
FEATURES:

- 0.5 MICRON CMOS Technology
- Typical $t_{sk(o)}$ (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- $V_{cc} = 3.3V \pm 0.3V$, Normal Range, or $V_{cc} = 2.7V$ to $3.6V$, Extended Range
- CMOS power levels (0.4 μ W typ. static)
- Rail-to-rail output swing for increased noise margin
- Low Ground Bounce (0.3V typ.)
- Inputs (except I/O) can be driven by 3.3V or 5V components
- Available in SSOP and TSSOP packages

DESCRIPTION:

The FCT163373 16-bit transparent D-type latches are built using advanced dual metal CMOS technology. These high-speed, low-power latches are ideal for temporary storage of data. They can be used for implementing memory address latches, I/O ports, and bus drivers. The Output Enable and Latch Enable controls are organized to operate each device as two 8-bit latches or one 16-bit latch. Flow-through organization of signal pins simplifies layout. All inputs are designed with hysteresis for improved noise margin.

The inputs of FCT163373 can be driven from either 3.3V or 5V devices. This feature allows the use of these transparent latches as translators in a mixed 3.3V/5V supply system. With xLE inputs high, the FCT163373 can be used as a buffer to connect 5V components to a 3.3V bus.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

1 \bar{OE}	1	48	1LE
1 O_1	2	47	1D1
1 O_2	3	46	1D2
GND	4	45	GND
1 O_3	5	44	1D3
1 O_4	6	43	1D4
V _{CC}	7	42	V _{CC}
1 O_5	8	41	1D5
1 O_6	9	40	1D6
GND	10	39	GND
1 O_7	11	38	1D7
1 O_8	12	37	1D8
2 O_1	13	36	2D1
2 O_2	14	35	2D2
GND	15	34	GND
2 O_3	16	33	2D3
2 O_4	17	32	2D4
V _{CC}	18	31	V _{CC}
2 O_5	19	30	2D5
2 O_6	20	29	2D6
GND	21	28	GND
2 O_7	22	27	2D7
2 O_8	23	26	2D8
2 \bar{OE}	24	25	2LE

SSOP/ TSSOP
TOP VIEW

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
V _{TERM} ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
V _{TERM} ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to 7	V
V _{TERM} ⁽⁴⁾	Terminal Voltage with Respect to GND	-0.5 to V _{CC} +0.5	V
T _{STG}	Storage Temperature	-65 to +150	°C
I _{OUT}	DC Output Current	-60 to +60	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. V_{CC} terminals.
3. Input terminals.
4. Outputs and I/O terminals.

CAPACITANCE (T_A = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Typ.	Max.	Unit
C _{IN}	Input Capacitance	V _{IN} = 0V	3.5	6	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	3.5	8	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description
x D_x	Data Inputs
x LE	Latch Enable Input (Active HIGH)
x \bar{OE}	Output Enable Input (Active LOW)
x O_x	3-State Outputs

FUNCTION TABLE⁽¹⁾

Inputs		Outputs	
x D_x	x LE	x \bar{OE}	x B_x
H	H	L	H
L	H	L	L
X	L	L	O ⁽²⁾
X	X	H	Z

NOTES:

1. H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
Z = High-Impedance
2. Output level before the indicated steady-state input conditions were established.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial: TA = -40°C to +85°C, VCC = 2.7V to 3.6V

