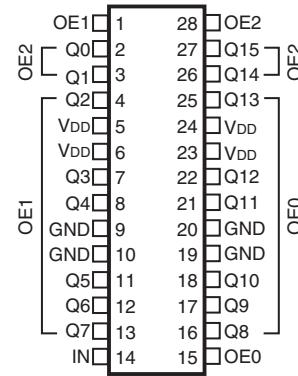

General Description

The 83115 is a low skew, 1-to-16 LVC MOS / LV TTL Fanout Buffer from IDT. The 83115 single-ended clock input accepts LVC MOS or LV TTL input levels. The 83115 operates at full 3.3V supply mode over the commercial temperature range. Guaranteed output and part-to-part skew characteristics make the 83115 ideal for those clock distribution applications demanding well defined performance and repeatability.


Features

- Sixteen LVC MOS / LV TTL outputs, 15Ω output impedance
- One LVC MOS / LV TTL clock input
- Maximum output frequency: 200MHz
- All inputs are 5V tolerant
- Output skew: 250ps (maximum)
- Part-to-part skew: 800ps (maximum)
- Additive phase jitter, RMS: 0.09ps (typical)
- Full 3.3V operating supply
- 0°C to 70°C ambient operating temperature
- Available in lead-free (RoHS 6) package

Block Diagram

Pin Assignment

83115

28-Lead SSOP, 150mil
9.9mm x 3.9mm x 1.5mm package body
R Package
Top View

Table 1. Pin Descriptions

Number	Name	Type		Description
1	OE1	Input	Pullup	Output enable pin. When LOW, forces outputs Q[2:7] to Hi-Z state. 5V tolerant. LVCMOS/LVTTL interface levels. See Table 3.
2, 3, 4, 7, 8, 11, 12, 13, 16, 17, 18, 21, 22, 25, 26, 27	Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15	Output		Single-ended clock outputs. 15Ω output impedance. LVCMOS/LVTTL interface levels.
5, 6, 23, 24	V_{DD}	Power		Positive supply pins.
9, 10, 19, 20	GND	Power		Power supply ground.
14	IN	Input	Pulldown	Single-ended clock input. 5V tolerant. LVCMOS/LVTTL interface levels.
15	OE0	Input	Pullup	Output enable pin. When LOW, forces outputs Q[8:13] to Hi-Z state. 5V tolerant. LVCMOS/LVTTL interface levels. See Table 3.
28	OE2	Input	Pullup	Output enable pin. When LOW, forces outputs Q[0:1] and Q[14:15] to Hi-Z state. 5V tolerant. LVCMOS/LVTTL interface levels. See Table 3.

NOTE: *Pullup* and *Pulldown* refer to internal input resistors. See Table 2, *Pin Characteristics*, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C_{IN}	Input Capacitance			4		pF
R_{PULLUP}	Input Pullup Resistor			51		k Ω
$R_{PULLDOWN}$	Input Pulldown Resistor			51		k Ω
C_{PD}	Power Dissipation Capacitance (per output); NOTE 1	$V_{DD} = 3.465V$		11		pF
R_{OUT}	Output Impedance	$V_{DD} = 3.3V$		15		Ω

Function Tables

Table 3. OEx Function Table

Inputs			Outputs		
OE0	OE1	OE2	Control OE2 Q[0:1], Q[14:15]	Control OE1 Q[2:7]	Control OE0 Q[8:13]
0	0	0	Hi-Z	Hi-Z	Hi-Z
0	0	1	Active	Hi-Z	Hi-Z
0	1	0	Hi-Z	Active	Hi-Z
0	1	1	Active	Active	Hi-Z
1	0	0	Hi-Z	Hi-Z	Active
1	0	1	Active	Hi-Z	Active
1	1	0	Hi-Z	Active	Active
1	1	1	Active	Active	Active

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V_{DD}	4.6V
Inputs, V_I	-0.5V to $V_{DD} + 0.5V$
Outputs, V_O	-0.5V to $V_{DD} + 0.5V$
Package Thermal Impedance, θ_{JA}	49°C/W (0 lfpm)
Storage Temperature, T_{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Positive Supply Voltage		3.135	3.3	3.465	V
I_{DD}	Power Supply Current				50	mA

