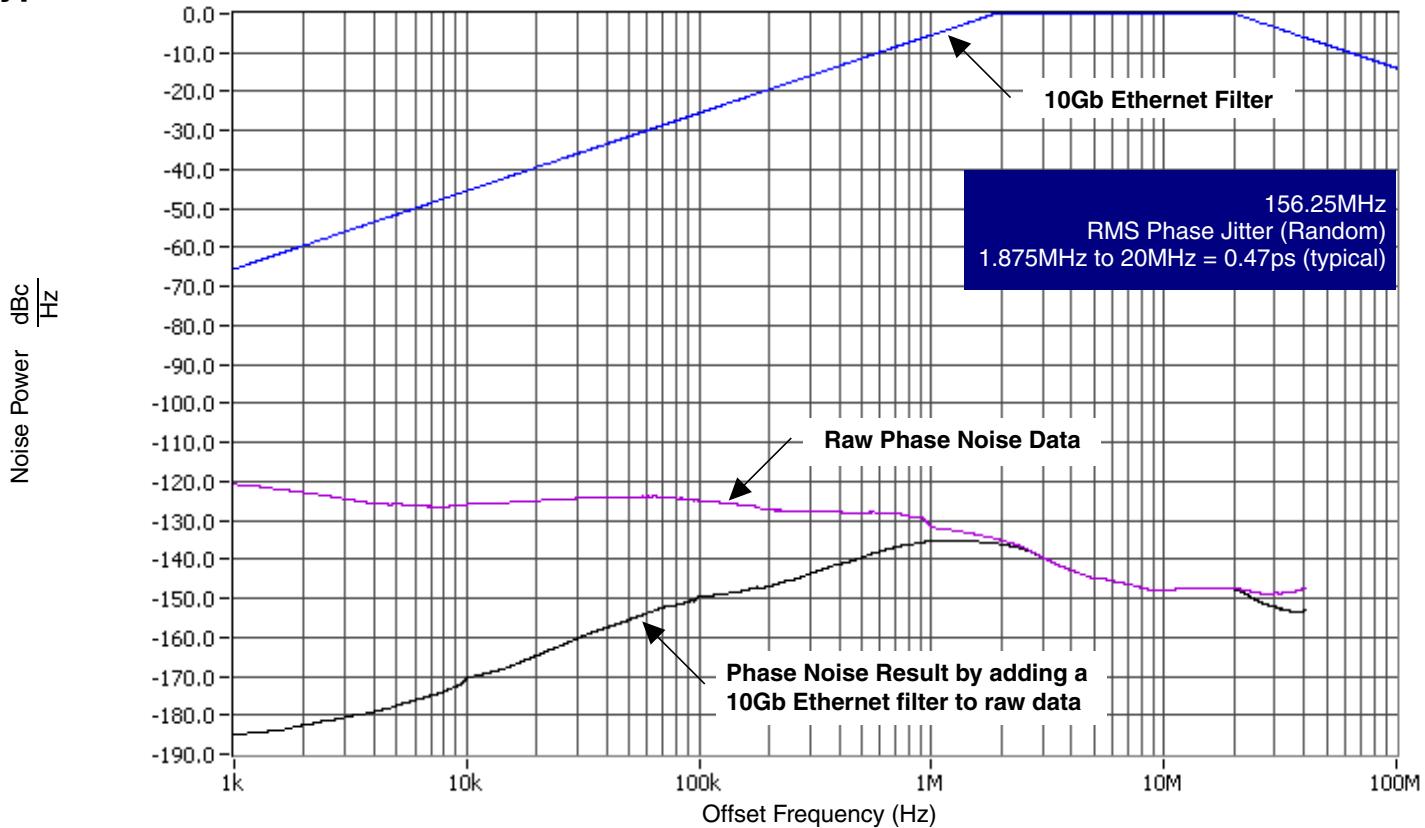
## AC Electrical Characteristics

**Table 6. AC Characteristics,  $V_{CC} = V_{CCO\_A} = V_{CCO\_B} = 3.3V \pm 5\%$ ,  $V_{EE} = 0V$ ,  $T_A = 0^\circ C$  to  $70^\circ C$** 

