| CMOS SyncBiFIFO $^{\text {м }}$ | IDT723652 |
| :--- | ---: |
| $2,048 \times 36 \times 2$ | IDT723662 |
| $4,096 \times 36 \times 2$ | IDT723672 |
| $8,192 \times 36 \times 2$ | OBSOLETE PARTS |

## FEATURES

- Memory storage capacity:
IDT723652 - $2,048 \times 36 \times 2$
IDT723662 - $4,096 \times 36 \times 2$
IDT723672 $-8,192 \times 36 \times 2$
- Supports clock frequencies up to 83 MHz
- Fast access times of 8ns
- Free-running CLKA and CLKB may be asynchronous or coincident (simultaneous reading and writing of data on a single clock edge is permitted)
- Two independent clocked FIFOs buffering data in opposite directions
- Mailbox bypass register for each FIFO
- Programmable Almost-Full and Almost-Empty flags
- Microprocessor Interface Control Logic
- $\overline{\mathrm{FFA}} /$ IRA, $\overline{\mathrm{EFA}} / O R A, \overline{\mathrm{AEA}}$, and $\overline{\mathrm{AFA}}$ flags synchronized by CLKA
- $\overline{\mathrm{FFB}} / \mathrm{IRB}, \overline{\mathrm{EFB}} / O R B, \overline{\mathrm{AEB}}$, and $\overline{\mathrm{AFB}}$ flags synchronized by CLK
- Select IDT Standard timing (using $\overline{\mathrm{EFA}}, \overline{\mathrm{EFB}}, \overline{\mathrm{FFA}}$ and $\overline{\mathrm{FFB}}$ flags functions) or First Word Fall Through timing (using ORA, ORB, IRA and IRB flag functions)
- Available in 132-pin Plastic Quad Flatpack (PQFP) or space-saving 120-pin Thin Quad Flatpack (TQFP)
- Pin compatible to the lower density parts, IDT723622/723632/723642
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available
- Green parts available, see ordering information


## DESCRIPTION

The IDT723652/72 662 r 20 is a monolith of oeer, Tow-power, CMOS Bidirectionai S, ${ }^{\text {chFINO (clocked) me ories hen support clock }}$ frequencies sto BMHzand have rea access us fast as 8ns. Two independent 2 48/4,096/8,192 $\times 36$ dual. ort SRAM FIFOs on board each chinbur ro ninopposite dire aons Communicationbetweeneach portmay ypa st FFIFOs viatwo oo-bl vaill ox registers. Each mailbox register has ag to signal when $n$ ", ail has been stored.


## DESCRIPTION (CONTINUED)

These devices are a synchronous (clocked) FIFO, meaning each port employs a synchronous interface. All data transfers through a port are gated to the LOW-to-HIGHtransition of a port clock by enable signals. The clocksfor each port are independent of one another and can be asynchronous or coincident. The enables for each port are arranged to provide a simple bidirectional interface between microprocessors and/or buses with synchronous control.
These devices have two modes of operation: In the IDT Standard mode, the first word written to an empty FIFO is deposited into the memory array. A
read operation is required to access that word (along with all other words residing in memory). In the First Word Fall Through mode (FWFT), the first long-word (36-bitwide) writtento an empty FIFO appears automatically onthe outputs, no read operation required (Nevertheless, accessing subsequent words does necessitate a formal read request). The state of the FWFT pin during FIFO operation determines the mode in use.

EachFIFOhas acombined Empty/OutputReady Flag( $\overline{\mathrm{EFA}} /$ ORA and $\overline{\mathrm{EFB}} /$ ORB ) and a combined Full/Input Ready Flag ( $\overline{\mathrm{FFA}} / I R A$ and $\overline{\mathrm{FFB}} / / \mathrm{RB}$ ). The $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$ functions are selected in the IDT Standard mode. $\overline{\mathrm{EF}}$ indicates whether or not the FIFO memory is empty. $\overline{\mathrm{FF}}$ shows whether the memory is full ornot. The IR and OR functions are selected inthe FirstWord Fall Through

## PIN CONFIGURATION



> PQFP(2) (PQ132-1, order code: PQF)

TOP VIEW

## NOTES:

1. NC - no internal connection
2. Uses Yamaichi socket IC51-1324-828
mode. IR indicates whether or not the FIFO has available memory locations. OR shows whether the FIFO has data available for reading or not. Itmarksthe presence of valid data on the outputs.

Each FIFO has a programmable Almost-Empty flag ( $\overline{\text { AEA }}$ and $\overline{\text { AEB }})$ and a programmable Almost-Full flag ( $\overline{\mathrm{AFA}}$ and $\overline{\mathrm{AFB}}$ ). $\overline{\mathrm{AEA}}$ and $\overline{\mathrm{AEB}}$ indicate when aselected number of words remaininthe FIFO memory. $\overline{\text { AFA }}$ and $\overline{\text { AFB indicate }}$ when the FIFO contains more than a selected number of words.
$\overline{\text { FFA } / I R A, ~} \overline{F F B} / I R B, \overline{A F A}$ and $\overline{\text { AFB }}$ are two-stage synchronized to the port clockthatwrites dataintoits array. $\overline{\mathrm{EFA}} / \mathrm{ORA}, \overline{\mathrm{EFB}} / \mathrm{ORB}, \overline{\mathrm{AEA}}$ and $\overline{\mathrm{EE}}$ aretwostage synchronized to the port clock that reads data from its array. Programmable offsets for $\overline{\mathrm{AEA}}, \overline{\mathrm{AEB}}, \overline{\mathrm{AFA}}$ and $\overline{\mathrm{AFB}}$ are loaded by using PortA. Three default offset settings are also provided. The $\overline{A E A}$ and $\overline{\mathrm{AEB}}$ threshold can be
set at 8,16 or 64 locations from the empty boundary and the $\overline{\text { AFA }}$ and $\overline{\text { AFB }}$ threshold can be set at 8,16 or 64 locations from the full boundary. All these choices are made using the FS0 and FS1 inputs during Reset.
Two or more devices may be used in parallel to create wider data paths. If, at any time, the FIFO is not actively performing a function, the chip will automatically power down. During the power down state, supply current consumption (ICC) is ataminimum. Initiating any operation (by activating control inputs) will immediately take the device out of the power down state.

The IDT723652/723662/723672 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available by special order. They are fabricated using IDT's high speed, submicron CMOS technology.

