FEATURES:

- Memory storage capacity:
IDT723622- $256 \times 36 \times 2$
IDT723632 - $512 \times 36 \times 2$
IDT723642 - $1,024 \times 36 \times 2$
- Free-running CLKA and CLKB may be asynchronous or coincident (simultaneous reading and writing of data on a single clock edge is permitted)
- Two independent clocked FIFOs buffering data in opposite directions
- Mailbox bypass register for each FIFO
- Programmable Almost-Full and Almost-Empty flags
- Microprocessor Interface Control Logic
- IRA, ORA, $\overline{\text { AEA }}$, and $\overline{\text { AFA }}$ flags synchronized by CLKA
- IRB, ORB, $\overline{\text { AEB }}$, and $\overline{\text { AFB }}$ flags synchronized by CLKB
- Supports clock frequencies up to 66.7 MHz
- Fast access times of 10 ns
- Available in space-saving 120-pin Thin Quad Flatpack (TQFP)
- Green parts available

DESCRIPTION:

The IDT723622/723632/723642 are a monolithic, high-speed, low-power, CMOS Bidirectional SyncFIFO (clocked) memory which supports clock frequencies up to 66.7 MHz and have read access times as fast as 10 ns . Two independent 256/512/1,024 x 36 dual-port SRAM FIFOs on board each chip buffer data in opposite directions. Communication between each port may bypass the FIFOs via two 36 -bit mailbox registers. Each mailbox register has a flag to signal when new mail has been stored.

These devices are a synchronous (clocked) FIFO, meaning each port employs a synchronous interface. All data transfers through a port are gated tothe LOW-to-HIGH transition of a portclock by enable signals. The clocks for each port are independent of one another and can be asynchronous or

FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION (CONTINUED)

coincident. The enables for each port are arranged to provide a simple bidirectional interface between microprocessors and/or buses with synchronous control.

Each FIFO has a programmable Almost-Empty flag ($\overline{\mathrm{AEA}}$ and $\overline{\mathrm{AEB}}$) and a progammable Almost-Full flag ($\overline{\mathrm{AFA}}$ and $\overline{\mathrm{AFB}}$). $\overline{\mathrm{AEA}}$ and $\overline{\mathrm{AEB}}$ indicate when a selected number of words remain in the FIFO memory. $\overline{\mathrm{AFA}}$ and $\overline{\mathrm{AFB}}$ indicate when the FIFO contains more than a selected number of words.

The Input Ready (IRA, IRB) and Almost-Full ($\overline{\mathrm{AFA}}, \overline{\mathrm{AFB}}$) flags of a FIFO are two-stage synchronized to the portclock that writes data into its array. The OutputReady (ORA, ORB) and Almost-Empty ($\overline{\mathrm{AEA}}, \overline{\mathrm{AEB}})$ flags of aFIFO are
two-stage synchronized to the port clock that reads data from its array. Offset values for the Almost-Full and Almost-Empty flags of both FIFOs can be programmed fromPortA.

Two or more devices may be used in parallel to create wider data paths. If, at any time, the FIFO is not actively performing a function, the chip will automatically power down. During the power down state, supply current consumption(ICC) is ataminimum. Initiating any operation (by activating control inputs will immediately take the device out of the power down state.

The 723622/723632/723642 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. They are fabricated using high speed, submicron CMOS technology.

