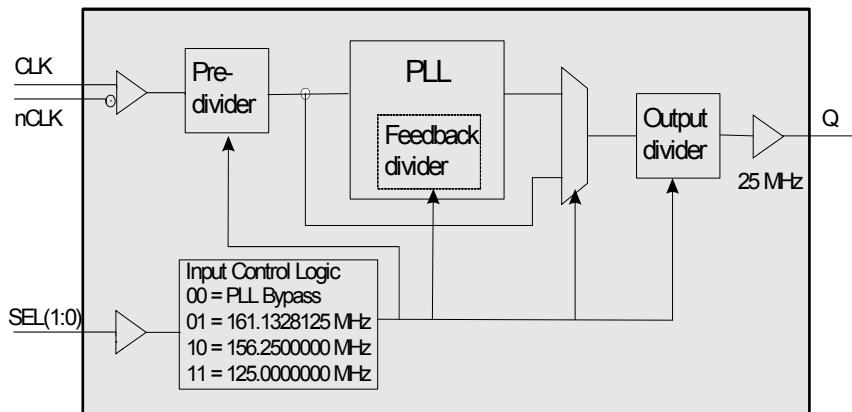
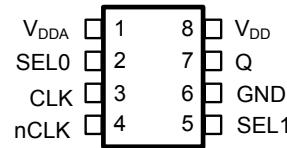


General Description



The ICS840271I is a PLL-based Frequency Translator intended for use in telecommunication applications such as Synchronous Ethernet. The internal PLL translates Ethernet clock frequencies such as 125MHz (1Gb Ethernet), 156.25MHz (10GbE XAU) and 161.1328MHz (10Gb Ethernet) to an output frequency of 25MHz. The PLL does not require external components. The input frequency is selectable by a 2-pin interface. The ICS840271I is optimized for low cycle-to-cycle jitter on the 25MHz output signal. The input of the device accepts differential (LVPECL, LVDS, LVHSTL, SSTL, HCSL) or single-ended (LVCMS) signals. The extended temperature range supports telecommunication and networking equipment requirements. The ICS840271I uses a small RoHS 6, 8-pin TSSOP package and is an effective solution for space-constrained applications.


Features

- Clock frequency translator for Synchronous Ethernet applications
- One single-ended output (LVCMS or LVTTL levels), 16Ω output impedance
- Differential input pair (CLK, nCLK) accepts LVPECL, LVDS, LVHSTL, SSTL, HCSL input levels
- Supports input clock frequencies of: 125MHz, 156.25MHz or 161.1328MHz
- Generates a 25MHz output clock signal
- Internal resistor bias on nCLK pin allows the user to drive CLK input with external single-ended (LVCMS/LVTTL) input levels
- Internal PLL is optimized for low cycle-to-cycle jitter at the output
- Full 3.3V or 2.5V supply voltage
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

Block Diagram

Pin Assignment

ICS840271I
8 Lead TSSOP
4.40mm x 3.0mm x 0.925mm
package body
G Package
Top View

Table 1. Pin Descriptions

Number	Name	Type		Description
1	V _{DDA}	Power		Analog supply pin.
2	SEL0	Input	Pulldown	Selects the input reference frequency and the PLL bypass mode. LVCMOS/LVTTL interface levels. See Table 3.
3	CLK	Input	Pulldown	Non-inverting differential clock input.
4	nCLK	Input	Pullup/ Pulldown	Inverting differential clock input. Internal resistor bias to V _{DD} /2.
5	SEL1	Input	Pullup	Selects the input reference frequency and the PLL bypass mode. LVCMOS/LVTTL interface levels. See Table 3.
6	GND	Power		Power supply ground.
7	Q	Output		Single-ended clock output. LVCMOS/LVTTL interface levels.
8	V _{DD}	Power		Core supply pin.