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Level (Input pins)	Guaranteed Logic HIGH Level		2	—	5.5	V
	Input HIGH Level (I/O pins)			2	—	VCC+0.5	
VIL	Input LOW Level (Input and I/O pins)	Guaranteed Logic LOW Level		-0.5	—	0.8	V
I _{IH}	Input HIGH Current (Input pins)	VCC = Max.	VI = 5.5V	—	—	±1	μA
	Input HIGH Current (I/O pins)		VI = VCC	—	—	±1	
I _{IL}	Input LOW Current (Input pins)		VI = GND	—	—	±1	
	Input LOW Current (I/O pins)		VI = GND	—	—	±1	
I _{OZH}	High Impedance Output Current	VCC = Max.	VO = VCC	—	—	±1	μA
I _{OZL}	(3-State Output pins)		VO = GND	—	—	±1	
V _{IK}	Clamp Diode Voltage	VCC = Min., I _{IN} = -18mA		—	-0.7	-1.2	V
I _{ODH}	Output HIGH Current	VCC = 3.3V, VIN = VIH or VIL, VO = 1.5V ⁽³⁾		-36	-60	-110	mA
I _{ODL}	Output LOW Current	VCC = 3.3V, VIN = VIH or VIL, VO = 1.5V ⁽³⁾		50	90	200	mA
V _{OH}	Output HIGH Voltage	VCC = Min.	I _{OH} = -0.1mA	VCC-0.2	—	—	V
		VIN = VIH or VIL	I _{OH} = -3mA	2.4	3	—	
		VCC = 3V	I _{OH} = -8mA	2.4 ⁽⁵⁾	3	—	
V _{OL}	Output LOW Voltage	VCC = Min.	I _{OL} = 0.1mA	—	—	0.2	V
		VIN = VIH or VIL	I _{OL} = 16mA	—	0.2	0.4	
		VCC = 3V	I _{OL} = 24mA	—	0.3	0.55	
		VIN = VIH or VIL	I _{OL} = 24mA	—	0.3	0.5	
I _{OS}	Short Circuit Current ⁽⁴⁾	VCC = Max., VO = GND ⁽³⁾		-60	-135	-240	mA
V _H	Input Hysteresis	—		—	150	—	mV
I _{CCL} I _{CCH} I _{CCZ}	Quiescent Power Supply Current	VCC = Max. VIN = GND or VCC		—	0.1	10	μA

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at VCC = 3.3V, +25°C ambient.
3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
4. This parameter is guaranteed but not tested.
5. V_{OH} = VCC-0.6V at rated current.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
ΔI_{CC}	Quiescent Power Supply Current TTL Inputs HIGH	$V_{CC} = \text{Max.}$ $V_{IN} = V_{CC} - 0.6V^{(3)}$		—	2	30	μA
I_{CCD}	Dynamic Power Supply Current ⁽⁴⁾	$V_{CC} = \text{Max.}$ Outputs Open $x_{OE} = \text{GND}$ One Input Toggling 50% Duty Cycle	$V_{IN} = V_{CC}$ $V_{IN} = \text{GND}$	—	50	75	$\mu A / MHz$
I_C	Total Power Supply Current ⁽⁶⁾	$V_{CC} = \text{Max.}$, Outputs Open $f_i = 10MHz$ 50% Duty Cycle $x_{OE} = \text{GND}$ $x_{LE} = V_{CC}$ One Bit Toggling	$V_{IN} = V_{CC}$ $V_{IN} = \text{GND}$	—	0.5	0.8	mA
			$V_{IN} = V_{CC} - 0.6V$ $V_{IN} = \text{GND}$	—	0.5	0.8	
		$V_{CC} = \text{Max.}$, Outputs Open $f_i = 2.5MHz$ 50% Duty Cycle $x_{OE} = \text{GND}$ $x_{LE} = V_{CC}$ Sixteen Bits Toggling	$V_{IN} = V_{CC}$ $V_{IN} = \text{GND}$	—	2	3 ⁽⁵⁾	
			$V_{IN} = V_{CC} - 0.6V$ $V_{IN} = \text{GND}$	—	2	3.3 ⁽⁵⁾	

NOTES:

1. For conditions shown as max. or min., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at $V_{CC} = 3.3V$, $+25^\circ C$ ambient.

3. Per TTL driven input; all other inputs at V_{CC} or GND .

4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.

5. Values for these conditions are examples of the I_C formula. These limits are guaranteed but not tested.

6. $I_C = I_{QUIESCENT} + I_{INPUTS} + I_{DYNAMIC}$

$I_C = I_{CC} + \Delta I_{CC} D_{HNT} + I_{CCD} (f_{CP} N_{CP}/2 + f_i N_i)$

$I_{CC} = \text{Quiescent Current (}I_{CCL}, I_{CCH} \text{ and } I_{CCZ}\text{)}$