PIN CONFIGURATION

PIN DESCRIPTIONS

Symbol	Name	110	Description
A0-A35	PortA Data	1/0	36-bitbidirectional data portforside A.
$\overline{\text { AEA }}$	PortAAImostEmpty Flag	$\begin{gathered} 0 \\ \text { (Port A) } \end{gathered}$	Programmable Almost-Empty flag synchronized to CLKA. It is LOW when the number of words in FIFO 2 is less than or equal to the value in the Almost-Empty A Offset register, X2.
$\overline{\text { AEB }}$	PortB AlmostEmpty Flag	$\begin{gathered} 0 \\ \text { (Port B) } \end{gathered}$	Programmable Almost-Empty flag synchronized to CLKB. Itis LOW when the number of words in FIFO1 is less than or equal to the value in the Almost-Empty B Offset register, X1.
$\overline{\text { AFA }}$	PortAAlmostFull Flag	$\begin{gathered} 0 \\ \text { (Port A) } \end{gathered}$	Programmable AImost-Full flag synchronized to CLKA. Itis LOW when the number of empty locations in FIFO1 is less than or equal to the value in the Almost-Full A Offset register, Y 1 .
$\overline{\mathrm{AFB}}$	PortB AlmostFull Flag	$\begin{gathered} 0 \\ \text { (PortB) } \end{gathered}$	Programmable Almost-Full flag synchronized to CLKB. Itis LOW when the number of empty locations in FIFO 2 is less than or equal to the value in the Almost-Full B Offsetregister, Y 2 .
B0-B35	PortB Data	I/0	36-bitbidirectional data portforside B.
CLKA	PortAClock	I	CLKA is a continuous clock that synchronizes all data transfers through port A and can be asynchronous or coincident to CLKB. IRA, ORA, $\overline{\text { AFA, }}$, and $\overline{\mathrm{EEA}}$ are all synchronized to the LOW-to-HIGH transition of CLKA.
CLKB	PortBClock	1	CLKB is a continuous clock that synchronizes all data transfers through port B and can be asynchronous or coincident to CLKA. IRB, ORB, $\overline{\mathrm{AFB}}$, and $\overline{\mathrm{AEB}}$ are synchronized to the LOW-to-HIGH transition of CLKB.
$\overline{\text { CSA }}$	PortAChip Select	I	$\overline{\text { CSA }}$ must be LOW to enable a LOW-to-HIGH transition of CLKA to read or write on port A. The AO-A35 outputs are in the high-impedance state when CSA is HIGH.
$\overline{\mathrm{CSB}}$	Port B Chip Select	I	$\overline{\text { CSB }}$ must be LOW to enable a LOW-to-HIGH transition of CLKB to read or write data on port B . The BO-B35 outputs are in the high-impedance state when $\overline{\mathrm{CSB}}$ is HIGH.
ENA	PortA Enable	I	ENA must be HIGH to enable a LOW-to-HIGH transition of CLKA to read or write data on port A.
ENB	PortBEnable	I	ENB must be HIGH to enable a LOW-to-HIGH transition of CLKB to read or write data on port B.
FS1, FS0	Flag Offset Selects	1	The LOW-to-HIGH transition of a FIFO's Reset inputlatches the values of FSO and FS1. If either FSO or FS 1 is HIGH when a Reset goes HIGH, one of three preset values is selected as the offsetfor the FIFOs Almost-Full and AImost-Empty flags. Ifboth FIFOs are reset simultaneously and both FSO and FS 1 are LOW when $\overline{\mathrm{RST1}}$ and $\overline{\mathrm{RST}} \mathrm{go}$ HIGH, the first four writes to FIFO1 load the Almost-Empty and Almost-Full offsets forboth FIFOs.
IRA	Input Ready Flag	$\begin{gathered} 0 \\ (\text { Port A) } \end{gathered}$	IRA is synchronized to the LOW-to-HIGH transition of CLKA. When IRA is LOW, FIFO1 is full and writes to its array are disabled. IRA is set LOW when FIFO1 is reset and is set HIGH on the second LOW-to-HIGH transition of CLKA after reset.
IRB	Input Ready Flag	$\begin{gathered} 0 \\ (\text { Port B) } \end{gathered}$	IRB is synchronized to the LOW-to-HIGH transition of CLKB. When IRB is LOW, FIFO2 is full and writes to its array are disabled. IRB is set LOW when FIFO2 is reset and is set HIGH on the second LOW-to-HIGH transition of CLKB after reset.
MBA	Port A Mailbox Select	1	A HIGH level on MBA chooses a mailbox register for a port A read or write operation. When the A0-A35 outputs are active, a HIGH level on MBA selects data from the mail2 register for outputanda LOW level selects FIFO2 outputregister data for output.
MBB	Port B Mailbox Select	I	A HIGH level on MBB chooses a mailbox register for a port B read or write operation. When the BO-B35 outputs are active, a HIGH level on MBB selects data from the mail1 register or output and a LOW level selects FIFO1 outputregister data for output.
$\overline{\text { MBF1 }}$	Mail1 Register Flag	0	$\overline{\text { MBF1 }}$ is set LOW by a LOW-to-HIGH transition of CLKA that writes data to the mail1 register. Writes to the mail1 register are inhibited while $\overline{\text { MBF1 }}$ is LOW. $\overline{\text { MBF1 }}$ is set HIGH by a LOW-to-HIGH transition of CLKB when a port B read is selected and MBB is HIGH . $\overline{\text { MBF1 }}$ is set HIGH when FIFO1 is reset.
$\overline{\text { MBF2 }}$	Mail2Register Flag	0	$\overline{\text { MBF2 }}$ is setLOW by aLOW-to-HIGH transition of CLKB that writes data to the mail2 register. Writes to the mail2 register are inhibited while $\overline{\text { MBF2 }}$ is LOW. MBF2 is set HIGH by a LOW-to-HIGH transition of CLKA when a port A read is selected and MBA is HIGH. $\overline{\text { MBF2 }}$ is also set HIGH when FIFO2 is reset.

