

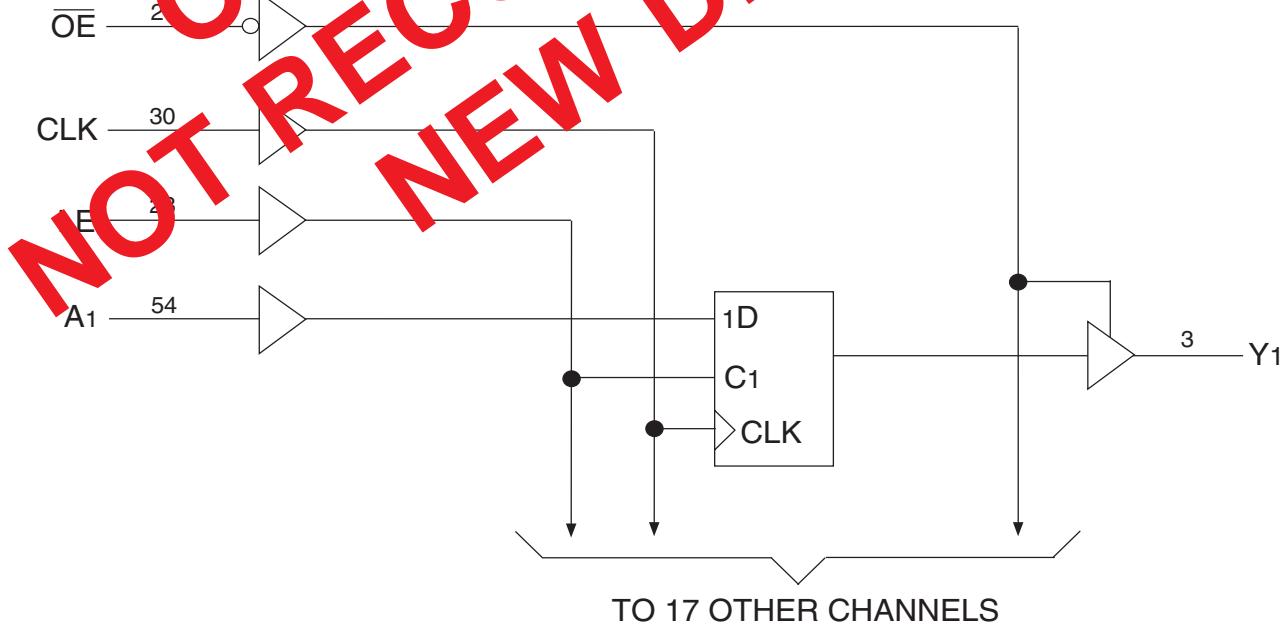
## FEATURES:

- 0.5 MICRON CMOS Technology
- Typical  $t_{sk(o)}$  (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- $V_{cc} = 3.3V \pm 0.3V$ , Normal Range
- $V_{cc} = 2.7V$  to  $3.6V$ , Extended Range
- $V_{cc} = 2.5V \pm 0.2V$
- CMOS power levels (0.4 $\mu$  W typ. static)
- Rail-to-Rail output swing for increased noise margin
- Available in TSSOP package

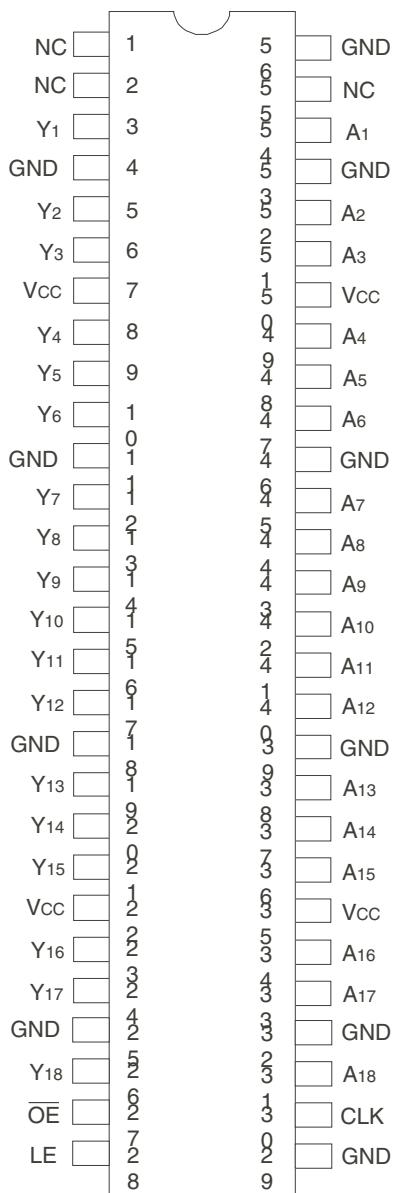
## DRIVE FEATURES:

