

FEATURES:

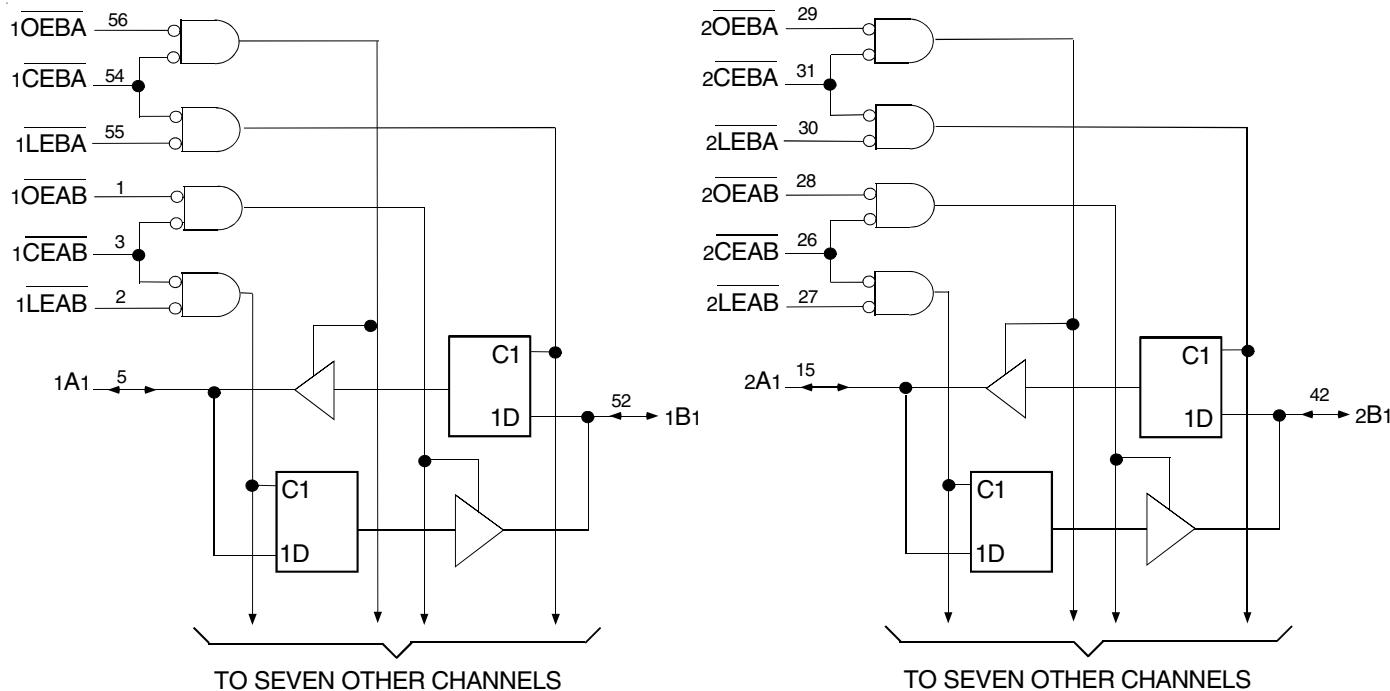
- Typical $t_{SK(o)}$ (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- $V_{CC} = 3.3V \pm 0.3V$, Normal Range
- $V_{CC} = 2.7V$ to $3.6V$, Extended Range
- CMOS power levels ($0.4\mu W$ typ. static)
- All inputs, outputs, and I/O are 5V tolerant
- Supports hot insertion
- Available in TSSOP package

DRIVE FEATURES:

- High Output Drivers: $\pm 24mA$
- Reduced system switching noise

APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems


DESCRIPTION

The LVCH16543A 16-bit registered transceiver is built using advanced dual metal CMOS technology. The LVCH16543A can be used as two 8-bit transceivers or one 16-bit transceiver. Separate latch-enable (\overline{LEAB} or \overline{LEBA}) and output-enable (\overline{OEAB} or \overline{OEBA}) inputs are provided for each register to permit independent control in either direction of data flow. The A-to-B enable (\overline{CEAB}) input must be low in order to enter data from the A port or to output data from the B port. \overline{LEAB} controls the latch function. When \overline{LEAB} is low, the A to B latches are transparent. A subsequent low-to-high transition of \overline{LEAB} puts the A latches in the storage mode. \overline{OEAB} performs output enable function on the B port. Data flow from the B port to the A port is similar but requires using \overline{CEBA} , \overline{LEBA} , and \overline{OEBA} inputs. Flow-through organization of signal pins simplifies layout. All inputs are designed with hysteresis for improved noise margin.