PIN DESCRIPTIONS (CONTINUED)

Symbol	Name	$1 / 0$	Description
ORA	OutputReady Flag	$\begin{gathered} 0 \\ (\text { Port A) } \end{gathered}$	ORA is synchronized to the LOW-to-HIGH transition of CLKA. When ORA is LOW, FIFO2 is empty and reads from its memory are disabled. Ready data is present on the output register of FIFO2 when ORA is HIGH. ORA is forced LOW when FIFO2 is reset and goes HIGH on the third LOW-to-HIGH transition of CLKA after a word is loaded to empty memory.
ORB	OutputReady Flag	$\underset{(\text { Port B) }}{0}$	ORB is synchronized to the LOW-to-HIGH transition of CLKB. When ORB is LOW, FIFO1 is empty and reads from its memory are disabled. Ready data is present on the outputregister ofFIFO1 when ORB is HIGH. ORB is forced LOW when FIFO1 is reset and goes HIGH on the third LOW-toHIGH transition of CLKB after a word is loaded to empty memory.
$\overline{\mathrm{RST1}}$	FIFO1 Reset	1	To resetFIFO1, four LOW-to-HIGH transitions of CLKA and four LOW-to-HIGH transitions of CLKB mustoccur while $\overline{\text { RST1 }}$ is LOW. The LOW-to-HIGH transition of $\overline{\text { RST1 }}$ latches the status of FSO and FS1 for $\overline{\mathrm{FF}}$ and $\overline{\mathrm{AEB}}$ offset selection. $\mathrm{FIFO1}$ must be reset upon power up before data is writtento its RAM.
$\overline{\mathrm{RST}} 2$	FIFO2Reset	1	To resetFIFO2, four LOW-to-HIGH transitions of CLKA and four LOW-to-HIGH transitions of CLKB mustoccur while $\overline{\text { RST2 }}$ is LOW. The LOW-to-HIGH transition of $\overline{\text { RST2 }}$ latches the status of FSO and FS1 for $\overline{\mathrm{FFB}}$ and $\overline{\mathrm{AEA}}$ offset selection. FIFO2 must be reset upon power up before data is writtento its RAM.
W R A	PortAWrite/ Read Select	1	A HIGH selects a write operation and a LOW selects a read operation on port A for a LOW-to-HIGH transition of CLKA. The AO-A35 outputs are in the HIGH impedance state when W/RA is HIGH.
$\bar{W} / R B$	PortBWrite/ Read Select	1	A LOW selects a write operation and a HIGH selects a read operation on port B for a LOW-to-HIGH transition of CLKB. The BO-B35 outputs are in the high-impedance state when $\bar{W} / R B$ is LOW.

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (Unless otherw ise noted) ${ }^{(1)}$

Symbol	Rating	Commercial	Unit
Vcc	Supply Voltage Range	-0.5 to 7	V
$\mathrm{VI}^{(2)}$	InputVoltage Range	-0.5 to Vcc +0.5	V
Vo ${ }^{(2)}$	OutputVoltage Range	-0.5 to Vcc+0.5	V
IIK	Input Clamp Current (V l < 0 or $\mathrm{VI}>\mathrm{V} \mathrm{Vcc}$)	± 20	mA
Iok	Output Clamp Current (Vo = < 0 or Vo > Vcc)	± 50	mA
Iout	Continuous Output Current (Vo=0 to Vcc)	± 50	mA
IcC	Continuous Current Through Vcc or GND	± 400	mA
TSTG	Storage Temperature Range	-65to 150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.
2. The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
VCC	Supply Voltage(Commercial)	4.5	5.0	5.5	V
VIH	High-Level InputVoltage(Commercial)	2	-	-	V
VIL	Low-Level InputVoltage(Commercial)	-	-	0.8	V
IOH	High-Level OutputCurrent(Commercial)	-	-	-4	mA
IoL	Low-Level OutputCurrent(Commercial)	-	-	8	mA
TA	Operating Temperature(Commercial)	0	-	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREEAIR TEMPERATURE RANGE (Unless otherwise noted)