## PIN CONFIGURATION (CONTINUED)



## PIN DESCRIPTIONS

| Symbol | Name | $1 / 0$ | Description |
| :---: | :---: | :---: | :---: |
| A0-A35 | Port A Data | 1/0 | 36-bitbidirectional data portforside A. |
| $\overline{\text { AEA }}$ | PortAAImostEmpty Flag | $\begin{gathered} 0 \\ (\text { Port A) } \end{gathered}$ | Programmable Almost-Empty flag synchronized to CLKA. It is LOW when the number of words in FIFO2 is less than or equal to the value in the Almost-Empty A Offset register, X2. |
| $\overline{\text { AEB }}$ | PortBAlmostEmptyFlag | $\begin{gathered} 0 \\ \text { (Port B) } \end{gathered}$ | Programmable Almost-Empty flag synchronized to CLKB. It is LOW when the number of words in FIFO1 is less than or equal to the value in the Almost-Empty B Offsetregister, X1. |
| $\overline{\text { AFA }}$ | PortA AlmostFull Flag | $\begin{array}{\|c} \hline 0 \\ \text { (Port A) } \end{array}$ | Programmable Almost-Full flag synchronized to CLKA. It tis LOW when the number of empty locations in FIFO1 is less than or equal to the value in the Almost-Full A Offset register, Y 1. |
| $\overline{\mathrm{AFB}}$ | PortB AlmostFull Flag | $\begin{gathered} 0 \\ (\text { Port B) } \end{gathered}$ | Programmable Almost-Full flag synchronized to CLKB. It is LOW when the number of empty locations in FIFO2 is less than or equal to the value in the Almost-Full B Offset register, Y2. |
| B0-B35 | Port B Data | I/0 | 36-bitbidirectional data portfor side B. |
| CLKA | PortAClock | 1 | CLKA is a continuous clock that synchronizes all data transfers through port A and can be asynchronous or coincident to CLKB. FFA/IRA, EFA/ORA, $\overline{\text { AFA }}$, and $\overline{\text { AEA }}$ are all synchronized to the LOW-to-HIGH transition of CLKA. |
| CLKB | PortBClock | 1 | CLKB is a continuous clock that synchronizes all data transfers through port B and can be asynchronous or coincident to CLKA . $\overline{\mathrm{FFB}} / / \mathrm{RB}$, $\overline{\mathrm{EFB}} / \mathrm{ORB}, \overline{\mathrm{AFB}}$, and $\overline{\mathrm{AEB}}$ are synchronized to the LOW-to-HIGH transition of CLKB. |
| $\overline{\mathrm{CSA}}$ | Port A Chip Select | 1 | $\overline{\text { CSA }}$ must be LOW to enable a LOW-to-HIGH transition of CLKA to read or write on port A. The AO-A35 outputs are in the high-impedance state when $\overline{\text { CSA }}$ is HIGH . |
| $\overline{\text { CSB }}$ | Port B Chip Select | 1 | $\overline{\mathrm{CSB}}$ must be LOW to enable a LOW-to-HIGH transition of CLKB to read or write data on port B. The BO- B35 outputs are in the high-impedance state when $\overline{\mathrm{CSB}}$ is HIGH . |
| EFANORA | PortAEmptyl OutputReady Flag | 0 | This is a dual function pin. In the IDT Standard mode, the EFA function is selected. EFA indicates whether or not the FIFO2 memory is empty. In the FWFT mode, the ORA function is selected. ORA indicates the presence of valid data on A0-A35 outputs, available for reading. $\overline{\text { EFA }} / \mathrm{ORA}$ is synchronized tothe LOW-to-HIGH transition of CLKA. |
| EFB/ORB | PortBEmpty/ <br> OutputReady <br> Flag | 0 | This is a dual function pin. In the IDT Standard mode, the $\overline{\text { FFB }}$ function is selected. $\overline{\text { EFB }}$ indicates whether or not the FIFO1 memory is empty. In the FWFT mode, the ORB function is selected. ORB indicates the presence of valid data on B0-B35 outputs, available for reading. $\overline{\mathrm{EFB}} / \mathrm{ORB}$ is synchronized to the LOW-to-HIGHtransition of CLKB. |
| ENA | Port A Enable | 1 | ENA must be HIGH to enable a LOW-to-HIGH transition of CLKA to read or write data on port A. |
| ENB | Port BEnable | 1 | ENB must be HIGH to enable a LOW-to-HIGH transition of CLKB to read or write data on port B. |
| FFAIIRA | Port A Full/ <br> Input Ready <br> Flag | 0 | This is a dual function pin. In the IDT Standard mode, the $\overline{F F A}$ function is selected. $\overline{\text { FFA }}$ indicates whether or not the FIFO1 memory is full. In the FWFT mode, the IRA function is selected. IRA indicates whether or not there is space available for writing to the FIFO1 memory. FFAIIRA is synchronized tothe LOW-to-HIGH transition of CLKA. |
| $\overline{\text { FFBI/RB }}$ | Port B Full/ <br> Input Ready <br> Flag | 0 | This is a dual function pin. In the IDT Standard mode, the $\overline{\text { FFB }}$ function is selected. $\overline{\text { FFB }}$ indicates whether or not the FIFO2 memory is full. In the FWFT mode, the IRB function is selected. IRB indicates whether or not there is space available for writing to the FIFO2 memory. FFB/IRB is synchronized tothe LOW-to-HIGH transition of CLKB. |
| $\overline{\text { FWFT }}$ | FirstWord Fall Through Mode | 1 | This pin selects the timing mode. A HIGH on FWFT selects IDT Standard mode, a LOW selects First Word Fall Through mode. Once the timing mode has been selected, the level on FWFT must be static throughout device operation. |
| FS1, FS0 | FlagOffset Selects | 1 | A LOW-to-HIGH transition of the FIFO Reset input latches the values of FSO and FS1. If either FSO or FS1 is HIGH when the FIFO Reset input goes HIGH, one of three preset values is selected as the offset for FIFOs Almost-Full and Almost-Empty flags. If both FIFOs are reset simultaneously and both FSO and FS1 are LOW when $\overline{\text { RST1 }}$ and $\overline{\text { RST2 }}$ go HIGH, the first four writes to FIFO1 load the AlmostEmpty and Almost-Full offsets for both FIFOs. |

## PIN DESCRIPTIONS (CONTINUED)

| Symbol | Name | I/0 | Description |
| :---: | :---: | :---: | :---: |
| MBA | Port A Mailbox Select | I | A HIGH level on MBA chooses a mailbox register for a port A read or write operation. When the AO-A35 outputs are active, a HIGH level on MBA selects data from the mail2 register for output and a LOW level selects FIFO2 output register datafor output. |
| MBB | Port B Mailbox Select | 1 | A HIGH level on MBB chooses a mailbox register for a port B read or write operation. When the B0-B35 outputs are active, a HIGH level on MBB selects data from the mail1 register or output and a LOW level selects FIFO1 output register data for output. |
| $\overline{\text { MBF1 }}$ | Mail1 Register Flag | 0 | $\overline{\text { MBF1 }}$ is set LOW by a LOW-to-HIGH transition of CLKA that writes data to the mail1 register. Writes to the mail1 register are inhibited while $\overline{\text { MBF1 }}$ is LOW. $\overline{\text { MBF1 }}$ is set HIGH by a LOW-to-HIGH transition of CLKB when a port B read is selected and MBB is HIGH. $\overline{\text { MBF1 }}$ is set HIGH when FIFO1 is reset. |
| $\overline{\text { MBF2 }}$ | Mail2 Register Flag | 0 | $\overline{\text { MBF2 }}$ is set LOW by a LOW-to-HIGH transition of CLKB that writes data to the mail2 register. Writes to the mail2 register are inhibited while $\overline{\text { MBF2 }}$ is LOW. $\overline{\text { MBF2 }}$ is set HIGH by a LOW-to-HIGH transition of CLKA when a port A read is selected and MBA is HIGH. $\overline{\text { MBF2 }}$ is also set HIGH when FIFO2 is reset. |
| $\overline{\mathrm{RST}} 1$ | FIFO1Reset | I | ToresetFIFO1,four LOW-to-HIGHtransitions ofCLKA andfourLOW-to-HIGHtransitions of CLKB mustoccur while $\overline{\text { RST1 }}$ is LOW. The LOW-to-HIGH transition of $\overline{\mathrm{RST1} 1}$ latches the status of FSO and FS1 for $\overline{\mathrm{AFA}}$ and $\overline{\mathrm{AEB}}$ offset selection. $\mathrm{FIFO1}$ must be reset upon power up before data is written to its RAM. |
| $\overline{\mathrm{RST}}{ }^{\text {2 }}$ | FIFO2Reset | 1 | ToresetFIFO2,four LOW-to-HIGHtransitions ofCLKA andfourLOW-to-HIGHtransitions of CLKBmustoccur while $\overline{\text { RST2 }}$ is LOW. The LOW-to-HIGH transition of $\overline{\text { RST2 }}$ latches the status of FSO and FS1 for $\overline{\mathrm{AFB}}$ and $\overline{\mathrm{EEA}}$ offset selection. $\mathrm{FIFO2}$ must be reset upon power up before data is written to its RAM. |
| W/ $\bar{R} A$ | PortA Write/ Read Select | 1 | A HIGH selects a write operation and a LOW selects a read operation on port A for a LOW-to-HIGH transition of CLKA. The AO-A35 outputs are in the HIGH impedance state when W/ $\overline{\mathrm{R}}$ A is HIGH. |
| W/RB | PortBWrite/ ReadSelect | 1 | A LOW selects a write operation and a HIGH selects a read operation on port B for a LOW-to-HIGH transition of CLKB. The BO-B35 outputs are in the HIG Himpedance state when $\bar{W} / R B$ is LOW. |

## ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (Unless otherwise noted) ${ }^{(1)}$

| Symbol | Rating | Commercial | Unit |
| :---: | :---: | :---: | :---: |
| Vcc | Supply Voltage Range | -0.5 to +7.0 | V |
| $\mathrm{V}^{(2)}$ | InputVoltage Range | -0.5 to Vcc +0.5 | V |
| Vo ${ }^{(2)}$ | OutputVoltage Range | -0.5 to Vcc +0.5 | V |
| IIK | Input Clamp Current ( $\mathrm{V}_{1}<0$ or $\mathrm{V}^{\prime}>\mathrm{Vcc}$ ) | $\pm 20$ | mA |
| Iok | Output Clamp Current (Vo $=<0$ or Vo > Vcc) | $\pm 50$ | mA |
| Iout | Continuous Output Current (Vo=0 to Vcc) | $\pm 50$ | mA |
| IcC | Continuous Current Through Vcc or GND | $\pm 400$ | mA |
| TstG | Storage Temperature Range | -65 to 150 | ${ }^{\circ} \mathrm{C}$ |

NOTES:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.
2. The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

| Symbol | Parameter | Min. | Max. | Unit |
| :---: | :--- | :---: | :---: | :---: |
| VCC | Supply Voltage | 4.5 | 5.5 | V |
| VIH | HIGH Level Input Voltage | 2 | - | V |
| VIL | LOW-Level InputVoltage | - | 0.8 | V |
| IOH | HIGH-Level Output Current | - | -4 | mA |
| IOL | LOW-Level Output Current | - | 8 | mA |
| $\mathrm{TA}_{\mathrm{A}}$ | OperatingFree-airTemperature | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |

## ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREEAIR TEMPERATURE RANGE (Unless otherw ise noted)

| Symbol | Parameter | Test Conditions |  | IDT723652 <br> IDT723662 <br> IDT723672 <br> Commercial $\text { tCLK }=12,15 \mathrm{~ns}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. ${ }^{(1)}$ | Max. |  |
| Vон | OutputLogic "1" Voltage | $\mathrm{Vcc}=4.5 \mathrm{~V}$, | $\mathrm{IOH}=-4 \mathrm{~mA}$ | 2.4 | - | - | V |
| Vol | OutputLogic "0" Voltage | $\mathrm{Vcc}=4.5 \mathrm{~V}$, | $\mathrm{IoL}=8 \mathrm{~mA}$ | - | - | 0.5 | V |
| ILI | InputLeakage Current(Any Input) | $\mathrm{Vcc}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{I}}=\mathrm{Vcc}$ or 0 | - | - | $\pm 10$ | $\mu \mathrm{A}$ |
| ILO | OutputLeakage Current | $\mathrm{Vcc}=5.5 \mathrm{~V}$, | $\mathrm{Vo}=\mathrm{Vcc}$ or 0 | - | - | $\pm 10$ | $\mu \mathrm{A}$ |
| Icc2 ${ }^{(2)}$ | Standby Current (with CLKA \& CLKB running) | $\mathrm{Vcc}=5.5 \mathrm{~V}$, | $\mathrm{VI}=\mathrm{Vcc}-0.2 \mathrm{~V}$ or 0 V | - | - | 8 | mA |
| ICC3 ${ }^{(2)}$ | Standby Current(noclocks running) | $\mathrm{Vcc}=5.5 \mathrm{~V}$, | $\mathrm{VI}=\mathrm{Vcc}-0.2 \mathrm{~V}$ or 0 V | - | - | 1 | mA |
| $\mathrm{Cin}^{(3)}$ | InputCapacitance | $V_{l}=0$, | $\mathrm{f}=1 \mathrm{MHz}$ | - | 4 | - | pF |
| Cout ${ }^{(3)}$ | OutputCapacitance | $\mathrm{Vo}=0$, | $\mathrm{f}=1 \mathrm{MHZ}$ | - | 8 | - | pF |

## NOTES:

1. All typical values are at $\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{TA}_{A}=25^{\circ} \mathrm{C}$.
2. For additional Icc information, see Figure 1, Typical Characteristics: Supply Current (Icc) vs. Clock Frequency (fs).
3. Characterized values, not currently tested.
4. Industrial temperature range is available by special order.

## Calculating Power Dissipation

The ICC(f) current for the graph in Figure 1 was taken while simultaneously reading and writing a FIFO on the IDT723652/723662/723672 with CLKA and CLKB set to fs. All data inputs and data outputs change state during each clock cycle to consume the highest supply current. Data outputs were disconnected to normalize the graph to a zero capacitance load. Once the capacitance load per data-output channel and the number of these device's inputs driven by TTL HIGH levels are known, the power dissipation can be calculated with the equation below.

With ICC(f) taken from Figure 1, the maximum power dissipation (PT) of these FIFOs may be calculated by:

$$
\text { PT }=\operatorname{Vcc} x[\operatorname{lcc}(f)+(N \times \text { Đlcc } x d c)]+\Sigma\left(C L x \operatorname{Vcc}^{2} X \text { fo }\right)
$$

where:
$\mathrm{N}=$ number of inputs driven by TTL levels
$\Delta I C C=$ increase in power supply current for each input at a TTL HIGH level
dc $=$ duty cycle of inputs at a TTL HIGH level of 3.4 V
$\mathrm{CL}=$ outputcapacitanceload
fo $=$ switching frequency of an output


Figure 1. Typical Characteristics: Supply Current (Icc) vs. Clock Frequency (fs)

## TIMING REQUIREMENTS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE

(Commercial: $\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ )

| Symbol | Parameter | Commercial |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | IDT723652L12 IDT723662L12 IDT723672L12 |  | $\begin{aligned} & \text { IDT723652L15 } \\ & \text { IDT723662L15 } \\ & \text { IDT723672L15 } \\ & \hline \end{aligned}$ |  |  |
|  |  | Min. | Max. | Min. | Max. |  |
| fs | Clock Frequency, CLKA or CLKB | - | 83 | - | 66.7 | MHz |
| tcLk | Clock Cycle Time, CLKA or CLKB | 12 | - | 15 | - | ns |
| tCLKH | Pulse Duration, CLKA or CLKB HIGH | 5 | - | 6 | - | ns |
| tCLKL | Pulse Duration, CLKA and CLKB LOW | 5 | - | 6 | - | ns |
| DS | Setup Time, A0-A35 before CLKA $\uparrow$ and B0-B35 before CLKB $\uparrow$ | 3 | - | 4 | - | ns |
| IENS1 | Setup Time, $\overline{C S A}$ and W/RA, before CLKA $\uparrow$; $\overline{\mathrm{CSB}}$, and $\overline{\mathrm{W}} / \mathrm{RB}$ before CLKB $\uparrow$ | 4 | - | 4.5 | - | ns |
| tens2 | Setup Time, ENA and MBA, before CLKA $\uparrow$; ENB, and MBB before CLKB $\uparrow$ | 3 | - | 4.5 | - | ns |
| tRSTS | Setup Time, $\overline{\text { RST1 }}$ or $\overline{\text { RST2 }}$ LOW before CLKA $\uparrow$ or CLKB $\uparrow^{(1)}$ | 5 | - | 5 | - | ns |
| tFSS | Setup Time, FS0 and FS1 before $\overline{\text { RST1 }}$ and $\overline{\text { RST2 }}$ HIGH | 7.5 | - | 7.5 | - | ns |
| trws | Setup Time, $\overline{\text { FWFT }}$ before CLKA $\uparrow$ | 0 | - | 0 | - | ns |
| DH | Hold Time, A0-A35 after CLKA $\uparrow$ and B0-B35 after CLKB $\uparrow$ | 0.5 | - | 1 | - | ns |
| EENH | Hold Time, $\overline{\mathrm{CSA}}, \mathrm{W} / \overline{\mathrm{R}} \mathrm{A}, \mathrm{ENA}$, and MBA after CLKA $\uparrow ; \overline{\mathrm{CSB}}, \overline{\mathrm{W}} / \mathrm{RB}, \mathrm{ENB}$, and MBB after CLKB $\uparrow$ | 0.5 | - | 1 | - | ns |
| tRSTH | Hold Time, $\overline{\mathrm{RST1}}$ or $\overline{\mathrm{RST}} 2 \mathrm{LOW}$ after CLKA $\uparrow$ or CLKB $\uparrow^{(1)}$ | 4 | - | 4 | - | ns |
| tFSH | Hold Time, FS0 and FS1 after $\overline{\text { RST1 }}$ and $\overline{\text { RST2 }}$ HIGH | 2 | - | 2 | - | ns |
| tSkEw1 ${ }^{(2)}$ | Skew Time, between CLKA $\uparrow$ and CLKB $\uparrow$ for $\overline{\mathrm{EFA}} / \mathrm{ORA}, \overline{\mathrm{EFB}} / \mathrm{ORB}, \overline{\mathrm{FFA}} / \mathrm{IRA}$, and $\overline{\mathrm{FFB}} / / \mathrm{RB}$ | 7.5 | - | 7.5 | - | ns |
| tSKEW2 ${ }^{(2,3)}$ | Skew Time, between CLKA $\uparrow$ and CLKB $\uparrow$ for $\overline{\mathrm{AEA}}, \overline{\mathrm{AEB}}, \overline{\mathrm{AFA}}$, and $\overline{\mathrm{AFB}}$ | 12 | - | 12 | - | ns |