NOTE: *Pullup* and *Pulldown* refer to internal input resistors. See Table 2, *Pin Characteristics*, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
R _{OUT}	Output Impedance	V _{DD} = 3.465V		16		Ω
		V _{DD} = 2.625V		19		Ω

Function Tables

Table 3. SEL[1:0] Function Table

Inputs			Mode	Output (MHz)
SEL1	SEL0	CLK, nCLK (MHz)		
0	0	REF	PLL Bypass	REF/ 5
0	1	161.1328125	PLL Enabled	25
1 (default)	0 (default)	156.25	PLL Enabled	25
1	1	125	PLL Enabled	25

NOTE: REF = Input clock signal frequency

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V_{DD}	4.6V
Inputs, V_I	-0.5V to $V_{DD} + 0.5V$
Outputs, I_O (LVCMOS)	-0.5V to $V_{DD} + 0.5V$
Package Thermal Impedance, θ_{JA}	129.5°C/W (0 mps)
Storage Temperature, T_{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V_{DDA}	Analog Supply Voltage		$V_{DD} - 0.08$	3.3	V_{DD}	V
I_{DD}	Power Supply Current				75	mA
I_{DDA}	Analog Supply Current				8	mA

Table 4B. Power Supply DC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V_{DDA}	Analog Supply Voltage		$V_{DD} - 0.08$	2.5	V_{DD}	V
I_{DD}	Power Supply Current				72	mA
I_{DDA}	Analog Supply Current				8	mA

Table 4C. LVC MOS/LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage		$V_{DD} = 3.3V$	2		$V_{DD} + 0.3$	V
			$V_{DD} = 2.5V$	1.7		$V_{DD} + 0.3$	V
V_{IL}	Input Low Voltage		$V_{DD} = 3.3V$	-0.3		0.8	V
			$V_{DD} = 2.5V$	-0.3		0.7	V
I_{IH}	Input High Current	SEL1	$V_{DD} = V_{IN} = 3.465V$ or $2.625V$			5	μA
		SEL0	$V_{DD} = V_{IN} = 3.465V$ or $2.625V$			150	μA
I_{IL}	Input Low Current	SEL1	$V_{DD} = 3.465V$, $V_{IN} = 0V$	-150			μA
		SEL0	$V_{DD} = 3.465V$, $V_{IN} = 0V$	-5			μA
V_{OH}	Output High Voltage		$V_{DD} = 3.465V$, $I_{OH} = 12mA$	2.6			V
			$V_{DD} = 2.625V$, $I_{OH} = 12mA$	1.8			V
V_{OL}	Output Low Voltage		$V_{DD} = 3.465V$ or $2.625V$, $I_{OL} = -12mA$			0.5	V

Table 4D. Differential DC Characteristics, $V_{DD} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
I_{IH}	Input High Current	CLK/nCLK	$V_{DD} = V_{IN} = 3.465V$ or $2.625V$			150	μA
I_{IL}	Input Low Current	CLK	$V_{DD} = 3.465V$ or $2.625V$, $V_{IN} = 0V$	-5			μA
		nCLK	$V_{DD} = 3.465V$ or $2.625V$, $V_{IN} = 0V$	-150			μA
V_{PP}	Peak-to-Peak Voltage; NOTE 1			0.15		1.3	V
V_{CMR}	Common Mode Input Voltage; NOTE 1, 2			GND + 0.5		$V_{DD} - 0.85$	V

NOTE 1: V_{IL} should not be less than -0.3V.NOTE 2: Common mode input voltage is defined as V_{IH} .

AC Electrical Characteristics

Table 5A. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40^\circ\text{C}$ to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{OUT}	Output Frequency			25		MHz
$t_{jit(cc)}$	Cycle-to-Cycle Jitter	$SEL0 \neq SEL1$			40	ps
		$SEL0 = SEL1 = 1$			15	ps
t_{LOCK}	PLL Lock Time	$SEL1 = 0, SEL0 = 1$			1	s
		$SEL1 = 1, SEL0 = X$			50	ms
t_R / t_F	Output Rise/Fall Time	20% to 80%	200		700	ps
odc	Output Duty Cycle		47		53	%