All pins of this 16-bit registered transceiver can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

The LVCH16543A has been designed with a $\pm 24mA$ output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

The LVCH16543A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

PIN CONFIGURATION

1OEAB	1	56	1OEBA
1LEAB	2	55	1LEBA
1CEAB	3	54	1CEBA
GND	4	53	GND
1A1	5	52	1B1
1A2	6	51	1B2
Vcc	7	50	Vcc
1A3	8	49	1B3
1A4	9	48	1B4
1A5	10	47	1B5
GND	11	46	GND
1A6	12	45	1B6
1A7	13	44	1B7
1A8	14	43	1B8
2A1	15	42	2B1
2A2	16	41	2B2
2A3	17	40	2B3
GND	18	39	GND
2A4	19	38	2B4
2A5	20	37	2B5
2A6	21	36	2B6
Vcc	22	35	Vcc
2A7	23	34	2B7
2A8	24	33	2B8
GND	25	32	GND
2CEAB	26	31	2CEBA
2LEAB	27	30	2LEBA
2OEAB	28	29	2OEBA

TSSOP
TOP VIEWABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +6.5	V
TSTG	Storage Temperature	-65 to +150	°C
I _{OUT}	DC Output Current	-50 to +50	mA
I _{IK}	Continuous Clamp Current, V _I < 0 or V _O < 0	-50	mA
I _{CC}	Continuous Current through each V _{CC} or GND	±100	mA
I _{SS}			

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

PIN DESCRIPTION

Pin Names	Description
x _{OEAB}	A-to-B Output Enable Input (Active LOW)
x _{OEBA}	B-to-A Output Enable Input (Active LOW)
x _{CEAB}	A-to-B Enable Input (Active LOW)
x _{CEBA}	B-to-A Enable Input (Active LOW)
x _{LEAB}	A-to-B Latch Enable Input (Active LOW)
x _{LEBA}	B-to-A Latch Enable Input (Active LOW)
x _{Ax}	A-to-B Data Inputs or B-to-A 3-State Outputs ⁽¹⁾
x _{Bx}	B-to-A Data Inputs or A-to-B 3-State Outputs ⁽¹⁾

NOTE:

1. These pins have "Bus-Hold". All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLE (EACH 8-BIT SECTION)^(1,2)

Inputs			Latch Status	Output Buffers
x _{CEAB}	x _{LEAB}	x _{OEAB}	x _{Ax} to x _{Bx}	x _{Bx}
H	X	X	Storing	High Z
X	X	H	Storing	High Z
L	L	L	Transparent	Current A Inputs
L	H	L	Storing	Previous ⁽³⁾ A Inputs
L	L	H	Transparent	High Z
L	H	H	Storing	High Z
X	H	X	Storing	Not Recommended

NOTES:

1. H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
Z = High-Impedance
2. A-to-B data flow is shown. B-to-A data flow is similar but uses x_{CEBA}, x_{LEBA}, and x_{OEBA}.
3. Before x_{LEAB} LOW-to-HIGH transition.

CAPACITANCE (T_A = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Typ.	Max.	Unit
C _{IN}	Input Capacitance	V _{IN} = 0V	4.5	6	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	6.5	8	pF
C _{I/O}	I/O Port Capacitance	V _{IN} = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$

Symbol	Parameter	Test Conditions		Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	V _{CC} = 2.3V to 2.7V		1.7	—	—	V
		V _{CC} = 2.7V to 3.6V		2	—	—	
VIL	Input LOW Voltage Level	V _{CC} = 2.3V to 2.7V		—	—	0.7	V
		V _{CC} = 2.7V to 3.6V		—	—	0.8	
I _{IH} I _{IL}	Input Leakage Current	V _{CC} = 3.6V	V _I = 0 to 5.5V	—	—	± 5	μA
I _{OZH} I _{OZL}	High Impedance Output Current (3-State Output pins)	V _{CC} = 3.6V	V _O = 0 to 5.5V	—	—	± 10	μA
I _{OFF}	Input/Output Power Off Leakage	V _{CC} = 0V, V _{IN} or V _O \leq 5.5V		—	—	± 50	μA
V _{IK}	Clamp Diode Voltage	V _{CC} = 2.3V, I _{IN} = -18mA		—	-0.7	-1.2	V
V _H	Input Hysteresis	V _{CC} = 3.3V		—	100	—	mV
I _{ICL} I _{ICCH} I _{ICCZ}	Quiescent Power Supply Current	V _{CC} = 3.6V	V _{IN} = GND or V _{CC}	—	—	10	μA
			3.6 \leq V _{IN} \leq 5.5V ⁽²⁾	—	—	10	
ΔI_{CC}	Quiescent Power Supply Current Variation	One input at V _{CC} - 0.6V, other inputs at V _{CC} or GND		—	—	500	μA