## NOTES:

1. Requirement to count the clock edge as one of at least four needed to reset a FIFO.
2. Skew time is not a timing constraint for proper device operation and is only included to illustrate the timing relationship between CLKA cycle and CLKB cycle.
3. Design simulated, not tested.
4. Industrial temperature range is available by special order.

## SWITCHING CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE, CL = 30 pF

(Commercial: $\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ )

| Symbol | Parameter | Commercial |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | IDT723652L12IDT723662L12IDT723672L12 |  | IDT723652L15 <br> IDT723662L15 <br> IDT723672L15 |  |  |
|  |  | Min. | Max. | Min. | Max. |  |
| tA | Access Time, CLKA $\uparrow$ to A0-A35 and CLKB $\uparrow$ to B0-B35 | 2 | 8 | 2 | 10 | nS |
| tPR | Propagation Delay Time, CLKA to $\overline{\mathrm{FFA}} / \mathrm{IRA}$ and CLKB $\uparrow$ to $\overline{\mathrm{FFB}} / \mathrm{IRB}$ | 2 | 8 | 2 | 8 | nS |
| tPOR | Propagation Delay Time, CLKA to $\overline{\mathrm{EFA}} / \mathrm{ORA}$ and CLKB $\uparrow$ to $\overline{\mathrm{EFB}} / \mathrm{ORB}$ | 1 | 8 | 1 | 8 | ns |
| tPAE | Propagation Delay Time, CLKA $\uparrow$ to $\overline{A E A}$ and CLKB $\uparrow$ to $\overline{\mathrm{AEB}}$ | 1 | 8 | 1 | 8 | ns |
| tPAF | Propagation Delay Time, CLKA $\uparrow$ to $\overline{\mathrm{AFA}}$ and CLKB $\uparrow$ to $\overline{\mathrm{AFB}}$ | 1 | 8 | 1 | 8 | ns |
| tPMF | Propagation Delay Time, CLKA $\uparrow$ to $\overline{\text { MBF1 }}$ LOW or $\overline{\text { MBF2 }}$ HIGH and CLKB $\uparrow$ to $\overline{\text { MBF2 }}$ LOW or $\overline{\text { MBF1 }} \mathrm{HIGH}$ | 0 | 8 | 0 | 8 | ns |
| tPMR | Propagation Delay Time, CLKA $\uparrow$ to $\mathrm{BO}-\mathrm{B35}{ }^{(1)}$ and CLKB $\uparrow$ to $\mathrm{AO}-\mathrm{A} 35{ }^{(2)}$ | 2 | 8 | 2 | 10 | ns |
| tMDV | Propagation Delay Time, MBA to A0-A35 valid and MBB to B0-B35 Valid | 2 | 8 | 2 | 10 | ns |
| tPRF | Propagation Delay Time, $\overline{\text { RST1 }}$ LOW to $\overline{\text { AEB }}$ LOW, $\overline{\text { AFA }}$ HIGH, and $\overline{\text { MBF1 }}$ HIGH, and $\overline{\text { RST2 }}$ LOW to $\overline{\text { AEA }}$ LOW, $\overline{\mathrm{AFB}}$ HIGH, and $\overline{\mathrm{MBF} 2} \mathrm{HIGH}$ | 1 | 10 | 1 | 15 | ns |
| ENT | Enable Time, $\overline{\mathrm{CSA}}$ and W/R्RA LOW to AO-A35 Active and $\overline{\mathrm{CSB}}$ LOW and $\overline{\mathrm{W}} / \mathrm{RB}$ HIGH to B0-B35 Active | 2 | 6 | 2 | 10 | ns |
| tDIS | Disable Time, $\overline{\mathrm{CSA}}$ or W/R$A$ HIGH to A0-A35 at high-impedance and $\overline{\mathrm{CSB}}$ HIGH or $\bar{W} / R B$ LOW to B0-B35 athigh-impedance | 1 | 6 | 1 | 8 | ns |

NOTES:

1. Writing data to the mail1 register when the B0-B35 outputs are active and MBB is HIGH.
2. Writing data to the mail2 register when the AO-A35 outputs are active and MBA is HIGH.
3. Industrial temperature range is available by special order.

## SIGNALDESCRIPTION

## RESET

After power up, a Master Resetoperation must be performed by providing a LOW pulse to $\overline{\mathrm{RST1}}$ and $\overline{\mathrm{RST}}$ simultaneously. Afterwards, the FIFO memories of the IDT723652/723662/723672 are reset separately by taking their Reset( $\overline{\text { RST1 }}, \overline{\text { RST2 }})$ inputs LOWfor atleastfour port-AClock (CLKA) and four port-B Clock (CLKB) LOW-to-HIGH transitions. The Reset inputs can switch asynchronously to the clocks. A FIFO reset initializes the internal read and write pointers and forces the Input Ready flag (IRA, IRB) LOW, the Output Ready flag (ORA, ORB) LOW, the Almost-Empty flag ( $\overline{\mathrm{AEA}}, \overline{\mathrm{AEB}}$ ) LOW, and the Almost-Fullflag ( $\overline{\mathrm{AFA}}, \overline{\mathrm{AFB}}) \mathrm{HIGH}$. ResettingaFIFO alsoforcesthe Mailbox Flag ( $\overline{\mathrm{MBF}} 1, \overline{\mathrm{MBF}}$ ) of the parallel mailbox register HIGH. After aFIFO is reset, its Input Ready flag is setHIGH after two clockcycles to beginnormal operation.

ALOW-to-HIGH transition onaFIFO Reset ( $\overline{\text { RST1 }}, \overline{\text { RST2 }}$ ) inputlatches the value of the Flag Select (FS0, FS1) inputs for choosing the Almost-Full and Almost-Empty offset programming method. (For details see Table 1, Flag Programming, and the Programming the Almost-Empty and Almost-Full Flags section). The relevant FIFO Reset timing diagram can be found in Figure 2.

## FIRST WORD FALL THROUGH (FWFT)

After Master Reset, the FWFT selectfunction is active, permitting a choice between two possible timing modes: IDT Standard mode or First Word Fall Through (FWFT) mode. Once the Reset( $\overline{\mathrm{RST} 1}, \overline{\mathrm{RST}})$ input is HIGH, aHIGH on the FWFT input during the next LOW-to-HIGH transition of CLKA (for FIFO1) and CLKB (forFIFO2) will select IDT Standard mode. This modeuses the Empty Flag function ( $\overline{\mathrm{EFA}}, \overline{\mathrm{EFB}})$ to indicate whether or not there are any words present in the FIFO memory. It uses the Full Flag function ( $\overline{\mathrm{FFA}}, \overline{\mathrm{FFB}}$ ) to indicate whether or not the FIFO memory has any free space for writing. In IDT Standard mode, every word read from the FIFO, including the first, must be requested using a formal read operation.

Once the Reset ( $\overline{\text { RST1 }}, \overline{\text { RST2 }}$ ) input is HIGH, a LOW on the FWFT input during the next LOW-to-HIGH transition of CLKA (for FIFO1) and CLKB (for FIFO2) will select FWFT mode. This mode uses the Output Ready function (ORA, ORB) to indicate whether or not there is valid data at the data outputs (A0-A35 orB0-B35). Italsouses the Input Ready function(IRA, IRB) to indicate whether or not the FIFO memory has any free space for writing. In the FWFT mode, the first word written to an empty FIFO goes directly to data outputs, no
read requestnecessary. Subsequentwords mustbe accessed by performing a formal read operation.