Symbol	Parameter	Test Conditions		IDT723622 IDT723632 IDT723642 Commercial $\text { tCLK }=15 \mathrm{~ns}$			Unit
				Min.	Typ. ${ }^{(1)}$	Max.	
Voh	Output Logic "1" Voltage	$\mathrm{Vcc}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-4 \mathrm{~mA}$	2.4	-	-	V
Vol	Output Logic "0" Voltage	$\mathrm{Vcc}=4.5 \mathrm{~V}$,	$\mathrm{loL}=8 \mathrm{~mA}$	-	-	0.5	V
ILI	Input Leakage Current (Any Input)	$\mathrm{Vcc}=5.5 \mathrm{~V}$,	$\mathrm{VI}=\mathrm{Vcc}$ or 0	-	-	± 10	$\mu \mathrm{A}$
ILo	Output Leakage Current	$\mathrm{Vcc}=5.5 \mathrm{~V}$,	$\mathrm{Vo}=\mathrm{Vcc}$ or 0	-	-	± 10	$\mu \mathrm{A}$
ICC2 ${ }^{(2)}$	Standby Current (with CLKA \& CLKB running)	$\mathrm{Vcc}=5.5 \mathrm{~V}$,	$\mathrm{V}=\mathrm{Vcc}-0.2 \mathrm{~V}$ or 0 V	-	-	8	mA
ICc3 ${ }^{(2)}$	Standby Current (no clocks running)	$\mathrm{Vcc}=5.5 \mathrm{~V}$,	$\mathrm{V}=\mathrm{Vcc}-0.2 \mathrm{~V}$ or 0 V	-	-	1	mA
$\mathrm{CIN}^{(3)}$	Input Capacitance	V I $=0$,	$\mathrm{f}=1 \mathrm{MHz}$	-	4	-	pF
Cout ${ }^{(3)}$	Output Capacitance	$\mathrm{Vo}=0$,	$\mathrm{f}=1 \mathrm{MHZ}$	-	8	-	pF

NOTES:

1. All typical values are at $\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. For additional Icc information, see Figure 1, Typical Characteristics: Supply Current (Icc) vs. Clock Frequency (fs).
3. Characterized values, notcurrently tested.

DETERMINING ACTIVE CURRENT CONSUMPTION AND POWER DISSIPATION

The ICC((f) current for the graph in Figure 1 was taken while simultaneously reading and writing a FIFO on the IDT723622/723632/723642 with CLKA and CLKB set to fs. All data inputs and data outputs change state during each clock cycle to consume the highest supply current. Data outputs were disconnected to normalize the graph to a zero capacitance load. Once the capacitance load per data-output channel and the number of these device's inputs driven by TTL HIGH levels are known, the power dissipation can be calculated with the equation below.

CALCULATING POWER DISSIPATION

With ICC(f) taken from Figure 1, the maximum power dissipation (PT) of these FIFOs may be calculated by:
$\mathrm{PT}=\mathrm{Vcc} \times[\operatorname{lcc}(\mathrm{f})+(\mathrm{N} \times \Delta \mathrm{Icc} \times \mathrm{dc})]+\Sigma\left(\mathrm{CL} \times \mathrm{Vcc}^{2} \mathrm{X}\right.$ fo $)$
where:

N	$=$	number of outputs $=36$
$\Delta \mathrm{ICC}$	$=$	increase in power supply current for each input at a TTL HIGH level
dc	$=$	duty cycle of inputs at a TTL HIGH level of 3.4 V
CL	$=$	outputcapacitance load
fo	$=$	switching frequency of an output

Figure 1. Typical Characteristics: Supply Current (ICc) vs Clock Frequency (fs)

