

FEATURES:

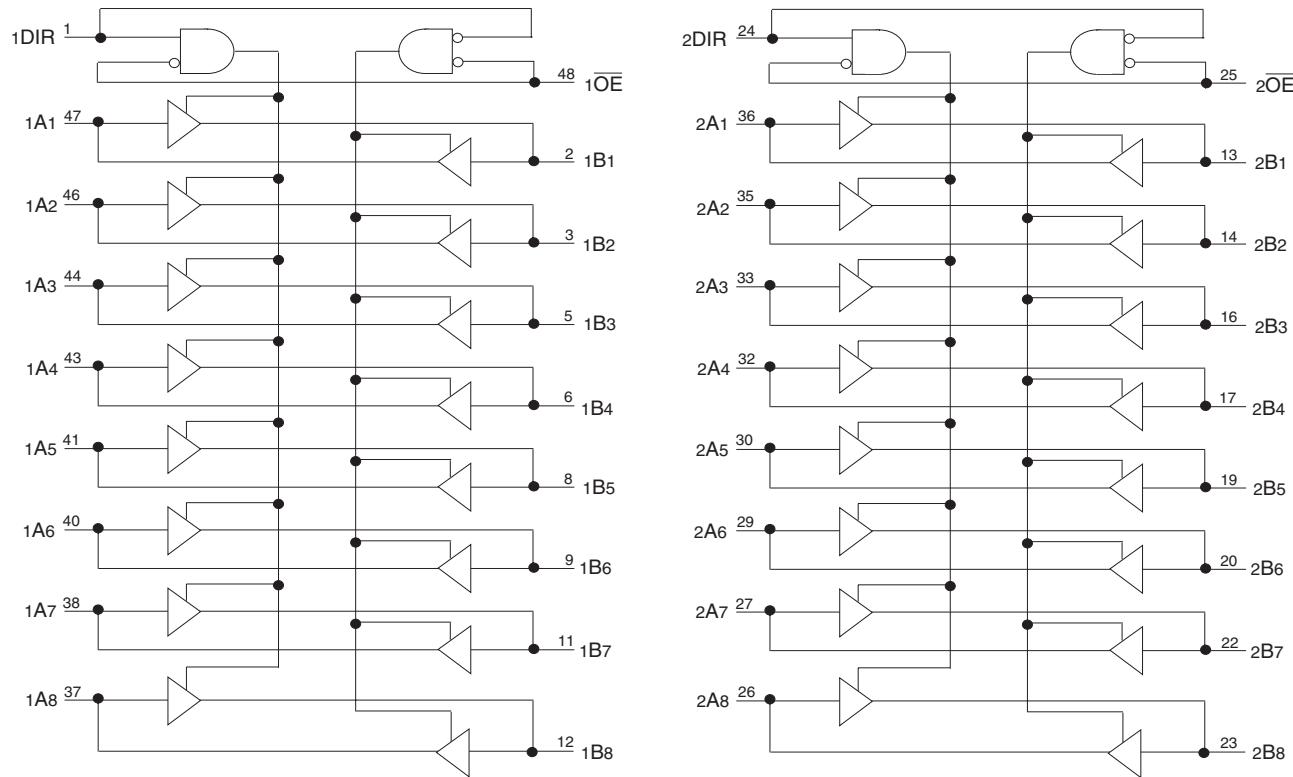
- 0.5 MICRON CMOS Technology
- Typical $t_{sk(o)}$ (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- $V_{CC} = 3.3V \pm 0.3V$, Normal Range
- $V_{CC} = 2.7V$ to $3.6V$, Extended Range
- $V_{CC} = 2.5V \pm 0.2V$
- CMOS power levels ($0.4\mu W$ typ. static)
- Rail-to-Rail output swing for increased noise margin
- Available in TSSOP package

DRIVE FEATURES:

- High Output Drivers: $\pm 24\text{mA}$
- Suitable for heavy loads

DESCRIPTION:

This 16-bit bus transceiver is built using advanced dual metal CMOS technology. The ALVC16245 is designed for asynchronous communication between data buses. The control-function implementation minimizes external timing requirements.


