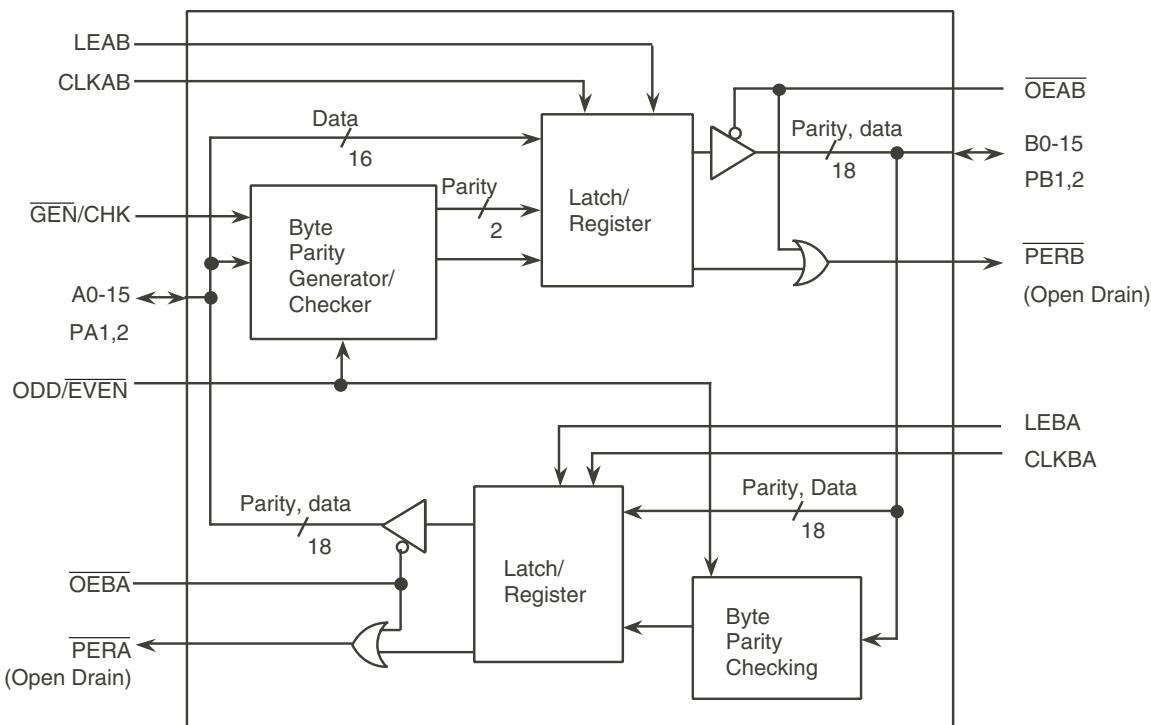


## FEATURES:

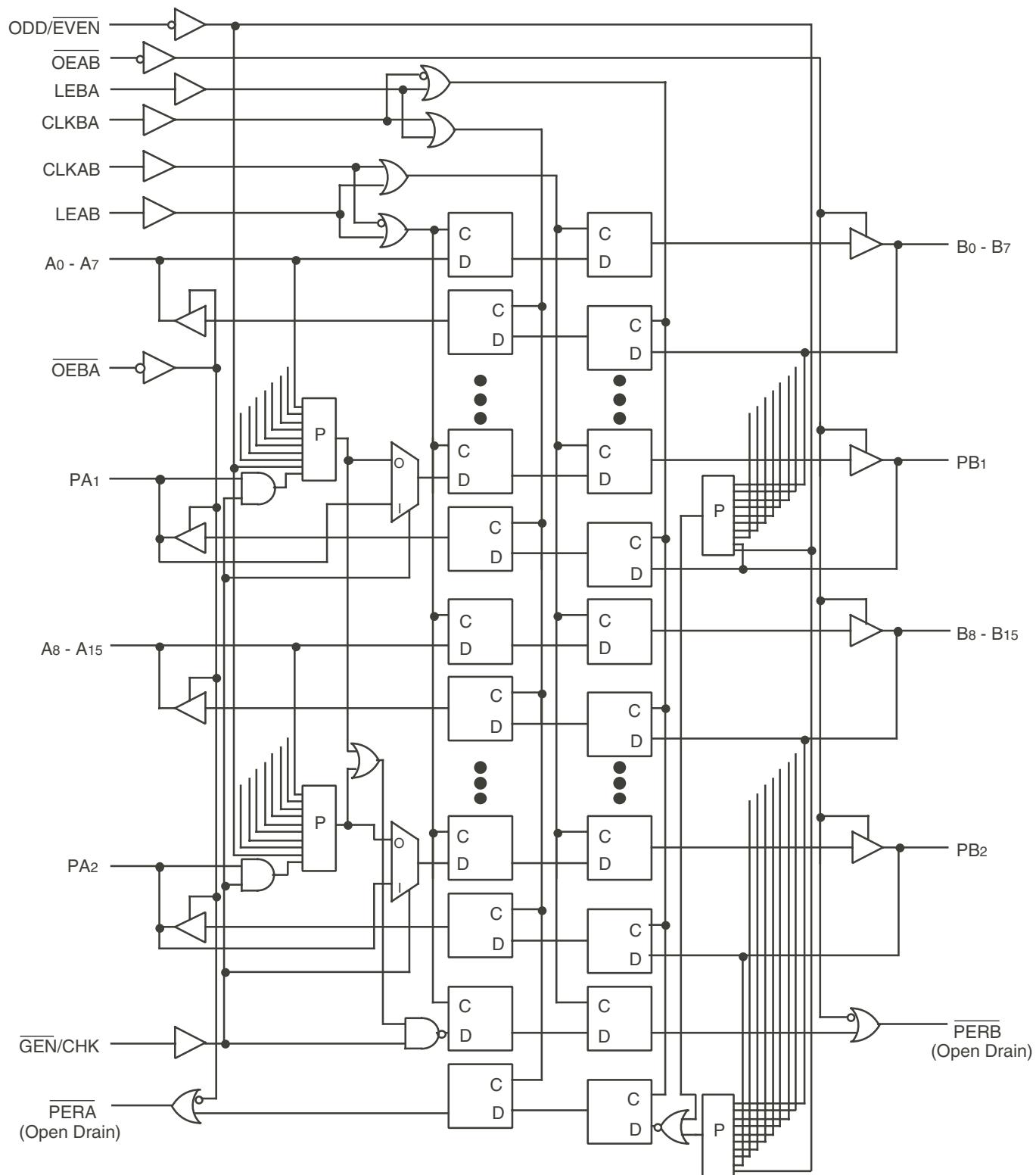

- 0.5 MICRON CMOS Technology
- Typical  $t_{sk(o)}$  (Output Skew) < 250ps, clocked mode
- Low input and output leakage  $\leq 1\mu\text{A}$  (max)
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model ( $C = 200\text{pF}$ ,  $R = 0$ )
- $V_{CC} = 5\text{V} \pm 10\%$
- Balanced Output Drivers:
  - $\pm 24\text{mA}$  (industrial)
  - $\pm 16\text{mA}$  (military)
- Series current limiting resistors
- Generate/Check, Check/Check modes
- Open drain parity error allows wire-OR
- Available in the following packages:
  - Industrial: SSOP, TSSOP
  - Military: CERPACK

## **DESCRIPTION:**

The FCT162511T 16-bit registered/latched transceiver with parity is built using advanced dual metal CMOS technology. This high-speed, low-power transceiver combines D-type latches and D-type flip-flops to allow data flow in transparent, latched, or clocked modes. The device has a parity generator/checker in the A-to-B direction and a parity checker in the B-to-A direction. Error checking is done at the byte level with separate parity bits for each byte. Separate error flags exist for each direction with a single error flag indicating an error for either byte in the A-to-B direction and a second error flag indicating an error for either byte in the B-to-A direction. The parity error flags are open drain outputs which can be tied together and/or tied with flags from other devices to form a single error flag or interrupt. The parity error flags are enabled by the  $\overline{OE_{xx}}$  control pins allowing the designer to disable the error flag during combinational transitions.

The control pins LEAB, CLKAB, and OEAB control operation in the A-to-B direction while LEBA, CLKBA, and OEBA control the B-to-A direction. GEN/CHK is only for the selection of A-to-B operation. The B-to-A direction is always in checking mode. The ODD/EVEN select is common between the two directions. Except for the ODD/EVEN control, independent operation can be achieved between the two directions by using the corresponding control lines.

## FUNCTIONAL BLOCK DIAGRAM




The IDT logo is a registered trademark of Integrated Device Technology, Inc.

