

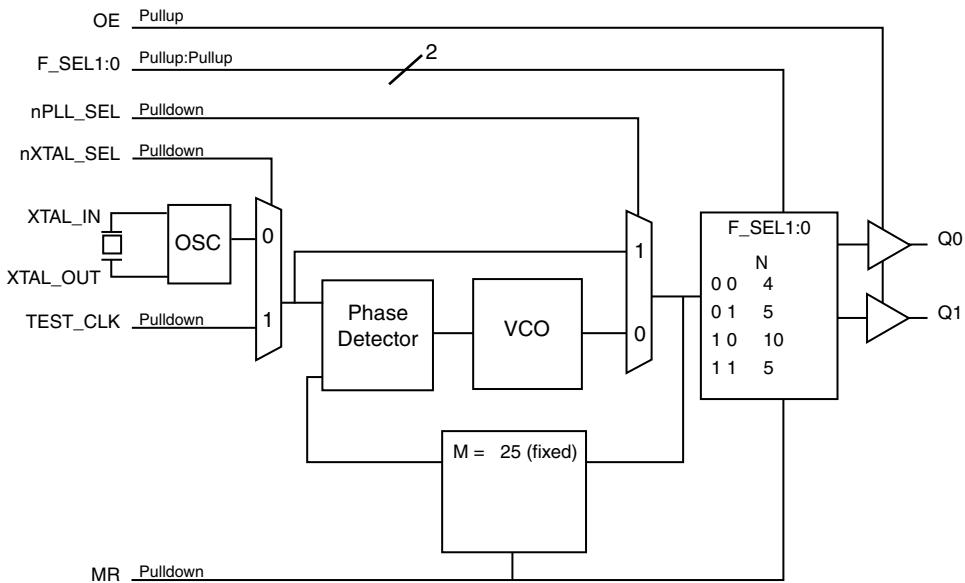
General Description

The 840002I-01 is a two output LVCMS/LVTTL Synthesizer optimized to generate Ethernet reference clock frequencies. Using a 25MHz 18pF parallel resonant crystal, the following frequencies can be generated based on the two frequency select pins (F_SEL[1:0]): 156.25MHz, 125MHz, and 62.5MHz. The 840002I-01 uses IDT's 3RD generation low phase noise VCO technology and can achieve 1ps or lower typical random rms phase jitter, easily meeting Ethernet jitter requirements. The 840002I-01 is packaged in a small 16-pin TSSOP package.

Frequency Select Function Table

Inputs				Output Frequency (25MHz Ref.)
F_SEL1	F_SEL0	M Divider Value	N Divider Value	
0	0	25	4	156.25
0	1	25	5	125
1	0	25	10	62.5
1	1	25	5	125

Features


- Two LVCMS/LVTTL outputs@ 3.3V, 17Ω typical output impedance
- Selectable crystal oscillator interface or LVCMS/LVTTL single-ended TEST_CLK
- Supports the following output frequencies: 156.25MHz, 125MHz and 62.5MHz
- Output frequency range: 56MHz to 175MHz
- VCO range: 560MHz to 700MHz
- Output skew: 12ps (maximum)
- RMS phase jitter at 156.25MHz, (1.875MHz to 20MHz): 0.47ps (typical)

Phase Noise:

Offset	Noise Power
100Hz	-97.4 dBc/Hz
1kHz	-120.2 dBc/Hz
10kHz	-127.6 dBc/Hz
100kHz	-126.1 dBc/Hz

- Power Supply Modes:
 - Core / Output
 - 3.3V / 3.3V
 - 3.3V / 2.5V
 - 2.5V / 2.5V
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

Block Diagram

Pin Assignment

F_SEL0	1	16	F_SEL1
nXTAL_SEL	2	15	GND
TEST_CLK	3	14	GND
OE	4	13	Q0
MR	5	12	Q1
nPLL_SEL	6	11	VDDO
VDDA	7	10	XTAL_IN
VDD	8	9	XTAL_OUT

840002I-01
16-Lead TSSOP
4.4mm x 5.0mm x 0.925mm
package body
G Package
Top View

Table 1. Pin Descriptions

Number	Name	Type	Description
1	F_SEL0	Input	Pullup
2	nXTAL_SEL	Input	Pulldown
3	TEST_CLK	Input	Pulldown
4	OE	Input	Pullup
5	MR	Input	Pulldown
6	nPLL_SEL	Input	Pulldown
7	V _{DDA}	Power	Analog supply pin.
8	V _{DD}	Power	Core supply pin.
9, 10	XTAL_OUT XTAL_IN	Input	Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.
11	V _{DDO}	Power	Output supply pin.
12, 13	Q1, Q0	Output	Single-ended clock outputs. LVCMOS/LVTTL interface levels.
14, 15	GND	Power	Power supply ground.
16	F_SEL1	Input	Pullup
			Frequency select pin. LVCMOS/LVTTL interface levels.

