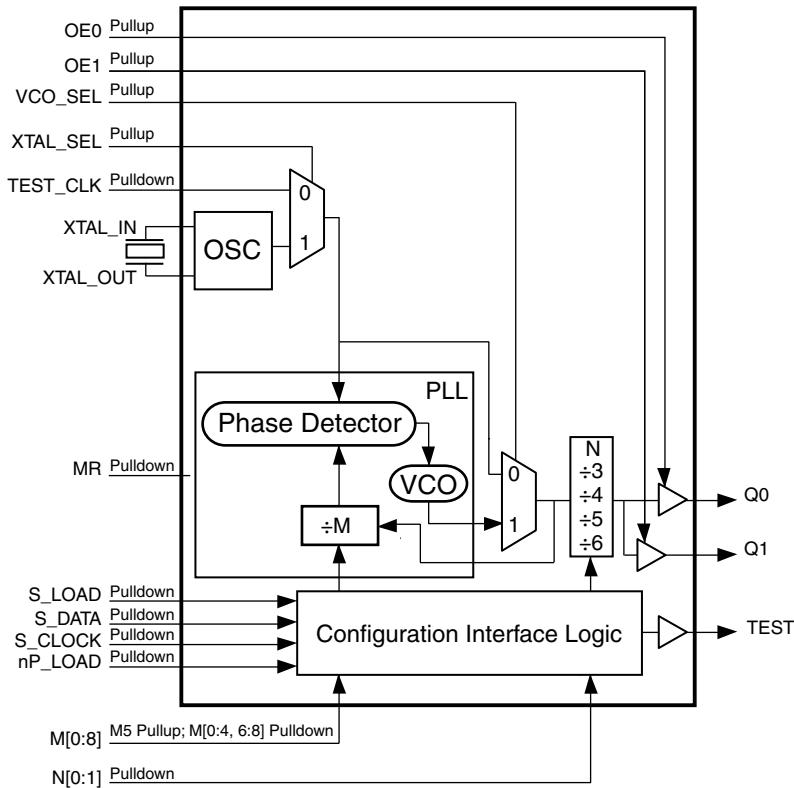


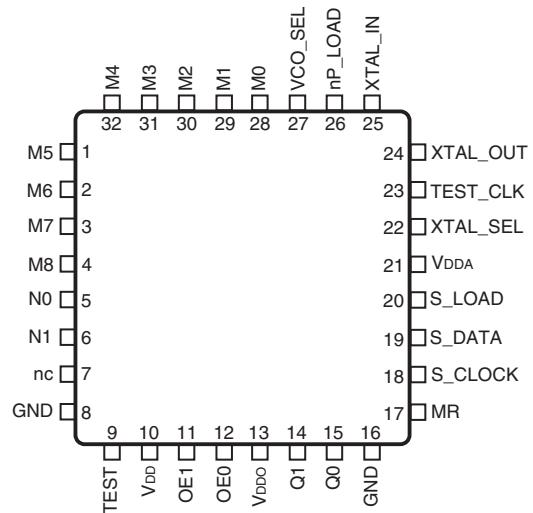
General Description

The 84021 is a general purpose, Crystal-to-LVCMOS/LVTTL High Frequency Synthesizer. The 84021 has a selectable TEST_CLK or crystal input. The VCO operates at a frequency range of 620MHz to 780MHz. The VCO frequency is programmed in steps equal to the value of the input reference or crystal frequency. The VCO and output frequency can be programmed using the serial or parallel interface to the configuration logic.

Features


- Two LVCMOS/LVTTL outputs
- Selectable crystal oscillator interface or LVCMOS/LVTTL TEST_CLK
- Output frequency range: 103.3MHz to 260MHz
- Crystal input frequency range: 14MHz to 40MHz
- VCO range: 620MHz to 780MHz
- Parallel or serial interface for programming counter and output dividers
- RMS period jitter: 14.7ps (typical), ($N \div 4$, $V_{DDO} = 3.3V \pm 5\%$)
- RMS phase jitter at 155.52MHz, using a 38.88MHz crystal (12kHz to 20MHz): 2.61ps (typical)

Offset


	Noise Power
100Hz	-87.9 dBc/Hz
1kHz	-115.8 dBc/Hz
10kHz	-124.2 dBc/Hz
100kHz	-127.7 dBc/Hz

- Full 3.3V or mixed 3.3V core/2.5V or 1.8V output supply voltage
- 0°C to 70°C ambient operating temperature
- Industrial temperature information available upon request
- Available in lead-free (RoHS 6) package

Block Diagram

Pin Assignment

84021
32 Lead LQFP
7mm x 7mm x 1.4mm package body
Y Package
Top View

Functional Description

NOTE: The functional description that follows describes operation using a 25MHz crystal. Valid PLL loop divider values for different crystal or input frequencies are defined in the Input Frequency Characteristics, Table 5, NOTE 1.

The 84021 features a fully integrated PLL and therefore requires no external components for setting the loop bandwidth. A fundamental crystal is used as the input to the on-chip oscillator. The output of the oscillator is fed into the phase detector. A 25MHz crystal provides a 25MHz phase detector reference frequency. The VCO of the PLL operates over a range of 620MHz to 780MHz. The output of the M divider is also applied to the phase detector.

The phase detector and the M divider force the VCO output frequency to be M times the reference frequency by adjusting the VCO control voltage. Note that for some values of M (either too high or too low), the PLL will not achieve lock. The output of the VCO is scaled by a divider prior to being sent to each of the LVCMS output buffers. The divider provides a 50% output duty cycle.