This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated.

The ALVC16245 has been designed with a $\pm 24\text{mA}$ output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

APPLICATIONS:

- 3.3V high speed systems
- 3.3V and lower voltage computing systems

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

JUNE 2009

PIN CONFIGURATION

1DIR	1	48	1OE
1B1	2	47	1A1
1B2	3	46	1A2
GND	4	45	GND
1B3	5	44	1A3
1B4	6	43	1A4
Vcc	7	42	Vcc
1B5	8	41	1A5
1B6	9	40	1A6
GND	10	39	GND
1B7	11	38	1A7
1B8	12	37	1A8
2B1	13	36	2A1
2B2	14	35	2A2
GND	15	34	GND
2B3	16	33	2A3
2B4	17	32	2A4
Vcc	18	31	Vcc
2B5	19	30	2A5
2B6	20	29	2A6
GND	21	28	GND
2B7	22	27	2A7
2B8	23	26	2A8
2DIR	24	25	2OE

TSSOP
TOP VIEW**ABSOLUTE MAXIMUM RATINGS⁽¹⁾**

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
TSTG	Storage Temperature	-65 to +150	°C
IOUT	DC Output Current	-50 to +50	mA
IIK	Continuous Clamp Current, Vi < 0 or Vi > Vcc	±50	mA
IOK	Continuous Clamp Current, Vo < 0	-50	mA
ICC	Continuous Current through each Vcc or GND	±100	mA
ISS			

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Typ.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	5	7	pF
COUT	Output Capacitance	VOUT = 0V	7	9	pF
COUT	I/O Port Capacitance	VIN = 0V	7	9	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
xOE	Output Enable Inputs (Active LOW)
xDIR	Direction Control Inputs
xAx	Side A Inputs or 3-State Outputs
xBx	Side B Inputs or 3-State Outputs

FUNCTION TABLE (EACH 8-BIT SECTION)⁽¹⁾

Inputs		Outputs
xOE	xDIR	
L	L	Bus B Data to Bus A
L	H	Bus A Data to Bus B
H	X	Z

NOTE:

1. H = HIGH Voltage Level
X = Don't Care
L = LOW Voltage Level
Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$

Symbol	Parameter	Test Conditions		Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	VCC = 2.3V to 2.7V		1.7	—	—	V
		VCC = 2.7V to 3.6V		2	—	—	
VIL	Input LOW Voltage Level	VCC = 2.3V to 2.7V		—	—	0.7	V
		VCC = 2.7V to 3.6V		—	—	0.8	
I _{IH}	Input HIGH Current	VCC = 3.6V	VI = VCC	—	—	± 5	μA
I _{IL}	Input LOW Current	VCC = 3.6V	VI = GND	—	—	± 5	μA
I _{OZH}	High Impedance Output Current (3-State Output pins)	VCC = 3.6V	VO = VCC	—	—	± 10	μA
I _{OZL}			VO = GND	—	—	± 10	
V _{IK}	Clamp Diode Voltage	VCC = 2.3V, I _{IN} = -18mA		—	-0.7	-1.2	V
V _H	Input Hysteresis	VCC = 3.3V		—	100	—	mV
I _{CCL} I _{CCH} I _{CCZ}	Quiescent Power Supply Current	VCC = 3.6V VIN = GND or VCC		—	0.1	40	μA
ΔI_{CC}	Quiescent Power Supply Current Variation	One input at VCC - 0.6V, other inputs at VCC or GND		—	—	750	μA

NOTE:

1. Typical values are at VCC = 3.3V, $+25^{\circ}\text{C}$ ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
VOH	Output HIGH Voltage	VCC = 2.3V to 3.6V	I _{OH} = -0.1mA	VCC - 0.2	—	V
		VCC = 2.3V	I _{OH} = -6mA	2	—	
		VCC = 2.3V	I _{OH} = -12mA	1.7	—	
		VCC = 2.7V		2.2	—	
		VCC = 3V		2.4	—	
		VCC = 3V	I _{OH} = -24mA	2	—	
VOL	Output LOW Voltage	VCC = 2.3V to 3.6V	I _{OL} = 0.1mA	—	0.2	V
		VCC = 2.3V	I _{OL} = 6mA	—	0.4	
			I _{OL} = 12mA	—	0.7	
		VCC = 2.7V	I _{OL} = 12mA	—	0.4	
		VCC = 3V	I _{OL} = 24mA	—	0.55	

NOTE:

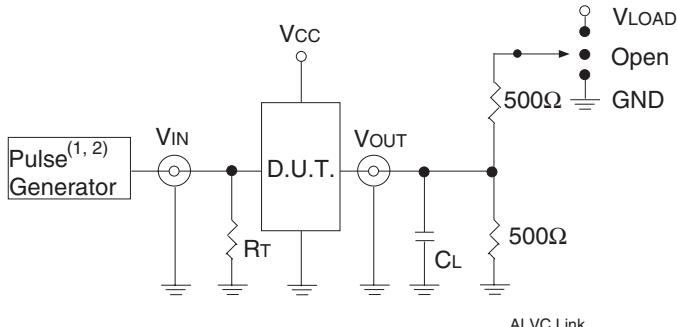
1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate VCC range. $TA = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$.

OPERATING CHARACTERISTICS, $T_A = 25^\circ\text{C}$

Symbol	Parameter	Test Conditions	$V_{CC} = 2.5V \pm 0.2V$	$V_{CC} = 3.3V \pm 0.3V$	Unit
			Typical	Typical	
CPD	Power Dissipation Capacitance Outputs enabled	$C_L = 0\text{pF}$, $f = 10\text{MHz}$	22	29	pF
CPD	Power Dissipation Capacitance Outputs disabled		4	5	

SWITCHING CHARACTERISTICS⁽¹⁾

Symbol	Parameter	$V_{CC} = 2.5V \pm 0.2V$		$V_{CC} = 2.7V$		$V_{CC} = 3.3V \pm 0.3V$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{PLH}	Propagation Delay x_{Ax} to x_{Bx} or x_{Bx} to x_{Ax}	1	3.7	—	3.6	1	3	ns
t_{PHL}								
t_{PZH}	Output Enable Time $x_{\overline{OE}}$ to x_{Ax} or x_{Bx}	1	5.7	—	5.4	1	4.4	ns
t_{PZL}								
t_{PHZ}	Output Disable Time $x_{\overline{OE}}$ to x_{Ax} or x_{Bx}	1	5.2	—	4.6	1	4.1	ns
t_{PLZ}								
$t_{SK(0)}$	Output Skew ⁽²⁾	—	—	—	—	—	500	ps


NOTES:

1. See TEST CIRCUITS AND WAVEFORMS. $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$.
2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS

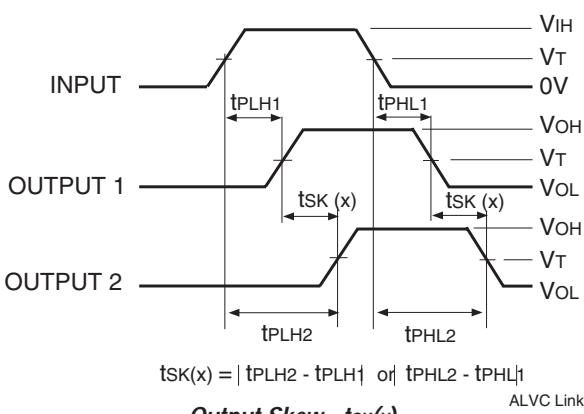
TEST CONDITIONS

Symbol	$V_{CC}^{(1)} = 3.3V \pm 0.3V$	$V_{CC}^{(1)} = 2.7V$	$V_{CC}^{(2)} = 2.5V \pm 0.2V$	Unit
V_{LOAD}	6	6	$2 \times V_{CC}$	V
V_{IH}	2.7	2.7	V_{CC}	V
V_T	1.5	1.5	$V_{CC} / 2$	V
V_{LZ}	300	300	150	mV
V_{HZ}	300	300	150	mV
C_L	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