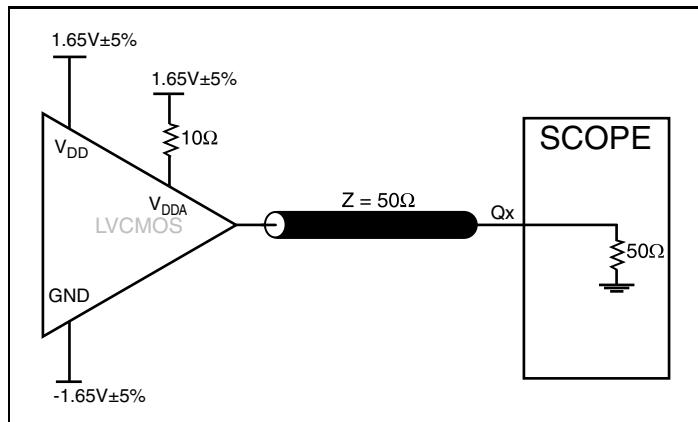
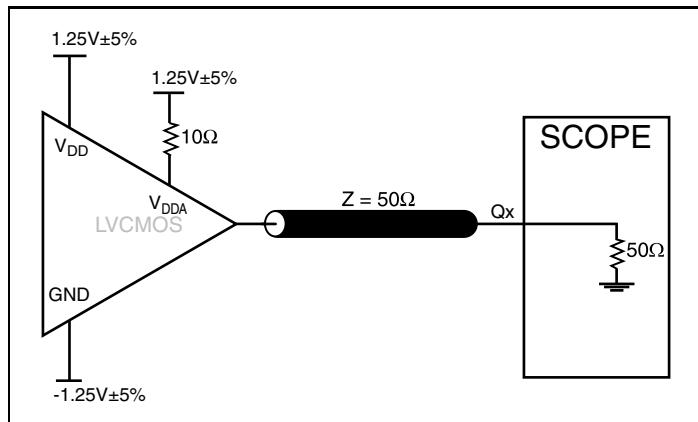
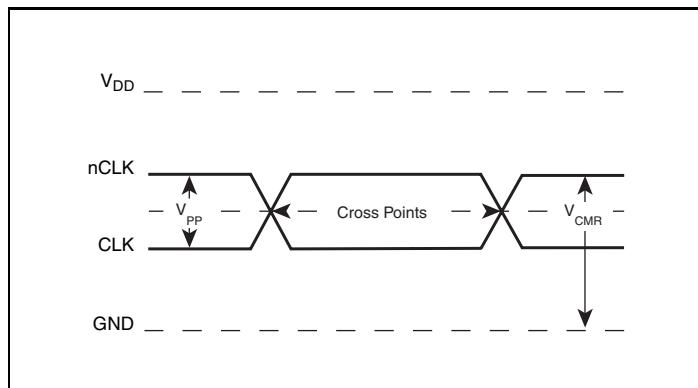
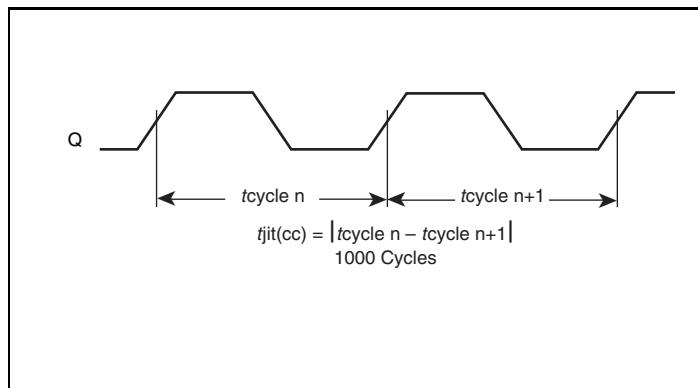

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 Ifpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