Following Reset, the level applied to the $\overline{F W F T}$ input to choose the desired timing mode must remain static throughout FIFO operation. Refer to Figure 2 (Reset) for a First Word Fall Through select timing diagram.

## ALMOST-EMPTYFLAGANDALMOST-FULLFLAGOFFSETPROGRAMMING

Four registers in these devices are used to hold the offset values for the Almost-Empty and Almost-Full flags. The portBAlmost-Emptyflag( $\overline{\mathrm{AEB}})$ Offset register is labeled X1 and the port A Almost-Emptyflag ( $\overline{\mathrm{AEA}})$ Offset register is labeled X2. The portAAlmost-Fullflag ( $\overline{\mathrm{AFA}})$ Offsetregister is labeled Y1 and the portB Almost-Fullflag ( $\overline{\mathrm{AFB}})$ Offsetregister is labeled Y2. The index ofeach register name corresponds to its FIFO number. The offset registers can be loaded with presetvalues during the reset ofaFIFO or they canbe programmed from port A (see Table 1).

FSO and FS1 functionthe same way inboth IDT StandardandFWFTmodes.

## — PRESET VALUES

ToloadtheFIFO'sAlmost-Empty flag andAlmost-Full flag Offsetregisterswith oneofthethreepresetvalues listedinTable1, atleastone ofthe flag selectinputs mustbeHIGHduringtheLOW-to-HIGH transition ofits resetinput. Forexample, to load the presetvalue of 64 into X1 and Y1, FS0 and FS1 mustbeHIGH when FIFO1 Reset(ㅈST1) returnsHIGH. Flag offsetregisters associated withFIFO2 are loaded with one of the preset values in the same way with FIFO2 Reset ( $\overline{\text { RST2 }})$ toggled simultaneously with FIFO1 Reset ( $\overline{\text { RST1 }})$. For preset value loading timing diagram, see Figure 2.

## -PARALLEL LOAD FROM PORT A

To program the $\mathrm{X} 1, \mathrm{X} 2, \mathrm{Y} 1$, and Y 2 registers from portA, bothFIFOs should be reset simultaneously with FS0 and FS1 LOW during the LOW-to-HIGH transitionofthe Resetinputs. Itisimportanttonotethatonce parallel programming hasbeenselectedduringaMaster Resetby holdingbothFS0 \&FS1LOW, these inputs mustremainLOW during all subsequentFIFO operation. They can only be toggled HIGH when future Master Resets are performed and other programming methods are desired.

After this reset is complete, the firstfour writes to FIFO1 do not store datain the FIFO memory but load the offset registers in the order $\mathrm{Y} 1, \mathrm{X} 1, \mathrm{Y} 2, \mathrm{X} 2$. The portA datainputs used by the offsetregisters are (A7-A0), (A8-A0), or (A9-A0)

## TABLE 1 -FLAG PROGRAMMING

| FS1 | FS0 | $\overline{\text { RST1 }}$ | $\overline{\text { RST2 }}$ | X1 AND Y1 REGISTERS $^{(1)}$ | X2 AND Y2 REGISTERS |
| :---: | :---: | :---: | :---: | :---: | :---: |

## NOTES:

1. $X 1$ register holds the offset for $\overline{A E B} ; Y 1$ register holds the offset for $\overline{A F A}$.
2. X2 register holds the offset for $\overline{A E A} ; ~ Y 2$ register holds the offset for $\overline{\mathrm{AFB}}$.
3. If parallel programming is selected during a Master Reset, then FSO \& FS1 must remain LOW during FIFO operation.
for the IDT723652, IDT723662, or IDT723672, respectively. The highest numbered input is used asthe mostsignificantbit of the binary number in each case. Valid programming values for the registers ranges from 1 to 2,044 for the IDT723652; 1 to 4,092 for the IDT723662; and 1 to 8,188 for the IDT723672. After all the offset registers are programmed from portA, the port B Full/Input Ready flag ( $\overline{\mathrm{FFB}} /$ IRB) is set HIGH, and both FIFO s begin normal operation. See Figure 3 for relevant offset register parallel programming timing diagram.

## FIFO WRITE/READ OPERATION

The state oftheportAdata(AO-A35) outputsiscontrolled by portAChipSelect $(\overline{\mathrm{CSA}})$ and port A Write/Read select (W/RA). The A0-A35 outputs are in the high-impedance state wheneither $\overline{\mathrm{CSA}}$ orW/ $\overline{\mathrm{R}}$ Ais HIGH. The A0-A35 outputs are active when both $\overline{C S A}$ and $W / \bar{R} A$ are LOW.

Data is loaded into FIFO1 from the A0-A35 inputs on a LOW-to-HIGH transition of CLKA when $\overline{\mathrm{CSA}}$ is LOW, W/RA is HIGH, ENA is HIGH, MBA is LOW, and $\overline{F F A}$ /IRA is HIGH. Data is read from FIFO2 to the A0-A35 outputs byaLOW-to-HIGH transition of CLKA when $\overline{C S A}$ is LOW, W/RA is LOW, ENA is HIGH, MBA is LOW, and EFA/ORA is HIGH (see Table2). FIFO reads and writes on portA are independent of any concurrentportB operation. Write and Read cycle timing diagrams for Port A can be found in Figure 4 and 7.

The port B control signals are identical to those of port A with the exception thatthe portBWrite/Read select( $\bar{W} / R B$ ) is the inverse ofthe portAWrite/Read select $(W / \bar{R} A)$. The state ofthe port $B$ data ( $B 0-B 35$ ) outputs is controlled by the port B Chip Select ( $\overline{\mathrm{CSB}}$ ) and port B Write/Read select ( $\overline{\mathrm{W}} / \mathrm{RB}$ ). The B0-B35 outputs are in the high-impedance state when either $\overline{\mathrm{CSB}}$ is HIGH or $\bar{W} / \mathrm{RB}$ is

LOW. The B0-B35 outputs are active when $\overline{C S B}$ is LOW and $\bar{W} / R B$ is HIGH .
Data is loaded into FIFO2 from the B0-B35 inputs on a LOW-to-HIGH transition ofCLKB when $\overline{C S B}$ isLOW, $\bar{W} / R B$ isLOW,ENB isHIGH,MBBisLOW, and $\overline{\mathrm{FFB}} / \mathrm{IRB}$ is HIGH. Data is read from FIFO1 to the B0-B35 outputs by a LOW-to-HIGH transition of CLKB when $\overline{\mathrm{CSB}}$ is LOW, $\bar{W} / R B$ is HIGH, ENB is HIGH, MBB is LOW, and $\overline{E F B} / O R B$ is HIGH (see Table 3). FIFO reads and writes on portB are independent of any concurrentportA operation. Write and Read cycle timing diagrams for Port B can be found in Figure 5 and 6.

The setupandholdtime constraintstothe portClocksforthe portChip Selects and Write/Read selects are only for enabling write and read operations and are notrelated tohigh-impedance control ofthe dataoutputs. Ifaportenable is LOW during a clock cycle, the port's Chip Selectand Write/Read selectmay change states during the setup and hold time window of the cycle.
When operating the FIFO in FWFT mode and the OutputReady flag is LOW, the nextword written is automatically sent to the FIFO's output register by the LOW-to-HIGH transition of the portclock thatsetsthe OutputReady flag HIGH. When the Output Ready flag is HIGH, subsequentdatais clocked to the output registers only when a read is selected using the port's Chip Select, Write/Read select, Enable, and Mailbox select.

When operating the FIFO in IDT Standard mode, the first word will cause the Empty Flag to change state on the second LOW-to-HIGH transition of the Read Clock. The data word will notbe automatically senttothe outputregister. Instead, data residing in the FIFO's memory array is clocked to the output register only when a read is selected using the port's Chip Select, Write/Read select, Enable, and Mailbox select.