The programmable features of the 84021 support two input modes to program the M divider and N output divider. The two input operational modes are parallel and serial. *Figure 1* shows the timing diagram for each mode. In parallel mode, the nP_LOAD input is initially LOW. The data on inputs M0 through M8 and N0 and N1 is passed directly to the M divider and N output divider. On the LOW-to-HIGH transition of the nP_LOAD input, the data is latched and the M divider remains loaded until the next LOW transition on nP_LOAD or until a serial event occurs. As a result, the M and N bits can be hardwired to set the M divider and N output divider to a specific default state that will automatically occur during power-up. The TEST output is LOW when operating in the parallel input mode. The relationship between the

VCO frequency, the crystal frequency and the M divider is defined as follows: $f_{VCO} = f_{xtal} \times M$

The M value and the required values of M0 through M8 are shown in Table 3B, Programmable VCO Frequency Function Table. Valid M values for which the PLL will achieve lock for a 25MHz reference are defined as $25 \leq M \leq 31$. The frequency out is defined as follows:

$$f_{OUT} = \frac{f_{VCO}}{N} = \frac{f_{xtal} \times M}{N}$$

Serial operation occurs when nP_LOAD is HIGH and S_LOAD is LOW. The shift register is loaded by sampling the S_DATA bits with the rising edge of S_CLOCK. The contents of the shift register are loaded into the M divider and N output divider when S_LOAD transitions from LOW-to-HIGH. The M divide and N output divide values are latched on the HIGH-to-LOW transition of S_LOAD. If S_LOAD is held HIGH, data at the S_DATA input is passed directly to the M divider and N output divider on each rising edge of S_CLOCK. The serial mode can be used to program the M and N bits and test bits T1 and T0. The internal registers T0 and T1 determine the state of the TEST output as follows:

T1	T0	TEST Output
0	0	LOW
0	1	S_DATA, Shift Register Input
1	0	Output of M Divider
1	1	CMOS FOUT

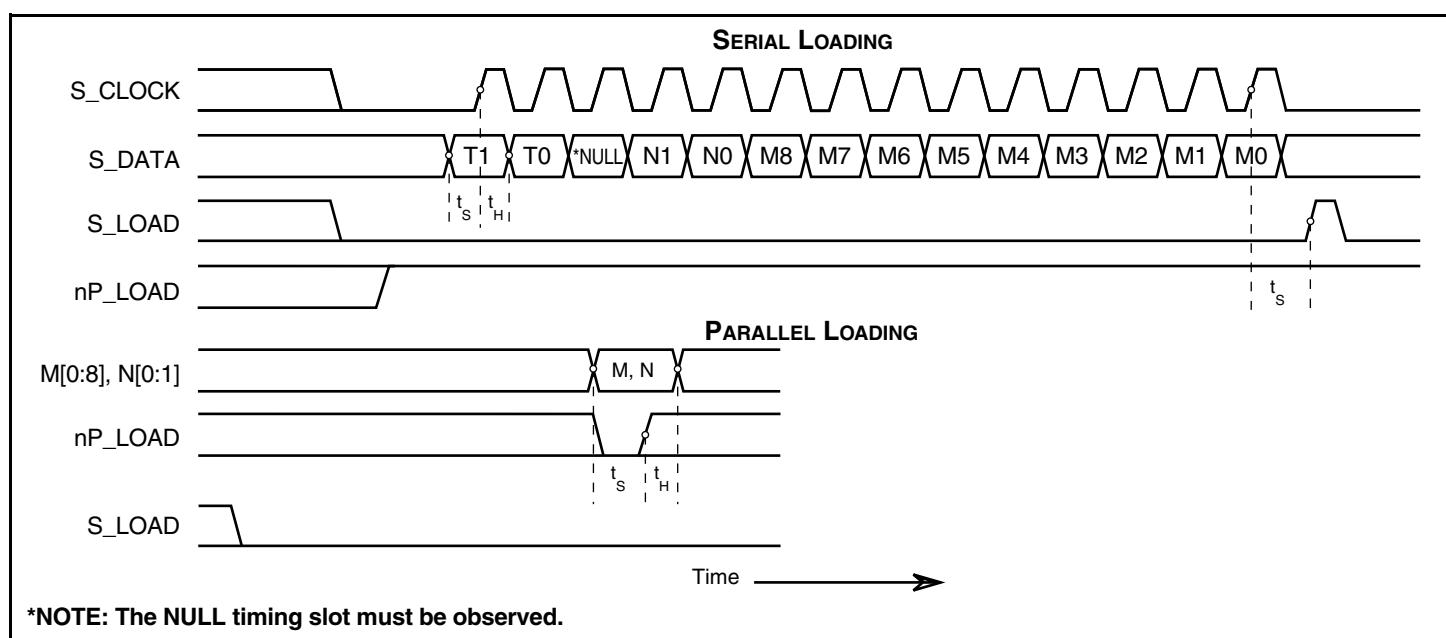


Figure 1. Parallel & Serial Load Operations

Table 1. Pin Descriptions

Number	Name	Type	Description
1	M5	Input	Pullup
2, 3, 4, 28, 29, 30, 31, 32	M6, M7, M8, M0, M1, M2, M3, M4	Input	Pulldown
5, 6	N0, N1	Input	Pulldown
7	nc	Unused	
8, 16	GND	Power	
9	TEST	Output	
10	V _{DD}	Power	Core supply pin.
11, 12	OE1, OE0	Input	Pullup
13	V _{DDO}	Power	Output supply pin.
14, 15	Q1, Q0	Output	Single-ended clock outputs. LVC MOS/LVTTL interface levels.
17	MR	Input	Pulldown
18	S_CLOCK	Input	Pulldown
19	S_DATA	Input	Pulldown
20	S_LOAD	Input	Pulldown
21	V _{DDA}	Power	Analog supply pin.
22	XTAL_SEL	Input	Pullup
23	TEST_CLK	Input	Pulldown
24, 25	XTAL_OUT XTAL_IN	Input	
26	nP_LOAD	Input	Pulldown
27	VCO_SEL	Input	Pullup

