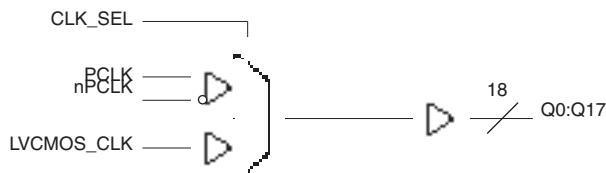
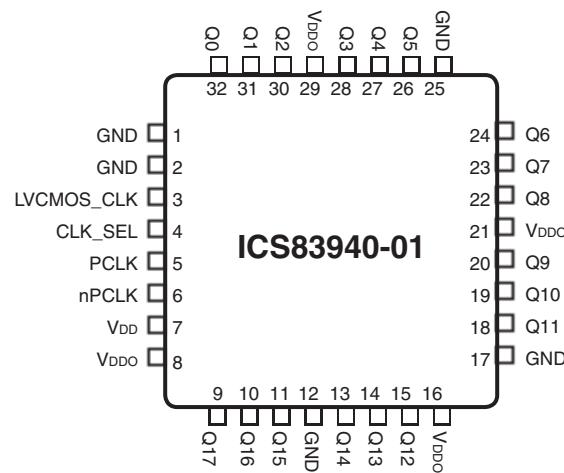


GENERAL DESCRIPTION


The ICS83940-01 is a low skew, 1-to-18 LVPECL-to-LVCMOS/LVTTL Fanout Buffer. The ICS83940-01 has two selectable clock inputs. The PCLK, nPCLK pair can accept LVPECL, CML or SSTL input levels. The single ended clock input accepts LVCMOS or LVTTL input levels. The low impedance LVCMOS/LVTTL outputs are designed to drive 50Ω series or parallel terminated transmission lines. The effective fanout can be increased from 18 to 36 by utilizing the ability of the outputs to drive two series terminated lines.

The ICS83940-01 is characterized at full 3.3V, full 2.5V and mixed 3.3V input and 2.5V output operating supply modes. Guaranteed output and part-to-part skew characteristics make the ICS83940-01 ideal for those clock distribution applications demanding well defined performance and repeatability.


FEATURES

- Eighteen LVCMOS/LVTTL outputs, 23Ω typical output impedance
- Selectable LVCMOS_CLK or LVPECL clock inputs
- LVCMOS_CLK supports the following input types: LVCMOS or LVTTL
- PCLK, nPCLK supports the following input types: LVPECL, CML, SSTL
- Maximum output frequency: 250MHz
- Output skew: 85ps (maximum)
- Part-to-part skew: 750ps (maximum)
- Full 3.3V, 2.5V or mixed 3.3V, 2.5V supply modes
- 0°C to 70°C ambient operating temperature
- Available in lead-free RoHS compliant package

BLOCK DIAGRAM

PIN ASSIGNMENT

32-Lead LQFP
Y Package

7mm x 7mm x 1.4mm package body
Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Type		Description
1, 2, 12, 17, 25	GND	Power		Power supply ground.
3	LVCMS_CLK	Input	Pulldown	Clock input. LVCMS / LVTTL interface levels.
4	CLK_SEL	Input	Pulldown	Clock select input. Selects LVCMS / LVTTL clock input when HIGH. Selects PCLK, nPCLK inputs when LOW. LVCMS / LVTTL interface levels.
5	PCLK	Input	Pulldown	Non-inverting differential LVPECL clock input.
6	nPCLK	Input		Inverting differential LVPECL clock input. $V_{DD}/2$ default when left floating.
7	V_{DD}	Power		Power supply pin.
8, 16, 21, 29	V_{DDO}	Power		Output supply pins.
9, 10, 11, 13, 14, 15, 18, 19, 20, 22, 23, 24, 26, 27, 28, 30, 31, 32	Q17, Q16, Q15, Q14, Q13, Q12, Q11, Q10, Q9, Q8, Q7, Q6, Q5, Q4, Q3, Q2, Q1, Q0	Output		Clock outputs. LVCMS / LVTTL interface levels.