TIMING REQUIREMENTS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE
(Commercial: $\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Symbol	Parameter			Unit
		$\begin{aligned} & \text { IDT723622L15 } \\ & \text { IDT723632L15 } \\ & \text { IDT723642L15 } \\ & \hline \end{aligned}$		
		Min.	Max.	
fs	Clock Frequency, CLKA or CLKB	-	66.7	MHz
tCLK	Clock Cycle Time, CLKA or CLKB	15	-	ns
tCLKH	Pulse Duration, CLKA or CLKB HIGH	6	-	ns
tCLKL	Pulse Duration, CLKA and CLKB LOW	6	-	ns
tDS	Setup Time, A0-A35 before CLKA \uparrow and B0-B35 before CLKB \uparrow	4	-	ns
tENS1	Setup Time, $\overline{\mathrm{CSA}}$ and W/辰A before CLKA \uparrow; $\overline{\mathrm{CSB}}$ and $\overline{\mathrm{W}} / \mathrm{RB}$ before CLKB \uparrow	4.5	-	ns
tENS2	Setup Time, ENA and MBA, before CLKA \uparrow; ENB and MBB before CLKB \uparrow	4.5	-	ns
tRSTS	Setup Time, $\overline{\text { RST1 }}$ or $\overline{\text { RST2 }}$ LOW before CLKA or CLKB ${ }^{(2)}$	5	-	ns
tFSS	Setup Time, FS0 and FS1 before $\overline{\text { RST1 }}$ and $\overline{\text { RST2 }}$ HIGH	7.5	-	ns
tDH	Hold Time, A0-A35 after CLKA \uparrow and B0-B35 after CLKB \uparrow	1	-	ns
tenh	Hold Time, $\overline{C S A}, W / \bar{R} A, ~ E N A, ~ a n d ~ M B A ~ a f t e r ~ C L K A ~ 个 ; ~ \overline{C S B}, \bar{W} / R B, ~ E N B$, and MBB after CLKB \uparrow	1	-	ns
tRSTH	Hold Time, $\overline{\mathrm{RST1}}$ or $\overline{\mathrm{RST}} 2 \mathrm{LOW}$ after CLKA \uparrow or CLKB $\uparrow^{(2)}$	4	-	ns
tFSH	Hold Time, FS0 and FS1 after $\overline{\text { RST1 }}$ and $\overline{\text { RST2 }}$ HIGH	2	-	ns
tSKEW1 ${ }^{(2)}$	Skew Time, between CLKA \uparrow and CLKB \uparrow for ORA, ORB, IRA, and IRB	7.5	-	ns
tSKEW2 ${ }^{(2,3)}$	Skew Time, between CLKA \uparrow and CLKB \uparrow for $\overline{\mathrm{AEA}}, \overline{\mathrm{AEB}}, \overline{\mathrm{AFA}}$, and $\overline{\mathrm{AFB}}$	12	-	ns

NOTES:

1. Requirement to count the clock edge as one of at least four needed to reseta FIFO.
2. Skew time is not a timing constraint for proper device operation and is only included to illustrate the timing relationship between CLKA cycle and CLKB cycle.
3. Designsimulated, nottested.

SWITCHING CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE, CL = 30 PF

(Commercial: $\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Symbol	Parameter	CommercialIDT723622L15IDT723632L15IDT723642L15		Unit
		Min.	Max.	
tA	Access Time, CLKA to A0-A35 and CLKB \uparrow to B0-B35	2	10	ns
tPIR	Propagation Delay Time, CLKA \uparrow to IRA and CLKB \uparrow to IRB	2	8	ns
tPOR	Propagation Delay Time, CLKA \uparrow to ORA and CLKB \uparrow to ORB	1	8	ns
tPAE	Propagation Delay Time, CLKA \uparrow to $\overline{\mathrm{AEA}}$ and CLKB \uparrow to $\overline{\mathrm{AEB}}$	1	8	ns
tPAF	Propagation Delay Time, CLKA \uparrow to $\overline{\mathrm{AFA}}$ and CLKB \uparrow to $\overline{\mathrm{AFB}}$	1	8	ns
tPMF	Propagation Delay Time, CLKA to $\overline{\text { MBF1 }}$ LOW or $\overline{\text { MBF2 }}$ HIGH and CLKB \uparrow to $\overline{\text { MBF2 }}$ LOW or $\overline{\text { MBF1 }}$ HIGH	0	8	ns
tPMR	Propagation Delay Time, CLKA \uparrow to $\mathrm{B} 0-\mathrm{B} 35{ }^{(1)}$ and CLKB \uparrow to $\mathrm{A} 0-\mathrm{A} 35{ }^{(2)}$	2	10	ns
tmDV	Propagation Delay Time, MBA to A0-A35 valid and MBB to B0-B35 Valid	2	10	ns
tRSF	Propagation Delay Time, $\overline{\text { RST1 }}$ LOW to $\overline{\text { AEB }}$ LOW, $\overline{\text { AFA }}$ HIGH, and $\overline{\mathrm{MBF} 1} \mathrm{HIGH}$, and $\overline{\mathrm{RST}} \mathrm{LOW}$ to $\overline{\mathrm{AEA}}$ LOW, $\overline{\mathrm{AFB}}$ HIGH, and $\overline{\mathrm{MBF} 2} \mathrm{HIGH}$	1	15	ns
ten	Enable Time, $\overline{\mathrm{CSA}}$ and W/ $\overline{\mathrm{R} A}$ LOW to A0-A35 Active and $\overline{\mathrm{CSB}}$ LOW and $\bar{W} / R B$ HIGH to B0-B35 Active	2	10	ns
tDIS	Disable Time, $\overline{\mathrm{CSA}}$ or W/信A HIGH to A0-A35 at high-impedance and $\overline{\text { CSB }}$ HIGH or $\bar{W} / R B$ LOW to B0-B35 at high-impedance	1	8	ns