$\Delta I_{CC} = \text{Power Supply Current for a TTL High Input}$

$D_H = \text{Duty Cycle for TTL Inputs High}$

$N_T = \text{Number of TTL Inputs at } D_H$

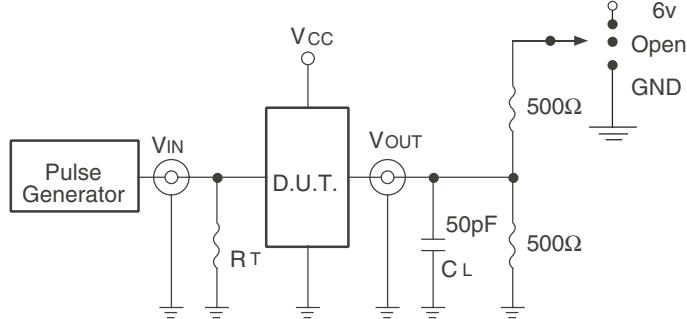
$I_{CCD} = \text{Dynamic Current Caused by an Input Transition Pair (}H\bar{L}H \text{ or } L\bar{H}L\text{)}$

$f_{CP} = \text{Clock Frequency for Register Devices (Zero for Non-Register Devices)}$

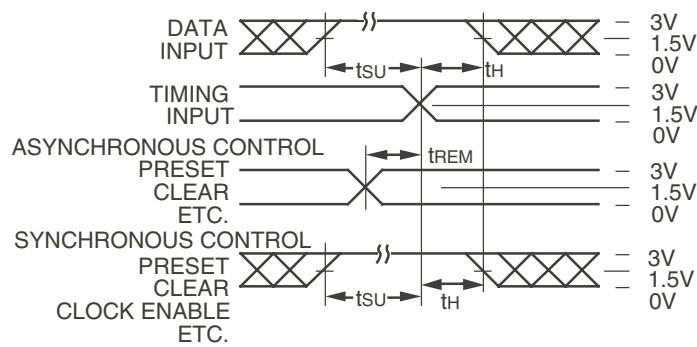
$N_{CP} = \text{Number of Clock Inputs at } f_{CP}$

$f_i = \text{Input Frequency}$

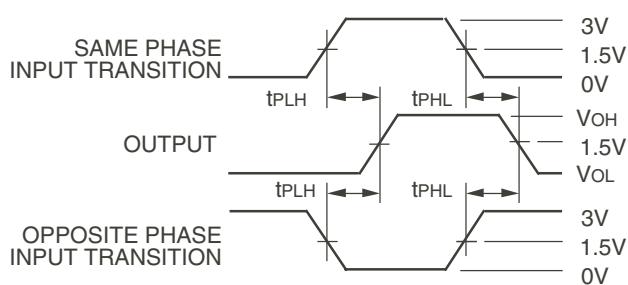
$N_i = \text{Number of Inputs at } f_i$


SWITCHING CHARACTERISTICS OVER OPERATING RANGE⁽¹⁾

Symbol	Parameter	Condition ⁽²⁾	FCT163373A		FCT163373C		Unit
			Min. ⁽³⁾	Max.	Min. ⁽³⁾	Max.	
t_{PLH}	Propagation Delay x_{Dx} to x_{Ox}	$C_L = 50\text{pF}$ $R_L = 500\Omega$	1.5	5.2	1.5	4.2	ns
t_{PHL}	Propagation Delay x_{LE} to x_{Ox}		2	8.5	2	5.5	ns
t_{PZH}	Output Enable Time		1.5	6.5	1.5	5.5	ns
t_{PZL}	Output Disable Time		1.5	5.5	1.5	5	ns
t_{SU}	Set-up Time HIGH or LOW, x_{Dx} to x_{LE}		2	—	2	—	ns
t_H	Hold Time HIGH or LOW, x_{Dx} to x_{LE}		1.5	—	1.5	—	ns
t_W	x_{LE} Pulse Width HIGH		5	—	5	—	ns
$t_{SK(0)}$	Output Skew ⁽⁴⁾		—	0.5	—	0.5	ns


NOTES:

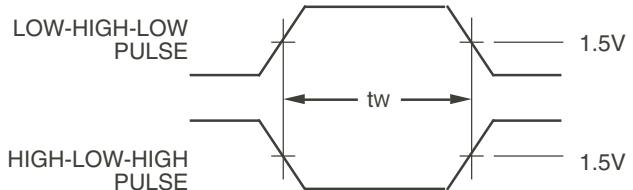
1. Propagation Delays and Enable/Disable times are with $V_{CC} = 3.3V \pm 0.3V$, Normal Range. For $V_{CC} = 2.7V$ to $3.6V$, Extended Range, all Propagation Delays and Enable/Disable times should be degraded by 20%.
2. See test circuit and waveforms.
3. Minimum limits are guaranteed but not tested on Propagation Delays.
4. Skew between any two outputs, of the same package, switching in the same direction. This parameter is guaranteed by design.