NOTES:

1. Typical values are at V_{CC} = 3.3V, $+25^{\circ}\text{C}$ ambient.

2. This applies in the disabled state only.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
I _{BHH} I _{BHL}	Bus-Hold Input Sustain Current	V _{CC} = 3V	V _I = 2V	-75	—	—	μA
			V _I = 0.8V	75	—	—	
I _{BHH} I _{BHL}	Bus-Hold Input Sustain Current	V _{CC} = 2.3V	V _I = 1.7V	—	—	—	μA
			V _I = 0.7V	—	—	—	
I _{BHHO} I _{BHLO}	Bus-Hold Input Overdrive Current	V _{CC} = 3.6V	V _I = 0 to 3.6V	—	—	± 500	μA

NOTES:

1. Pins with Bus-Hold are identified in the pin description.

2. Typical values are at V_{CC} = 3.3V, $+25^{\circ}\text{C}$ ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
VOH	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc - 0.2	—	V
		Vcc = 2.3V	IOH = - 6mA	2	—	
		Vcc = 2.3V	IOH = - 12mA	1.7	—	
		Vcc = 2.7V		2.2	—	
		Vcc = 3V	IOH = - 24mA	2.4	—	
		Vcc = 3V		2	—	
VOL	Output LOW Voltage	Vcc = 2.3V to 3.6V	IOL = 0.1mA	—	0.2	V
		Vcc = 2.3V	IOL = 6mA	—	0.4	
		Vcc = 2.7V	IOL = 12mA	—	0.7	
		Vcc = 3V	IOL = 12mA	—	0.4	
		Vcc = 3V	IOL = 24mA	—	0.55	

NOTE:

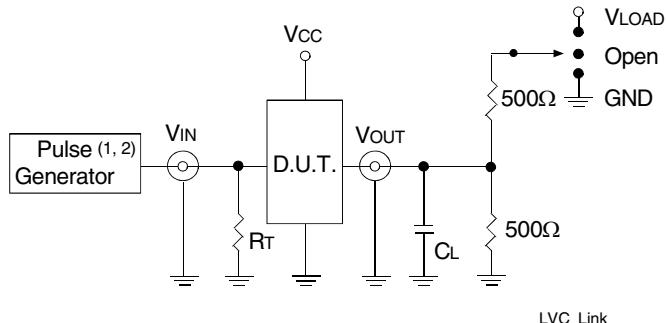
1. V_{IH} and V_{IL} must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate V_{cc} range. $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$.

OPERATING CHARACTERISTICS, $V_{cc} = 3.3\text{V} \pm 0.3\text{V}$, $T_A = 25^\circ\text{C}$

Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per Transceiver Outputs enabled	$CL = 0\text{pF}$, $f = 10\text{MHz}$	44	pF
CPD	Power Dissipation Capacitance per Transceiver Outputs disabled		4	