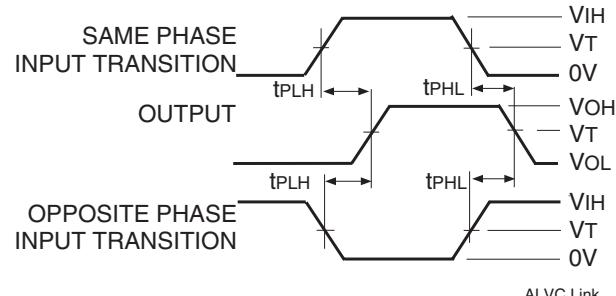
C_L = Load capacitance: includes jig and probe capacitance.

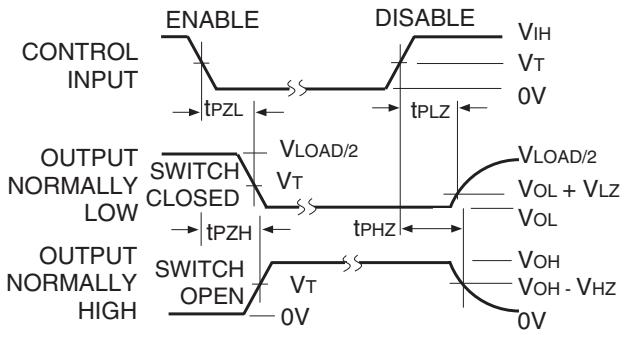

R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator.

NOTES:

1. Pulse Generator for All Pulses: Rate $\leq 1.0\text{MHz}$; $t_f \leq 2.5\text{ns}$; $t_r \leq 2.5\text{ns}$.
2. Pulse Generator for All Pulses: Rate $\leq 1.0\text{MHz}$; $t_f \leq 2\text{ns}$; $t_r \leq 2\text{ns}$.

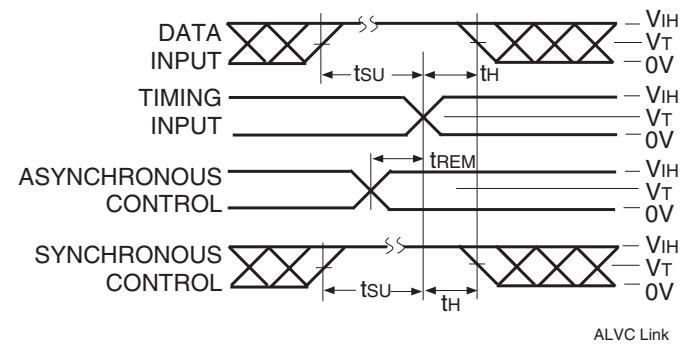
SWITCH POSITION

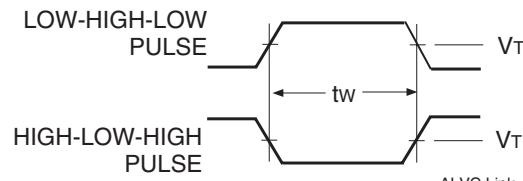

Test	Switch
Open Drain	
Disable Low	V_{LOAD}
Enable Low	
Disable High	GND
Enable High	
All Other Tests	Open


Output Skew - $tsk(x)$

NOTES:

1. For $tsk(o)$ OUTPUT1 and OUTPUT2 are any two outputs.
2. For $tsk(b)$ OUTPUT1 and OUTPUT2 are in the same bank.


Propagation Delay


Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Set-up, Hold, and Release Times

Pulse Width

ORDERING INFORMATION

XX	ALVC	X	XX	XXX	XX
Temp. Range	Bus-Hold		Family	Device Type	Package
					PA
				245	16-Bit Bus Transceiver with 3-State Outputs
				16	Double-Density, $\pm 24\text{mA}$
				Blank	No Bus-Hold
				74	-40°C to $+85^\circ\text{C}$

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.