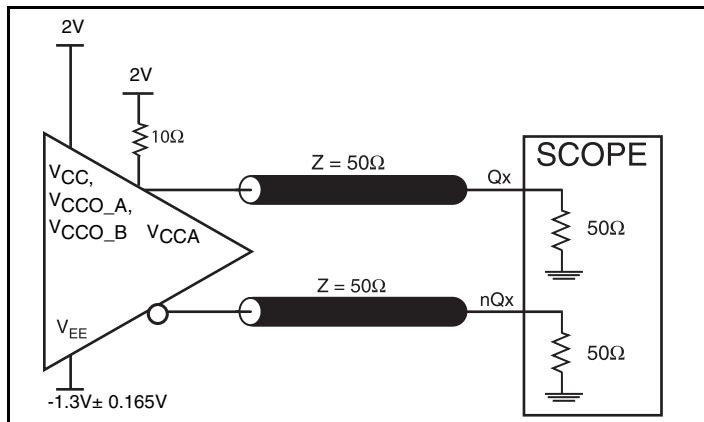
| Symbol               | Parameter                          | Test Conditions                 | Minimum | Typical | Maximum | Units |
|----------------------|------------------------------------|---------------------------------|---------|---------|---------|-------|
| $f_{OUT}$            | Output Frequency Range             | Output Divider = $\div 1$       | 490     |         | 680     | MHz   |
|                      |                                    | Output Divider = $\div 2$       | 245     |         | 340     | MHz   |
|                      |                                    | Output Divider = $\div 3$       | 163.33  |         | 226.67  | MHz   |
|                      |                                    | Output Divider = $\div 4$       | 122.5   |         | 170     | MHz   |
|                      |                                    | Output Divider = $\div 5$       | 98      |         | 136     | MHz   |
|                      |                                    | Output Divider = $\div 8$       | 61.25   |         | 85      | MHz   |
| $t_{sk(o)}$          | Output Skew; NOTE 1, 2             | Outputs @ Same Frequency        |         |         | 80      | ps    |
|                      |                                    | Outputs @ Different Frequencies |         |         | 190     | ps    |
| $t_{jit}(\emptyset)$ | RMS Phase Jitter, (Random); NOTE 3 | 625MHz, (1.875MHz – 20MHz)      |         | 0.36    |         | ps    |
|                      |                                    | 312.5MHz, (1.875MHz – 20MHz)    |         | 0.43    |         | ps    |
|                      |                                    | 156.25MHz, (1.875MHz – 20MHz)   |         | 0.47    |         | ps    |
|                      |                                    | 125MHz, (1.875MHz – 20MHz)      |         | 0.47    |         | ps    |
| $t_R / t_F$          | Output Rise/Fall Time              | 20% to 80%                      | 300     |         | 700     | ps    |
| $odc$                | Output Duty Cycle                  |                                 | 47      |         | 53      | %     |


NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

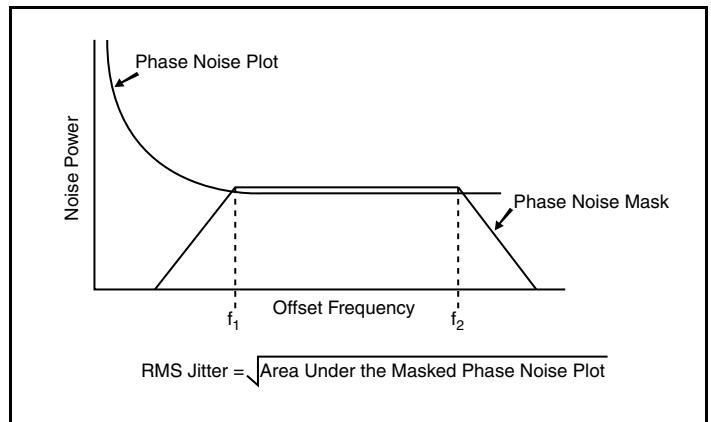
NOTE 1: Defined as skew between outputs at the same supply voltages and with equal load conditions. Measured at the output differential cross points.


NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

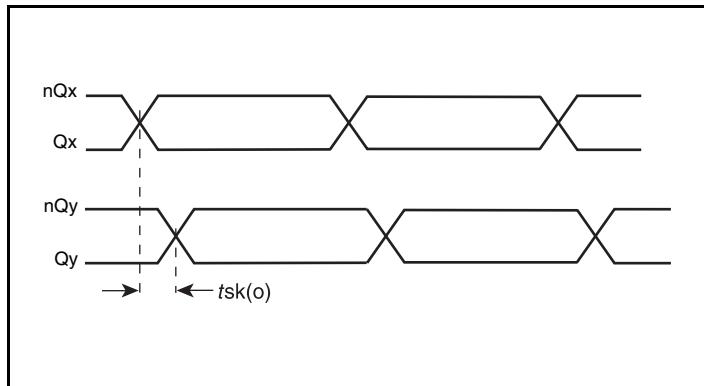
NOTE 3: Please refer to the Phase Noise Plots.


## Typical Phase Noise at 625MHz

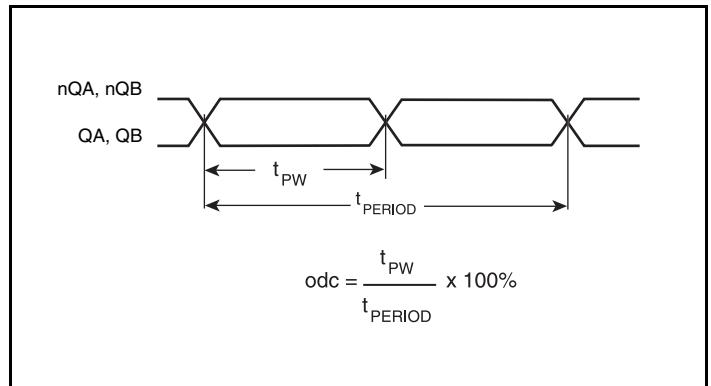



## Typical Phase Noise at 156.25MHz

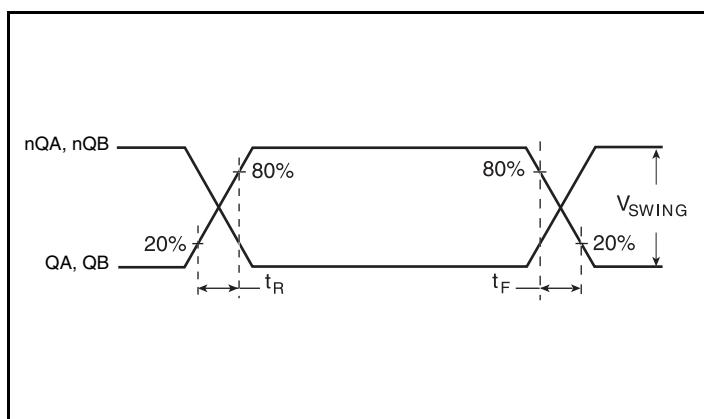



## Parameter Measurement Information




3.3V LVPECL Output Load AC Test Circuit




RMS Phase Jitter



Output Skew



Output Duty Cycle/Pulse Width/Period



Output Rise/Fall Time

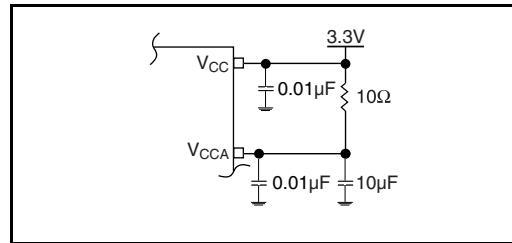
## Application Information

### Recommendations for Unused Input Pins

#### Inputs:

##### LVCMOS Control Pins

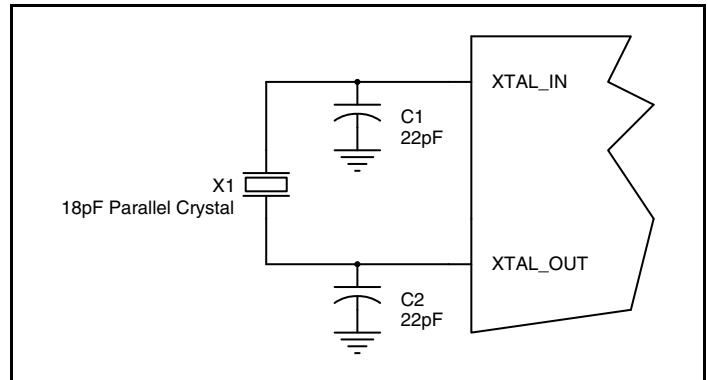
All control pins have internal pullups and pulldowns; additional resistance is not required but can be added for additional protection. A  $1\text{k}\Omega$  resistor can be used.


#### Outputs:

##### LVPECL Outputs

All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