## **MILITARY AND INDUSTRIAL TEMPERATURE RANGES**

## SEPTEMBER 2009

## BLOCK DIAGRAM



## PIN CONFIGURATION

|      |    |    |          |
|------|----|----|----------|
| OEAB | 1  | 56 | GEN/CHK  |
| LEAB | 2  | 55 | CLKAB    |
| PA1  | 3  | 54 | PB1      |
| GND  | 4  | 53 | GND      |
| A0   | 5  | 52 | B0       |
| A1   | 6  | 51 | B1       |
| Vcc  | 7  | 50 | Vcc      |
| A2   | 8  | 49 | B2       |
| A3   | 9  | 48 | B3       |
| A4   | 10 | 47 | B4       |
| A5   | 11 | 46 | B5       |
| A6   | 12 | 45 | B6       |
| A7   | 13 | 44 | B7       |
| GND  | 14 | 43 | PERB     |
| PERA | 15 | 42 | GND      |
| A8   | 16 | 41 | B8       |
| A9   | 17 | 40 | B9       |
| A10  | 18 | 39 | B10      |
| A11  | 19 | 38 | B11      |
| A12  | 20 | 37 | B12      |
| A13  | 21 | 36 | B13      |
| Vcc  | 22 | 35 | Vcc      |
| A14  | 23 | 34 | B14      |
| A15  | 24 | 33 | B15      |
| GND  | 25 | 32 | GND      |
| PA2  | 26 | 31 | PB2      |
| OEBA | 27 | 30 | CLKBA    |
| LEBA | 28 | 29 | ODD/EVEN |

SSOP/ TSSOP/ CERPACK  
TOP VIEW

## ABSOLUTE MAXIMUM RATINGS<sup>(1)</sup>

| Symbol               | Description                          | Max             | Unit |
|----------------------|--------------------------------------|-----------------|------|
| VTERM <sup>(2)</sup> | Terminal Voltage with Respect to GND | -0.5 to 7       | V    |
| VTERM <sup>(3)</sup> | Terminal Voltage with Respect to GND | -0.5 to Vcc+0.5 | V    |
| TSTG                 | Storage Temperature                  | -65 to +150     | °C   |
| IOUT                 | DC Output Current                    | -60 to +120     | mA   |

### NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. All device terminals except FCT162XXX Output and I/O terminals.
3. Output and I/O terminals for FCT162XXX.

## CAPACITANCE (TA = +25°C, F = 1.0MHz)

| Symbol           | Parameter <sup>(1)</sup> | Conditions            | Typ. | Max. | Unit |
|------------------|--------------------------|-----------------------|------|------|------|
| C <sub>IN</sub>  | Input Capacitance        | V <sub>IN</sub> = 0V  | 3.5  | 6    | pF   |
| C <sub>I/O</sub> | I/O Capacitance          | V <sub>OUT</sub> = 0V | 3.5  | 8    | pF   |
| C <sub>O</sub>   | Open Drain Capacitance   | V <sub>OUT</sub> = 0V | 3.5  | 6    | pF   |