- High Output Drivers:  $\pm 24mA$
- Suitable for heavy loads

## DESCRIPTION:


This 18-bit universal bus driver is built using advanced dual metal CMOS technology. Data flow from A to Y is controlled by the output-enable ( $\overline{OE}$ ) input. The device operates in the transparent mode when the latch-enable (LE) input is high. The A data is latched if the clock (CLK) input is held at a high or low logic level. If LE is low, the A data is stored in the latch flip-flop on the low-to-high transition of CLK. When  $\overline{OE}$  is high, the outputs are in the high-impedance state.

The ALVC16835 has been designed with a  $\pm 24mA$  output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.


## APPLICATIONS:

- SDRAM Modules
- PC Motherboards
- Workstations

## FUNCTIONAL BLOCK DIAGRAM



## PIN CONFIGURATION

TVSOP  
TOP VIEW

## PIN DESCRIPTION

| Pin Names | Description                               |
|-----------|-------------------------------------------|
| OE        | 3-State Output Enable Inputs (Active LOW) |
| CLK       | Register Input Clock                      |
| LE        | Latch Enable (Transparent LOW)            |
| Ax        | Data Inputs                               |
| Yx        | 3-State Outputs                           |
| NC        | No Internal Connection                    |

ABSOLUTE MAXIMUM RATINGS<sup>(1)</sup>

| Symbol               | Description                                                                      | Max             | Unit |
|----------------------|----------------------------------------------------------------------------------|-----------------|------|
| VTERM <sup>(2)</sup> | Terminal Voltage with Respect to GND                                             | -0.5 to +4.6    | V    |
| VTERM <sup>(3)</sup> | Terminal Voltage with Respect to GND                                             | -0.5 to Vcc+0.5 | V    |
| TSTG                 | Storage Temperature                                                              | -65 to +150     | °C   |
| I <sub>OUT</sub>     | DC Output Current                                                                | -50 to +50      | mA   |
| I <sub>IK</sub>      | Continuous Clamp Current, V <sub>i</sub> < 0 or V <sub>i</sub> > V <sub>cc</sub> | ±50             | mA   |
| I <sub>OK</sub>      | Continuous Clamp Current, V <sub>o</sub> < 0                                     | -50             | mA   |
| I <sub>CC</sub>      | Continuous Current through each V <sub>cc</sub> or GND                           | ±100            | mA   |
| I <sub>SS</sub>      |                                                                                  |                 |      |

## NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. V<sub>cc</sub> terminals.
3. All terminals except V<sub>cc</sub>.

## CAPACITANCE (TA = +25°C, F = 1.0MHz)

| Symbol           | Parameter <sup>(1)</sup> | Conditions            | Typ. | Max. | Unit |
|------------------|--------------------------|-----------------------|------|------|------|
| C <sub>IN</sub>  | Input Capacitance        | V <sub>IN</sub> = 0V  | 5    | 7    | pF   |
| C <sub>OUT</sub> | Output Capacitance       | V <sub>OUT</sub> = 0V | 7    | 9    | pF   |
| C <sub>OUT</sub> | I/O Port Capacitance     | V <sub>IN</sub> = 0V  | 7    | 9    | pF   |