NOTE: Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C_{IN}	Input Capacitance			4		pF
C_{PD}	Power Dissipation Capacitance (per output)			6		pF
$R_{PULLDOWN}$	Input Pulldown Resistor			51		kΩ
R_{OUT}	Output Impedance		18		28	Ω

TABLE 3A. CLOCK SELECT FUNCTION TABLE

Control Input		Clock	
CLK_SEL	PCLK, nPCLK	LVCMS_CLK	
0	Selected	De-selected	
1	De-selected	Selected	

TABLE 3B. CLOCK INPUT FUNCTION TABLE

CLK_SEL	LVCMS_CLK	PCLK	nPCLK	Inputs		Outputs	Input to Output Mode	Polarity
				Q0:Q17				
0	—	0	1		LOW	Differential to Single Ended	Non Inverting	
0	—	1	0		HIGH	Differential to Single Ended	Non Inverting	
0	—	0	Biased; NOTE 1		LOW	Single Ended to Single Ended	Non Inverting	
0	—	1	Biased; NOTE 1		HIGH	Single Ended to Single Ended	Non Inverting	
0	—	Biased; NOTE 1	0		HIGH	Single Ended to Single Ended	Inverting	
0	—	Biased; NOTE 1	1		LOW	Single Ended to Single Ended	Inverting	
1	0	—	—		LOW	Single Ended to Single Ended	Non Inverting	
1	1	—	—		HIGH	Single Ended to Single Ended	Non Inverting	

NOTE 1: Please refer to the Application Information section, "Wiring the Differential Input to Accept Single Ended Levels".

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD}	3.6V
Inputs, V_I	-0.3V to $V_{DD} + 0.3V$
Outputs, V_O	-0.3V to $V_{DD} + 0.3V$
Input Current, I_{IN}	$\pm 20mA$
Storage Temperature, T_{STG}	-40°C to 125°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

TABLE 4A. DC CHARACTERISTICS, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, $T_A = 0^\circ$ TO 70°

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage	LVCMOS_CLK	2.4		V_{DD}	V
V_{IL}	Input Low Voltage	LVCMOS_CLK			0.8	V
V_{PP}	Peak-to-Peak Input Voltage	PCLK, nPCLK	500		1000	mV
V_{CMR}	Input Common Mode Voltage; NOTE 1, 2	PCLK, nPCLK	$V_{DD} - 1.4$		$V_{DD} - 0.6$	V
I_{IN}	Input Current				± 200	μA
V_{OH}	Output High Voltage		$I_{OH} = -20mA$	2.4		V
V_{OL}	Output Low Voltage		$I_{OL} = 20mA$		0.5	V
I_{DD}	Power Supply Current				25	mA

NOTE 1: For single ended applications, the maximum input voltage for PCLK, nPCLK is $V_{DD} + 0.3V$.

NOTE 2: Common mode voltage is defined as V_{IH} .

TABLE 4B. DC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, $T_A = 0^\circ$ TO 70°

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage	LVCMOS_CLK	2.4		V_{DD}	V
V_{IL}	Input Low Voltage	LVCMOS_CLK			0.8	V
V_{PP}	Peak-to-Peak Input Voltage	PCLK, nPCLK	300		1000	mV
V_{CMR}	Input Common Mode Voltage; NOTE 1, 2	PCLK, nPCLK	$V_{DD} - 1.4$		$V_{DD} - 0.6$	V
I_{IN}	Input Current				± 200	μA
V_{OH}	Output High Voltage		$I_{OH} = -20mA$	1.8		V
V_{OL}	Output Low Voltage		$I_{OL} = 20mA$		0.5	V
I_{DD}	Power Supply Current				25	mA

NOTE 1: For single ended applications, the maximum input voltage for PCLK, nPCLK is $V_{DD} + 0.3V$.

NOTE 2: Common mode voltage is defined as V_{IH} .