NOTE: *Pullup* and *Pulldown* refer to internal input resistors. See Table 2, *Pin Characteristics*, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
C _{PD}	Power Dissipation Capacitance			8		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
R _{OUT}	Output Impedance	V _{DDO} = 3.3V ± 5%	14	17	21	Ω
		V _{DDO} = 2.5V ± 5%	16	21	25	Ω

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V_{DD}	4.6V
Inputs, V_I XTAL_IN Other Inputs	0V to V_{DD} -0.5V to $V_{DD} + 0.5V$
Outputs, V_O	-0.5V to $V_{DDO} + 0.5V$
Package Thermal Impedance, θ_{JA}	89°C/W (0 lfpm)
Storage Temperature, T_{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 3A. Power Supply DC Characteristics, $V_{DD} = V_{DDA} = 3.3V \pm 5\%$, $V_{DDO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V_{DDA}	Analog Supply Voltage		3.135	3.3	3.465	V
V_{DDO}	Output Supply Voltage		3.135	3.3	3.465	V
			2.375	2.5	2.625	V
I_{DD}	Power Supply Current				100	mA
I_{DDA}	Analog Supply Current				12	mA
I_{DDO}	Output Supply Current				5	mA

Table 3B. Power Supply DC Characteristics, $V_{DD} = V_{DDA} = V_{DDO} = 2.5V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V_{DDA}	Analog Supply Voltage		2.375	2.5	2.625	V
V_{DDO}	Output Supply Voltage		2.375	2.5	2.625	V
I_{DD}	Power Supply Current				95	mA
I_{DDA}	Analog Supply Current				12	mA
I_{DDO}	Output Supply Current				5	mA

Table 3C. LVC MOS/LV TTL DC Characteristics, $V_{DD} = V_{DDA} = V_{DDO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$; or $V_{DD} = V_{DDA} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage	$V_{DD} = 3.3V$	2		$V_{DD} + 0.3$	V
		$V_{DD} = 2.5V$	1.7		$V_{DD} + 0.3$	V
V_{IL}	Input Low Voltage	$V_{DD} = 3.3V$	-0.3		0.8	V
		$V_{DD} = 2.5V$	-0.3		0.7	V
I_{IH}	Input High Current	OE, F_SEL0, F_SEL1 $V_{DD} = V_{IN} = 3.465V$ or $2.625V$			5	μA
		$MR, TEST_CLK, nXTAL_SEL, nPLL_SEL$ $V_{DD} = V_{IN} = 3.465V$ or $2.625V$			150	μA
I_{IL}	Input Low Current	OE, F_SEL0, F_SEL1 $V_{DD} = 3.465V$ or $2.625V$, $V_{IN} = 0V$	-150			μA
		$MR, TEST_CLK, nXTAL_SEL, nPLL_SEL$ $V_{DD} = 3.465V$ or $2.625V$, $V_{IN} = 0V$	-5			μA
V_{OH}	Output High Voltage; NOTE 1	$V_{DDO} = 3.3V \pm 5\%$	2.6			V
		$V_{DDO} = 2.5V \pm 5\%$	1.8			V
V_{OL}	Output Low Voltage; NOTE 1	$V_{DDO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$			0.5	V

NOTE 1: Outputs terminated with 50Ω to $V_{DDO}/2$. See Parameter Measurement Information section, *Output Load Test Circuit diagrams*.

Table 4. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental			
Frequency			25		MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance (C_O)				7	pF

NOTE: Characterized using an 18pF parallel resonant crystal.

AC Electrical Characteristics

Table 5A. AC Characteristics, $V_{DD} = V_{DDA} = V_{DDO} = 3.3V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{OUT}	Output Frequency	$F_SEL[1:0] = 00$	140		175	MHz
		$F_SEL[1:0] = 01$ or 11	112		140	MHz
		$F_SEL[1:0] = 10$	56		70	MHz
$t_{sk(o)}$	Output Skew; NOTE 1, 2				12	ps
$\text{f}_{\text{jit}}(\emptyset)$	RMS Phase Jitter, Random; NOTE 3	156.25MHz, (1.875MHz - 20MHz)		0.47		ps
		125MHz, (1.875MHz - 20MHz)		0.57		ps
		62.5MHz, (1.875MHz - 20MHz)		0.51		ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	200		700	ps
odc	Output Duty Cycle		46		54	%

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DDO}/2$.

NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 3: Refer to Phase Noise Plots.