Table 4B. LVC MOS/LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions		Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage	OE0:OE2		2		$V_{DD} + 0.3$	V
		IN		2		$V_{DD} + 0.3$	V
V_{IL}	Input Low Voltage	OE0:OE2		-0.3		0.8	V
		IN		-0.3		1.3	V
I_{IH}	Input High Current	OE0:OE2	$V_{DD} = V_{IN} = 3.465V$			5	μA
		IN	$V_{DD} = V_{IN} = 3.465V$			150	μA
I_{IL}	Input Low Current	OE0:OE2	$V_{DD} = 3.465V, V_{IN} = 0V$	-150			μA
		IN	$V_{DD} = 3.465V, V_{IN} = 0V$	-5			μA
V_{OH}	Output High Voltage; NOTE 1	$V_{DD} = 3.3V \pm 5\%$		2.6			V
V_{OL}	Output Low Voltage; NOTE 1	$V_{DD} = 3.3V \pm 5\%$				0.5	V
I_{OZL}	Output Hi-Z Current Low					5	μA
I_{OZH}	Output Hi-Z Current High					5	μA

NOTE 1: Outputs terminated with 50Ω to $V_{DD}/2$. See Parameter Measurement Information, *Output Load Test Circuit diagram*.

AC Electrical Characteristics

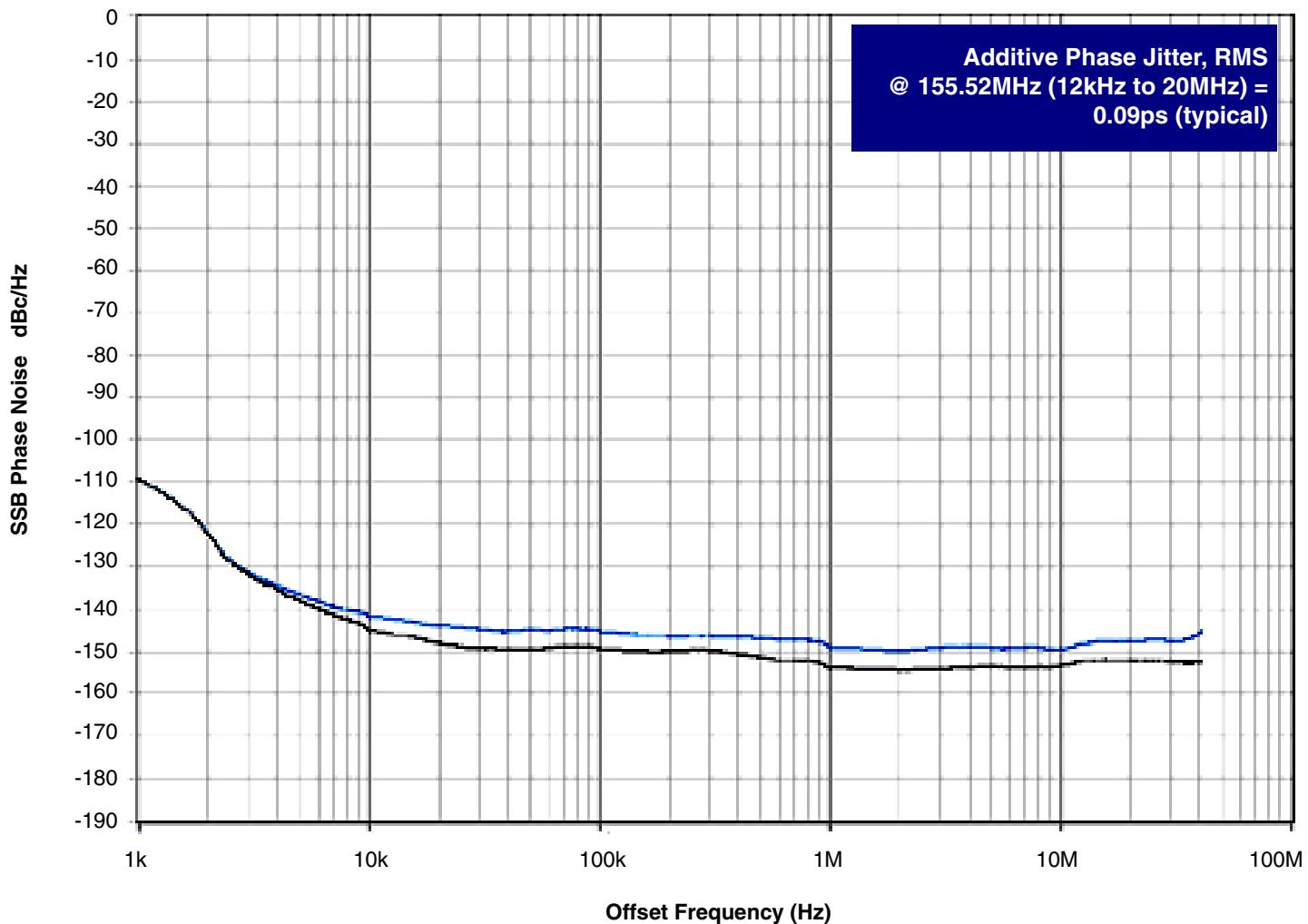
Table 5. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = 0^\circ C$ to $70^\circ C$

Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
f_{MAX}	Output Frequency				200	MHz
t_{jit}	Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter Section	Integration Range: 12kHz – 20MHz		0.09		ps
t_{PLH}	Propagation Delay; NOTE 1	$f \leq 200MHz$	1.7	2.4	3.1	ns
$t_{sk(o)}$	Output Skew; NOTE 2, 4	Measured on the Rising Edge @ $V_{DD}/2$		150	250	ps
$t_{sk(pp)}$	Part-to-Part Skew; NOTE 3, 4	Measured on the Rising Edge @ $V_{DD}/2$			800	ps
t_R / t_F	Output Rise/Fall Time4	20% to 80%	400		800	ps
odc	Output Duty Cycle		45		55	%
t_{EN}	Output Enable Time				20	ns
t_{DIS}	Output Disable Time				20	ns

All parameters measured at f_{MAX} unless noted otherwise.

NOTE 1: Measured from $V_{DD}/2$ of the input to $V_{DD}/2$ of the output.

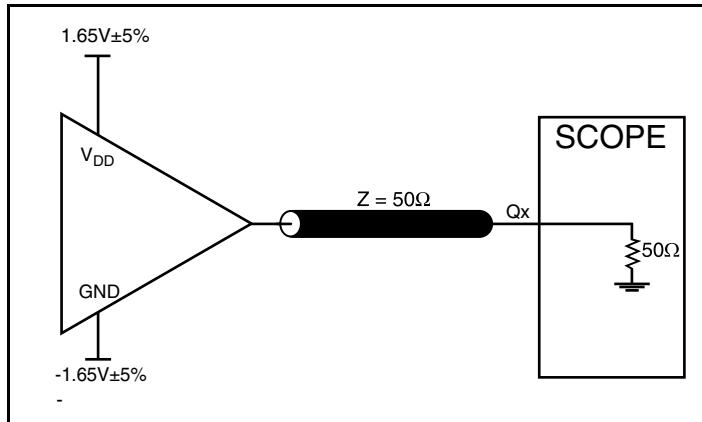
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DD}/2$.

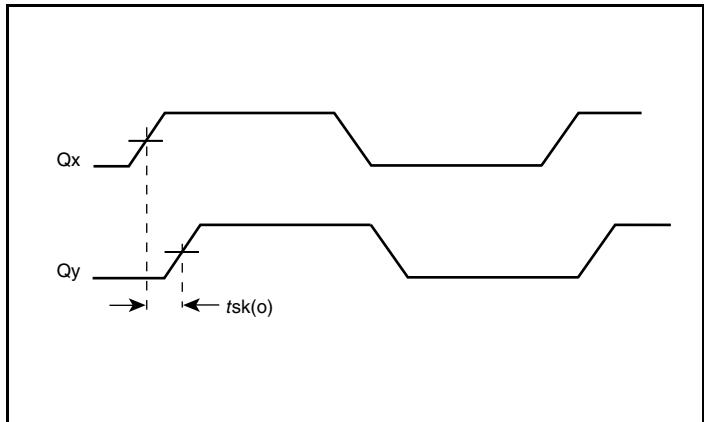

NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{DD}/2$.