NOTE: *Pullup* and *Pulldown* refer to internal input resistors. See Table 2, *Pin Characteristics*, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C_{IN}	Input Capacitance			4		pF
C_{PD}	Power Dissipation Capacitance (per output)	$V_{DDO} = 3.465V$		15		pF
		$V_{DDO} = 2.625V$		15		pF
		$V_{DDO} = 1.89V$		20		pF
R_{PULLUP}	Input Pullup Resistor			51		k Ω
$R_{PULLDOWN}$	Input Pulldown Resistor			51		k Ω
R_{OUT}	Output Impedance	$V_{DDO} = 3.3V \pm 5\%$		7		Ω
		$V_{DDO} = 2.5V \pm 5\%$		7		Ω
		$V_{DDO} = 1.8V \pm 5\%$		10		Ω

Function Tables**Table 3A. Parallel and Serial Mode Function Table**

Inputs							Conditions
MR	nP_LOAD	M	N	S_LOAD	S_CLOCK	S_DATA	
H	X	X	X	X	X	X	Reset. Forces outputs LOW.
L	L	Data	Data	X	X	X	Data on M and N inputs passed directly to the M divider and N output divider. TEST output forced LOW.
L	↑	Data	Data	L	X	X	Data is latched into input registers and remains loaded until next LOW transition or until a serial event occurs.
L	H	X	X	L	↑	Data	Serial input mode. Shift register is loaded with data on S_DATA on each rising edge of S_CLOCK.
L	H	X	X	↑	L	Data	Contents of the shift register are passed to the M divider and N output divider.
L	H	X	X	↓	L	Data	M divider and N output divider values are latched.
L	H	X	X	L	X	X	Parallel or serial input do not affect shift registers.
L	H	X	X	H	↑	Data	S_DATA passed directly to M divider as it is clocked.

NOTE: L = LOW

H = HIGH

X = Don't care

↑ = Rising edge transition

↓ = Falling edge transition

Table 3B. Programmable VCO Frequency Function Table^(NOTE 1)

VCO Frequency (MHz)	M Divide	256	128	64	32	16	8	4	2	1
		M8	M7	M6	M5	M4	M3	M2	M1	M0
625	25	0	0	0	0	1	1	0	0	1
•	•	•	•	•	•	•	•	•	•	•
700	28	0	0	0	0	1	1	1	0	0
•	•	•	•	•	•	•	•	•	•	•
775	31	0	0	0	0	1	1	1	1	1

NOTE 1: These M divide values and the resulting frequencies correspond to TEST_CLK or crystal frequency of 25MHz.

Table 3C. Programmable Output Divider Function Table (PLL Enabled)

Inputs		N Divider Value	Output Frequency (MHz)	
N1	N0		Minimum	Maximum
0	0	3	206.7	260
0	1	4	155	195
1	0	5	124	156
1	1	6	103.3	130

Table 3D. Commonly Used Configuration Function Table

Inputs			Output Frequency (MHz)
Crystal (MHz)	M Divider Value	N Divider Value	Minimum
19.44	32	4	155.52
19.53125	32	4	156.25
25	25	4	156.25
25	25	5	125
25.50	25	3	212.50
25.50	25	4	159.375
25.50	25	6	106.25
38.88	16	4	155.52

Table 3E. Output Enable & Clock Enable Function Table

Control Inputs		Output	
OE0	OE1	Q0	Q1
0	0	Hi-Z	Hi-Z
0	1	Hi-Z	Enabled
1	0	Enabled	Hi-Z
1	1	Enabled	Enabled

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V_{DD}	4.6V
Inputs, V_I XTAL_IN Other Inputs	0V to V_{DD} -0.5V to $V_{DD} + 0.5V$
Outputs, V_O	-0.5V to $V_{DDO} + 0.5V$
Package Thermal Impedance, θ_{JA}	47.9°C/W (0 lfpm)
Storage Temperature, T_{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 3.3V \pm 5\%$, $2.5V \pm 5\%$ or $1.8V \pm 5\%$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V_{DDA}	Analog Supply Voltage		$V_{DD} - 0.36$	3.3	V_{DD}	V
V_{DDO}	Output Supply Voltage		3.135	3.3	3.465	V
			2.375	2.5	2.625	V
			1.71	1.8	1.89	V
I_{DD}	Power Supply Current				110	mA
I_{DDA}	Analog Supply Current				24	mA
I_{DDO}	Output Supply Current				5	mA

Table 4B. LVCMS/LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 3.3V \pm 5\%$, $2.5V \pm 5\%$ or $1.8V \pm 5\%$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage		2		$V_{DD} + 0.3$	V
V_{IL}	Input Low Voltage	OE[0:1], N[0:1], M[0:8], XTAL_SEL, VCO_SEL, S_DATA, S_CLOCK, S_LOAD, nP_LOAD, MR	-0.3		0.8	V
		TEST_CLOCK	-0.3		1.3	V
I_{IH}	Input High Current	MR, S_CLOCK, TEST_CLK, S_DATA, S_LOAD, nP_LOAD, M[0:4], M[6:8], N0, N1	$V_{DD} = V_{IN} = 3.465V$		150	μA
		M5, OE0, OE1, XTAL_SEL, VCO_SEL	$V_{DD} = V_{IN} = 3.465V$		5	μA
I_{IL}	Input Low Current	MR, S_CLOCK, TEST_CLK, S_DATA, S_LOAD, nP_LOAD, M[0:4], M[6:8], N0, N1	$V_{DD} = 3.465V, V_{IN} = 0V$	-5		μA
		M5, OE0, OE1, XTAL_SEL, VCO_SEL	$V_{DD} = 3.465V, V_{IN} = 0V$	-150		μA
V_{OH}	Output High Voltage; NOTE 1	$V_{DDO} = 3.3V \pm 5\%$	2.6			V
		$V_{DDO} = 2.5V \pm 5\%$	1.8			V
		$V_{DDO} = 1.8V \pm 5\%$	$V_{DDO} - 0.3$			V
V_{OL}	Output Low Voltage; NOTE 1	$V_{DDO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$			0.5	V
		$V_{DDO} = 1.8V \pm 5\%$			0.4	V

NOTE 1: Outputs terminated with 50Ω to $V_{DDO}/2$. See Parameter Measurement Information section, *Output Load Test Circuit diagrams*.