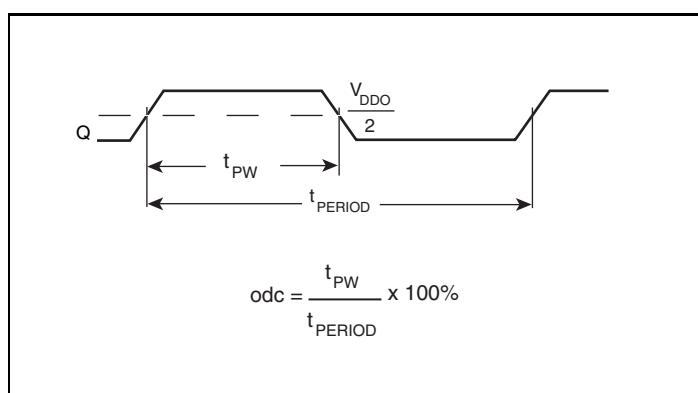
Table 5B. AC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = -40^\circ\text{C}$ to 85°C

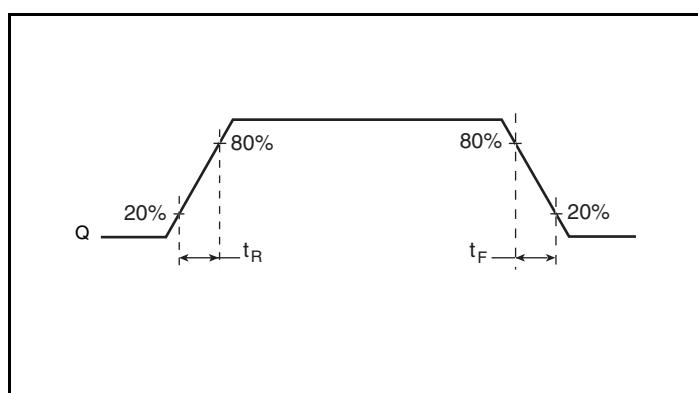

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{OUT}	Output Frequency			25		MHz
$t_{jit(cc)}$	Cycle-to-Cycle Jitter	$SEL0 \neq SEL1$			50	ps
		$SEL0 = SEL1 = 1$			15	ps
t_{LOCK}	PLL Lock Time	$SEL1 = 0, SEL0 = 1$			1	s
		$SEL1 = 1, SEL0 = X$			50	ms
t_R / t_F	Output Rise/Fall Time	20% to 80%	200		700	ps
odc	Output Duty Cycle		47		53	%

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 Ifpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.


Parameter Measurement Information


3.3V Output Load AC Test Circuit


2.5V Output Load AC Test Circuit


Differential Input Level

Cycle-to-Cycle Jitter

Output Duty Cycle/Pulse Width/Period

Output Rise/Fall Time

Application Information

Power Supply Filtering Technique

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The ICS840271I provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} and V_{DDA} should be individually connected to the power supply plane through vias, and $0.01\mu F$ bypass capacitors should be used for each pin. *Figure 1* illustrates this for a generic V_{DD} pin and also shows that V_{DDA} requires that an additional 10Ω resistor along with a $10\mu F$ bypass capacitor be connected to the V_{DDA} pin.

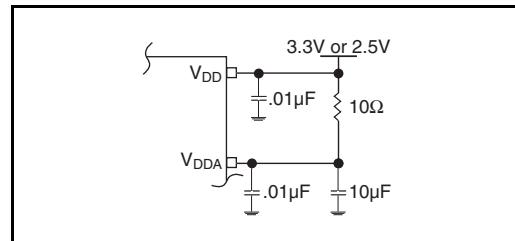


Figure 1. Power Supply Filtering

Wiring the Differential Input to Accept Single Ended Levels

Figure 2 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_{REF} = V_{DD}/2$ is generated by the bias resistors $R1$, $R2$ and $C1$. This bias circuit should be located as close as possible to the input pin. The ratio of $R1$ and $R2$ might need to be adjusted to position the V_{REF} in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD} = 3.3V$, V_{REF} should be 1.25V and $R2/R1 = 0.609$.