NOTES:

1. Writing data to the mail1 register when the BO-B35 outputs are active and MBB is HIGH .
2. Writing data to the mail2 register when the AO-A35 outputs are active and MBA is HIGH .

SIGNALDESCRIPTION

RESET

After power up, a Master Reset operation must be performed by providing a LOW pulse to $\overline{\mathrm{RST1}}$ and $\overline{\mathrm{RST}}$ simultaneously. Afterwards, the FIFO memories of the IDT723622/723632/723642 are reset separately by taking their Reset ($\overline{\text { RST1 }}, \overline{\text { RST2 }}$) inputs LOW for at least four port A Clock (CLKA) and four port B Clock (CLKB) LOW-to-HIGH transitions. The Reset inputs can switch asynchronously to the clocks. A FIFO reset initializes the internal read and write pointers and forces the Input Ready flag (IRA, IRB) LOW, the Output Ready flag (ORA, ORB) LOW, the AlmostEmpty flag ($\overline{\mathrm{AEA}}, \overline{\mathrm{AEB}}) \mathrm{LOW}$, and the Almost-Full flag ($\overline{\mathrm{AFA}}, \overline{\mathrm{AFB}})$ HIGH. Resetting a FIFO also forces the Mailbox Flag (MBF1, $\overline{\text { MBF2 }}$) of the parallel mailbox register HIGH. After a FIFO is reset, its Input Ready flag is set HIGH after two clock cycles to begin normal operation.

ALOW-to-HIGH transition on a FIFO Reset($\overline{\mathrm{RST1}}, \overline{\mathrm{RST2}})$ inputlatches the value ofthe Flag Select(FS0, FS1) inputs for choosing the Almost-Full and Almost-Empty offset programming method (for details see Table 1, Flag Programming and the Almost-Empty Flag and Almost-Full Flag Offset Programming sectionthatfollows). The relevantFIFOResettiming diagram can be found in Figure 2.

ALMOST-EMPTY FLAG AND ALMOST-FULL FLAG OFFSET PROGRAMMING

Four registers in these devices are used to hold the offset values for the Almost-Empty and Almost-Full flags. The portB Almost-Empty flag ($\overline{\text { AEB }})$ Offsetregisterislabeled X1 and the portAAlmost-Emptyflag($\overline{\mathrm{AEA}})$ Offsetregister is labeled X2. The portAAlmost-Fullflag ($\overline{\mathrm{AFA}})$ Offsetregister is labeled Y1 and the portB Almost-Full flag ($\overline{\mathrm{AFB}}$) Offsetregister is labeled Y2. The index of each register name corresponds to its FIFO number. The offset registers can be loaded with presetvalues during the resetofaFIFO orthey can be programmed from port A (see Table 1).