## TABLE 2 - PORT A ENABLE FUNCTION TABLE

| $\overline{\text { CSA }}$ | WI信A | ENA | MBA | CLKA | Data A (A0-A35) IIO | Port Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | X | X | X | X | High-Impedance | None |
| L | H | L | X | X | Input | None |
| L | H | H | L | $\uparrow$ | Input | FIFO1 write |
| L | H | H | H | $\uparrow$ | Input | Mail1 write |
| L | L | L | L | X | Output | None |
| L | L | H | L | $\uparrow$ | Output | FIFO2 read |
| L | L | L | H | X | Output | None |
| L | L | H | H | $\uparrow$ | Output | Mail2 read (set $\overline{\text { MBF2 } \text { HIGH) }}$ |

TABLE 3 - PORT B ENABLE FUNCTION TABLE

| $\overline{\text { CSB }}$ | $\overline{\text { W } / R B ~}$ | ENB | MBB | CLKB | Data B (B0-B35) I/O | Port Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | X | X | X | X | High-Impedance | None |
| L | L | L | X | X | Input | None |
| L | L | H | L | $\uparrow$ | Input | FIFO2 write |
| L | L | H | H | $\uparrow$ | Input | Mail2 write |
| L | H | L | L | X | Output | None |
| L | H | H | L | $\uparrow$ | Output | FIFO1 read |
| L | H | L | H | X | Output | None |
| L | H | H | H | $\uparrow$ | Output | Mail1 read (set $\overline{\text { MBF1 HIGH) }}$ |

## SYNCHRONIZED FIFO FLAGS

EachFIFO issynchronizedto its portclockthrough atleasttwo flip-flopstages. This is done to improve flag signal reliability by reducing the probability of metastable events when CLKA and CLKB operate asynchronously to one another. $\overline{\mathrm{EFA}} / O R A, \overline{\mathrm{AEA}}, \overline{\mathrm{FFA}} /$ IRA, and $\overline{\mathrm{AFA}}$ are synchronized to CLKA. $\overline{\mathrm{EFB}} /$ ORB, $\overline{\mathrm{AEB}}, \overline{\mathrm{FFB}} /$ IRB, and $\overline{\mathrm{AFB}}$ are synchronized to CLKB. Tables 4 and 5 show the relationship of each port flag to FIFO1 and FIFO2.

## EMPTYIOUTPUT READY FLAGS (EFA/ORA, $\overline{E F B} / O R B)$

These are dual purpose flags. Inthe FWFT mode, the Output Ready (ORA, ORB) function is selected. When the Output Ready flag is HIGH, new data is present in the FIFO outputregister. Whenthe Output Ready flag is LOW, the previous data word is present in the FIFO output register and attempted FIFO reads are ignored.

In the IDT Standard mode, the Empty Flag ( $\overline{\mathrm{EFA}}, \overline{\mathrm{EFB}})$ function is selected. Whenthe Empty Flag is HIGH, data is available in the FIFO's RAM for reading to the output register. When the Empty Flag is LOW, the previous data word is present in the FIFO output register and attempted FIFO reads are ignored.

The Empty/Output Ready flag of a FIFO is synchronized to the port clock that reads data from its array. For both the FWFT and IDT Standard modes, the FIFO read pointer is incremented each time a new word is clocked to its outputregister. The state machine that controls an OutputReadyflag monitors
a write pointer and read pointer comparator that indicates when the FIFO memory status is empty, empty +1 , or empty +2 .
In FWFT mode, from the time a word is written to a FIFO, it can be shifted to the FIFO output register in a minimum of three cycles of the Output Ready flag synchronizing clock. Therefore, an Output Ready flag is LOW if a word inmemory isthe nextdatato be senttotheFIFO outputregister and three cycles of the portClock thatreads datafrom the FIFO have notelapsed since the time the word was written. The Output Ready flag of the FIFO remains LOW until the third LOW-to-HIGH transition of the synchronizing clock occurs, simultaneously forcing the Output Ready flag HIGH and shifting the word to the FIFO outputregister.

In IDT Standard mode, from the time a word is written to a FIFO, the Empty Flag will indicate the presence of data available for reading in a minimum oftwo cycles ofthe Empty Flag synchronizing clock. Therefore, anEmptyFlagisLOW if a word in memory is the next data to be sent to the FIFO output register and two cycles of the port Clock that reads data from the FIFO have not elapsed since the time the word was written. The Empty Flag of the FIFO remains LOW until the second LOW-to-HIGH transition of the synchronizing clock occurs, forcing the Empty Flag HIGH; only then can data be read.

A LOW-to-HIGH transition on an Empty/Output Ready flag synchronizing clockbeginsthefirstsynchronizationcycle of a write ifthe clocktransition occurs attime tSKEW1 or greater after the write. Otherwise, the subsequent clock cycle

## TABLE 4 - FIFO1 FLAG OPERATION (IDT STANDARD AND FWFT MODES)

| Number of Words in FIFO ${ }^{(1,2)}$ |  |  | Synchronized <br> to CLKB |  | Synchronized <br> to CLKA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IDT723652 |  |  |  |  |  |  |

NOTES:

1. When a word loaded to an empty FIFO is shifted to the output register, its previous FIFO memory location is free.
2. Data in the output register does not count as a "word in FIFO memory". Since in FWFT mode, the first word written to an empty FIFO goes unrequested to the output register (no read operation necessary), it is not included in the FIFO memory count.
3. X 1 is the Almost-Empty offset for FIFO1 used by $\overline{\mathrm{AEB}}$. Y 1 is the Almost-Full offset for FIFO1 used by $\overline{\mathrm{AFA}}$. Both X 1 and Y 1 are selected during a reset of FIFO1 or programmed from port A.
4. The ORB and IRA functions are active during FWFT mode; the $\overline{\mathrm{EFB}}$ and $\overline{\mathrm{FFA}}$ functions are active in IDT Standard mode.

## TABLE 5 - FIFO2 FLAG OPERATION (IDT STANDARD AND FWFT MODES)

| Number of Words in FIFO ${ }^{(1,2)}$ |  |  | Synchronized to CLKA |  | Synchronized to CLKB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IDT723652 ${ }^{(3)}$ | IDT723662 ${ }^{(3)}$ | IDT723672 ${ }^{(3)}$ | EFA/ORA | $\overline{\text { AEA }}$ | $\overline{\text { AFB }}$ | $\overline{\text { FFB/IRB }}$ |
| 0 | 0 | 0 | L | L | H | H |
| 1 to X2 | 1 to X2 | 1 to X2 | H | L | H | H |
| $(\mathrm{X} 2+1)$ to[2,048-(Y2+1)] | (X2+1) to [4,096-(Y2+1)] | (X2+1) to [8,192-(Y2+1)] | H | H | H | H |
| (2,048-Y2)to 2,047 | (4,096-Y2)to 4,095 | (8,192-Y2) to 8,191 | H | H | L | H |
| 2,048 | 4,096 | 8,192 | H | H | L | L |

## NOTES:

1. When a word loaded to an empty FIFO is shifted to the output register, its previous FIFO memory location is free.
2. Data in the output register does not count as a "word in FIFO memory". Since in FWFT mode, the first word written to an empty FIFO goes unrequested to the output register (no read operation necessary), it is not included in the FIFO memory count.
3. X 2 is the Almost-Empty offset for FIFO2 used by $\overline{\mathrm{AEA}}$. Y2 is the Almost-Full offset for FIFO2 used by $\overline{\mathrm{AFB}}$. Both X 2 and Y 2 are selected during a reset of FIFO2 or programmed from port $A$.
4. The ORA and IRB functions are active during FWFT mode; the $\overline{\mathrm{EFA}}$ and $\overline{\mathrm{FFB}}$ functions are active in IDT Standard mode.
can bethe firstsynchronization cycle (see Figures 8 through 11 for $\overline{E F A} / O R A$ and $\overline{\mathrm{EFB}} / \mathrm{ORB}$ timing diagrams).

## FULLIINPUT READY FLAGS ( $\overline{\mathrm{FFA}} / \mathrm{IRA}, \overline{\mathrm{FFB}} / \mathrm{IRB}$ )

This is a dual purpose flag. In FWFT mode, the Input Ready (IRA and IRB) function is selected. In IDT Standard mode, the Full Flag ( $\overline{\mathrm{FFA}}$ and $\overline{\mathrm{FFB}}$ ) function is selected. For bothtiming modes, whenthe Full/Input Ready flag is HIGH, a memory location is free in the FIFO to receive new data. No memory locations are free whentheFull/InputReady flag is LOW and attempted writes to the FIFO are ignored.