Table 5B. AC Characteristics, $V_{DD} = V_{DDA} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{OUT}	Output Frequency	$F_SEL[1:0] = 00$	140		175	MHz
		$F_SEL[1:0] = 01$ or 11	112		140	MHz
		$F_SEL[1:0] = 10$	56		70	MHz
$t_{sk(o)}$	Output Skew; NOTE 1, 2				12	ps
$\text{f}_{\text{jit}}(\emptyset)$	RMS Phase Jitter, Random; NOTE 3	156.25MHz, (1.875MHz - 20MHz)		0.47		ps
		125MHz, (1.875MHz - 20MHz)		0.55		ps
		62.5MHz, (1.875MHz - 20MHz)		0.49		ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	200		700	ps
odc	Output Duty Cycle		46		54	%

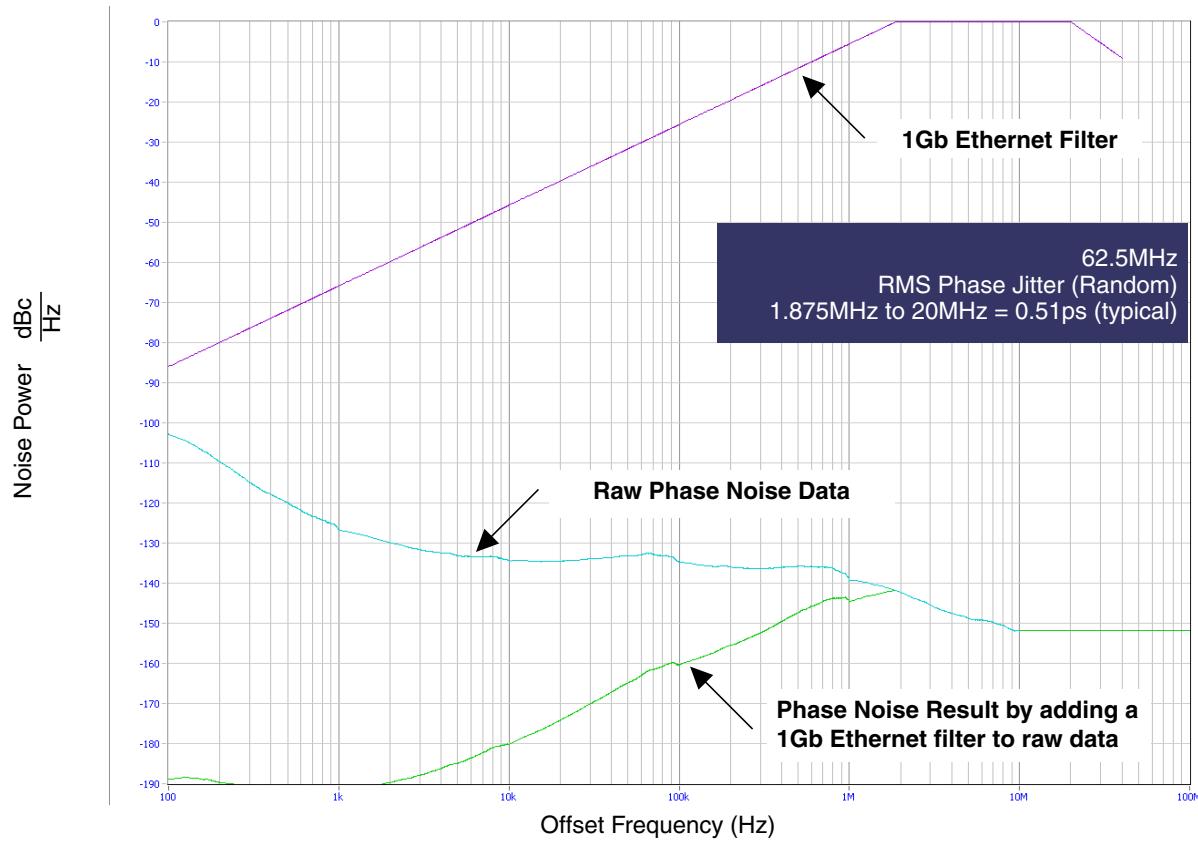
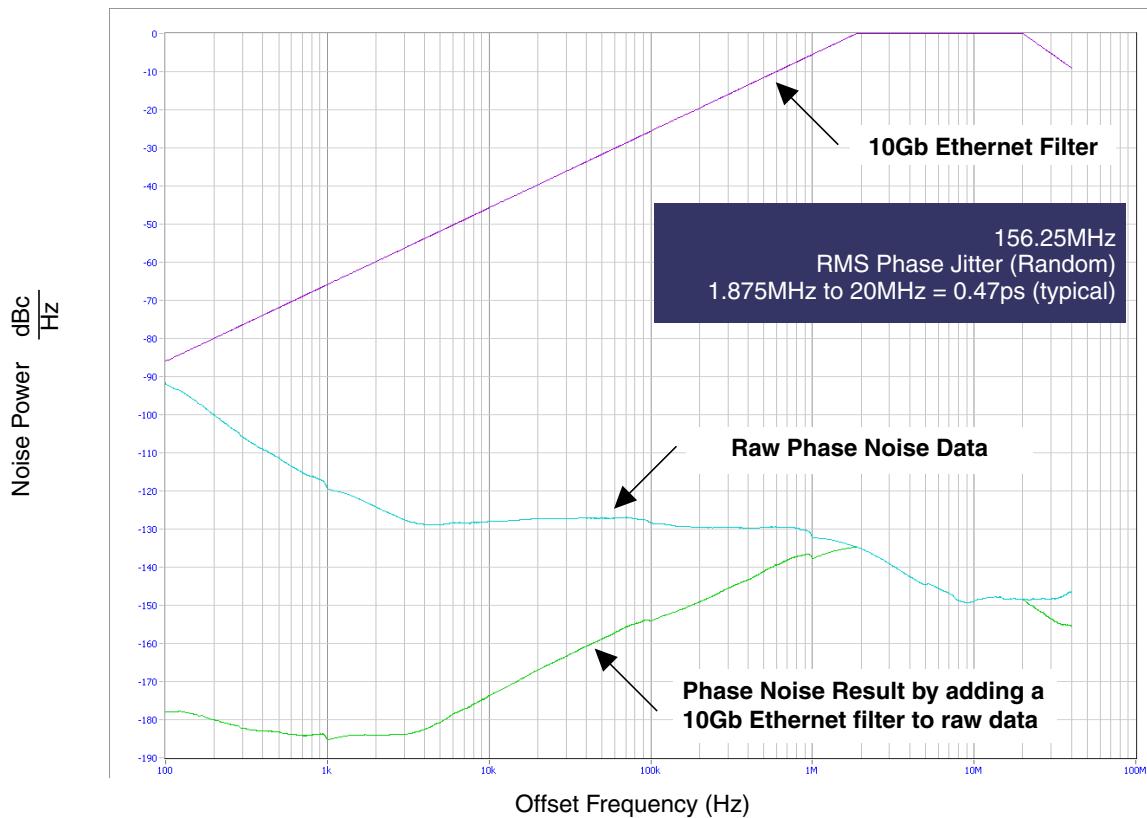
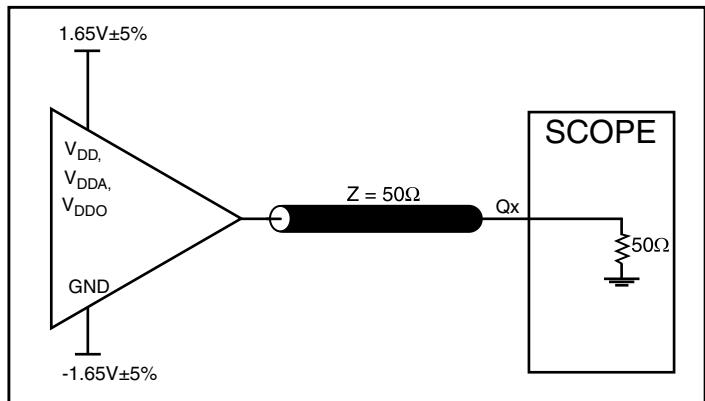
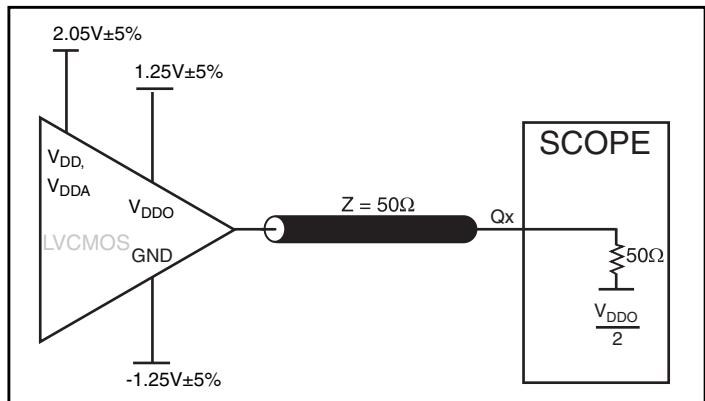

For NOTES, see Table 5A above.