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

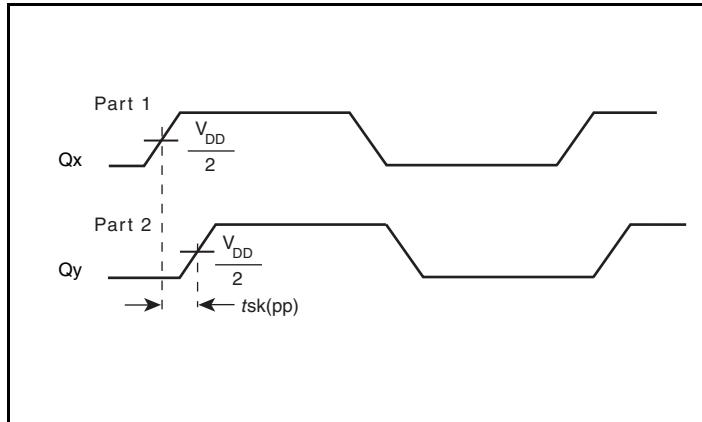
Additive Phase Jitter

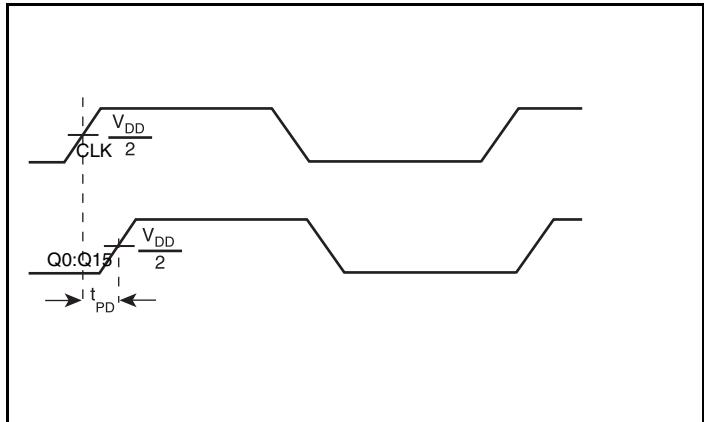
The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the ***dBc Phase Noise***. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the 1Hz band

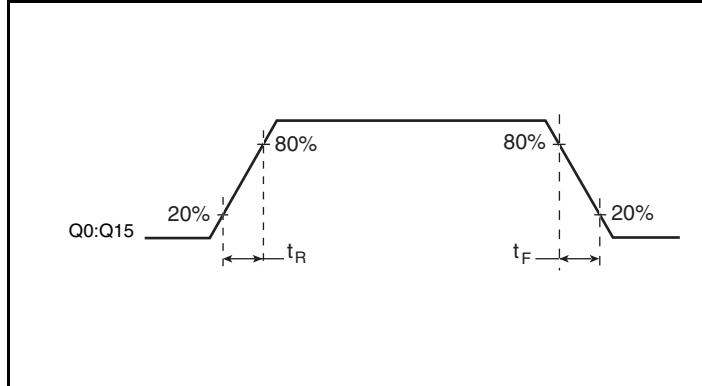

to the power in the fundamental. When the required offset is specified, the phase noise is called a ***dBc*** value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

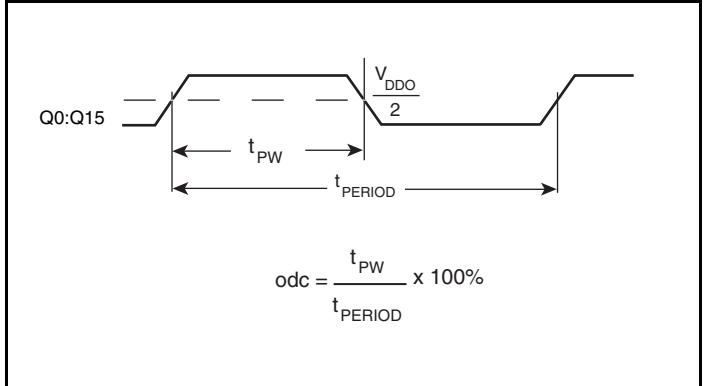

As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the

device. This is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment.