The Full/Input Ready flag of a FIFO is synchronized to the port clock that writes data to its array. For both FWFT and IDT Standard modes, each time a word is written to a FIFO, its write pointer is incremented. The state machine that controls a Full/Input Ready flag monitors a write pointer and read pointer comparator that indicates when the FIFO memory status is full, full-1, or full-2. From the time a word is read fromaFIFO, its previous memory location is ready to be written to in a minimum of two cycles of the Full/Input Ready flag synchronizing clock. Therefore, aFull/InputReady flag is LOW iflessthantwo cycles of the Full/Input Ready flag synchronizing clock have elapsed since the next memory write location has been read. The second LOW-to-HIGH transition on the Full/Input Ready flag synchronizing clock after the read sets the Full/Input Ready flag HIGH.

ALOW-to-HIGH transition on a Full/Input Ready flag synchronizing clock begins the firstsynchronization cycle of a read ifthe clock transition occurs at time tSKEW1 or greater after the read. Otherwise, the subsequent clock cycle can be the firstsynchronization cycle (see Figures 12 through 15 for $\overline{F F A} / I R A$ and $\overline{F F B} /$ IRB timing diagrams).

## ALMOST-EMPTY FLAGS ( $\overline{\mathrm{AEA}}, \overline{\mathrm{AEB}}$ )

The Almost-Emptyflag of aFIFO is synchronized to the portclock that reads datafromitsarray. The statemachinethatcontrolsanAlmost-Emptyflagmonitors a write pointer and read pointer comparator that indicates when the FIFO memory status is almost-empty, almost-empty +1 , or almost-empty +2 . The almost-empty state is defined by the contents of register X1 for $\overline{\mathrm{AEB}}$ and register X 2 for $\overline{\mathrm{AEA}}$. These registers are loaded with preset values during aFIFO reset or programmed from portA(see Almost-Emptyflag and Almost-Fullflag offset programming section). An Almost-Empty flag is LOW whenits FIFO contains X or less words and is HIGH when its FIFO contains (X+1) or more words. A data word present in the FIFO output register has been read from memory.

Two LOW-to-HIGH transitions ofthe Almost-Empty flag synchronizing clock are required after aFIFO write for its Almost-Empty flag to reflect the newlevel of fill. Therefore, the Almost-Full flag of aFIFO containing $(X+1)$ or more words remains LOW iftwo cycles of its synchronizing clockhave notelapsed since the write thatfilled the memory tothe (X+1) level. AnAlmost-Empty flagis setHIGH bythe second LOW-to-HIGHtransition of its synchronizing clock aftertheFIFO writethatfills memorytothe $(\mathrm{X}+1)$ level. ALOW-to-HIGH transition of an AlmostEmpty flag synchronizing clockbeginsthe firstsynchronization cycle ifitoccurs at time tSKEW2 or greater after the write that fills the FIFO to $(X+1)$ words. Otherwise, the subsequentsynchronizing clock cycle may be the firstsynchronization cycle. (See Figures 16 and 17).

## ALMOST-FULL FLAGS ( $\overline{\mathrm{AFA}}, \overline{\mathrm{AFB}}$ )

The Almost-Fullflag of aFIFO is synchronizedto the portclock thatwrites data to its array. The state machine that controls an Almost-Full flag monitors a write pointer and read pointer comparator that indicates when the FIFO memory status is almost-full, almost-full-1, oralmost-full-2. Thealmost-full state isdefined by the contents of register Y1 for $\overline{\mathrm{AFA}}$ and register Y 2 for $\overline{\mathrm{AFB}}$. These registers are loaded with preset values during a FIFO reset or programmed from port A (see Almost-Empty flag and Almost-Fullflag offset programming section). AnAlmost-Fullflag is LOW whenthenumber ofwords initsFIFO is greater than or equal to (2,048-Y), (4,096-Y), or (8,192-Y) for the IDT723652, IDT723662, or IDT723672 respectively. An Almost-Full flag is HIGH when the number of words in its FIFO is less than or equal to $[2,048-(\mathrm{Y}+1)],[4,096-(\mathrm{Y}+1)]$, or $[8,192-$ $(\mathrm{Y}+1)]$ for the IDT723652, IDT723662, or IDT723672 respectively. Note that a data word present in the FIFO output register has been read from memory.
TwoLOW-to-HIGHtransitions ofthe Almost-Full flag synchronizing clock are required after aFIFO read for its Almost-Full flag to reflect the new level of fill. Therefore, the Almost-Full flag of aFIFO containing[2,048/4,096/8,192-(Y+1)] or less words remains LOW if two cycles of its synchronizing clock have not elapsed since the read that reduced the number of words in memory to [2,048/ 4,096/8,192-(Y+1)]. An Almost-Full flag is set HIGH by the second LOW-toHIGH transition of its synchronizing clock after the FIFO read that reduces the number of words in memory to [2,048/4,096/8,192-(Y+1)]. ALOW-to-HIGH transition of an Almost-Full flag synchronizing clock beginsthe firstsynchronization cycle ifitoccurs attime tSKEW2 or greater after the read that reduces the number of words in memory to [2,048/4,096/8,192-(Y+1)]. Otherwise, the subsequent synchronizing clock cycle may be the first synchronization cycle (see Figures 18 and 19).

## MAILBOX REGISTERS

Each FIFO has a 36 -bit bypass register to pass command and control information between portA and portB without putting it in queue. The Mailbox select(MBA, MBB) inputs choose between a mail register and aFIFO for aport datatransferoperation. ALOW-to-HIGHtransition onCLKAwritesA0-A35data to the mail1 register when a port $A$ Write is selected by $\overline{C S A}, W / \bar{R} A$, and ENA and withMBAHIGH. ALOW-to-HIGH transition on CLKB writesB0-B35 data to the mail 2 register when a port $B$ Write is selected by $\overline{C S B}, \bar{W} / R B$, and ENB and with MBB HIGH. Writing data to a mail register sets its corresponding flag ( $\overline{\mathrm{MBF} 1}$ or $\overline{\mathrm{MBF} 2}$ ) LOW. Attempted writes to a mail register are ignored while the mail flag is LOW.

When data outputs of a port are active, the data on the bus comes from the FIFO outputregisterwhenthe portMailboxselectinputisLOW and fromthemail register when the port mailbox select input is HIGH. The Mail1 Register Flag (MBF1) is setHIGH by aLOW-to-HIGH transition onCLKB when aportBRead is selected by $\overline{C S B}, \bar{W} / R B$, and ENB and with MBB HIGH. The Mail2 Register Flag ( $\overline{\mathrm{MBF} 2}$ ) is set HIGH by a LOW-to-HIGH transition on CLKA when a port A read is selected by $\overline{C S A}, W / \bar{R} A$, and ENA and with MBA HIGH. The data in a mail register remains intact after it is read and changes only when new data iswrittentothe register. Formail register and Mail RegisterFlagtiming diagrams, see Figure 20 and 21.


NOTES:

1. FIFO2 is reset in the same manner to load $X 2$ and $Y 2$ with a preset value.
2. If $\overline{\mathrm{FWFT}}$ is HIGH, then $\overline{\mathrm{EFB}} / \mathrm{ORB}$ will go LOW one CLKB cycle earlier than in this case where $\overline{\mathrm{FWFT}}$ is LOW.

Figure 2. FIFO1 Reset and Loading X1 and Y1 with a Preset Value of Eight ${ }^{(1)}$ (IDT Standard and FWFT Modes)


NOTES:

1. tSKEW1 is the minimum time between the rising CLKA edge and a rising CLKB edge for $\overline{\mathrm{FFB}} / \mathrm{IRB}$ to transition HIGH in the next cycle. If the time between the rising edge of $C L K A$ and rising edge of CLKB is less than tsKEw1, then FFB/IRB may transition HIGH one CLKB cycle later than shown.
2. $\overline{C S A}=$ LOW, WIVRA $=$ HIGH, MBA $=$ LOW. It is not necessary to program offset register on consecutive clock cycles.