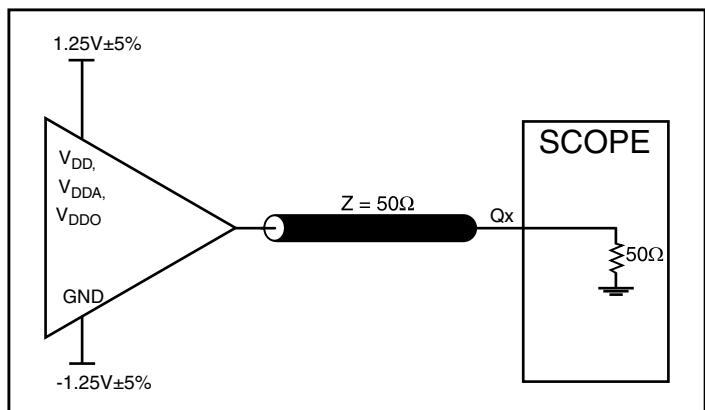
Table 5C. AC Characteristics, $V_{DD} = V_{DDA} = V_{DDO} = 2.5V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

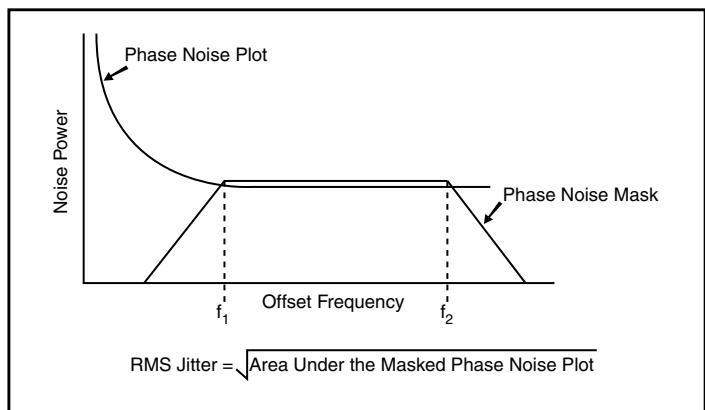

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{OUT}	Output Frequency	$F_SEL[1:0] = 00$	140		175	MHz
		$F_SEL[1:0] = 01$ or 11	112		140	MHz
		$F_SEL[1:0] = 10$	56		70	MHz
$t_{sk(o)}$	Output Skew; NOTE 1, 2				12	ps
$\text{f}_{\text{jit}}(\emptyset)$	RMS Phase Jitter, Random; NOTE 3	156.25MHz, (1.875MHz - 20MHz)		0.49		ps
		125MHz, (1.875MHz - 20MHz)		0.56		ps
		62.5MHz, (1.875MHz - 20MHz)		0.52		ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	200		700	ps
odc	Output Duty Cycle		46		54	%
		$f_{OUT} = 125MHz$	47		53	%

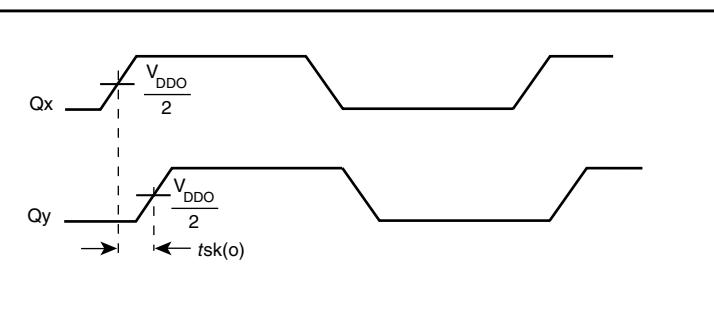
For NOTES, see Table 5A above.

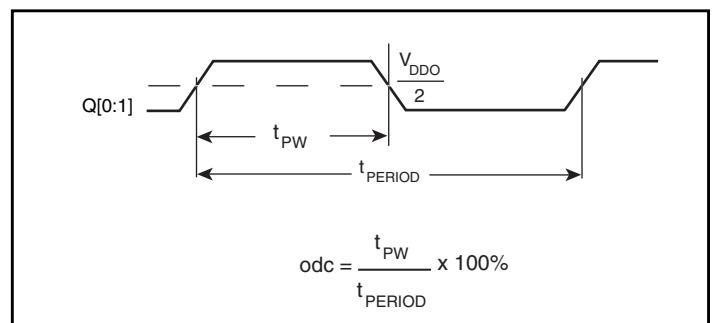

Typical Phase Noise at 62.5MHz (3.3V)

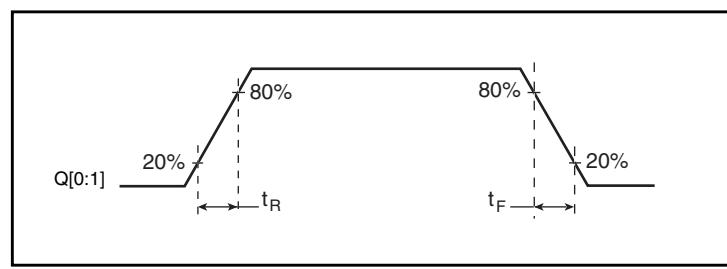

Typical Phase Noise at 156.25MHz (3.3V)


Parameter Measurement Information


3.3V Core/3.3V Output Load AC Test Circuit


3.3V Core/2.5V Output Load AC Test Circuit


2.5V Core/2.5V Output Load AC Test Circuit


RMS Phase Jitter

Output Skew

Output Duty Cycle/Pulse Width/Period

Output Rise/Fall Time

Applications Information

Recommendations for Unused Input and Output Pins

Inputs:

Crystal Inputs

For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a $1\text{k}\Omega$ resistor can be tied from XTAL_IN to ground.