### Power Supply Filtering Technique

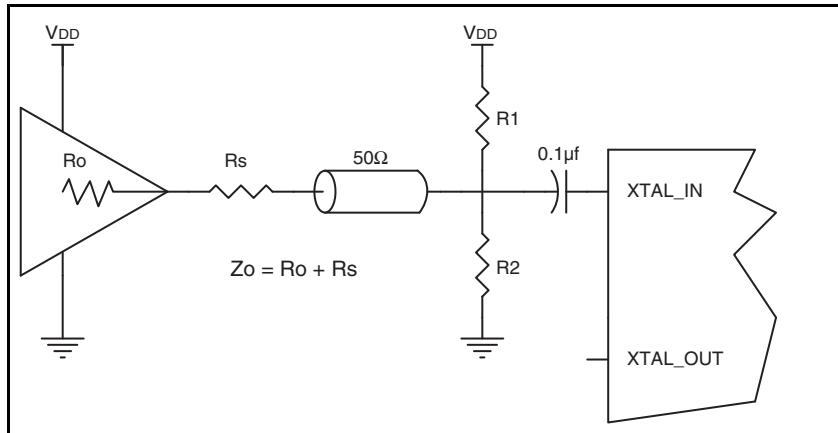

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 843252 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL.  $V_{CC}$ ,  $V_{CCA}$ ,  $V_{CCO\_A}$ , and  $V_{CCO\_B}$  should be individually connected to the power supply plane through vias, and  $0.01\mu\text{F}$  bypass capacitors should be used for each pin. *Figure 1* illustrates this for a generic  $V_{CC}$  pin and also shows that  $V_{CCA}$  requires that an additional  $10\Omega$  resistor along with a  $10\mu\text{F}$  bypass capacitor be connected to the  $V_{CCA}$  pin.



**Figure 1. Power Supply Filtering**

### Crystal Input Interface

The 843252 has been characterized with  $18\text{pF}$  parallel resonant crystals. The capacitor values,  $C1$  and  $C2$ , shown in *Figure 2* below were determined using a  $25\text{MHz}$ ,  $18\text{pF}$  parallel resonant crystal and were chosen to minimize the ppm error.