— PRESET VALUES

Toload the FIFO's Almost-Empty flag and Almost-Fullf flag Offsetregisters with one of the three preset values listed in Table 1, atleastone ofthe flag select inputs mustbe HIGH during the LOW-to-HIGH transition of its Resetinput. For example, to load the prese value of 64 into X 1 and Y1, FS 0 and FS 1 mustbe HIGH when FIFO1 Reset($\overline{\text { RST1 }})$ returns HIGH. Flag offsetregisters associated with FIFO2 are loaded with one ofthe presetvalues in the same way with FIFO2 Reset ($\overline{\mathrm{RST} 2})$ toggled simultaneously with FIFO1 Reset ($\overline{\mathrm{RST} 1})$. For preset value loading timing diagram, see Figure 2.

-PARALLEL LOAD FROM PORT A

Toprogram the X1, X2, Y1, and Y2 registers from portA, both FIFOs should be reset simultaneously with FS0 and FS1 LOW during the LOW-to-HIGH transition of the Reset inputs. After this reset is complete, the firstfour writes to FIFO1 do notstore data inthe FIFO memory butload the offset registers in the order $\mathrm{Y} 1, \mathrm{X} 1, \mathrm{Y} 2, \mathrm{X} 2$. The port A data inputs used by the offset registers are (A7-A0), (A8-A0), or (A9-A0) for the IDT723622, IDT723632, or IDT723642, respectively. The highestnumbered inputis used as the mostsignificantbitof the binary number in each case. Valid programming values for the registers ranges from 1 to 252 for the IDT723622; 1 to 508 for the IDT723632; and 1 to 1,020 for the IDT723642. Afterall theoffsetregisters are programmed from port A, the portB InputReady flag (IRB) is setHIGH, and both FIFOs begin normal operation. See Figure 3for relevantoffset register parallel programming timing diagram.

FIFO WRITE/READ OPERATION

The state of the port A data(A0-A35) outputs is controlled by portAChip Select ($\overline{\mathrm{CSA}})$ and port A Write/Read select (W/ $\overline{\mathrm{R}} A)$. The A0-A35 outputs are in the high-impedance state when either $\overline{\mathrm{CSA}}$ or W/ $\overline{\mathrm{R}} A$ is HIGH. The A0-A35 outputs are active when both $\overline{C S A}$ and W/RA are LOW.

Data is loaded into FIFO1 from the A0-A35 inputs on a LOW-to-HIGH transition of CLKA when $\overline{C S A}$ is LOW, W/RA is HIGH, ENA is HIGH, MBA is LOW, and IRA is HIGH. Data is read from FIFO2 to the A0-A35 outputs by a LOW-to-HIGH transition of CLKA when $\overline{C S A}$ is LOW, W/RA is LOW, ENA is HIGH, MBA is LOW, and ORA is HIGH (see Table 2). FIFO reads and writes on portA are independent of any concurrent portB operation. Write and Read cycle timing diagrams for port A can be found in Figure 4 and 7.

The portB control signals are identical to those of portA with the exception that the port B Write/Read select $(\bar{W} / R B)$ is the inverse ofthe portAWrite/Read select $(W / \bar{R} A)$. The state of the port B data (B0-B35) outputs is controlled by the port B Chip Select ($\overline{\mathrm{CSB}}$) and port B Write/Read select ($\overline{\mathrm{W}} / \mathrm{RB}$). The B0-B35 outputs are in the high-impedance state when either $\overline{\mathrm{CSB}}$ is HIGH or \bar{W} / RB is LOW. The B0-B35 outputs are active when $\overline{C S B}$ is LOW and $\bar{W} / R B$ is HIGH.

Data is loaded into FIFO2 from the B0-B35 inputs on a LOW-to-HIGH transitionofCLKB when $\overline{C S B}$ isLOW, $\bar{W} / R B$ isLOW,ENB isHIGH,MBBisLOW, and IRB is HIGH. Data is read from FIFO1 to the B0-B35 outputs by a LOW-to-HIGHtransition of CLKB when $\overline{C S B}$ is LOW, $\bar{W} / R B$ is $\mathrm{HIGH}, \mathrm{ENB}$ is HIGH , MBB is LOW, and ORB is HIGH (see Table3). FIFO reads and writes on port B are independent of any concurrent port A operation. Write and Read cycle

TABLE 1 -FLAG PROGRAMMING

FS1	FS0	$\overline{\text { RST1 }}$	$\overline{\text { RST2 }}$	X1 AND Y1 REGISTERS(1)	X2 AND Y2 REGISTERS(2)
H	H	\uparrow	X	64	X
H	H	X	\uparrow	X	64
H	L	\uparrow	X	16	X
H	L	X	\uparrow	X	16
L	H	\uparrow	X	8	X
L	H	X	\uparrow	X	8
L	L	\uparrow	\uparrow	Programmed from portA	ProgrammedfromportA