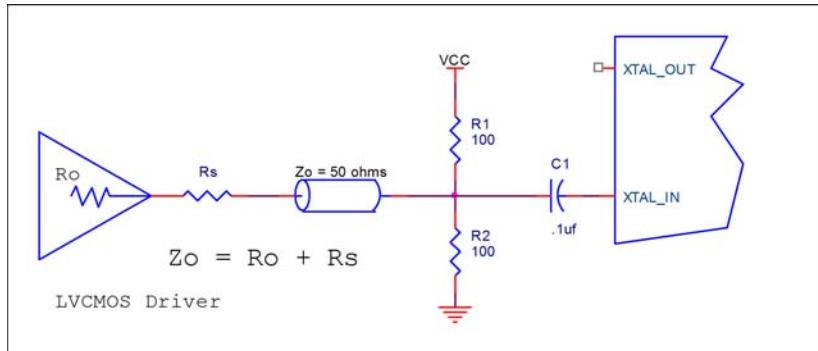
TEST_CLK Input

For applications not requiring the use of the test clock, it can be left floating. Though not required, but for additional protection, a $1\text{k}\Omega$ resistor can be tied from the TEST_CLK to ground.

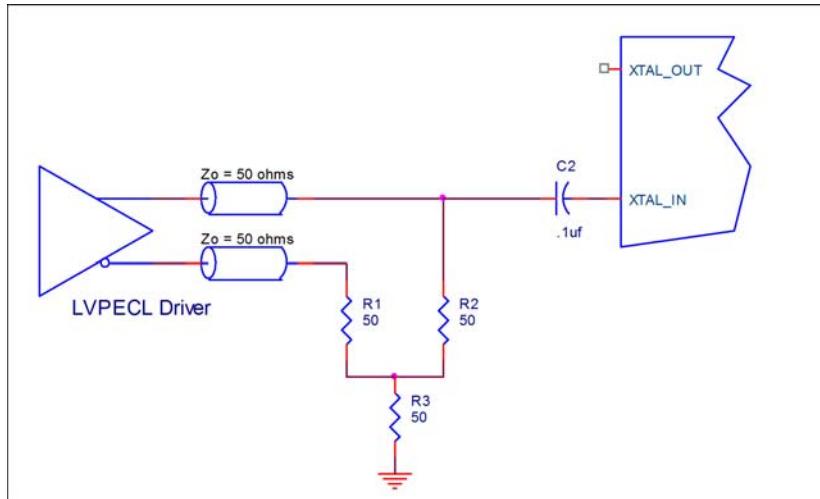
LVC MOS Control Pins

All control pins have internal pullups or pulldowns; additional resistance is not required but can be added for additional protection. A $1\text{k}\Omega$ resistor can be used.

Outputs:


LVC MOS Outputs

All unused LVC MOS outputs can be left floating. We recommend that there is no trace attached.


Overdriving the XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 1A*. The XTAL_OUT pin can be left floating. The maximum amplitude of the input signal should not exceed 2V and the input edge rate can be as slow as 10ns. This configuration requires that the output impedance of the driver (Z_o) plus the series resistance (R_s) equals the transmission line impedance. In addition,

matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R_1 and R_2 in parallel should equal the transmission line impedance. For most 50Ω applications, R_1 and R_2 can be 100Ω . This can also be accomplished by removing R_1 and making $R_2 50\Omega$. By overdriving the crystal oscillator, the device will be functional, but note, the device performance is guaranteed by using a quartz crystal.

Figure 1A. General Diagram for LVCMOS Driver to XTAL Input Interface

Figure 1B. General Diagram for LVPECL Driver to XTAL Input Interface

Layout Guideline

Figure 2 shows a schematic example of the 840002I-01 application schematic. In this example, the device is operated at $V_{DD} = V_{DDA} = V_{DDO} = 3.3V$. The 18pF parallel resonant 25MHz crystal is used. The load capacitance $C1 = 22pF$ and $C2 = 22pF$ are recommended for frequency accuracy. Depending on the parasitic of the printed circuit board layout, these values might require a slight adjustment to optimize the frequency accuracy. Crystals with other load capacitance specifications can be used. This will required adjusting $C1$ and $C2$.