TABLE 4C. DC CHARACTERISTICS, $V_{DD} = V_{DDO} = 2.5V \pm 5\%$, $T_A = 0^\circ$ TO 70°

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage	LVCMOS_CLK	2		V_{DD}	V
V_{IL}	Input Low Voltage	LVCMOS_CLK			0.8	V
V_{PP}	Peak-to-Peak Input Voltage	PCLK, nPCLK	300		1000	mV
V_{CMR}	Input Common Mode Voltage; NOTE 1, 2	PCLK, nPCLK		$V_{DD} - 1.4$	$V_{DD} - 0.6$	V
I_{IN}	Input Current				± 200	μA
V_{OH}	Output High Voltage		$I_{OH} = -12mA$	1.8		V
V_{OL}	Output Low Voltage		$I_{OL} = 12mA$		0.5	V
I_{DD}	Power Supply Current				25	mA

NOTE 1: For single ended applications, the maximum input voltage for PCLK, nPCLK is $V_{DD} + 0.3V$.NOTE 2: Common mode voltage is defined as V_{IH} .**TABLE 5A. AC CHARACTERISTICS, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, $T_A = 0^\circ$ TO 70°**

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units	
f_{MAX}	Output Frequency				250	MHz	
t_{pLH}	Propagation Delay	PCLK, nPCLK; NOTE 1, 5	$f = 150MHz$	1.6		3.0	ns
		LVCMOS_CLK; NOTE 2, 5	$f = 150MHz$	1.8		3.0	ns
t_{pLH}	Propagation Delay	PCLK, nPCLK; NOTE 1, 5	$f > 150MHz$	1.6		3.3	ns
		LVCMOS_CLK; NOTE 2, 5	$f > 150MHz$	1.8		3.2	ns
$tsk(o)$	Output Skew; NOTE 3, 5	PCLK, nPCLK	Measured on rising edge @ $V_{DDO}/2$		85	ps	
		LVCMOS_CLK			85	ps	
$tsk(pp)$	Part-to-Part Skew; NOTE 6	PCLK, nPCLK	$f = 150MHz$		1.4	ns	
		LVCMOS_CLK	$f = 150MHz$		1.2	ns	
$tsk(pp)$	Part-to-Part Skew; NOTE 6	PCLK, nPCLK	$f > 150MHz$		1.7	ns	
		LVCMOS_CLK	$f > 150MHz$		1.4	ns	
$tsk(pp)$	Part-to-Part Skew; NOTE 4, 5	PCLK, nPCLK	Measured on rising edge @ $V_{DDO}/2$		850	ps	
		LVCMOS_CLK			750	ps	
t_R, t_F	Output Rise/Fall Time		20% to 80%	400		800	ps
			$f = 150MHz$		45		%
odc	Output Duty Cycle		$150MHz < f < 250MHz$	40		60	%

All parameters measured at 200MHz unless noted otherwise.

NOTE 1: Measured from the differential input crossing point to the output $V_{DDO}/2$.NOTE 2: Measured from $V_{DD}/2$ to $V_{DDO}/2$.NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DDO}/2$.NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages, same temperature, and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{DDO}/2$.

NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 6: Defined as skew between outputs on different devices, across temperature and voltage ranges, and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{DDO}/2$.

TABLE 5B. AC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, $T_A = 0^\circ$ TO 70°