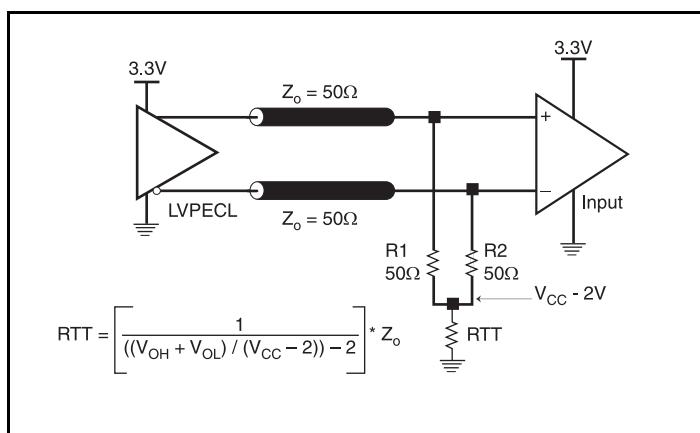

**Figure 2. Crystal Input Interface**

## LVCMS to XTAL Interface

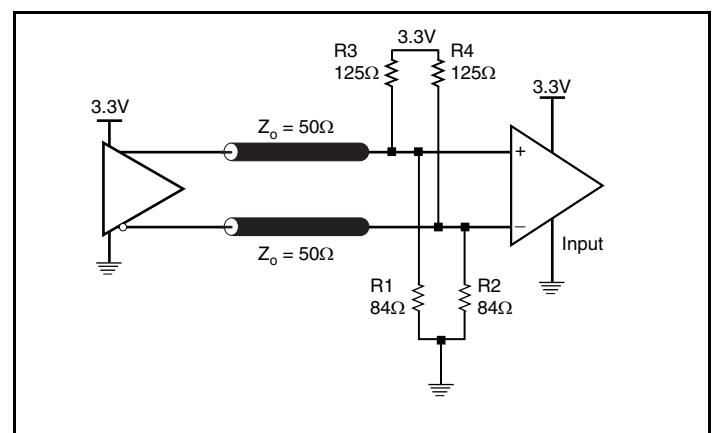
The XTAL\_IN input can accept a single-ended LVCMS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 3*. The XTAL\_OUT pin can be left floating. The input edge rate can be as slow as 10ns. For LVCMS inputs, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. This configuration requires that the output

impedance of the driver ( $R_o$ ) plus the series resistance ( $R_s$ ) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First,  $R_1$  and  $R_2$  in parallel should equal the transmission line impedance. For most 50Ω applications,  $R_1$  and  $R_2$  can be 100Ω. This can also be accomplished by removing  $R_1$  and making  $R_2$  50Ω.




**Figure 3. General Diagram for LVCMS Driver to XTAL Input Interface**

## Termination for 3.3V LVPECL Outputs


The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 4A and 4B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.



**Figure 4A. 3.3V LVPECL Output Termination**



**Figure 4B. 3.3V LVPECL Output Termination**

## Schematic Example

Figure 5 shows an example of 843252 application schematic. In this example, the device is operated at  $V_{CC} = 3.3V$ . The 18pF parallel resonant 25MHz crystal is used. The  $C1 = 22pF$  and  $C2 = 22pF$  are recommended for frequency accuracy. For different board layouts, the C1 and C2 may be slightly adjusted for

optimizing frequency accuracy. Two examples of LVPECL terminations are shown in this schematic. Additional termination approaches are shown in the *LVPECL Termination Application Note*.