Figure 3. Parallel Programming of the Almost-Full Flag and Almost-Empty Flag Offset Values after Reset (IDT Standard and FWFT Modes)


1. Written to FIFO1.

Figure 4. Port A Write Cycle Timing for FIFO1 (IDT Standard and FWFT Modes)


NOTE:

1. Written to FIFO2.

Figure 5. Port B Write Cycle Timing for FIFO2 (IDT Standard and FWFT Modes)


NOTE:

1. Read From FIFO1.

Figure 6. Port B Read Cycle Timing for FIFO1 (IDT Standard and FWFT Modes)


NOTE:

1. Read From FIFO2.

Figure 7. Port A Read Cycle Timing for FIFO2 (IDT Standard and FWFT Modes)


## NOTE:

1. TSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for ORB to transition HIGH and to clock the next word to the FIFO1 output register in three CLKB cycles. If the time between the rising CLKA edge and rising CLKB edge is less than tSKEW1, then the transition of ORB HIGH and load of the first word to the output register may occur one CLKB cycle later than shown.

Figure 8. ORB Flag Timing and First Data Word Fall Through when FIFO1 is Empty (FWFT Mode)

nот:

1. tSkEw1 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{E F B}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskewi, then the transition of EFB HIGH may occur one CLKB cycle later than shown.

Figure 9. $\overline{\mathrm{EFB}}$ Flag Timing and First Data Read Fall Through when FIFO1 is Empty (IDT Standard Mode)


## NOTE:

1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for ORA to transition HIGH and to clock the next word to the FIFO2 output register in three CLKA cycles. If the time between the rising CLKB edge and rising CLKA edge is less than tskEw1, then the transition of ORA HIGH and load of the first word to the output register may occur one CLKA cycle later than shown.

Figure 10. ORA Flag Timing and First Data Word Fall Through when FIFO2 is Empty (FWFT Mode)


NOTE:

1. tSkEw1 is the minimum time between a rising CLKB edge and a rising CLKA edge for EFA to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tskewi, then the transition of EFA HIGH may occur one CLKA cycle later than shown.

Figure 11. EFA Flag Timing and First Data Read when FIFO2 is Empty (IDT Standard Mode)


NOTE:

1. TSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for IRA to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tskEw1, then IRA may transition HIGH one CLKA cycle later than shown.

Figure 12. IRA Flag Timing and First Available Write when FIFO1 is Full (FWFT Mode)


NOTE:

1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for $\overline{F F A}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tskewi, then FFA may transition HIGH one CLKA cycle later than shown.

Figure 13. $\overline{\mathrm{FFA}}$ Flag Timing and First Available Write when FIFO1 is Full (IDT Standard Mode)


## NOTE:

1. tSKEw1 is the minimum time between a rising CLKA edge and a rising CLKB edge for IRB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskewi, then IRB may transition HIGH one CLKB cycle later than shown.

Figure 14. IRB Flag Timing and First Available Write when FIFO2 is Full (FWFT Mode)


## NOTE:

1. tskEwn is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{F F B}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskewi, then FFB may transition HIGH one CLKB cycle later than shown.

Figure 15. $\overline{\text { FFB }}$ Flag Timing and First Available Write when FIFO2 is Full (IDT Standard Mode)


## NOTES:

1. tsKEwz is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{\text { AEB }}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tsKEw2, then $\overline{\mathrm{AEB}}$ may transition HIGH one CLKB cycle later than shown.
2. FIFO1 Write ( $\overline{C S A}=L O W, W / \bar{R} A=L O W, M B A=L O W), F I F O 1$ read $(\overline{C S B}=L O W, \bar{W} / R B=H I G H, M B B=L O W)$. Data in the FIFO1 output register has been read from the FIFO.

Figure 16. Timing for $\overline{\mathrm{AEB}}$ when FIFO1 is Almost-Empty (IDT Standard and FWFT Modes)


NOTES:

1. tskEw2 is the minimum time between a rising CLKB edge and a rising CLKA edge for $\overline{A E A}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tSKEW2, then AEA may transition HIGH one CLKA cycle later than shown.
2. $\mathrm{FIFO2}$ Write $(\overline{C S B}=\mathrm{LOW}, \bar{W} / R B=L O W, M B B=L O W)$, FIFO2 read $(\overline{C S A}=L O W, W / \bar{R} A=$ LOW, MBA $=$ LOW $)$. Data in the FIFO2 output register has been read from the FIFO.

Figure 17. Timing for $\overline{\text { EEA }}$ when FIFO2 is Almost-Empty (IDT Standard and FWFT Modes)


## NOTES:

1. tskEwz is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{A F A}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskEw, then $\overline{\text { AFA }}$ may transition HIGH one CLKA cycle later than shown.
2. $\operatorname{FIFO1}$ Write ( $\overline{C S A}=$ LOW, W/ $\bar{R} A=H I G H, M B A=L O W), ~ F I F O 1$ read ( $\overline{C S B}=L O W, \bar{W} / R B=$ HIGH, MBB $=$ LOW $)$. Data in the FIFO1 output register has been read from the FIFO.
3. $\mathrm{D}=$ Maximum FIFO Depth $=2,048$ for the IDT723652, 4,096 for the IDT723662, 8,192 for the IDT723672.

Figure 18. Timing for $\overline{\text { AFA }}$ when FIFO1 is Almost-Full (IDT Standard and FWFT Modes)


NOTES:

1. tSKEw2 is the minimum time between a rising CLKB edge and a rising CLKA edge for $\overline{\mathrm{AFB}}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tskEwz, then AFB may transition HIGH one CLKB cycle later than shown.
2. $\mathrm{FIFO2}$ write $(\overline{C S B}=\mathrm{LOW}, \bar{W} / R B=L O W, M B B=L O W)$, FIFO2 read ( $\overline{C S A}=L O W, W / R A=L O W, M B A=L O W)$. Data in the FIFO2 output register has been read from the FIFO.
3. $\mathbf{D}=$ Maximum FIFO Depth $=2,048$ for the IDT723652, 4,096 for the IDT723662, 8,192 for the IDT723672.

Figure 19. Timing for $\overline{\mathrm{AFB}}$ when FIFO2 is Almost-Full (IDT Standard and FWFT Modes)


Figure 20. Timing for Mail1 Register and $\overline{\text { MBF1 }}$ Flag (IDT Standard and FWFT Modes)


Figure 21. Timing for Mail2 Register and MBF2 Flag (IDT Standard and FWFT Modes)

PARAMETER MEASUREMENT INFORMATION


PROPAGATION DELAY
LOAD CIRCUIT


VOLTAGE WAVEFORMS SETUP AND HOLD TIMES


VOLTAGE WAVEFORMS PULSE DURATIONS


VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES 5609 drw 24

NOTE:

1. Includes probe and jig capacitance.

Figure 22. Load Circuit and Voltage Waveforms

## ORDERING INFORMATION



Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
Green
Thin Quad Flat Pack (TQFP, PN120-1)
Plastic Quad Flat Pack (PQFP, PQ132-1)
Commercial Only $\} \begin{aligned} & \text { Clock Cycle Time (tCLK) } \\ & \text { Speed in Nanoseconds }\end{aligned}$
Low Power
$2,048 \times 36 \times 2$ - SyncBiFIFO ${ }^{\text {TM }}$ $4,096 \times 36 \times 2$ - SyncBiFIFO ${ }^{\text {™ }}$ $8,192 \times 36 \times 2$-SyncBiFIFO ${ }^{\text {™ }}$
NOTES:

1. Industrial temperature range is available by special order
2. Green parts available. For specific speeds and packages contact your sales office.

## DATASHEET DOCUMENT HISTORY

12/19/2000
03/21/2001
08/01/2001
11/03/2003
02/04/2009
01/28/2013
08/08/2019
pg. 11.
pgs. 6 and 7.
pgs. 6, 8, 9 and 29.
pg. 1.
pgs. 1, and 29.
PDN\# FS-13-01 issued. See IDT.com for PDN specifics.
Datasheetchangedto Obsolete Status.

# IMPORTANT NOTICE AND DISCLAIMER 

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

## Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

## Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.

## Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