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{MAX}	Output Frequency				250	MHz
t_{PLH}	Propagation Delay	PCLK, nPCLK; NOTE 1, 5	$f = 150MHz$	1.7	3.2	ns
		LVCMOS_CLK; NOTE 2, 5	$f = 150MHz$	1.7	3.0	ns
t_{PLH}	Propagation Delay	PCLK, nPCLK; NOTE 1, 5	$f > 150MHz$	1.6	3.4	ns
		LVCMOS_CLK; NOTE 2, 5	$f > 150MHz$	1.8	3.3	ns
$tsk(o)$	Output Skew; NOTE 3, 5	PCLK, nPCLK	Measured on rising edge @ $V_{DDO}/2$		150	ps
		LVCMOS_CLK			150	ps
$tsk(pp)$	Part-to-Part Skew; NOTE 6	PCLK, nPCLK	$f = 150MHz$		1.5	ns
		LVCMOS_CLK	$f = 150MHz$		1.3	ns
$tsk(pp)$	Part-to-Part Skew; NOTE 6	PCLK, nPCLK	$f > 150MHz$		1.8	ns
		LVCMOS_CLK	$f > 150MHz$		1.5	ns
$tsk(pp)$	Part-to-Part Skew; NOTE 4, 5	PCLK, nPCLK	Measured on rising edge @ $V_{DDO}/2$		850	ps
		LVCMOS_CLK			750	ps
t_R, t_F	Output Rise/Fall Time		20% to 80%	400	800	ps
odc	Output Duty Cycle		$f < 134MHz$	45	55	%
			134MHz $f < 250MHz$	40	60	%

All parameters measured at 200MHz unless noted otherwise.

NOTE 1: Measured from the differential input crossing point to the output $V_{DDO}/2$.

NOTE 2: Measured from $V_{DD}/2$ to $V_{DDO}/2$.

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DDO}/2$.

NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages, same temperature, and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{DDO}/2$.

NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 6: Defined as skew between outputs on different devices, across temperature and voltage ranges, and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{DDO}/2$.

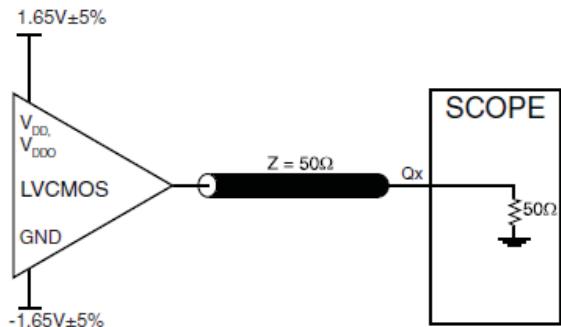
TABLE 5C. AC CHARACTERISTICS, $V_{DD} = V_{DDO} = 2.5V \pm 5\%$, $T_A = 0^\circ$ TO 70°

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{MAX}	Output Frequency				200	MHz
t_{PLH}	Propagation Delay;	PCLK, nPCLK; NOTE 1, 5	$f = 150MHz$	1.2	3.8	ns
		LVCMOS_CLK; NOTE 2, 5	$f = 150MHz$	1.5	3.2	ns
t_{PLH}	Propagation Delay;	PCLK, nPCLK; NOTE 1, 5	$f > 150MHz$	1.5	3.7	ns
		LVCMOS_CLK; NOTE 2, 5	$f > 150MHz$	2	3.6	ns
$tsk(o)$	Output Skew; NOTE 3, 5	PCLK, nPCLK	Measured on rising edge @ $V_{DDO}/2$		150	ps
		LVCMOS_CLK			150	ps
$tsk(pp)$	Part-to-Part Skew; NOTE 6	PCLK, nPCLK	$f = 150MHz$		2.6	ns
		LVCMOS_CLK	$f = 150MHz$		1.7	ns
$tsk(pp)$	Part-to-Part Skew; NOTE 6	PCLK, nPCLK	$f > 150MHz$		2.2	ns
		LVCMOS_CLK	$f > 150MHz$		1.7	ns
$tsk(pp)$	Part-to-Part Skew; NOTE 4, 5	PCLK, nPCLK	Measured on rising edge @ $V_{DDO}/2$		1.2	ns
		LVCMOS_CLK			1.0	ns
t_R, t_F	Output Rise/Fall Time		20% to 80%	400	800	ps
			$f < 134MHz$	45	55	%
odc	Output Duty Cycle		134MHz $f = 200MHz$	40	60	%

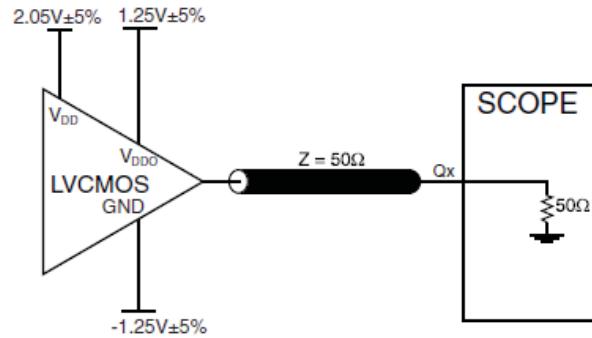
All parameters measured at 200MHz unless noted otherwise.