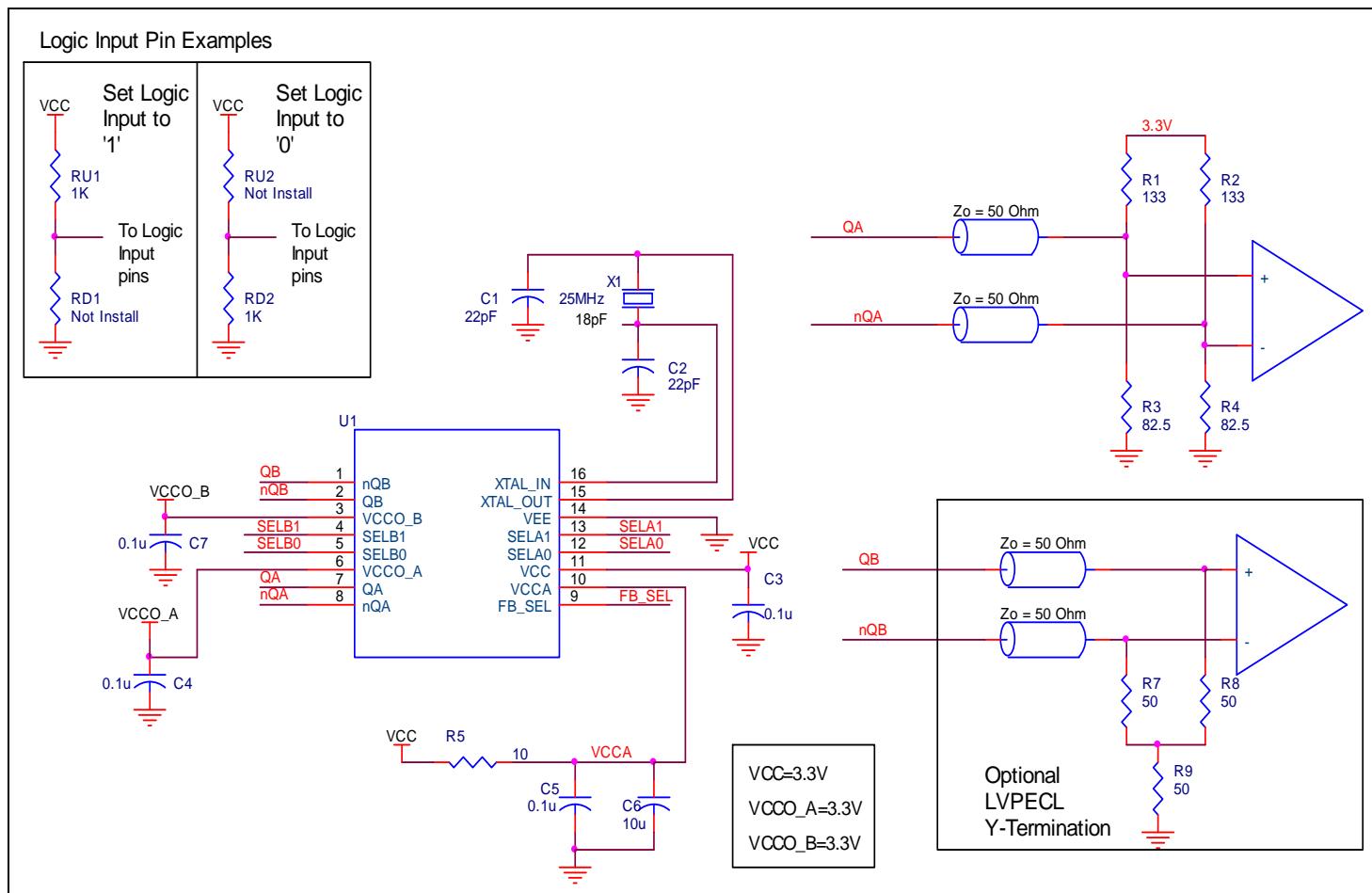



Figure 5. 843252 Schematic Example

## Power Considerations

This section provides information on power dissipation and junction temperature for the 843252. Equations and example calculations are also provided.

### 1. Power Dissipation.

The total power dissipation for the 843252 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for  $V_{CC} = 3.3V + 5\% = 3.465V$ , which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)<sub>MAX</sub> =  $V_{CC\_MAX} * I_{EE\_MAX} = 3.465V * 145mA = 502.43mW$
- Power (outputs)<sub>MAX</sub> = **30mW/Loaded Output pair**  
If all outputs are loaded, the total power is  $2 * 30mW = 60mW$

**Total Power<sub>MAX</sub>** (3.3V, with all outputs switching) =  $502.43mW + 60mW = 562.43mW$

### 2. Junction Temperature.

Junction temperature,  $T_j$ , is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for devices is 125°C.

The equation for  $T_j$  is as follows:  $T_j = \theta_{JA} * P_{d\_total} + T_A$

$T_j$  = Junction Temperature

$\theta_{JA}$  = Junction-to-Ambient Thermal Resistance

$P_{d\_total}$  = Total Device Power Dissipation (example calculation is in section 1 above)