SWITCHING CHARACTERISTICS⁽¹⁾

Symbol	Parameter	$V_{cc} = 2.7\text{V}$		$V_{cc} = 3.3\text{V} \pm 0.3\text{V}$		Unit
		Min.	Max.	Min.	Max.	
t_{PLH}	Propagation Delay, Transparent Mode x_{Ax} to x_{Bx} or x_{Bx} to x_{Ax}	—	6.1	1.2	5.4	ns
t_{PHL}	Propagation Delay $x_{LEB\bar{A}}$ to x_{Ax} , $x_{LEA\bar{B}}$ to x_{Bx}	—	7.4	1.5	6.1	ns
t_{PZH}	Output Enable Time $x_{CEB\bar{A}}$ or $x_{CEA\bar{B}}$ to x_{Ax} or x_{Bx}	—	7.9	1.2	6.6	ns
t_{PZL}	Output Enable Time $x_{OE\bar{B}A}$ or $x_{OE\bar{A}B}$ to x_{Ax} or x_{Bx}	—	7.6	1	6.3	ns
t_{PHZ}	Output Disable Time $x_{CEB\bar{A}}$ or $x_{CEA\bar{B}}$ to x_{Ax} or x_{Bx}	—	7.1	1.5	6.6	ns
t_{PLZ}	Output Disable Time $x_{OE\bar{B}A}$ or $x_{OE\bar{A}B}$ to x_{Ax} or x_{Bx}	—	6.9	1.5	6.3	ns
t_{SU}	Set-up Time, data before $\bar{CE} \uparrow$	1.1	—	1.1	—	ns
t_{SU}	Set-up Time, data before $\bar{LE} \uparrow$, \bar{CE} LOW	1.1	—	1.1	—	ns
t_H	Hold Time, data after $\bar{CE} \uparrow$	1.9	—	1.9	—	ns
t_H	Hold Time, data after $\bar{LE} \uparrow$, \bar{CE} LOW	1.9	—	1.9	—	ns
t_W	Pulse Duration, $x_{LEB\bar{A}}$ or $x_{LEA\bar{B}}$, $x_{CEB\bar{A}}$ or $x_{CEA\bar{B}}$ LOW	3.3	—	3.3	—	ns
$t_{sk(o)}$	Output Skew ⁽²⁾	—	—	—	500	ps


NOTES:

1. See TEST CIRCUITS AND WAVEFORMS. $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$.
2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS

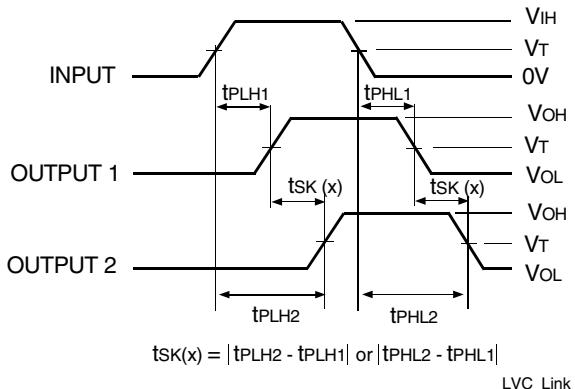
TEST CONDITIONS

Symbol	$V_{CC}^{(1)} = 3.3V \pm 0.3V$	$V_{CC}^{(1)} = 2.7V$	$V_{CC}^{(2)} = 2.5V \pm 0.2V$	Unit
V_{LOAD}	6	6	$2 \times V_{CC}$	V
V_{IH}	2.7	2.7	V_{CC}	V
V_T	1.5	1.5	$V_{CC} / 2$	V
V_{LZ}	300	300	150	mV
V_{HZ}	300	300	150	mV
C_L	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

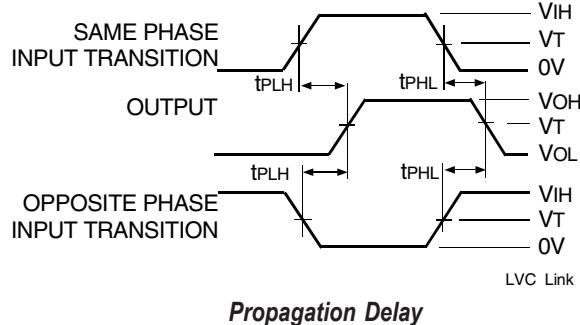
C_L = Load capacitance: includes jig and probe capacitance.

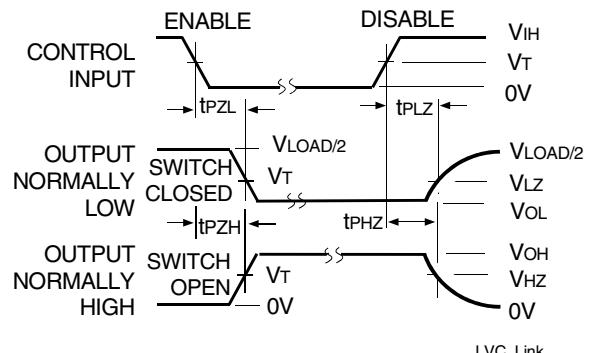

R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator.