NOTE 1: Measured from the differential input crossing point to the output $V_{DDO}/2$.

NOTE 2: Measured from $V_{DD}/2$ to $V_{DDO}/2$.

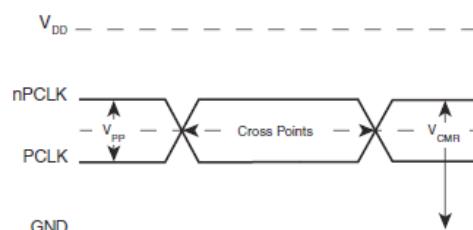

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DDO}/2$.

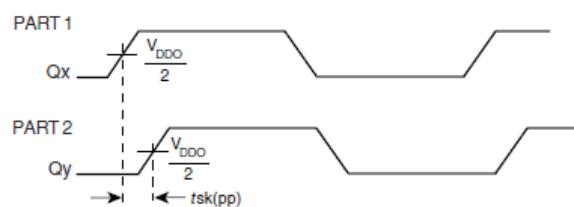
NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages, same temperature, and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{DDO}/2$.

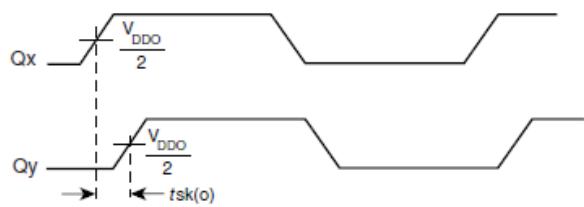

NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

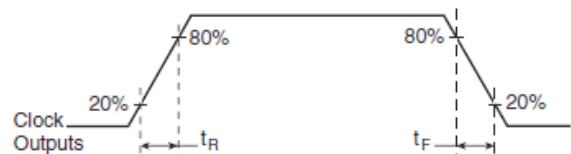
NOTE 6: Defined as skew between outputs on different devices, across temperature and voltage ranges, and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{DDO}/2$.