As with any high speed analog circuitry, the power supply pins are vulnerable to noise. To achieve optimum jitter performance, power supply isolation is required. The 840002I-01 provides separate power supplies to isolate from coupling into the internal PLL.

In order to achieve the best possible filtering, it is recommended that the placement of the filter components be on the device side of the PCB as close to the power pins as possible. If space is limited, the

0.1uF capacitor in each power pin filter should be placed on the device side of the PCB and the other components can be placed on the opposite side.

Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices. The filter performance is designed for wide range of noise frequencies. This low-pass filter starts to attenuate noise at approximately 10kHz. If a specific frequency noise component is known, such as switching power supply frequencies, it is recommended that component values be adjusted and if required, additional filtering be added. Additionally, good general design practices for power plane voltage stability suggests adding bulk capacitances in the local area of all devices.

The schematic example focuses on functional connections and is not configuration specific. Refer to the pin description and functional tables in the datasheet to ensure the logic control inputs are properly set.

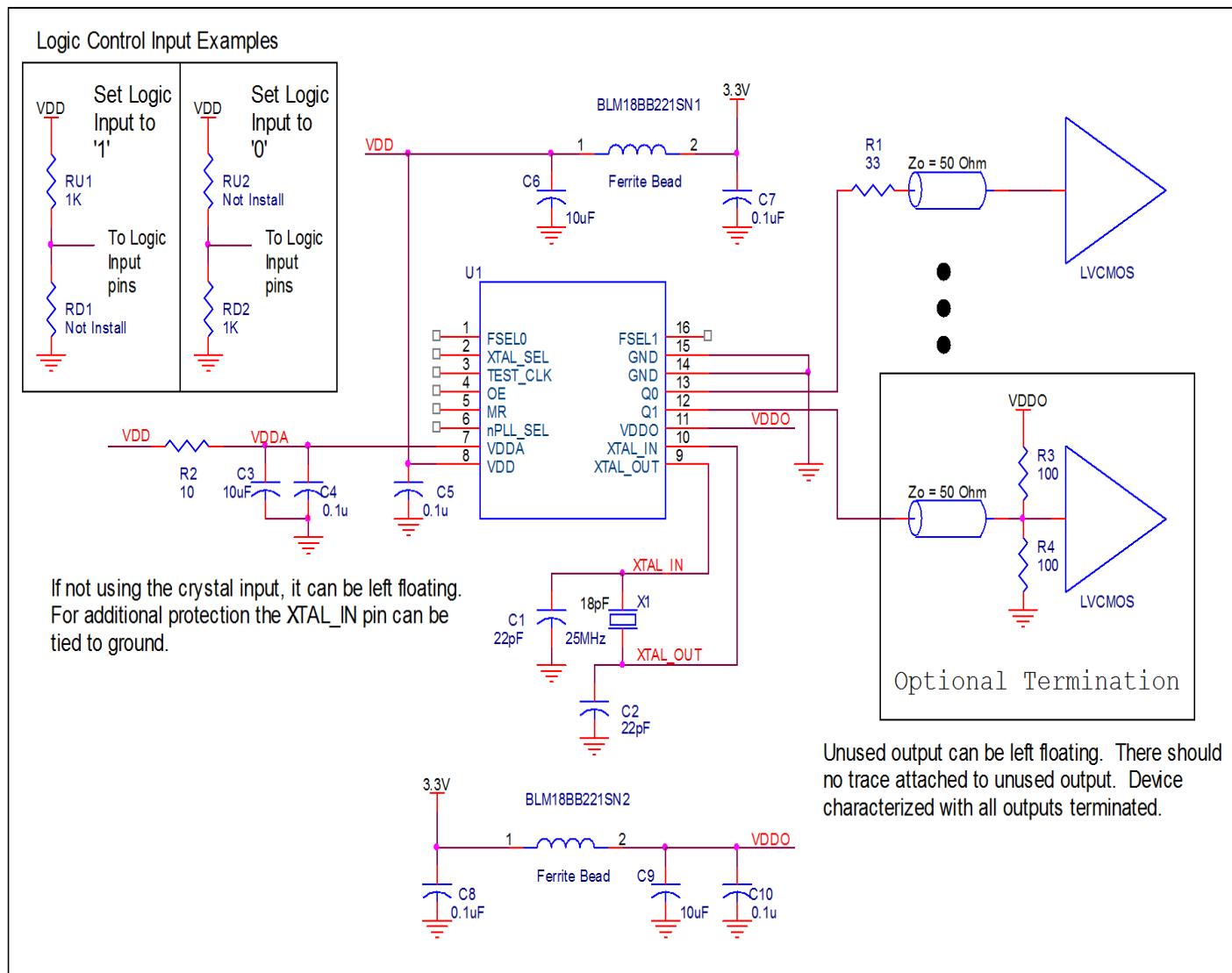


Figure 2. 840002I-01 Application Schematic Example

Reliability Information

Table 6. θ_{JA} vs. Air Flow Table for a 16 Lead TSSOP

Linear Feet per Minute	θ_{JA} by Velocity		
	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	137.1°C/W	118.2°C/W	106.8°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	89.0°C/W	81.8°C/W	78.1°C/W