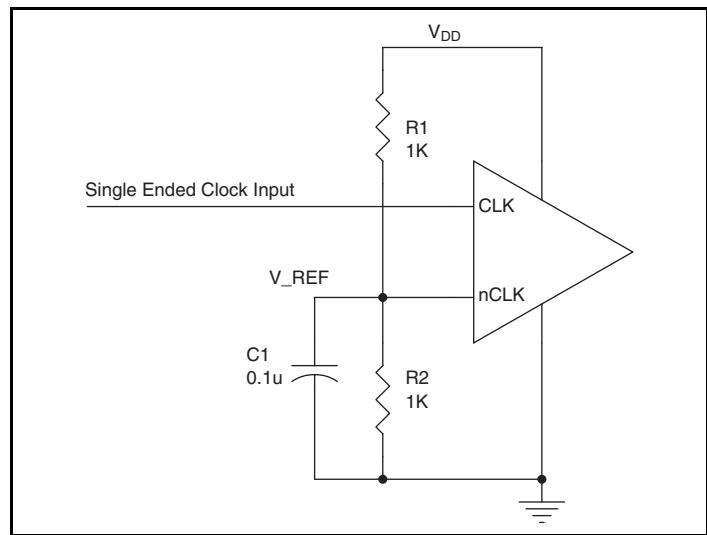
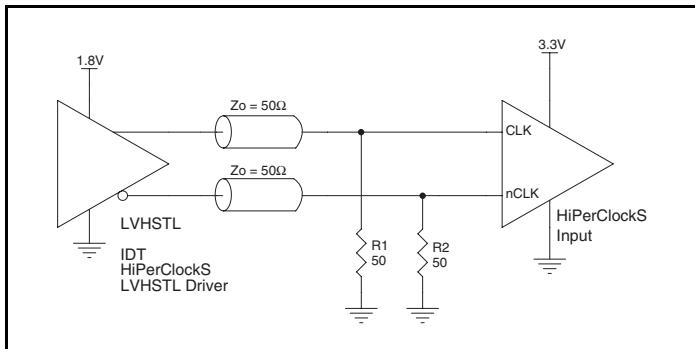


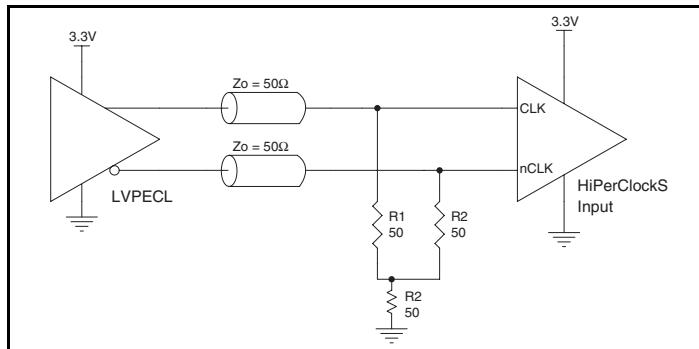
Figure 2. Single-Ended Signal Driving Differential Input

Recommendations for Unused Input Pins

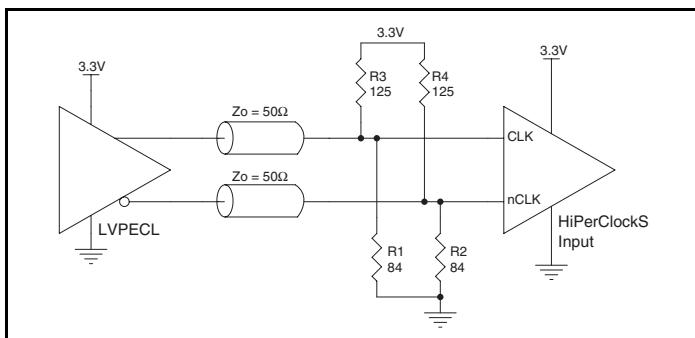

Inputs:

LVCMS Control Pins

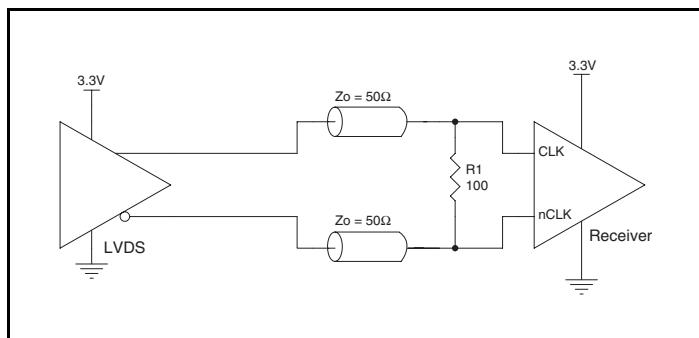
All control pins have internal pullups or pulldowns; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

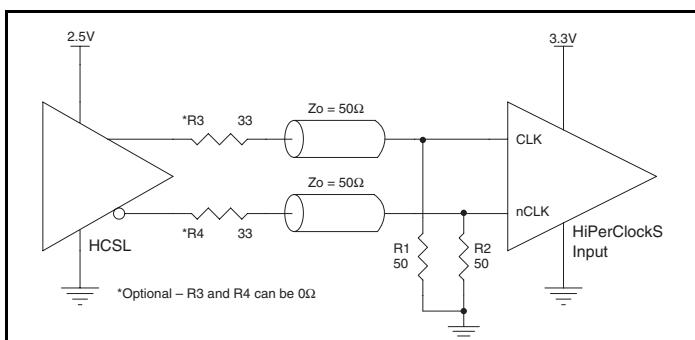

Differential Clock Input Interface

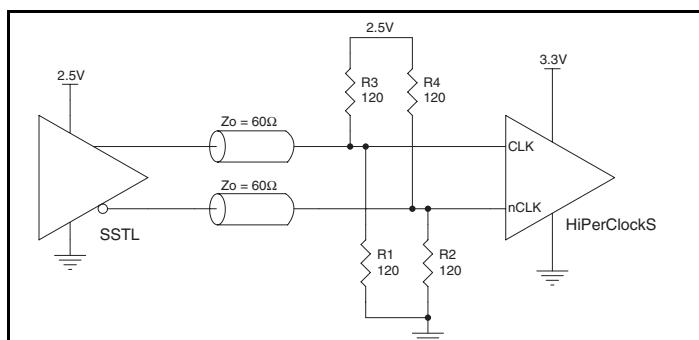
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both signals must meet the V_{PP} and V_{CMR} input requirements. Figures 3A to 3F show interface examples for the HiPerClockS CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the vendor of the driver



**Figure 3A. HiPerClockS CLK/nCLK Input
Driven by an IDT Open Emitter
HiPerClockS LVHSTL Driver**


component to confirm the driver termination requirements. For example, in Figure 3A, the input termination applies for IDT HiPerClockS open emitter LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.


**Figure 3B. HiPerClockS CLK/nCLK Input
Driven by a 3.3V LVPECL Driver**


**Figure 3C. HiPerClockS CLK/nCLK Input
Driven by a 3.3V LVPECL Driver**

**Figure 3D. HiPerClockS CLK/nCLK Input
Driven by a 3.3V LVDS Driver**

**Figure 3E. HiPerClockS CLK/nCLK Input
Driven by a 3.3V HCSL Driver**

**Figure 3F. HiPerClockS CLK/nCLK Input
Driven by a 2.5V SSTL Driver**

Schematic Example

Figure 4 shows an example of ICS840271I applications schematic. In this example, the device is operated at $V_{DD} = 3.3V$. The input is driven by either a 3.3V LVPECL or LVDS driver. One example of

LVCMOS termination is shown in this schematic. The decoupling capacitors should be located a close as possible to the power pin.