## NOTE:

1. As applicable to the device type.

FUNCTION TABLE<sup>(1)</sup>

| Inputs |    |     |    | Outputs                       |
|--------|----|-----|----|-------------------------------|
| OE     | LE | CLK | Ax | Yx                            |
| H      | X  | X   | X  | Z                             |
| L      | H  | X   | L  | L                             |
| L      | H  | X   | H  | H                             |
| L      | L  | ↑   | L  | L                             |
| L      | L  | ↑   | H  | H                             |
| L      | L  | H   | X  | Y <sub>0</sub> <sup>(2)</sup> |
| L      | L  | L   | X  | Y <sub>0</sub> <sup>(3)</sup> |

## NOTES:

1. H = HIGH Voltage Level  
L = LOW Voltage Level  
X = Don't Care  
Z = High Impedance  
↑ = LOW-to-HIGH transition
2. Output level before the indicated steady-state input conditions were established, provided that CLK is HIGH before LE went HIGH.
3. Output level before the indicated steady-state input conditions were established.

## DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition:  $TA = -40^{\circ}\text{C}$  to  $+85^{\circ}\text{C}$ 

| Symbol               | Parameter                                              | Test Conditions                                     |          | Min. | Typ. <sup>(1)</sup> | Max.     | Unit          |
|----------------------|--------------------------------------------------------|-----------------------------------------------------|----------|------|---------------------|----------|---------------|
| VIH                  | Input HIGH Voltage Level                               | VCC = 2.3V to 2.7V                                  |          | 1.7  | —                   | —        | V             |
|                      |                                                        | VCC = 2.7V to 3.6V                                  |          | 2    | —                   | —        |               |
| VIL                  | Input LOW Voltage Level                                | VCC = 2.3V to 2.7V                                  |          | —    | —                   | 0.7      | V             |
|                      |                                                        | VCC = 2.7V to 3.6V                                  |          | —    | —                   | 0.8      |               |
| IIH                  | Input HIGH Current                                     | VCC = 3.6V                                          | VI = VCC | —    | —                   | $\pm 5$  | $\mu\text{A}$ |
| IIL                  | Input LOW Current                                      | VCC = 3.6V                                          | VI = GND | —    | —                   | $\pm 5$  | $\mu\text{A}$ |
| IOZH                 | High Impedance Output Current<br>(3-State Output pins) | VCC = 3.6V                                          |          | —    | —                   | $\pm 10$ | $\mu\text{A}$ |
|                      |                                                        |                                                     |          | —    | —                   | $\pm 10$ |               |
| VIK                  | Clamp Diode Voltage                                    | VCC = 2.3V, $I_{IN} = -18\text{mA}$                 |          | —    | -0.7                | -1.2     | V             |
| VH                   | Input Hysteresis                                       | VCC = 3.3V                                          |          | —    | 100                 | —        | $\text{mV}$   |
| ICCL<br>ICCH<br>ICCZ | Quiescent Power Supply Current                         | VCC = 3.6V<br>VIN = GND or VCC                      |          | —    | 0.1                 | 40       | $\mu\text{A}$ |
|                      |                                                        | One input at VCC - 0.6V, other inputs at VCC or GND |          | —    | —                   | 750      | $\mu\text{A}$ |

## NOTE:

1. Typical values are at  $VCC = 3.3V$ ,  $+25^{\circ}\text{C}$  ambient.

## OUTPUT DRIVE CHARACTERISTICS

| Symbol | Parameter           | Test Conditions <sup>(1)</sup> |                          | Min.      | Max. | Unit |
|--------|---------------------|--------------------------------|--------------------------|-----------|------|------|
| VOH    | Output HIGH Voltage | VCC = 2.3V to 3.6V             | $I_{OH} = -0.1\text{mA}$ | VCC - 0.2 | —    | V    |
|        |                     | VCC = 2.3V                     | $I_{OH} = -6\text{mA}$   | 2         | —    |      |
|        |                     | VCC = 2.3V                     | $I_{OH} = -12\text{mA}$  | 1.7       | —    |      |
|        |                     | VCC = 2.7V                     |                          | 2.2       | —    |      |
|        |                     | VCC = 3V                       |                          | 2.4       | —    |      |
|        |                     | VCC = 3V                       | $I_{OH} = -24\text{mA}$  | 2         | —    |      |
| VOL    | Output LOW Voltage  | VCC = 2.3V to 3.6V             | $I_{OL} = 0.1\text{mA}$  | —         | 0.2  | V    |
|        |                     | VCC = 2.3V                     | $I_{OL} = 6\text{mA}$    | —         | 0.4  |      |
|        |                     |                                | $I_{OL} = 12\text{mA}$   | —         | 0.7  |      |
|        |                     | VCC = 2.7V                     | $I_{OL} = 12\text{mA}$   | —         | 0.4  |      |
|        |                     | VCC = 3V                       | $I_{OL} = 24\text{mA}$   | —         | 0.55 |      |