Table 5. Input Frequency Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 3.3V \pm 5\%$, $2.5V \pm 5\%$ or $1.8V \pm 5\%$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{IN}	Input Frequency	TEST_CLK; NOTE 1	14		40	MHz
		XTAL; NOTE 1	14		40	MHz
		S_CLOCK			50	MHz

NOTE 1: For the input crystal and TEST_CLK frequency range, the M value must be set for the VCO to operate within the 620MHz to 780MHz range. Using the minimum input frequency of 14MHz, valid values of M are $45 \leq M \leq 55$. Using the maximum input frequency of 40MHz, valid values of M are $16 \leq M \leq 19$.

Table 6. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental			
Frequency		14		40	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance (C_0)				7	pF

AC Electrical Characteristics

Table 7A. AC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{OUT}	Output Frequency		103.3		260	MHz
$t_{JIT(PER)}$	Period Jitter, RMS; NOTE 1, 2	N = 3		13.5	26.4	ps
		N = 4		14.7	34.2	ps
		N = 5		16.7	42.4	ps
		N = 6		24.7	40.8	ps
		M=40, N=4, 16.667MHz XTAL, $f_{OUT}=166.67MHz$		4.5	6.9	ps
		M=40, N=5, 16.667MHz XTAL, $f_{OUT}=133.33MHz$		4.6	7.8	ps
$t_{SK(O)}$	Output Skew; NOTE 2, 3				100	ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	100		800	ps
t_S	Setup Time	M, N to nP_LOAD	5			ns
		S_DATA to S_CLOCK	5			ns
		S_CLOCK to S_LOAD	5			ns
t_H	Hold Time	M, N to nP_LOAD	5			ns
		S_DATA to S_CLOCK	5			ns
		S_CLOCK to S_LOAD	5			ns
odc	Output Duty Cycle	$N \neq 3$	44		56	%
		M=40, N=4, 16.667MHz XTAL, $f_{OUT}=166.67MHz$	45		55	%
		M=40, N=5, 16.667MHz XTAL, $f_{OUT}=133.33MHz$	47		53	%
t_{LOCK}	PLL Lock Time				1	ms

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Jitter performance using XTAL inputs.

NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DDO}/2$.

Table 7B. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{OUT}	Output Frequency		103.3		260	MHz
$j_{IT}(per)$	Period Jitter, RMS; NOTE 1, 2	N = 3		11.4	18.8	ps
		N = 4		13.3	28.3	ps
		N = 5		16.0	39.8	ps
		N = 6		19.2	32.4	ps
		M=40, N=4, 16.667MHz XTAL, $f_{OUT}=166.67MHz$		4.3	6.2	ps
		M=40, N=5, 16.667MHz XTAL, $f_{OUT}=133.33MHz$		4.5	7.7	ps
$t_{SK(o)}$	Output Skew; NOTE 2, 3				90	ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	100		800	ps
t_S	Setup Time	M, N to nP_LOAD	5			ns
		S_DATA to S_CLOCK	5			ns
		S_CLOCK to S_LOAD	5			ns
t_H	Hold Time	M, N to nP_LOAD	5			ns
		S_DATA to S_CLOCK	5			ns
		S_CLOCK to S_LOAD	5			ns
odc	Output Duty Cycle	N \neq 3	44		56	%
		M=40, N=4, 16.667MHz XTAL, $f_{OUT}=166.67MHz$	45		55	%
		M=40, N=5, 16.667MHz XTAL, $f_{OUT}=133.33MHz$	47		53	%
t_{LOCK}	PLL Lock Time				1	ms

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

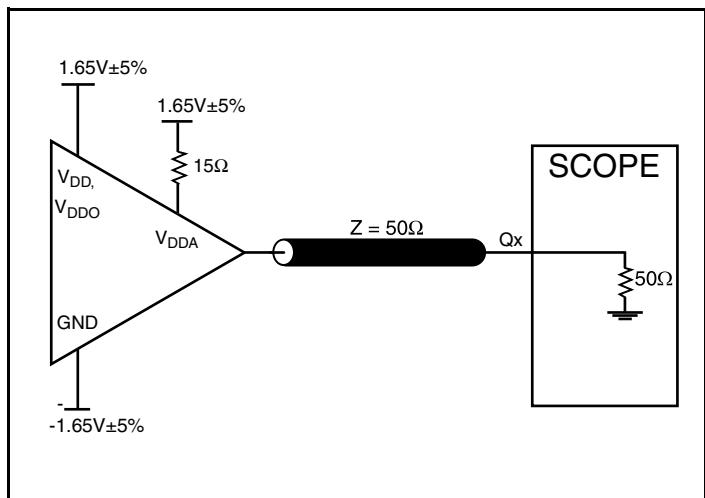
NOTE 1: Jitter performance using XTAL inputs.

NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

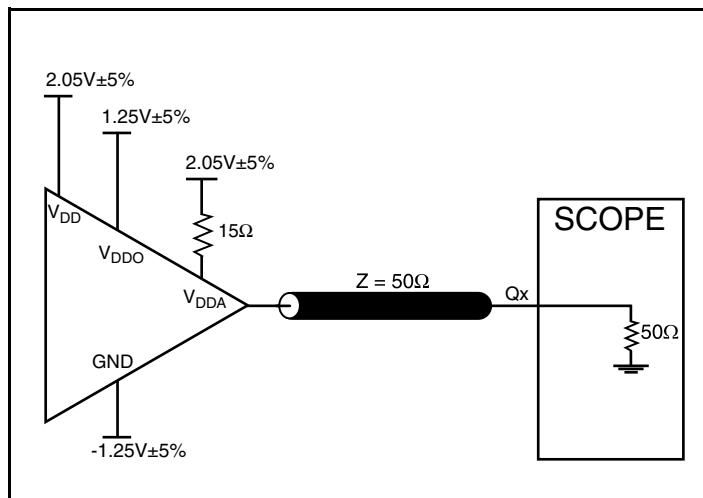
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DDO}/2$.