TEST CIRCUITS AND WAVEFORMS

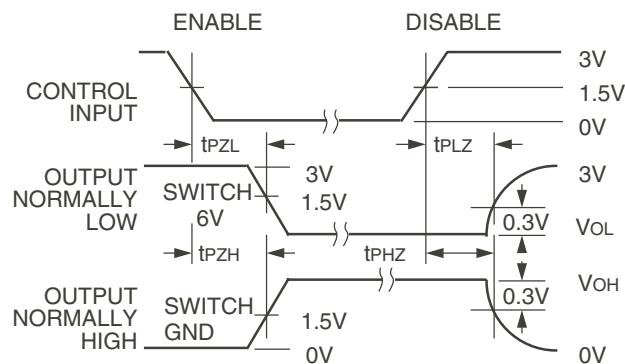
Test Circuits for All Outputs

Set-up, Hold, and Release Times

Propagation Delay


SWITCH POSITION

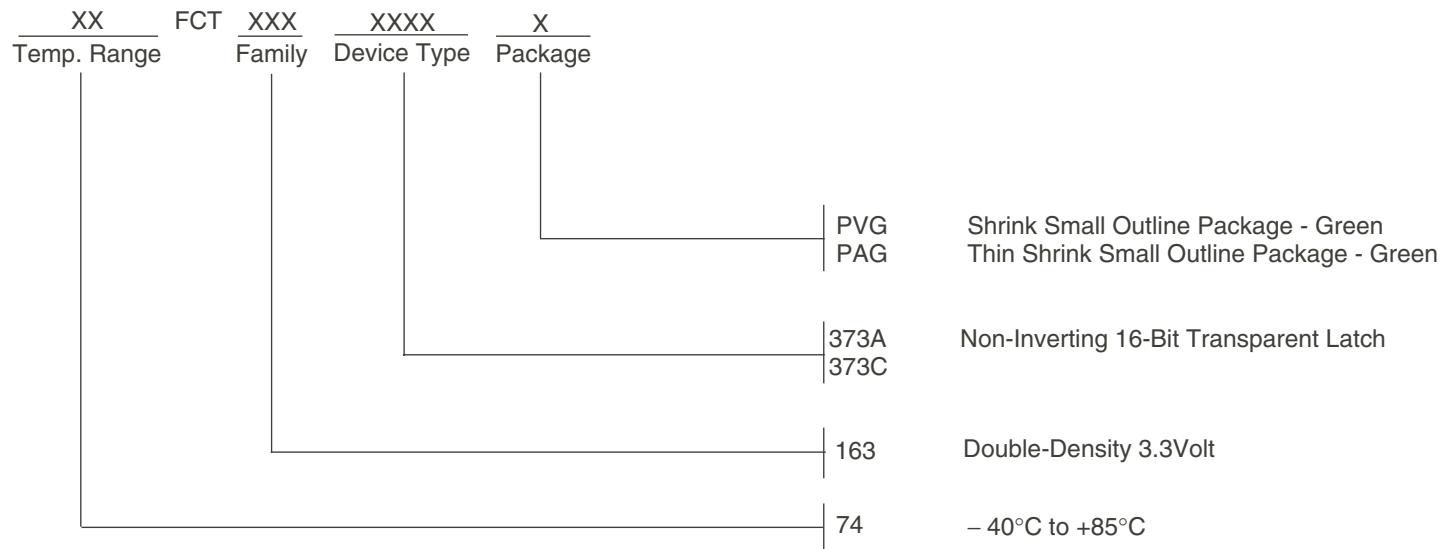
Test	Switch
Open Drain	6V
Disable Low	GND
Enable Low	Open
Disable High	GND
Enable High	Open
All Other Tests	Open


DEFINITIONS:

C_L = Load capacitance: includes jig and probe capacitance.

R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator.

Pulse Width



Enable and Disable Times

NOTES:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
2. Pulse Generator for All Pulses: Rate $\leq 1.0\text{MHz}$; $t_f \leq 2.5\text{ns}$; $t_r \leq 2.5\text{ns}$.
3. If V_{CC} is below 3V, input voltage swings should be adjusted not to exceed V_{CC} .

ORDERING INFORMATION

Datasheet Document History

09/10/09 Pg.7 Updated the ordering information by removing the "IDT" notation and non RoHS part.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.