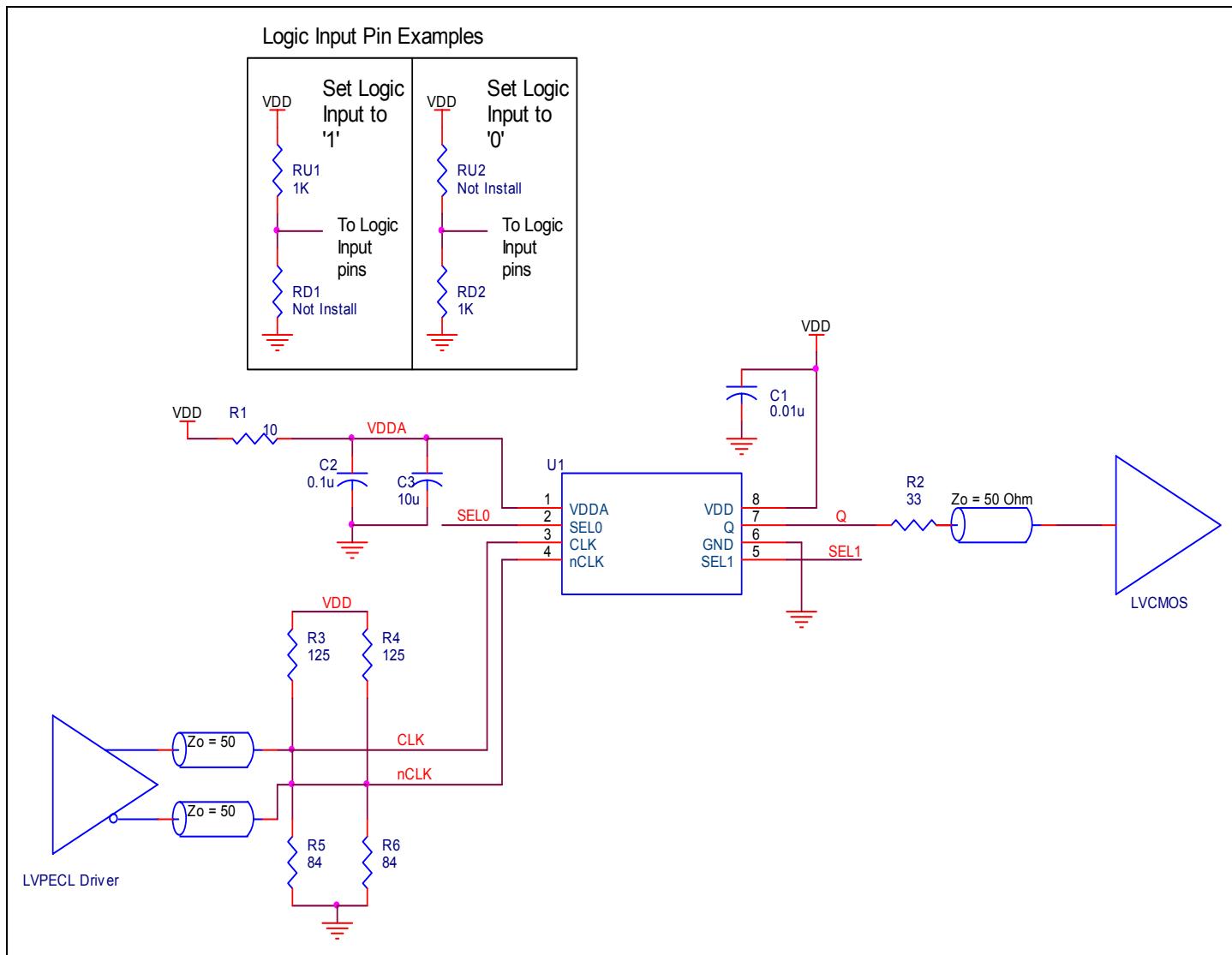


Figure 4. ICS840271I Schematic layout

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS840271I. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS840271I is the sum of the core power plus the analog power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

- Power (core)_{MAX} = $V_{DD_MAX} * (I_{DD} + I_{DDA}) = 3.465V * (75mA + 8mA) = 287.6\text{mW}$
- Output Impedance R_{OUT} Power Dissipation due to Loading 50Ω to $V_{DD}/2$
Output Current $I_{OUT} = V_{DD_MAX} / [2 * (50\Omega + R_{OUT})] = 3.465V / [2 * (50\Omega + 16\Omega)] = 26.25\text{mA}$
- Power Dissipation on the R_{OUT} per LVCMOS output
Power (R_{OUT}) = $R_{OUT} * (I_{OUT})^2 = 16\Omega * (26.25\text{mA})^2 = 11\text{mW per output}$

Total Power Dissipation

- **Total Power**
= Power (core)_{MAX} + Total Power (R_{OUT})
= $287.6\text{mW} + 11\text{mW}$
= **298.6mW**

2. Junction Temperature.

Junction temperature, T_j , is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C .