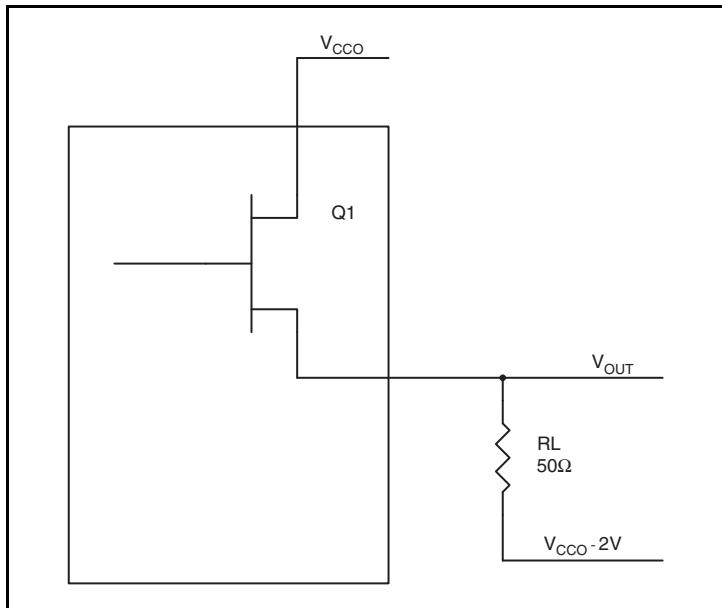
$T_A$  = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance  $\theta_{JA}$  must be used. Assuming no air flow and a multi-layer board, the appropriate value is 92.4°C/W per Table 7 below.

Therefore,  $T_j$  for an ambient temperature of 70°C with all outputs switching is:

$70°C + 0.562W * 92.4°C/W = 121.9°C$ . This is below the limit of 125°C.

This calculation is only an example.  $T_j$  will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).


**Table 7. Thermal Resistance  $\theta_{JA}$  for 16 Lead TSSOP, Forced Convection**

| $\theta_{JA}$ vs. Air Flow                  |          |          |          |
|---------------------------------------------|----------|----------|----------|
| Meters per Second                           | 0        | 1        | 2.5      |
| Multi-Layer PCB, JEDEC Standard Test Boards | 92.4°C/W | 88.0°C/W | 85.9°C/W |

### 3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

LVPECL output driver circuit and termination are shown in *Figure 6*.



**Figure 6. LVPECL Driver Circuit and Termination**

To calculate worst case power dissipation into the load, use the following equations which assume a  $50\Omega$  load, and a termination voltage of  $V_{CCO} - 2V$ .

- For logic high,  $V_{OUT} = V_{OH\_MAX} = V_{CCO\_MAX} - 0.9V$   
 $(V_{CCO\_MAX} - V_{OH\_MAX}) = 0.9V$
- For logic low,  $V_{OUT} = V_{OL\_MAX} = V_{CCO\_MAX} - 1.7V$   
 $(V_{CCO\_MAX} - V_{OL\_MAX}) = 1.7V$

$Pd_H$  is power dissipation when the output drives high.

$Pd_L$  is the power dissipation when the output drives low.

$$Pd_H = [(V_{OH\_MAX} - (V_{CCO\_MAX} - 2V))/R_L] * (V_{CCO\_MAX} - V_{OH\_MAX}) = [(2V - (V_{CCO\_MAX} - V_{OH\_MAX}))/R_L] * (V_{CCO\_MAX} - V_{OH\_MAX}) = [(2V - 0.9V)/50\Omega] * 0.9V = 19.8mW$$

$$Pd_L = [(V_{OL\_MAX} - (V_{CCO\_MAX} - 2V))/R_L] * (V_{CCO\_MAX} - V_{OL\_MAX}) = [(2V - (V_{CCO\_MAX} - V_{OL\_MAX}))/R_L] * (V_{CCO\_MAX} - V_{OL\_MAX}) = [(2V - 1.7V)/50\Omega] * 1.7V = 10.2mW$$

Total Power Dissipation per output pair =  $Pd_H + Pd_L = 30mW$

## Reliability Information

Table 8.  $\theta_{JA}$  vs. Air Flow Table for a 16 Lead TSSOP

| $\theta_{JA}$ vs. Air Flow                  |          |          |          |
|---------------------------------------------|----------|----------|----------|
| Meters per Second                           | 0        | 1        | 2.5      |
| Multi-Layer PCB, JEDEC Standard Test Boards | 92.4°C/W | 88.0°C/W | 85.9°C/W |