## PIN DESCRIPTION

| Pin Names          | Description                                  |
|--------------------|----------------------------------------------|
| OEAB               | A-to-B Output Enable Input (Active LOW)      |
| OEBA               | B-to-A Output Enable Input (Active LOW)      |
| LEAB               | A-to-B Latch Enable Input                    |
| LEBA               | B-to-A Latch Enable Input                    |
| CLKAB              | A-to-B Clock Input                           |
| CLKBA              | B-to-A Clock Input                           |
| Ax                 | A-to-B Data Inputs or B-to-A 3-State Outputs |
| Bx                 | B-to-A Data Inputs or A-to-B 3-State Outputs |
| PERA               | Parity Error (Open Drain) on A Outputs       |
| PERB               | Parity Error (Open Drain) on B Outputs       |
| PAx <sup>(1)</sup> | A-to-B Parity Input, B-to-A Parity Output    |
| PBx                | B-to-A Parity Input, A-to-B Parity Output    |
| ODD/EVEN           | Parity Mode Selection Input                  |
| GEN/CHK            | A to B Port Generate or Check Mode Input     |

### NOTE:

1. The PAx pin input is internally disabled during parity generation. This means that when generating parity in the A to B direction there is no need to add a pull up resistor to guarantee state. The pin will still function properly as the parity output for the B to A direction.

## FUNCTION TABLE(1, 4)

| Inputs            |      |       | Outputs |           |
|-------------------|------|-------|---------|-----------|
| $\overline{OEAB}$ | LEAB | CLKAB | $A_x$   | $B_x$     |
| H                 | X    | X     | X       | Z         |
| L                 | H    | X     | L       | L         |
| L                 | H    | X     | H       | H         |
| L                 | L    | ↑     | L       | L         |
| L                 | L    | ↑     | H       | H         |
| L                 | L    | L     | X       | $B^{(2)}$ |
| L                 | L    | H     | X       | $B^{(3)}$ |

### NOTES:

1. A-to-B data flow is shown. B-to-A data flow is similar but uses  $\overline{OEBA}$ , LEBA, and CLKBA.
2. Output level before the indicated steady-state input conditions were established.
3. Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW.
4. H = HIGH Voltage Level
5. L = LOW Voltage Level
6. X = Don't Care
7. Z = High-impedance
8. ↑ = LOW-to-HIGH Transition

## FUNCTION TABLE (PARITY CHECKING) (1, 2, 3, 4)

| $A_0 - A_7$ and $PA_1^{(5)}$<br>Number of inputs that are high | $\overline{ODD/EVEN}$ | $\overline{PERB}$ |
|----------------------------------------------------------------|-----------------------|-------------------|
| 1, 3, 5, 7 or 9                                                | L                     | L                 |
| 1, 3, 5, 7 or 9                                                | H                     | $H^{(6)}$         |
| 0, 2, 4, 6 or 8                                                | L                     | $H^{(6)}$         |
| 0, 2, 4, 6 or 8                                                | H                     | L                 |

### NOTES:

1. Conditions shown are for  $\overline{GEN/CHK} = H$ ,  $\overline{OEAB} = L$ ,  $\overline{OEBA} = H$ .
2. A-to-B parity checking is shown. B-to-A parity checking is similar but uses  $\overline{OEBA} = L$ ,  $\overline{OEAB} = H$  and errors will be indicated on  $\overline{PERA}$ .
3. In parity checking mode the parity bits will be transmitted unchanged along with the corresponding data regardless of parity errors ( $PA_1 = PA_0$ ).
4. The response shown is for LEAB = H. If LEAB = L then CLKAB will control as an edge triggered clock.
5. Conditions shown are for the byte  $A_0 - A_7$  and  $PA_1$ . The byte  $A_8 - A_{15}$  and  $PA_2$  is similar.
6. The parity error flag  $\overline{PERB}$  is a combined flag for both bytes  $A_0 - A_7$  and  $A_8 - A_{15}$ . If a parity error occurs on either byte  $\overline{PERB}$  will go low.  $\overline{PERB}$  is an open drain output which must be externally pulled up to achieve a logic HIGH.

## FUNCTION TABLE (PARITY GENERATION) (1, 2, 3, 4, 5)

| $A_0 - A_7$<br>Number of inputs that are high | $\overline{ODD/EVEN}$ | $PA_1$ |
|-----------------------------------------------|-----------------------|--------|
| 1, 3, 5 or 7                                  | L                     | H      |
| 1, 3, 5 or 7                                  | H                     | L      |
| 0, 2, 4, 6 or 8                               | L                     | L      |
| 0, 2, 4, 6 or 8                               | H                     | H      |

### NOTES:

1. Conditions shown are for  $\overline{GEN/CHK} = L$ ,  $\overline{OEAB} = L$ ,  $\overline{OEBA} = H$ .
2. A-to-B parity checking is shown. B-to-A is capable of parity checking while A-to-B is performing generation. B-to-A will not generate parity.
3. The response shown is for LEAB = H. If LEAB = L then CLKAB will control as an edge triggered clock.
4. Conditions shown are for the byte  $A_0 - A_7$ . The byte  $A_8 - A_{15}$  is similar but will output the parity on  $PA_2$ .
5. The error flag  $\overline{PERB}$  will remain in a high state during parity generation.

## DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial:  $TA = -40^{\circ}\text{C}$  to  $+85^{\circ}\text{C}$ ,  $V_{CC} = 5.0\text{V} \pm 10\%$ ; Military:  $TA = -55^{\circ}\text{C}$  to  $+125^{\circ}\text{C}$ ,  $V_{CC} = 5.0\text{V} \pm 10\%$