NOTES:

1. Pulse Generator for All Pulses: Rate $\leq 10MHz$; $t_f \leq 2.5ns$; $t_r \leq 2.5ns$.
2. Pulse Generator for All Pulses: Rate $\leq 10MHz$; $t_f \leq 2ns$; $t_r \leq 2ns$.

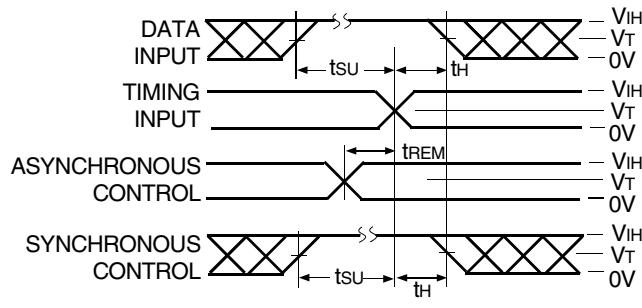
SWITCH POSITION

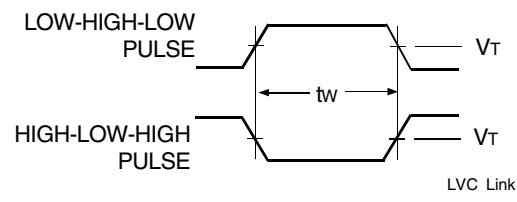

Test	Switch
Open Drain	
Disable Low	V_{LOAD}
Enable Low	
Disable High	GND
All Other Tests	Open


Output Skew - $tsk(x)$

NOTES:

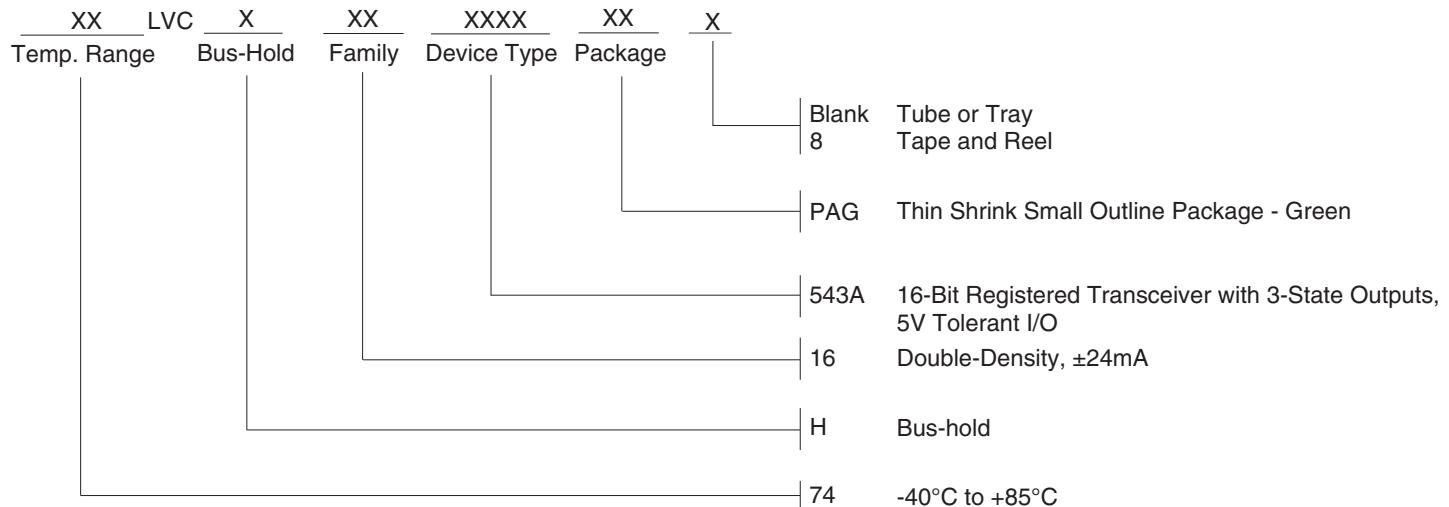
1. For $tsk(o)$ OUTPUT1 and OUTPUT2 are any two outputs.
2. For $tsk(b)$ OUTPUT1 and OUTPUT2 are in the same bank.


Propagation Delay


Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.



Set-up, Hold, and Release Times

Pulse Width

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

01/21/2016 Pg. 6

Updated the ordering information by removing IDT notation and adding Tape and Reel information.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.