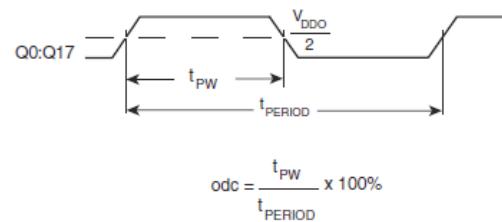
PARAMETER MEASUREMENT INFORMATION

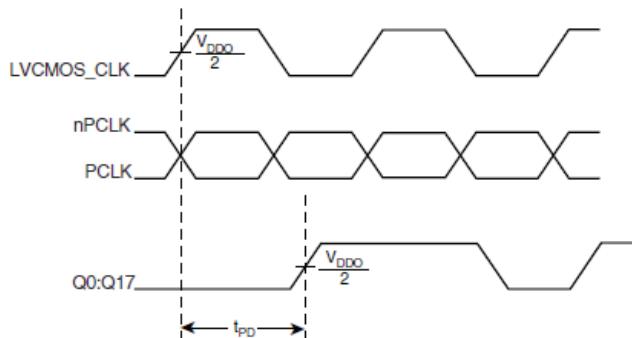

3.3V OUTPUT LOAD AC TEST CIRCUIT


3.3V/2.5V OUTPUT LOAD AC TEST CIRCUIT


2.5V OUTPUT LOAD AC TEST CIRCUIT

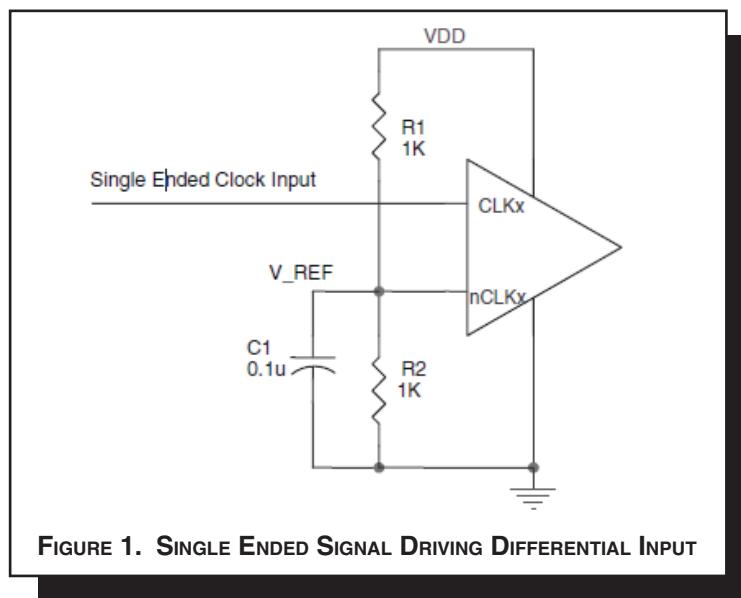

DIFFERENTIAL INPUT LEVEL


PART-TO-PART SKEW


OUTPUT SKEW

OUTPUT RISE/FALL TIME

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD


PROPAGATION DELAY

APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_{REF} = V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_{REF}

in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD} = 3.3V$, V_{REF} should be 1.25V and $R2/R1 = 0.609$.

RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS

INPUTS:

CLK INPUT:

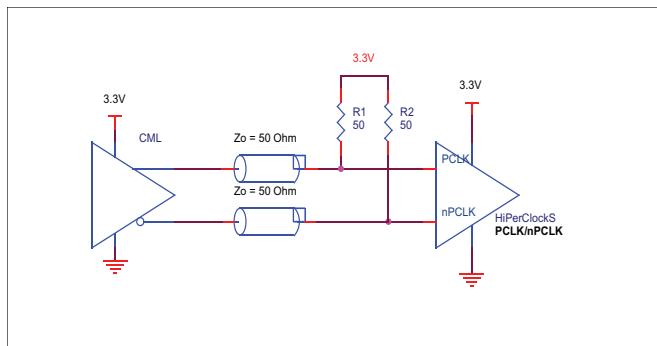
For applications not requiring the use of a clock input, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the CLK input to ground.

PCLK/nPCLK INPUT:

For applications not requiring the use of a differential input, both the PCLK and nPCLK pins can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from PCLK to ground.

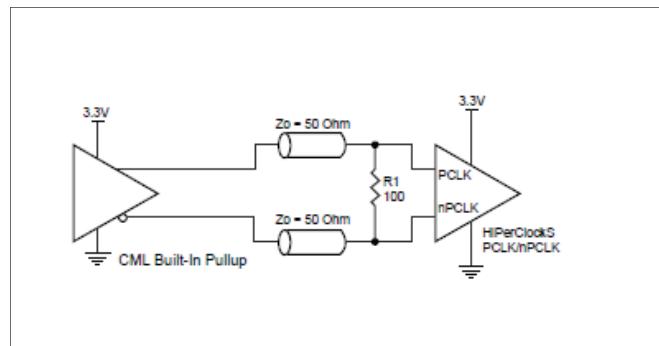
LVCMOS CONTROL PINS:

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.