| Symbol                              | Parameter                                      | Test Conditions <sup>(1)</sup>                             |                     | Min. | Typ. <sup>(2)</sup> | Max.    | Unit          |
|-------------------------------------|------------------------------------------------|------------------------------------------------------------|---------------------|------|---------------------|---------|---------------|
| $V_{IH}$                            | Input HIGH Level                               | Guaranteed Logic HIGH Level                                |                     | 2    | —                   | —       | V             |
| $V_{IL}$                            | Input LOW Level                                | Guaranteed Logic LOW Level                                 |                     | —    | —                   | 0.8     | V             |
| $I_{IH}$                            | Input HIGH Current (Input pins) <sup>(5)</sup> | $V_{CC} = \text{Max.}$                                     | $V_I = V_{CC}$      | —    | —                   | $\pm 1$ | $\mu\text{A}$ |
|                                     | Input HIGH Current (I/O pins) <sup>(5)</sup>   |                                                            |                     | —    | —                   | $\pm 1$ |               |
| $I_{IL}$                            | Input LOW Current (Input pins) <sup>(5)</sup>  |                                                            | $V_I = \text{GND}$  | —    | —                   | $\pm 1$ |               |
|                                     | Input LOW Current (I/O pins) <sup>(5)</sup>    |                                                            |                     | —    | —                   | $\pm 1$ |               |
| $I_{OZH}$                           | High Impedance Output Current                  | $V_{CC} = \text{Max.}$                                     | $V_O = 2.7\text{V}$ | —    | —                   | $\pm 1$ | $\mu\text{A}$ |
| $I_{OZL}$                           | (3-State Output pins) <sup>(5)</sup>           |                                                            | $V_O = 0.5\text{V}$ | —    | —                   | $\pm 1$ |               |
| $V_{IK}$                            | Clamp Diode Voltage                            | $V_{CC} = \text{Min.}$ , $I_{IN} = -18\text{mA}$           |                     | —    | -0.7                | -1.2    | V             |
| $I_{OS}$                            | Short Circuit Current                          | $V_{CC} = \text{Max.}$ , $V_O = \text{GND}$ <sup>(3)</sup> |                     | -80  | -140                | -250    | mA            |
| $V_H$                               | Input Hysteresis                               | —                                                          |                     | —    | 100                 | —       | mV            |
| $I_{CCL}$<br>$I_{CCH}$<br>$I_{CCZ}$ | Quiescent Power Supply Current                 | $V_{CC} = \text{Max.}$<br>$V_{IN} = \text{GND or } V_{CC}$ |                     | —    | 5                   | 500     | $\mu\text{A}$ |

## OUTPUT DRIVE CHARACTERISTICS

| Symbol    | Parameter                                                       |              | Test Conditions <sup>(1)</sup>                                                            | Min.                                                       | Typ. <sup>(2)</sup> | Max.    | Unit          |   |
|-----------|-----------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------|---------|---------------|---|
| $I_{ODL}$ | Output LOW Current<br>(I/O pins)                                | (Open Drain) | $V_{CC} = 5\text{V}$ , $V_{IN} = V_{IH}$ or $V_{IL}$ , $V_O = 1.5\text{V}$ <sup>(3)</sup> | 60                                                         | 115                 | 200     | mA            |   |
|           |                                                                 |              |                                                                                           | —                                                          | 250                 | —       | mA            |   |
| $I_{ODH}$ | Output HIGH Current                                             |              | $V_{CC} = 5\text{V}$ , $V_{IN} = V_{IH}$ or $V_{IL}$ , $V_O = 1.5\text{V}$ <sup>(3)</sup> | -60                                                        | -115                | -200    | mA            |   |
| $I_{OFF}$ | Output Power Off Leakage Current<br>(Open Drain) <sup>(5)</sup> |              | $V_{CC} = 0$ , $V_O \leq 5.5\text{V}$                                                     | —                                                          | —                   | $\pm 1$ | $\mu\text{A}$ |   |
| $V_{OH}$  | Output HIGH Voltage (I/O pins)                                  |              | $V_{CC} = \text{Min.}$<br>$V_{IN} = V_{IH}$ or $V_{IL}$                                   | $I_{OH} = -16\text{mA}$ MIL<br>$I_{OH} = -24\text{mA}$ IND | 2.4                 | 3.3     | —             | V |
| $V_{OL}$  | Output LOW Voltage<br>(I/O pins)                                | (Open Drain) | $V_{CC} = \text{Min.}$<br>$V_{IN} = V_{IH}$ or $V_{IL}$                                   | $I_{OL} = 16\text{mA}$ MIL<br>$I_{OL} = 24\text{mA}$ IND   | —                   | 0.3     | 0.55          | V |
|           |                                                                 |              |                                                                                           | $I_{OL} = 48\text{mA}$ MIL<br>$I_{OL} = 64\text{mA}$ IND   | —                   | 0.3     | 0.55          | V |

### NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at  $V_{CC} = 5.0\text{V}$ ,  $+25^{\circ}\text{C}$  ambient.
3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
4. Duration of the condition can not exceed one second.
5. The test limit for this parameter is  $\pm 5\mu\text{A}$  at  $TA = -55^{\circ}\text{C}$ .

## POWER SUPPLY CHARACTERISTICS

| Symbol           | Parameter                                         | Test Conditions <sup>(1)</sup>                                                                                                                                                                                                                             |                                                            | Min. | Typ. <sup>(2)</sup> | Max.                | Unit       |
|------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------|---------------------|---------------------|------------|
| $\Delta I_{CC}$  | Quiescent Power Supply Current<br>TTL Inputs HIGH | V <sub>CC</sub> = Max.<br>V <sub>IN</sub> = 3.4V <sup>(3)</sup>                                                                                                                                                                                            | All other Input Pins                                       |      | —                   | 0.5                 | 1.5        |
|                  |                                                   |                                                                                                                                                                                                                                                            | Parity Input Pins (P <sub>Ax</sub> , P <sub>Bx</sub> )     |      | —                   | 1                   | 2.5        |
| I <sub>CCD</sub> | Dynamic Power Supply Current <sup>(4)</sup>       | V <sub>CC</sub> = Max.<br>Outputs Open<br>OE <sub>AB</sub> = GND, OE <sub>BA</sub> = V <sub>CC</sub><br>One Input Toggling<br>50% Duty Cycle                                                                                                               | V <sub>IN</sub> = V <sub>CC</sub><br>V <sub>IN</sub> = GND | —    | 75                  | 120                 | µA/<br>MHz |
| I <sub>C</sub>   | Total Power Supply Current <sup>(6)</sup>         | V <sub>CC</sub> = Max.<br>Outputs Open<br>f <sub>CP</sub> = 10MHz (CLKAB)<br>50% Duty Cycle<br>OE <sub>AB</sub> = GND, OE <sub>BA</sub> = V <sub>CC</sub><br>LE <sub>AB</sub> = GND<br>One Bit Toggling<br>f <sub>i</sub> = 5MHz<br>50% Duty Cycle         | V <sub>IN</sub> = V <sub>CC</sub><br>V <sub>IN</sub> = GND | —    | 0.8                 | 1.7                 | mA         |
|                  |                                                   |                                                                                                                                                                                                                                                            | V <sub>IN</sub> = 3.4V<br>V <sub>IN</sub> = GND            | —    | 1.3                 | 3.2                 |            |
|                  |                                                   | V <sub>CC</sub> = Max.<br>Outputs Open<br>f <sub>CP</sub> = 10MHz (CLKAB)<br>50% Duty Cycle<br>OE <sub>AB</sub> = GND, OE <sub>BA</sub> = V <sub>CC</sub><br>LE <sub>AB</sub> = GND<br>Eighteen Bits Toggling<br>f <sub>i</sub> = 2.5MHz<br>50% Duty Cycle | V <sub>IN</sub> = V <sub>CC</sub><br>V <sub>IN</sub> = GND | —    | 3.8                 | 6.5 <sup>(5)</sup>  |            |
|                  |                                                   |                                                                                                                                                                                                                                                            | V <sub>IN</sub> = 3.4V<br>V <sub>IN</sub> = GND            | —    | 9                   | 21.8 <sup>(5)</sup> |            |

### NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at V<sub>CC</sub> = 5.0V, +25°C ambient.

3. Per TTL driven input (V<sub>IN</sub> = 3.4V). All other inputs at V<sub>CC</sub> or GND.

4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.

5. Values for these conditions are examples of the I<sub>CC</sub> formula. These limits are guaranteed but not tested.

6.  $I_C = I_{QUIESCENT} + I_{INPUTS} + I_{DYNAMIC}$

$I_C = I_{CC} + \Delta I_{CC} D_{HNT} + I_{CCD} (f_{CP} N_{CP}/2 + f_i N_i)$

I<sub>CC</sub> = Quiescent Current (I<sub>CC1</sub>, I<sub>CC2</sub> and I<sub>CC3</sub>)

$\Delta I_{CC}$  = Power Supply Current for a TTL High Input (V<sub>IN</sub> = 3.4V)

D<sub>H</sub> = Duty Cycle for TTL Inputs High

N<sub>T</sub> = Number of TTL Inputs at D<sub>H</sub>

I<sub>CCD</sub> = Dynamic Current caused by an Input Transition Pair (HLH or LHL)

f<sub>CP</sub> = Clock Frequency for Register Devices (Zero for Non-Register Devices)

N<sub>CP</sub> = Number of Clock Inputs at f<sub>CP</sub>

f<sub>i</sub> = Input Frequency

N<sub>i</sub> = Number of Inputs at f<sub>i</sub>

## SWITCHING CHARACTERISTICS OVER OPERATING RANGE (PROPAGATION DELAYS)

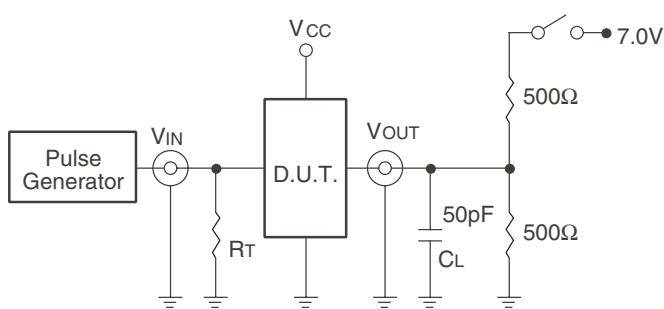
| Symbol          | Parameter                                                                                                                          | Condition <sup>(1)</sup>                 | FCT162511AT         |      |                     |      | FCT162511CT         |      |                     |      | Unit |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------|------|---------------------|------|---------------------|------|---------------------|------|------|--|
|                 |                                                                                                                                    |                                          | Ind.                |      | Mil.                |      | Ind.                |      | Mil.                |      |      |  |
|                 |                                                                                                                                    |                                          | Min. <sup>(2)</sup> | Max. |      |  |
| $t_{PLH}$       | Propagation Delay, PAx to PBx<br>Ax to Bx or Bx to Ax, PBx to PAx                                                                  | $C_L = 50\text{pF}$<br>$R_L = 500\Omega$ | 1.5                 | 5    | 1.5                 | 5.3  | 1.5                 | 4.2  | 1.5                 | 4.5  | ns   |  |
| $t_{PLH}$       | Propagation Delay<br>Ax to PBx                                                                                                     |                                          | 1.5                 | 7.5  | 1.5                 | 8    | 1.5                 | 6.5  | 1.5                 | 6.8  | ns   |  |
| $t_{PLH}^{(3)}$ | Propagation Delay<br>Ax to PERB, PAx to $\overline{\text{PERB}}$                                                                   |                                          | 1.5                 | 9    | 1.5                 | 9    | 1.5                 | 7.5  | 1.5                 | 7.8  | ns   |  |
| $t_{PLH}$       | Propagation Delay<br>Ax to PERB, PAx to $\overline{\text{PERB}}$                                                                   |                                          | 1.5                 | 8    | 1.5                 | 8    | 1.5                 | 6.5  | 1.5                 | 6.8  | ns   |  |
| $t_{PLH}^{(3)}$ | Propagation Delay<br>Bx to PERA, PBx to $\overline{\text{PERA}}$                                                                   |                                          | 1.5                 | 9    | 1.5                 | 9    | 1.5                 | 7.5  | 1.5                 | 7.8  | ns   |  |