Parameter Measurement Information


3.3V Output Load AC Test Circuit


Output Skew


Part-to-Part Skew

Propagation Delay

Output Rise/Fall Time

Output Duty Cycle/Pulse Width/Period

Application Information

Recommendations for Unused Input and Output Pins

Inputs:

LVC MOS Control Pins

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A 1kΩ resistor can be used.

Outputs:

LVC MOS Outputs

All unused LVC MOS output can be left floating. There should be no trace attached.

Reliability Information

Table 6. θ_{JA} vs. Air Flow Table for a 28 Lead SSOP, 150MIL

θ_{JA} vs. Air Flow			
Linear Feet per Minute	0	200	500
Multi-Layer PCB, JEDEC Standard Test Boards	49°C/W	36°C/W	30°C/W

Transistor Count

The transistor count for 83115: 985

Package Outline and Package Dimension

Package Outline - G Suffix for 28 Lead SSOP

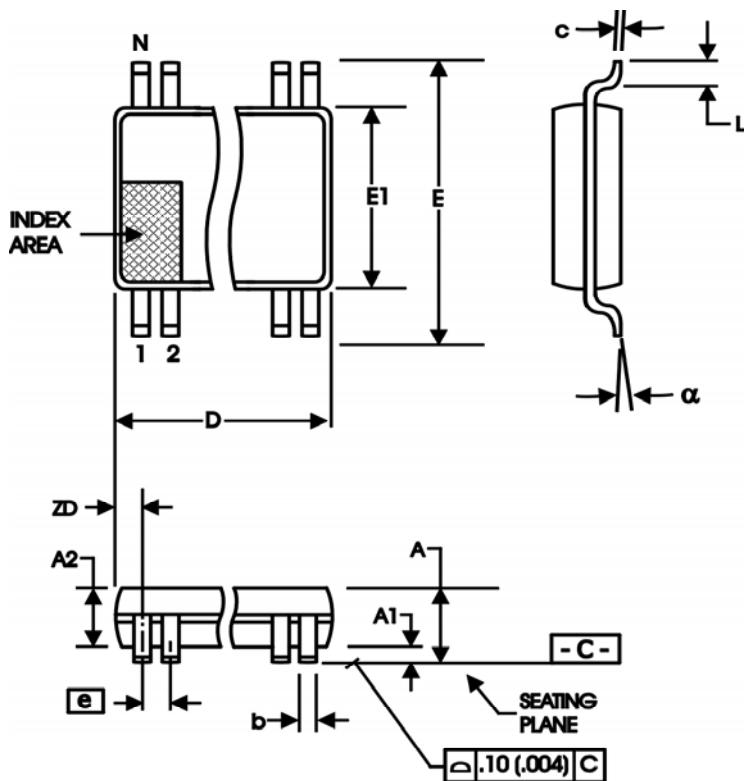


Table 7. Package Dimensions for 28 Lead SSOP

All Dimensions in Millimeters		
Symbol	Minimum	Maximum
N	28	
A	1.35	1.75
A1	0.10	0.25
A2		1.50
b	0.20	0.30
c	0.18	0.25
D	9.80	10.00
E	5.80	6.20
E1	3.80	4.00
e	0.635 Basic	
L	0.40	1.27
α	0°	8°
ZD	0.84 Ref	

Reference Document: JEDEC Publication 95, MO-137

Ordering Information

Table 8. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
ICS83115BRLF	ICS83115BRLF	"Lead-Free" 28 Lead SSOP	Tube	0°C to 70°C
ICS83115BRLFT	ICS83115BRLF	"Lead-Free" 28 Lead SSOP	Tape & Reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

Revision History Sheet

Rev	Table	Page	Description of Change	Date
C	T5	4	AC Characteristics Table - changed Output Rise/Fall Time limits from 650ps min./1150ps max. to 400ps min./800ps max.	3/14/08
C	T8	9	Ordering Information - removed leaded devices. Updated data sheet format.	3/20/15

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.