Table 7C. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 5\%$, $T_A = 0^\circ C$ to $70^\circ C$

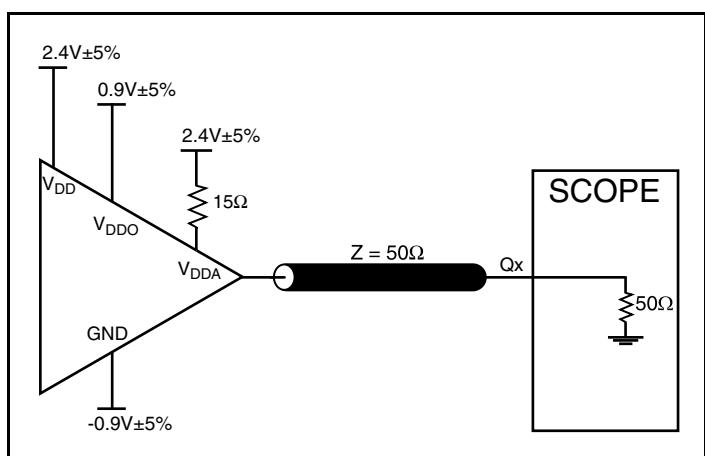
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{OUT}	Output Frequency		103.3		260	MHz
$f_{JIT}(\text{per})$	Period Jitter, RMS; NOTE 1, 2	N = 3		9.4	13.2	ps
		N = 4		10.8	19.6	ps
		N = 5		12.7	32.5	ps
		N = 6		13.4	25.4	ps
		M=40, N=4, 16.667MHz XTAL, $f_{OUT}=166.67\text{MHz}$		5.4	8.3	ps
		M=40, N=5, 16.667MHz XTAL, $f_{OUT}=133.33\text{MHz}$		5.1	8.8	ps
$t_{SK(o)}$	Output Skew; NOTE 2, 3				90	ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	100		800	ps
t_S	Setup Time	M, N to nP_LOAD	5			ns
		S_DATA to S_CLOCK	5			ns
		S_CLOCK to S_LOAD	5			ns
t_H	Hold Time	M, N to nP_LOAD	5			ns
		S_DATA to S_CLOCK	5			ns
		S_CLOCK to S_LOAD	5			ns
odc	Output Duty Cycle	$N \neq 3$	40		60	%
		M=40, N=4, 16.667MHz XTAL, $f_{OUT}=166.67\text{MHz}$	44		56	%
		M=40, N=5, 16.667MHz XTAL, $f_{OUT}=133.33\text{MHz}$	48		52	%
t_{LOCK}	PLL Lock Time				1	ms

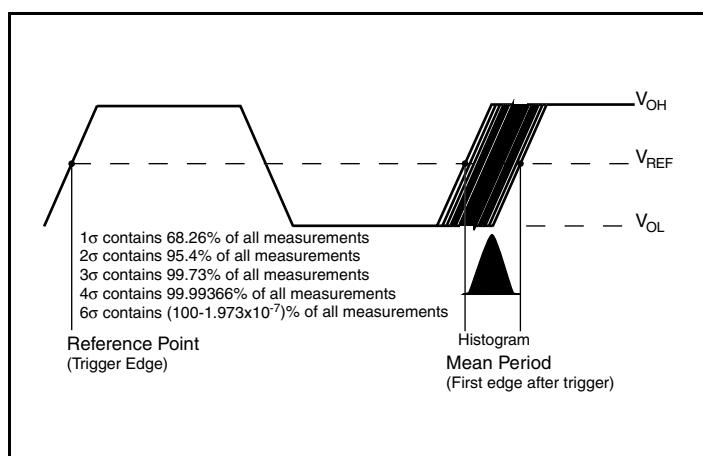

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

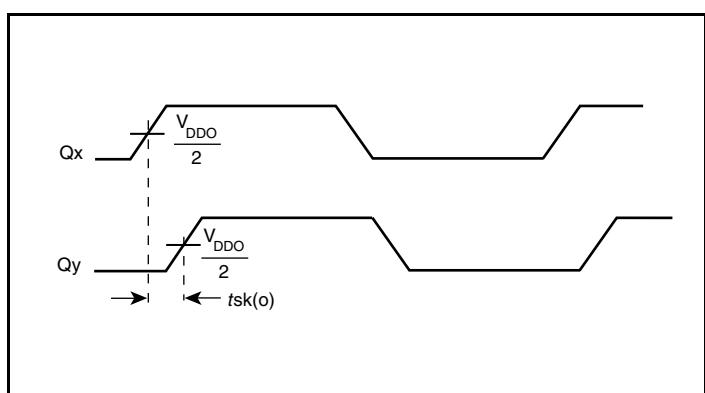
NOTE 1: Jitter performance using XTAL inputs.