OUTPUTS:

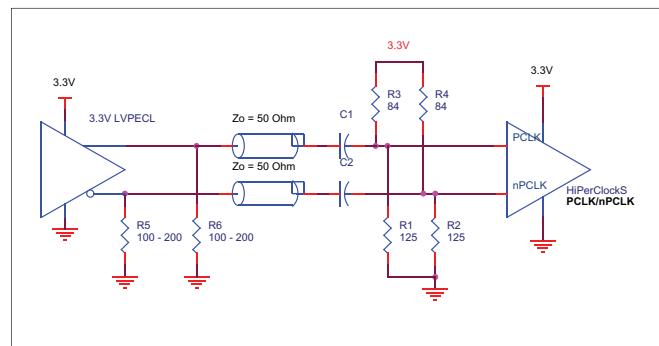
LVCMOS OUTPUT:

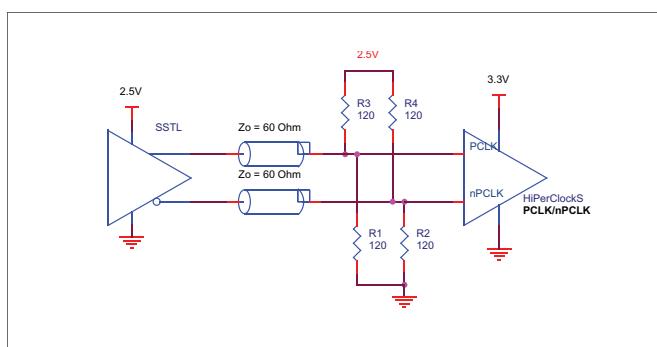
All unused LVCMOS output can be left floating. We recommend that there is no trace attached.


LVPECL CLOCK INPUT INTERFACE

The PCLK /nPCLK accepts LVPECL, CML, SSTL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. Figures 2A to 2E show interface examples for the PCLK/nPCLK input driven by the most common driver types. The input interfaces

FIGURE 2A. PCLK/nPCLK INPUT DRIVEN BY AN OPEN COLLECTOR CML DRIVER


suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.


FIGURE 2B. PCLK/nPCLK INPUT DRIVEN BY A BUILT-IN PULLUP CML DRIVER

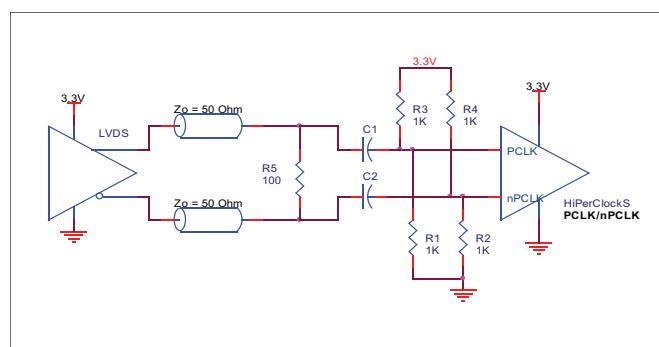

FIGURE 2C. PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER

FIGURE 2D. PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER WITH AC COUPLE

FIGURE 2E. PCLK/nPCLK INPUT DRIVEN BY AN SSTL DRIVER

FIGURE 2F. PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVDS DRIVER

RELIABILITY INFORMATION

TABLE 6. θ_{JA} vs. AIR FLOW TABLE FOR 32 LEAD LQFP

θ_{JA} by Velocity (Linear Feet per Minute)

	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	67.8°C/W	55.9°C/W	50.1°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	47.9°C/W	42.1°C/W	39.4°C/W