## NOTE:

1.  $VIH$  and  $VIL$  must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate  $VCC$  range.  $TA = -40^{\circ}\text{C}$  to  $+85^{\circ}\text{C}$ .

OPERATING CHARACTERISTICS,  $T_A = 25^\circ\text{C}$ 

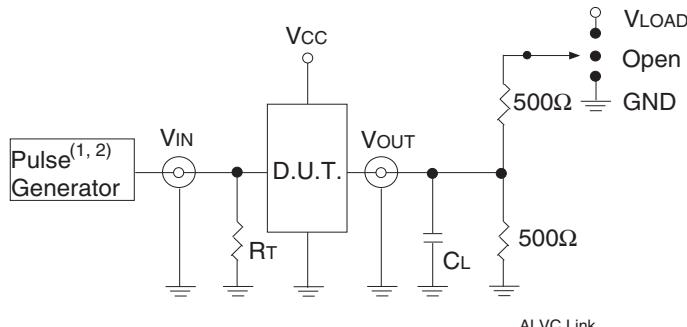
| Symbol | Parameter                                      | Test Conditions                        | $V_{CC} = 2.5V \pm 0.2V$ | $V_{CC} = 3.3V \pm 0.3V$ | Unit        |
|--------|------------------------------------------------|----------------------------------------|--------------------------|--------------------------|-------------|
|        |                                                |                                        | Typical                  | Typical                  |             |
| CPD    | Power Dissipation Capacitance Outputs enabled  | $CL = 0\text{pF}$ , $f = 10\text{MHz}$ | 26                       | 31                       | $\text{pF}$ |
| CPD    | Power Dissipation Capacitance Outputs disabled |                                        | 12                       | 15                       |             |

SWITCHING CHARACTERISTICS<sup>(1)</sup>

| Symbol      | Parameter                                               | $V_{CC} = 2.5V \pm 0.2V$ |      | $V_{CC} = 2.7V$ |      | $V_{CC} = 3.3V \pm 0.3V$ |      | Unit |
|-------------|---------------------------------------------------------|--------------------------|------|-----------------|------|--------------------------|------|------|
|             |                                                         | Min.                     | Max. | Min.            | Max. | Min.                     | Max. |      |
| $t_{PLH}$   | Propagation Delay<br>Ax to Yx                           | 1                        | 4.2  | —               | 4.2  | 1                        | 3.6  | ns   |
| $t_{PHL}$   | Propagation Delay<br>LE to Yx                           | 1.3                      | 5    | —               | 4.9  | 1.3                      | 4.2  | ns   |
| $t_{PLH}$   | Propagation Delay<br>CLK to Yx                          | 1.4                      | 5.5  | —               | 5.2  | 1.4                      | 4.5  | ns   |
| $t_{PZH}$   | Output Enable Time<br>$\overline{OE}$ to Yx             | 1.4                      | 5.5  | —               | 5.6  | 1.1                      | 4.6  | ns   |
| $t_{PLZ}$   | Output Disable Time<br>$\overline{OE}$ to Yx            | 1                        | 4.5  | —               | 4.3  | 1.3                      | 3.9  | ns   |
| $t_W$       | Pulse Duration, LE LOW                                  | 3.3                      | —    | 3.3             | —    | 3.3                      | —    | ns   |
| $t_W$       | Pulse Duration, CLK HIGH or LOW                         | 3.3                      | —    | 3.3             | —    | 3.3                      | —    | ns   |
| $t_{SU}$    | Set-up Time, data before $CLK \uparrow$                 | 2.2                      | —    | 2.1             | —    | 1.7                      | —    | ns   |
| $t_{SU}$    | Set-up Time, data before $LE \downarrow$ , CLK HIGH     | 1.9                      | —    | 1.6             | —    | 1.5                      | —    | ns   |
| $t_{SU}$    | Set-up Time, data before $LE \downarrow$ , CLK LOW      | 1.3                      | —    | 1.1             | —    | 1                        | —    | ns   |
| $t_H$       | Hold Time, data after $CLK \uparrow$                    | 0.6                      | —    | 0.6             | —    | 0.7                      | —    | ns   |
| $t_H$       | Hold Time, data after $LE \downarrow$ , CLK HIGH or LOW | 1.4                      | —    | 1.7             | —    | 1.4                      | —    | ns   |
| $t_{SK(0)}$ | Output Skew <sup>(2)</sup>                              | —                        | —    | —               | —    | —                        | 500  | ps   |