The equation for T_j is as follows: $T_j = \theta_{JA} * P_{d_total} + T_A$

T_j = Junction Temperature

θ_{JA} = Junction-to-Ambient Thermal Resistance

P_{d_total} = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 129.5°C/W per Table 6 below.

Therefore, T_j for an ambient temperature of 85°C with all outputs switching is:

$85^\circ\text{C} + 0.299\text{W} * 129.5^\circ\text{C/W} = 123.7^\circ\text{C}$. This is below the limit of 125°C .

This calculation is only an example. T_j will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6. Thermal Resistance θ_{JA} for 8 Lead TSSOP, Forced Convection

θ_{JA} by Velocity			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	129.5°C/W	125.5°C/W	123.5°C/W

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 8 Lead TSSOP

θ_{JA} vs. Air Flow			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	129.5°C/W	125.5°C/W	123.5°C/W

Transistor Count

The transistor count for ICS840271I is: 2732

Package Outline and Package Dimensions

Package Outline - G Suffix for 8 Lead TSSOP

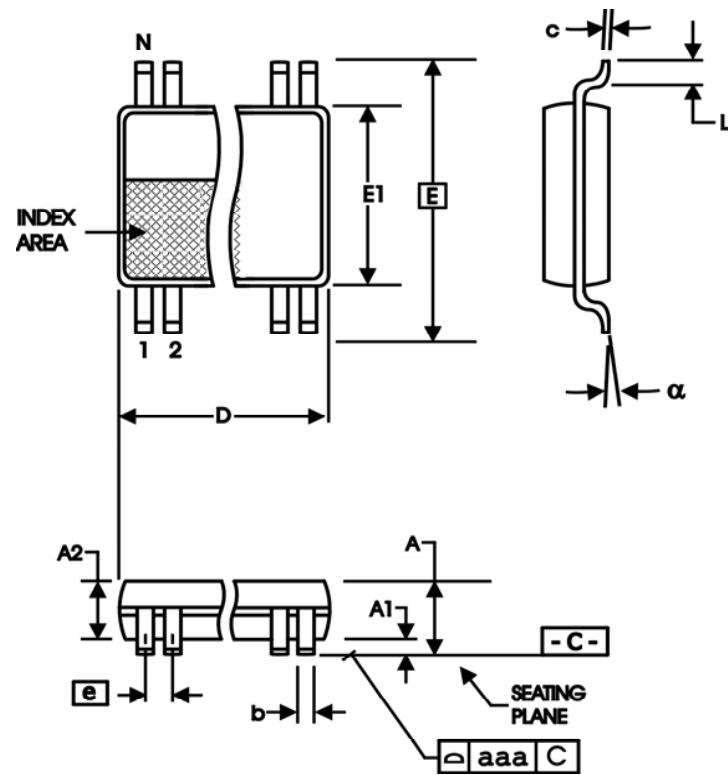


Table 8. Package Dimensions

All Dimensions in Millimeters		
Symbol	Minimum	Maximum
N	8	
A		1.20
A1	0.5	0.15
A2	0.80	1.05
b	0.19	0.30
c	0.09	0.20
D	2.90	3.10
E	6.40 Basic	
E1	4.30	4.50
e	0.65 Basic	
L	0.45	0.75
α	0°	8°
aaa		0.10

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
840271BGILF	71BIL	“Lead-Free” 8 Lead TSSOP	Tube	-40°C to 85°C
840271BGILFT	71BIL	“Lead-Free” 8 Lead TSSOP	2500 Tape & Reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

ICS840271I

SYNCHRONOUS ETHERNET FREQUENCY TRANSLATOR

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.