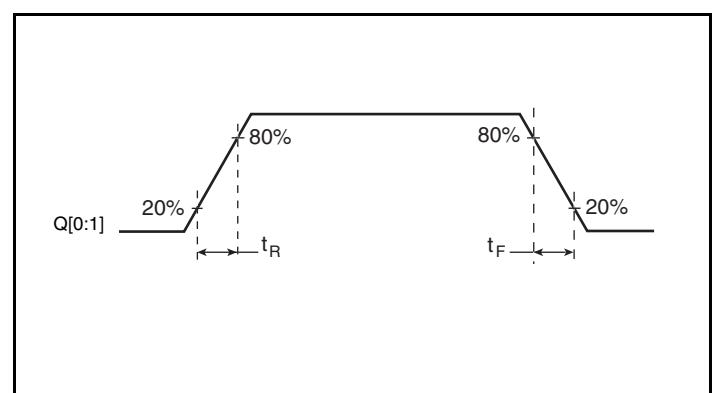

NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DDO}/2$.

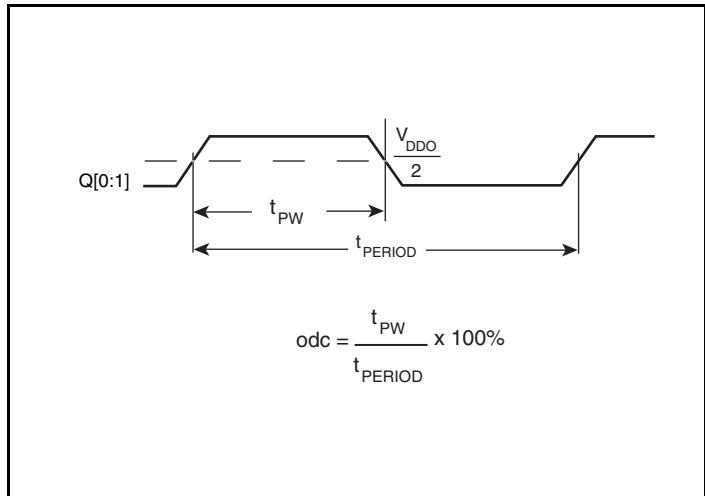

Parameter Measurement Information


3.3V Core/3.3V Output Load AC Test Circuit


3.3V Core/2.5V Output Load AC Test Circuit


3.3V Core/1.8V Output Load AC Test Circuit

Period Jitter



Output Skew

Output Rise/Fall Time

Parameter Measurement Information, continued

Output Duty Cycle/Pulse Width/Period

Applications Information

Recommendations for Unused Input and Output Pins

Inputs:

Crystal Inputs

For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a $1\text{k}\Omega$ resistor can be tied from XTAL_IN to ground.

TEST_CLK Input

For applications not requiring the use of the test clock, it can be left floating. Though not required, but for additional protection, a $1\text{k}\Omega$ resistor can be tied from the TEST_CLK to ground.

LVC MOS Control Pins

All control pins have internal pullups or pulldowns; additional resistance is not required but can be added for additional protection. A $1\text{k}\Omega$ resistor can be used.

Outputs:

TEST Output

The unused TEST output can be left floating. There should be no trace attached.

LVC MOS Outputs

All unused LVC MOS outputs can be left floating. We recommend that there is no trace attached.

Overdriving the XTAL Interface

The XTAL_IN input can accept a single-ended LVCMS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 2A*. The XTAL_OUT pin can be left floating. The maximum amplitude of the input signal should not exceed 2V and the input edge rate can be as slow as 10ns. This configuration requires that the output impedance of the driver (R_o) plus the series resistance (R_s) equals the transmission line impedance. In addition,

matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R_1 and R_2 in parallel should equal the transmission line impedance. For most 50Ω applications, R_1 and R_2 can be 100Ω . This can also be accomplished by removing R_1 and making $R_2 50\Omega$. By overdriving the crystal oscillator, the device will be functional, but note, the device performance is guaranteed by using a quartz crystal.

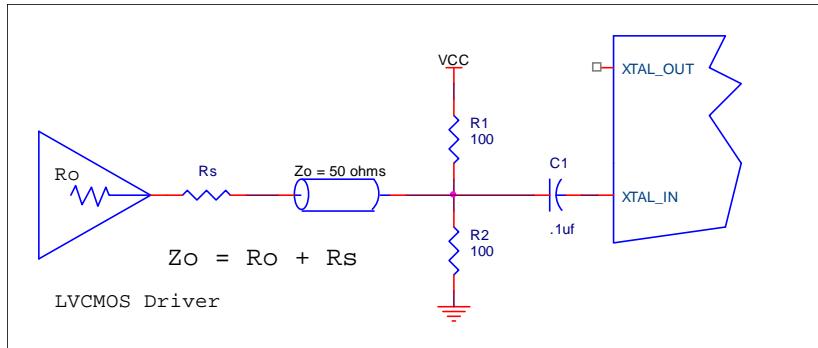


Figure 2A. General Diagram for LVCMS Driver to XTAL Input Interface

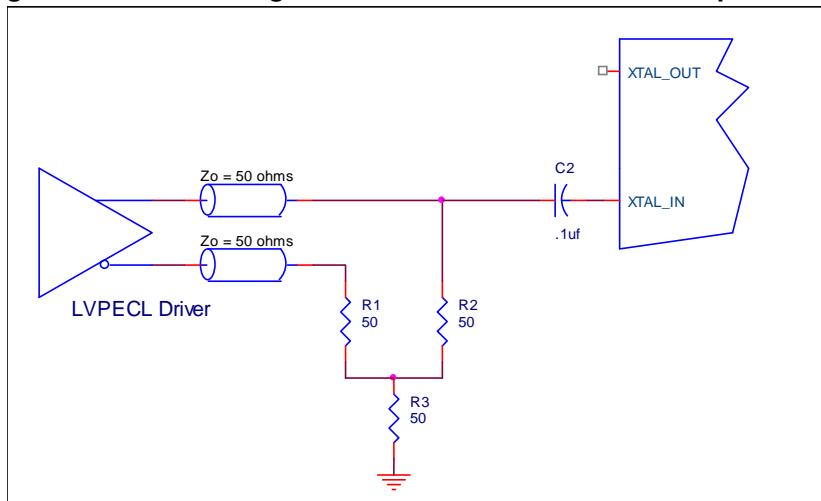


Figure 2B. General Diagram for LVPECL Driver to XTAL Input Interface

Layout Guideline

Figure 3 shows a schematic example of the 84021. In this example, a series termination is shown. Additional LVCMS termination approaches are shown in the LVCMS Termination Application Note. In this example, an 18pF parallel resonant crystal is used. The $C_1 = 22\text{pF}$ and $C_2 = 22\text{pF}$ are approximate values for frequency accuracy. The C_1 and C_2 may be slightly adjusted for optimizing frequency accuracy.