## NOTES:

1. See TEST CIRCUITS AND WAVEFORMS.  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ .
2. Skew between any two outputs of the same package and switching in the same direction.


SWITCHING CHARACTERISTICS FROM  $0^\circ\text{C}$  TO  $65^\circ\text{C}$ ,  $CL = 50\text{pF}$ 

| Symbol    | Parameter                       | $V_{CC} = 3.3V \pm 0.15V$ |      | Unit |
|-----------|---------------------------------|---------------------------|------|------|
|           |                                 | Min.                      | Max. |      |
| $t_{PLH}$ | Propagation Delay<br>CLK to xYx | 1.7                       | 4.5  | ns   |

## TEST CIRCUITS AND WAVEFORMS

## TEST CONDITIONS

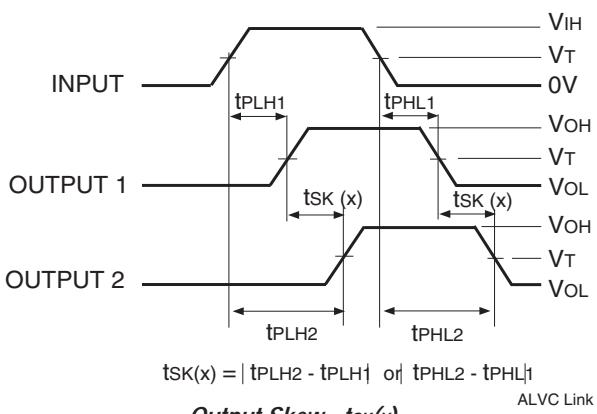
| Symbol     | $V_{CC}^{(1)} = 3.3V \pm 0.3V$ | $V_{CC}^{(1)} = 2.7V$ | $V_{CC}^{(2)} = 2.5V \pm 0.2V$ | Unit |
|------------|--------------------------------|-----------------------|--------------------------------|------|
| $V_{LOAD}$ | 6                              | 6                     | $2 \times V_{CC}$              | V    |
| $V_{IH}$   | 2.7                            | 2.7                   | $V_{CC}$                       | V    |
| $V_T$      | 1.5                            | 1.5                   | $V_{CC} / 2$                   | V    |
| $V_{LZ}$   | 300                            | 300                   | 150                            | mV   |
| $V_{HZ}$   | 300                            | 300                   | 150                            | mV   |
| $C_L$      | 50                             | 50                    | 30                             | pF   |



Test Circuit for All Outputs

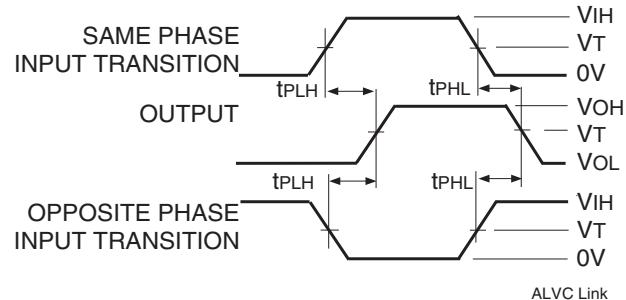
## DEFINITIONS:

$C_L$  = Load capacitance: includes jig and probe capacitance.