Transistor Count

The transistor count for 840002I-01 is: 3356

Package Outline and Package Dimensions

Package Outline - G Suffix for 16 Lead TSSOP

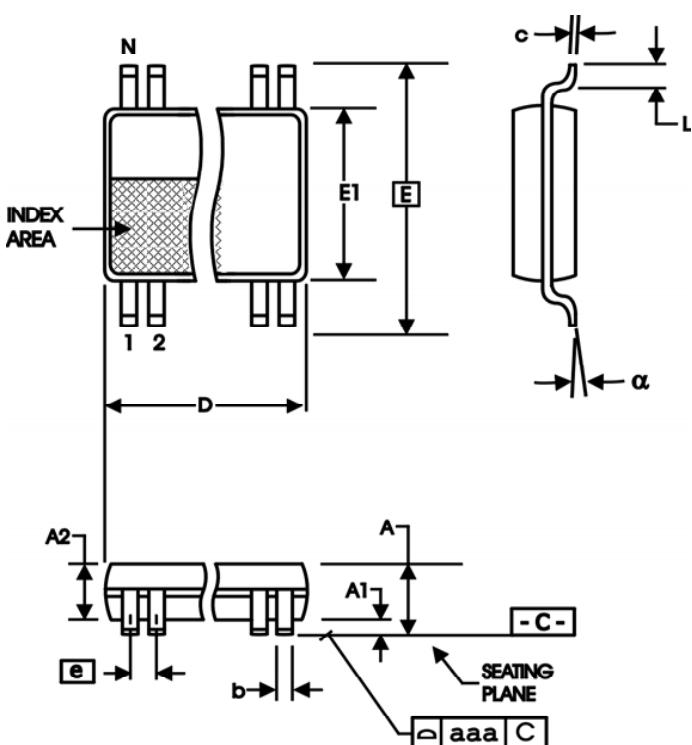


Table 7. Package Dimensions for 16 Lead TSSOP

All Dimensions in Millimeters		
Symbol	Minimum	Maximum
N	16	
A		1.20
A1	0.5	0.15
A2	0.80	1.05
b	0.19	0.30
c	0.09	0.20
D	4.90	5.10
E	6.40 Basic	
E1	4.30	4.50
e	0.65 Basic	
L	0.45	0.75
α	0°	8°
aaa		0.10

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 8. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
840002AGI-01LF	002AI01L	"Lead-Free", 16 Lead LQFP	Tube	-40°C to 85°C
840002AGI-01LFT	002AI01L	"Lead-Free", 16 Lead LQFP	Tape & Reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

Revision History Sheet

Rev	Table	Page	Description of Change	Date
A	T8	12	Ordering Information Table - corrected standard marking and added Lead-Free part number, marking and note.	10/18/07
A	T8	12 14	Updated datasheet's header/footer with IDT from ICS. Removed ICS prefix from Part/Order Number column. Added Contact Page.	11/18/10
A	T5A - T5C	4 - 5 8 9 10	AC Characteristics Tables - added thermal note. Power Supply Filtering Techniques - corrected figure 1. Added Overdriving the Crystal Interface section. Added Recommendations for Unused Input & Output Pins section.	12/6/10
B	T5B T5C	5 5 8 8 9 10	3.3V/2.5V AC Characteristics Table -corrected FOUT from 56MHz min - 68MHz max to 56MHz min - 70MHz max. 2.5V AC Characteristics Table - added 2nd odc spec and added thermal note. Corrected FOUT from 56MHz min - 68MHz max to 56MHz min - 70MHz max. Deleted Power Supply Filtering Techniques section, added to schematic layout. Deleted Crystal Input Interface section. Added Overdriving the XTAL Interface section. Updated Layout Guideline and diagram. Converted datasheet format.	2/3/11
B	5A, 5B, 5C	5	AC Table; $f_{OUT} = F_SEL[1:0] = 01$ or 11 , $F_SEL[1:0] = 10$	9/28/12
B	8	13	Deleted Quantity from Tape and Reel	
B	T8	13	Ordering Information - removed leaded devices. Updated data sheet format.	8/5/15

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.