| $t_{PLH}$       | Propagation Delay<br>Bx to PERA, PBx to $\overline{\text{PERA}}$                                                                   |                                          | 1.5                 | 8    | 1.5                 | 8    | 1.5                 | 6.5  | 1.5                 | 6.8  | ns   |  |
| $t_{PLH}$       | Propagation Delay<br>LEBA to Ax and PAx<br>LEAB to Bx and PBx                                                                      |                                          | 1.5                 | 5.6  | 1.5                 | 6    | 1.5                 | 5.3  | 1.5                 | 5.5  | ns   |  |
| $t_{PLH}^{(3)}$ | Propagation Delay<br>LEBA to $\overline{\text{PERA}}$ , LEAB to $\overline{\text{PERB}}$                                           |                                          | 1.5                 | 7    | 1.5                 | 7    | 1.5                 | 6    | 1.5                 | 6.3  | ns   |  |
| $t_{PLH}$       | Propagation Delay<br>CLKBA to Ax and PAx<br>CLKAB to Bx and PBx                                                                    |                                          | 1.5                 | 6    | 1.5                 | 6    | 1.5                 | 5    | 1.5                 | 5.3  | ns   |  |
| $t_{PLH}^{(3)}$ | Propagation Delay<br>CLKBA to $\overline{\text{PERA}}$<br>CLKAB to $\overline{\text{PERB}}$                                        |                                          | 1.5                 | 5.6  | 1.5                 | 6    | 1.5                 | 5.3  | 1.5                 | 5.5  | ns   |  |
| $t_{PZH}$       | Output Enable Time<br>$\overline{\text{OEBA}}$ to Ax and PAx<br>$\overline{\text{OEAB}}$ to Bx and PBx                             |                                          | 1.5                 | 6    | 1.5                 | 6.5  | 1.5                 | 5.6  | 1.5                 | 5.8  | ns   |  |
| $t_{PLZ}$       | Output Disable Time<br>$\overline{\text{OEBA}}$ to Ax and PAx<br>$\overline{\text{OEAB}}$ to Bx and PBx                            |                                          | 1.5                 | 5.6  | 1.5                 | 6    | 1.5                 | 5.2  | 1.5                 | 5.5  | ns   |  |
| $t_{PLZ}^{(3)}$ | Parity ERROR Enable<br>$\overline{\text{OEBA}}$ to $\overline{\text{PERA}}$ , $\overline{\text{OEAB}}$ to $\overline{\text{PERB}}$ |                                          | 1.5                 | 6    | 1.5                 | 6.3  | 1.5                 | 6    | 1.5                 | 6.3  | ns   |  |
| $t_{PLZ}$       | Parity ERROR Enable<br>$\overline{\text{OEBA}}$ to $\overline{\text{PERA}}$ , $\overline{\text{OEAB}}$ to $\overline{\text{PERB}}$ |                                          | 1.5                 | 6    | 1.5                 | 6.3  | 1.5                 | 6    | 1.5                 | 6.3  | ns   |  |
| $t_{PLH}^{(3)}$ | ODD/ $\overline{\text{EVEN}}$ to $\overline{\text{PERx}}$                                                                          |                                          | 1.5                 | 10   | 1.5                 | 10   | 1.5                 | 10   | 1.5                 | 10   | ns   |  |
| $t_{PLH}$       | ODD/ $\overline{\text{EVEN}}$ to $\overline{\text{PERx}}$                                                                          |                                          | 1.5                 | 10   | 1.5                 | 10   | 1.5                 | 10   | 1.5                 | 10   | ns   |  |
| $t_{PLH}$       | ODD/ $\overline{\text{EVEN}}$ to PBx                                                                                               |                                          | 1.5                 | 10   | 1.5                 | 10   | 1.5                 | 10   | 1.5                 | 10   | ns   |  |

## NOTES:

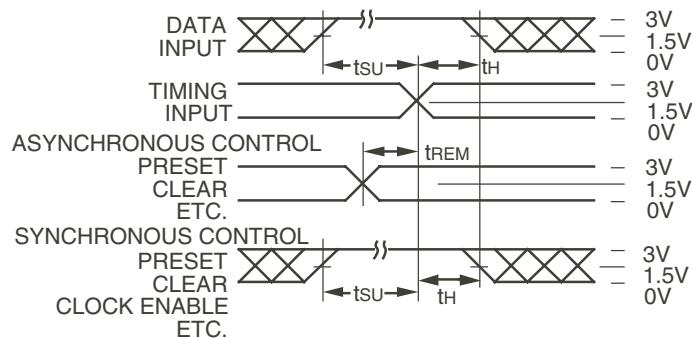
1. See test circuits and waveforms.
2. Minimum limits are guaranteed but not tested on Propagation Delays.
3. On Open Drain Outputs  $t_{PLH}$  is measured at  $V_{OUT} = V_{OL} + 0.3V$ .