## Transistor Count

The transistor count for 843252 is: 3822

## Package Outline and Package Dimensions

Package Outline - G Suffix for 16-Lead TSSOP

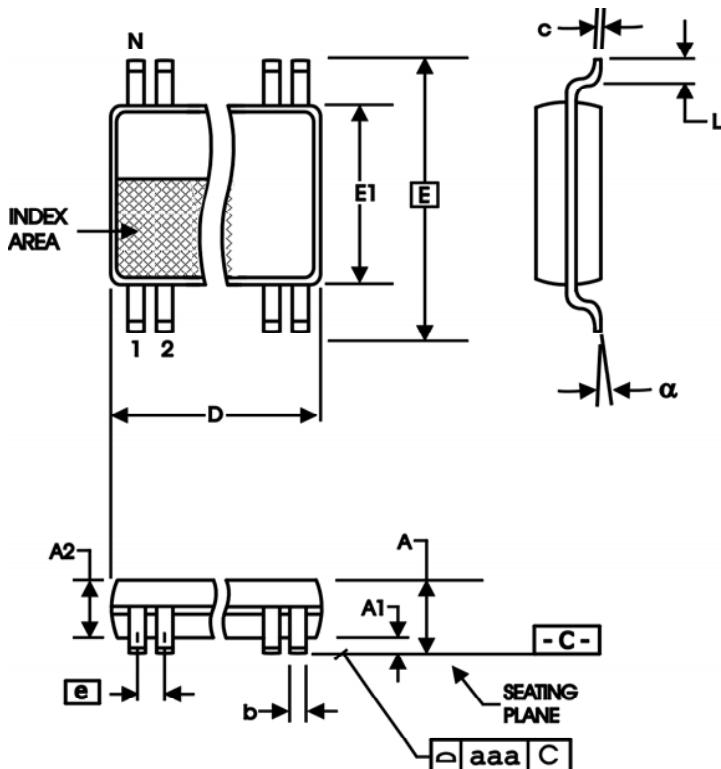



Table 9. Package Dimensions for 16 Lead TSSOP

| All Dimensions in Millimeters |            |         |
|-------------------------------|------------|---------|
| Symbol                        | Minimum    | Maximum |
| N                             | 16         |         |
| A                             |            | 1.20    |
| A1                            | 0.05       | 0.15    |
| A2                            | 0.80       | 1.05    |
| b                             | 0.19       | 0.30    |
| c                             | 0.09       | 0.20    |
| D                             | 4.90       | 5.10    |
| E                             | 6.40 Basic |         |
| E1                            | 4.30       | 4.50    |
| e                             | 0.65 Basic |         |
| L                             | 0.45       | 0.75    |
| α                             | 0°         | 8°      |
| aaa                           |            | 0.10    |

Reference Document: JEDEC Publication 95, MO-153

## Ordering Information

Table 10. Ordering Information

| Part/Order Number | Marking  | Package                  | Shipping Packaging | Temperature |
|-------------------|----------|--------------------------|--------------------|-------------|
| 843252AGLF        | 843252AL | 16 Lead TSSOP, Lead-Free | Tube               | 0°C to 70°C |
| 843252AGLFT       | 843252AL | 16 Lead TSSOP, Lead-Free | Tape & Reel        | 0°C to 70°C |

## Revision History Sheet

| Rev | Table | Page    | Description of Change                                                                                                                                                                                                                                                                                                                                       | Date    |
|-----|-------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| B   | T10   | 1<br>15 | <p>“General Description” - deleted <i>HiperClocks</i> logo and reference text.</p> <p>Ordering Information Table - deleted <i>Tape &amp; Reel count</i>.</p> <p>Deleted all <i>HiperClocks</i> references throughout the datasheet.</p> <p>Deleted <i>/CS</i> prefix from part number throughout the datasheet.</p> <p>Updated datasheet header/footer.</p> | 1/19/16 |



## IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

### Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
[www.renesas.com](http://www.renesas.com)

### Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

### Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit [www.renesas.com/contact-us/](http://www.renesas.com/contact-us/).