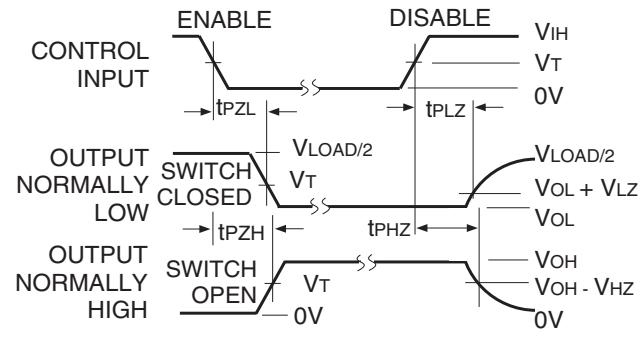

$R_T$  = Termination resistance: should be equal to  $Z_{OUT}$  of the Pulse Generator.

## NOTES:

1. Pulse Generator for All Pulses: Rate  $\leq 1.0\text{MHz}$ ;  $t_f \leq 2.5\text{ns}$ ;  $t_r \leq 2.5\text{ns}$ .
2. Pulse Generator for All Pulses: Rate  $\leq 1.0\text{MHz}$ ;  $t_f \leq 2\text{ns}$ ;  $t_r \leq 2\text{ns}$ .


## SWITCH POSITION

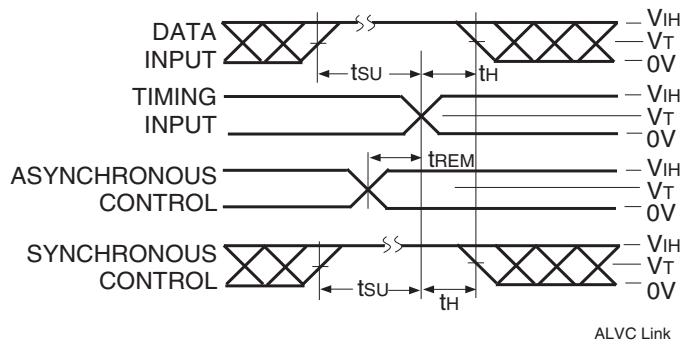
| Test            | Switch     |
|-----------------|------------|
| Open Drain      |            |
| Disable Low     | $V_{LOAD}$ |
| Enable Low      |            |
| Disable High    | $GND$      |
| Enable High     |            |
| All Other Tests | Open       |


Output Skew -  $t_{SK}(x)$ 

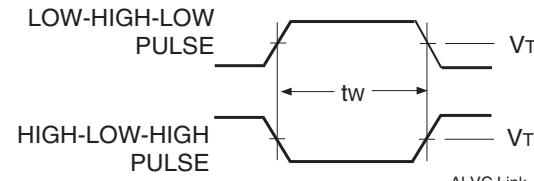
## NOTES:

1. For  $t_{SK}(o)$  OUTPUT1 and OUTPUT2 are any two outputs.
2. For  $t_{SK}(b)$  OUTPUT1 and OUTPUT2 are in the same bank.




Propagation Delay




Enable and Disable Times

## NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.



Set-up, Hold, and Release Times



Pulse Width

## ORDERING INFORMATION

| XX          | ALVC     | X | XXX    | XXX         | XX                                               |
|-------------|----------|---|--------|-------------|--------------------------------------------------|
| Temp. Range | Bus-Hold |   | Family | Device Type | Package                                          |
|             |          |   |        |             | PFG Thin Very Small Outline Package - Green      |
|             |          |   |        | 835         | 18-Bit Universal Bus Driver with 3-State Outputs |
|             |          |   |        | 16          | Double-Density, $\pm 24\text{mA}$                |
|             |          |   |        | Blank       | No Bus-Hold                                      |
|             |          |   |        | 74          | $-40^\circ\text{C}$ to $+85^\circ\text{C}$       |

## DATASHEET DOCUMENT HISTORY

07/28/2003 PDN# L-03-04 issued. See IDT.com for PDN specifics.  
09/20/2019 Datasheet changed to Obsolete Status.

## IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

### Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
[www.renesas.com](http://www.renesas.com)

### Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

### Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit [www.renesas.com/contact-us/](http://www.renesas.com/contact-us/).