## SWITCHING CHARACTERISTICS OVER OPERATING RANGE (SET UP TIMES)

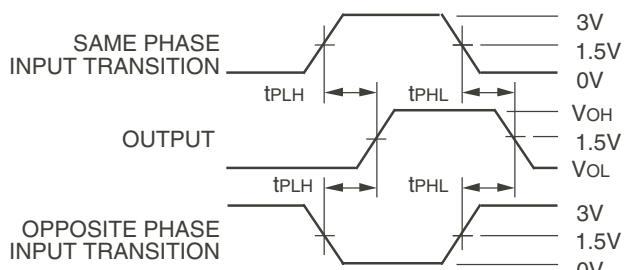
| Symbol | Parameter                                   | Test Conditions <sup>(1, 3)</sup> |                |                        |     | FCT162511AT |      | FCT162511CT |      | Unit |     |   |    |
|--------|---------------------------------------------|-----------------------------------|----------------|------------------------|-----|-------------|------|-------------|------|------|-----|---|----|
|        |                                             |                                   |                |                        |     | Ind.        |      | Mil.        |      |      |     |   |    |
|        |                                             |                                   |                |                        |     | Min.        | Max. | Min.        | Max. |      |     |   |    |
| tsu    | Set-up Time<br>HIGH or LOW<br>Ax to CLKAB   | GEN/CHK LOW                       | PBx valid      | CL = 50pF<br>RL = 500Ω | 4   | —           | 4    | —           | 3    | —    | 3.5 | — | ns |
|        |                                             |                                   | PBx not valid  |                        | 3   | —           | 3    | —           | 3    | —    | 3   | — | ns |
|        |                                             | GEN/CHK HIGH                      | PERB valid     |                        | 4   | —           | 4    | —           | 3    | —    | 3   | — | ns |
|        |                                             |                                   | PERB not valid |                        | 3   | —           | 3    | —           | 3    | —    | 3   | — | ns |
|        | Set-up Time<br>PAx to CLKAB                 | GEN/CHK HIGH                      | PERB valid     | CL = 50pF<br>RL = 500Ω | 4   | —           | 4    | —           | 3    | —    | 3   | — | ns |
|        |                                             |                                   | PERB not valid |                        | 3   | —           | 3    | —           | 3    | —    | 3   | — | ns |
|        | Set-up Time<br>Bx to CLKBA,<br>PBx to CLKBA |                                   | PERA valid     |                        | 4   | —           | 4    | —           | 3    | —    | 3   | — | ns |
|        |                                             |                                   | PERA not valid |                        | 3   | —           | 4    | —           | 3    | —    | 3   | — | ns |
| tsu    | Set-up Time<br>Ax to LEAB                   | CLKAB LOW                         | PBx valid      | CL = 50pF<br>RL = 500Ω | 3.5 | —           | 3.5  | —           | 3    | —    | 3   | — | ns |
|        |                                             |                                   | PBx not valid  |                        | 3   | —           | 3    | —           | 3    | —    | 3   | — | ns |
|        |                                             | CLKAB LOW                         | PERB valid     |                        | 3.5 | —           | 3.5  | —           | 3    | —    | 3   | — | ns |
|        |                                             |                                   | PERB not valid |                        | 3   | —           | 3    | —           | 3    | —    | 3   | — | ns |
|        |                                             | CLKAB HIGH                        | PBx valid      |                        | 3.5 | —           | 3.5  | —           | 3    | —    | 3   | — | ns |
|        |                                             |                                   | PBx not valid  |                        | 3   | —           | 3    | —           | 3    | —    | 3   | — | ns |
|        |                                             | CLKAB HIGH                        | PERB valid     |                        | 3.5 | —           | 3.5  | —           | 3    | —    | 3   | — | ns |
|        |                                             |                                   | PERB not valid |                        | 3   | —           | 3    | —           | 3    | —    | 3   | — | ns |
|        | Set-up Time<br>PAx to LEAB                  | CLKAB LOW                         | PERB valid     |                        | 3.5 | —           | 3.5  | —           | 3    | —    | 3   | — | ns |
|        |                                             |                                   | PERB not valid |                        | 3   | —           | 3    | —           | 3    | —    | 3   | — | ns |
|        |                                             | CLKAB HIGH                        | PERB valid     |                        | 3.5 | —           | 3.5  | —           | 3    | —    | 3   | — | ns |
|        |                                             |                                   | PERB not valid |                        | 3   | —           | 3    | —           | 3    | —    | 3   | — | ns |
| tsu    | Set-up Time<br>Bx to LEBA<br>PBx to LEBA    | CLKBA LOW                         | PERA valid     | CL = 50pF<br>RL = 500Ω | 3.5 | —           | 3.5  | —           | 3    | —    | 3   | — | ns |
|        |                                             |                                   | PERA not valid |                        | 3   | —           | 3    | —           | 3    | —    | 3   | — | ns |
|        |                                             | CLKBA HIGH                        | PERA valid     |                        | 3.5 | —           | 3.5  | —           | 3    | —    | 3   | — | ns |
|        |                                             |                                   | PERA not valid |                        | 3   | —           | 3    | —           | 3    | —    | 3   | — | ns |
|        |                                             |                                   | PERA not valid |                        | 3.5 | —           | 3.5  | —           | 3    | —    | 3   | — | ns |
| tsk(0) | Output Skew <sup>(4)</sup>                  |                                   |                |                        |     | —           | 0.5  | —           | 0.5  | —    | 0.5 | — | ns |


## SWITCHING CHARACTERISTICS OVER OPERATING RANGE (HOLD TIMES)

| Symbol | Parameter                                             | Condition <sup>(1)</sup> | FCT162511AT |      | FCT162511CT |      | Unit |   |
|--------|-------------------------------------------------------|--------------------------|-------------|------|-------------|------|------|---|
|        |                                                       |                          | Ind.        |      | Mil.        |      |      |   |
|        |                                                       |                          | Min.        | Max. | Min.        | Max. |      |   |
| th     | Hold Time HIGH or LOW Ax to LEAB, Bx to LEBA          | CL = 50pF<br>RL = 500Ω   | 1           | —    | 1           | —    | 1    | — |
|        | Hold Time HIGH or LOW PAx to LEAB                     |                          | 1           | —    | 1           | —    | 1    | — |
|        | Hold Time HIGH or LOW PBx to LEBA                     |                          | 1           | —    | 1           | —    | 1    | — |
|        | Hold Time Ax to CLKAB, PAx to CLKAB                   |                          | 1           | —    | 1           | —    | 0    | — |
|        | Hold Time Bx to CLKBA, PBx to CLKBA                   |                          | 1           | —    | 1           | —    | 0    | — |
|        | LEAB or LEBA Pulse Width HIGH <sup>(2)</sup>          |                          | 3           | —    | 3           | —    | 3    | — |
|        | CLKAB or CLKBA Pulse Width HIGH or LOW <sup>(2)</sup> |                          | 3           | —    | 3           | —    | 3    | — |


## NOTES:

1. See test circuits and waveforms.
2. This parameter is guaranteed but not tested.
3. "Not valid" means the set-up time indicated is not sufficient to assure proper functioning of this output; however, the set-up time indicated will assure proper functioning of the A to B or B to A port respective to the indicated direction.
4. Skew between any two outputs of the same package, switching in the same direction, excluding  $\overline{PERx}$  in clocked mode, and Pxx (parity bits) and  $\overline{PERx}$  in transparent/latched mode. This parameter is guaranteed by design.