As with any high speed analog circuitry, the power supply pins are vulnerable to noise. To achieve optimum jitter performance, power supply isolation is required. The 84021 provides separate power supplies to isolate from coupling into the internal PLL.

In order to achieve the best possible filtering, it is recommended that the placement of the filter components be on the device side of the PCB as close to the power pins as possible. If space is limited, the $0.1\mu\text{F}$ capacitor in each power pin filter should be placed on the

device side of the PCB and the other components can be placed on the opposite side.

Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices. The filter performance is designed for wide range of noise frequencies. This low-pass filter starts to attenuate noise at approximately 10kHz. If a specific frequency noise component is known, such as switching power supply frequencies, it is recommended that component values be adjusted and if required, additional filtering be added. Additionally, good general design practices for power plane voltage stability suggests adding bulk capacitances in the local area of all devices.

The schematic example focuses on functional connections and is not configuration specific. Refer to the pin description and functional tables in the datasheet to ensure the logic control inputs are properly set.

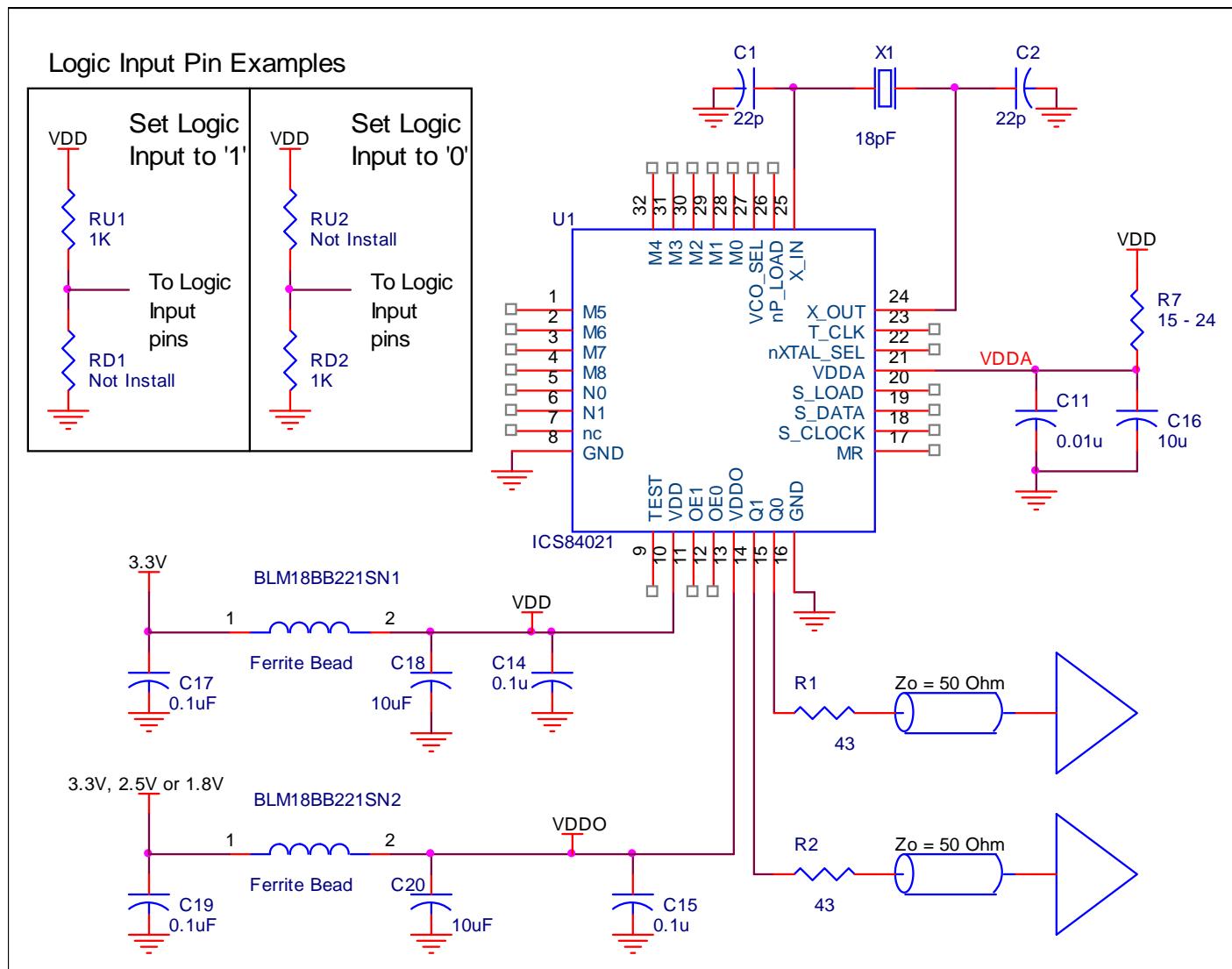


Figure 3. 84021 Application Schematic Example

Reliability Information

Table 8. θ_{JA} vs. Air Flow Table for a 32 Lead LQFP

θ_{JA} by Velocity			
Linear Feet per Minut	0	1	2.5
Single-Layer PCB, JEDEC Standard Test Boards	67.8°C/W	55.9°C/W	50.1°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	47.9°C/W	42.1°C/W	39.4°C/W