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

TRANSISTOR COUNT

The transistor count for ICS83940-01 is: 819

PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP

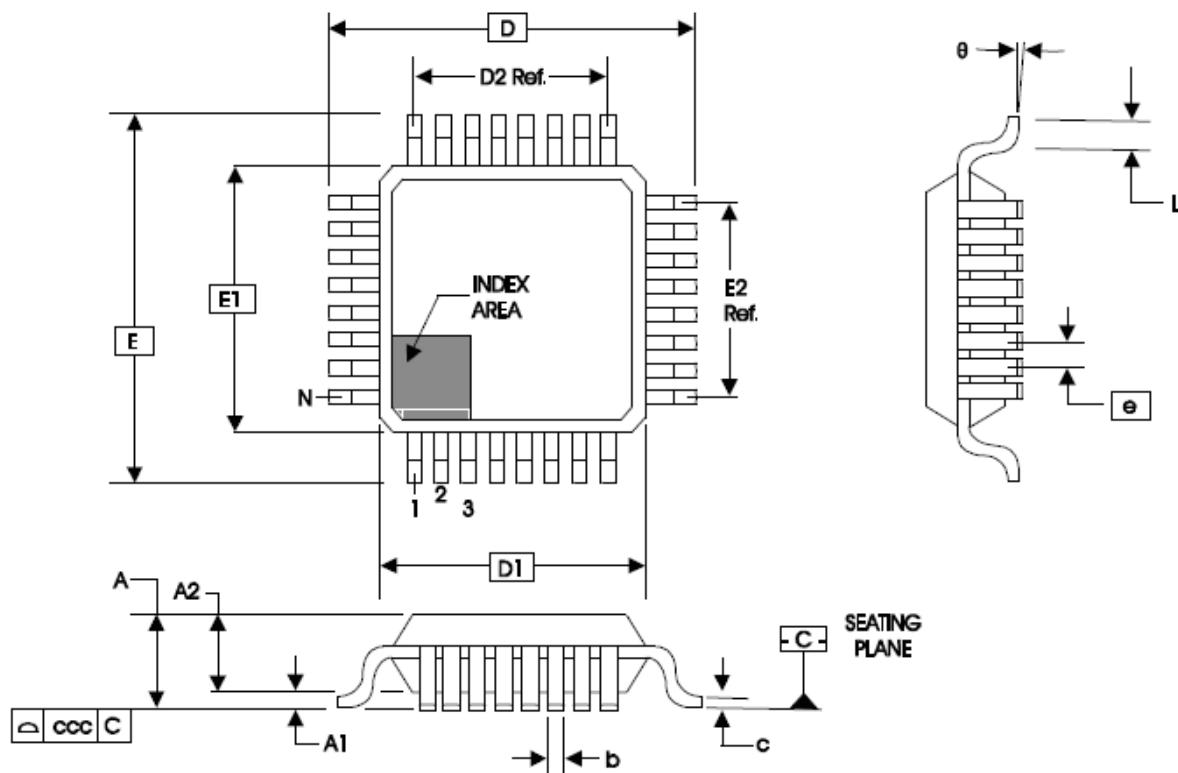


TABLE 7. PACKAGE DIMENSIONS

SYMBOL	JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS		
	MINIMUM	NOMINAL	MAXIMUM
N	32		
A	--	--	1.60
A1	0.05	--	0.15
A2	1.35	1.40	1.45
b	0.30	0.37	0.45
c	0.09	--	0.20
D	9.00 BASIC		
D1	7.00 BASIC		
D2	5.60 Ref.		
E	9.00 BASIC		
E1	7.00 BASIC		
E2	5.60 Ref.		
e	0.80 BASIC		
L	0.45	0.60	0.75
θ	0°	--	7°
ccc	--	--	0.10

Reference Document: JEDEC Publication 95, MS-026

TABLE 8. ORDERING INFORMATION

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
83940DY-01LF	ICS83940D01L	32 Lead "Lead-Free" LQFP	tray	0°C to 70°C
83940DY-01LFT	ICS83940D01L	32 Lead "Lead-Free" LQFP	reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

REVISION HISTORY SHEET

Rev	Table	Page	Description of Change	Date
A	T8	1 9 10 13	Added Lead-Free bullet. Added <i>Recommendations for Unused Input and Output Pins</i> . Updated <i>LVPECL Clock Input Interface</i> section. Added Lead-Free part number, marking and note.	11/18/05
A	T8	13 15	Updated datasheet's header/footer with IDT from ICS. Removed ICS prefix from Part/Order Number column. Added Contact Page.	8/4/10
A	T	13	Removed Leaded devices Updated Datasheet format	11/4/14

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.