## TEST CIRCUITS AND WAVEFORMS



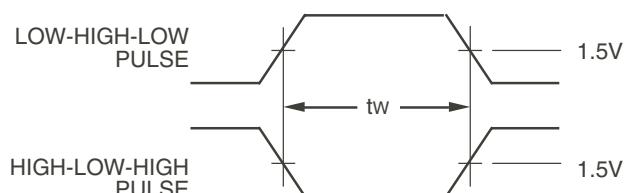
*Test Circuits for All Outputs*



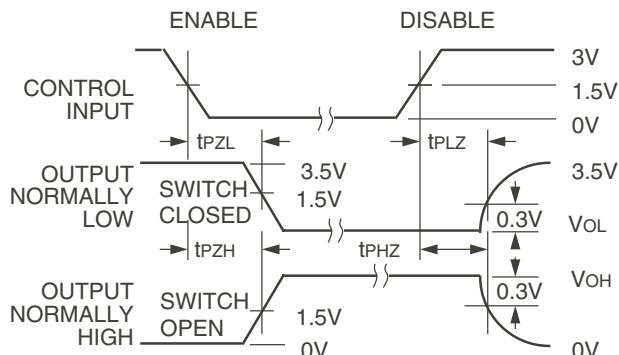
*Set-up, Hold, and Release Times*



*Propagation Delay*


## SWITCH POSITION

| Test            | Switch |
|-----------------|--------|
| Open Drain      | Closed |
| Disable Low     |        |
| Enable Low      |        |
| All Other Tests | Open   |

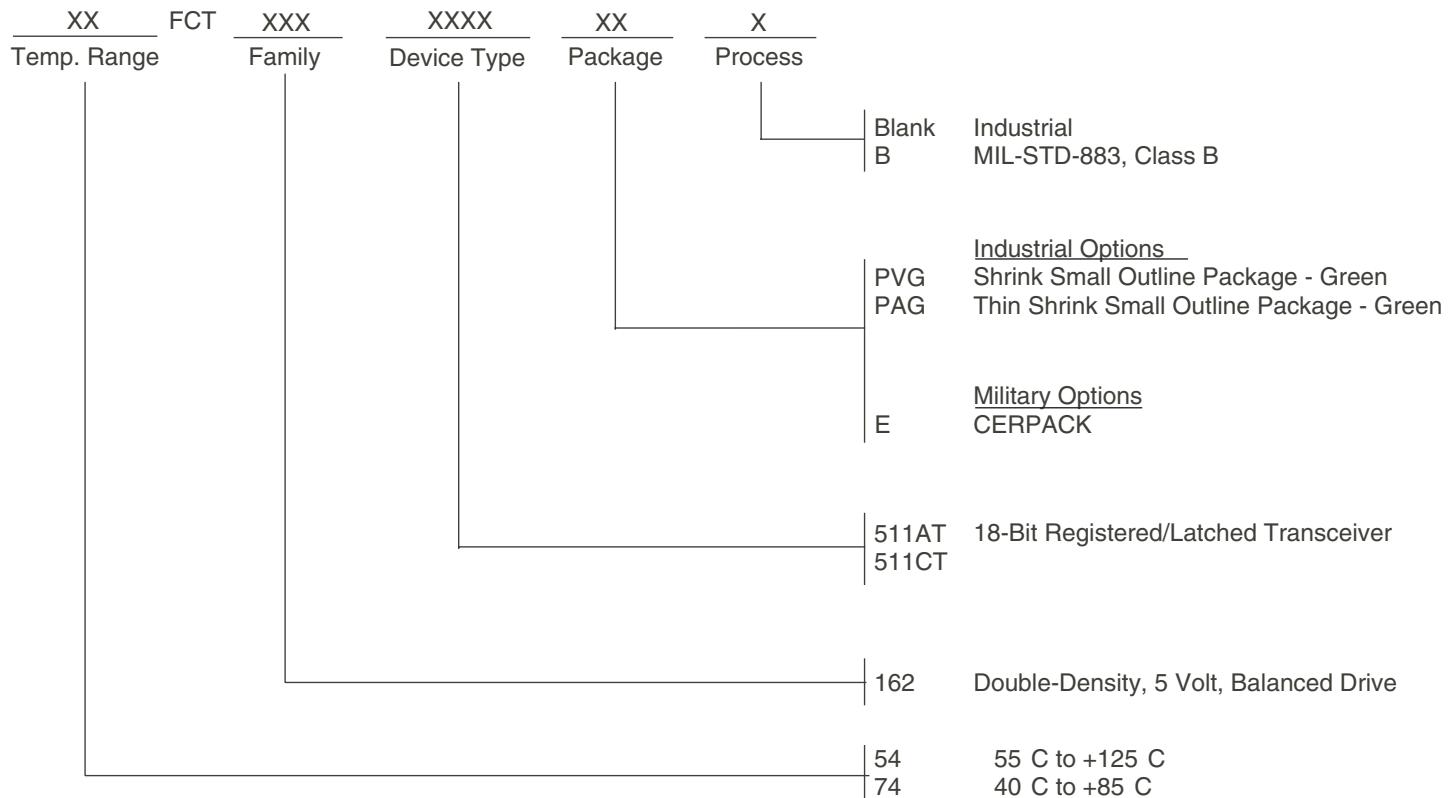

### DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to Z<sub>OUT</sub> of the Pulse Generator.



*Pulse Width*




*Enable and Disable Times*

### NOTES:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
2. Pulse Generator for All Pulses: Rate  $\leq$  1.0MHz; t<sub>f</sub>  $\leq$  2.5ns; t<sub>r</sub>  $\leq$  2.5ns.

## ORDERING INFORMATION



## Datasheet Document History

09/06/09 Pg.6

Updated the ordering information by removing the "IDT" notation and non RoHS part.

## IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

### Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
[www.renesas.com](http://www.renesas.com)

### Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

### Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit [www.renesas.com/contact-us/](http://www.renesas.com/contact-us/).