Transistor Count

The transistor count for 84021 is: 4325

Package Outline and Package Dimensions

Package Outline - Y Suffix for 32 Lead LQFP

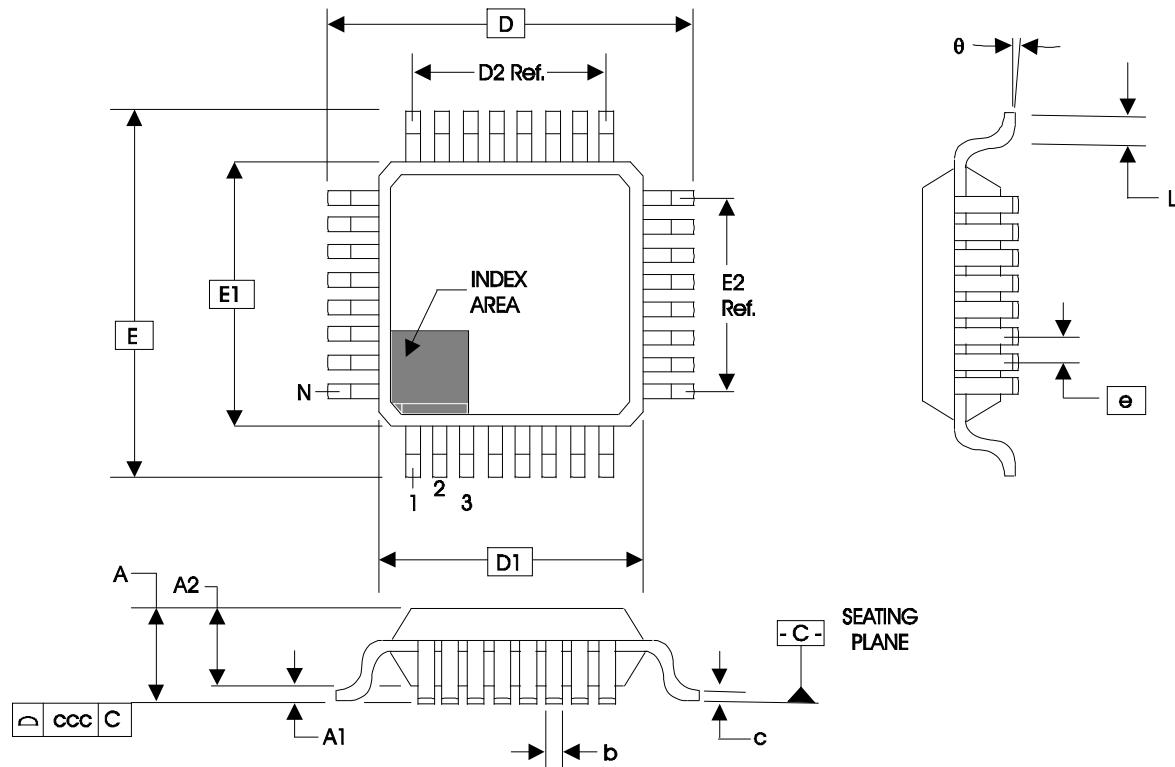


Table 9. Package Dimensions for 32 Lead LQFP

JEDEC Variation: BBC - HD All Dimensions in Millimeters			
Symbol	Minimum	Nominal	Maximum
N	32		
A			1.60
A1	0.05	0.10	0.15
A2	1.35	1.40	1.45
b	0.30	0.37	0.45
c	0.09		0.20
D & E	9.00 Basic		
D1 & E1	7.00 Basic		
D2 & E2	5.60 Ref.		
e	0.80 Basic		
L	0.45	0.60	0.75
θ	0°		7°
ccc			0.10

Reference Document: JEDEC Publication 95, MS-026

Ordering Information

Table 10. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
84021BYLF	ICS84021BYLF	"Lead-Free" 32 Lead LQFP	Tray	0°C to 70°C
84021BYLFT	ICS84021BYLF	"Lead-Free" 32 Lead LQFP	1000 Tape & Reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

Revision History Sheet

Rev	Table	Page	Description of Change	Date
B	T2	4 12	Pin Characteristics Table - added R_{OUT} rows. Added Schematic Layout. Changed XTAL naming convention to XTAL_IN/XTAL_OUT throughout the data sheet.	1/5/04
C	T6 T10	1 2 7 15	Features Section - added Lead-Free bullet. Updated Parallel & Serial Load Operations Diagram. Crystal Characteristics Table - added Drive Level. Ordering Information Table - added Lead-Free package.	6/9/05
D	T4A T6 T7A - T7C	1 6 7 8 - 10 11 12 13 14 17	Features section - updated RMS period jitter spec in bullet; added RMS phase jitter bullet. Block Diagram - added pullups/pulldowns to input pins and added "N" in output divider box. Absolute Maximum Ratings - updated Inputs, V_I . Power Supply DC Characteristics - updated V_{DDA} , I_{DD} , I_{DDA} and I_{DDO} specs. Crystal Characteristics - deleted Drive Level row. Updated Period Jitter, Output Rise/Fall Time and Output Duty Cycle specs. Added thermal note. Parameter Measurement Information - corrected Output Load AC Test Circuit diagrams to coincide with $15\Omega V_{DDA}$. Added Recommendations for Unused Input & Output Pins. Deleted Power Supply Filtering Techniques section, added to schematic layout. Added Overdriving the XTAL Interface section. Updated Layout Guideline and diagram. Ordering Information Table - updated Part/Order Numbers and Marking to revision "B". Converted datasheet format.	1/5/11
E	T7A	8 13	AC Characteristics Table - corrected Period Jitter $N = 4$ spec, from 32.2ps max. to 34.2ps max. Deleted Crystal Input Interface section, added to the schematic.	8/18/11
E	T10	17	Ordering Information - removed leaded device.	9/23/15

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.