NOTES:

[^0]timing diagrams for port B can be found in Figure 5 and 6 .
The setup and hold time constraints to the port Clocks for the port Chip Selects and Write/Read selects are only for enabling write and read operations and are not related to high-impedance control of the data outputs. If a port enable is LOW during a clock cycle, the port's Chip Select and Write/Read select may change states during the setup and hold time window of the cycle.

When a FIFO Output Ready flag is LOW, the next word written is automatically senttothe FIFO outputregister automatically bytheLOW-to-HIGH transition ofthe portclock thatsets the Output Readyflag HIGH. WhentheOutput Readyflag is HIGH, subsequentdatais clocked tothe outputregisters only when aFIFO read is selected using the port'sChipSelect, Write/Read select, Enable, and Mailbox select.

SYNCHRONIZED FIFO FLAGS

Each FIFO is synchronized to its port clock through at least two flip-flop stages. This is done to improve flag-signal reliability by reducing the probability of metastable events when CLKA and CLKB operate asynchronously to one another. ORA, $\overline{\text { AEA, IRA, and } \overline{\text { AFA }} \text { are synchronized to CLKA. }}$ ORB, $\overline{\mathrm{AEB}}, \operatorname{IRB}$, and $\overline{\mathrm{AFB}}$ are synchronized to CLKB. Tables 4 and 5 show the relationship of each port flag to FIFO1 and FIFO2.

OUTPUT READY FLAGS (ORA, ORB)

The Output Ready flag of a FIFO is synchronized to the port clock that reads data from its array. When the Output Ready flag is HIGH, new data is present in the FIFO output register. When the Output Ready flag is LOW, the previousdataword ispresentintheFIFO outputregister and attempted FIFO
reads are ignored.
A FIFO read pointer is incremented each time a new word is clocked to its outputregister. The statemachinethatcontrolsan OutputReadyflag monitors a write pointer and read pointer comparator that indicates when the FIFO memory status is empty, empty +1 , orempty +2 . From the time a word is written toaFIFO, itcanbeshiftedtothe FIFO outputregisterinaminimum ofthree cycles ofthe OutputReady flag synchronizing clock. Therefore, an Output Ready flag is LOW if aword in memory is the nextdatato besenttothe FIFO outputregister and threecycles ofthe portClock thatreads datafrom the FIFO have notelapsed since the time the word was written. The Output Ready flag of the FIFO remains LOW until the third LOW-to-HIGH transition ofthe synchronizing clockoccurs, simultaneously forcing the Output Ready flag HIGH and shifting the word to the FIFO outputregister.

ALOW-to-HIGH transition on an Output Ready flag synchronizing clock begins the firstsynchronization cycle of a write ifthe clock transition occurs at timetSKEw1 or greaterafter the write. Otherwise, the subsequentclock cycle can be the firstsynchronization cycle (see Figures 8 and 9for ORA and ORB timing diagrams).

INPUT READY FLAGS (IRA, IRB)

The InputReadyflag of aFIFO is synchronized to the portclock thatwrites datato its array. When the Input Ready flag is HIGH, a memory location is free in the FIFO to receive new data. No memory locations are free when the Input Ready flag is LOW and attempted writes to the FIFO are ignored.

Each time a word is writtentoaFIFO, its write pointer is incremented. The state machine thatcontrols an Input Ready flag monitors awrite pointer and read

TABLE 2 - PORT A ENABLE FUNCTION TABLE

$\overline{\text { CSA }}$	WIR̄A	ENA	MBA	CLKA	Data A (A0-A35) I/O	PORT FUNCTION
H	X	X	X	X	High-Impedance	None
L	H	L	X	X	Input	None
L	H	H	L	\uparrow	Input	FIFO1 write
L	H	H	H	\uparrow	Input	Mail write
L	L	L	L	X	Output	None
L	L	H	L	\uparrow	Output	FIFO2 read
L	L	L	H	X	Output	None
L	L	H	H	\uparrow	Output	Mail2 read (set $\overline{\text { MBF2 } \text { HIGH) }}$

TABLE 3 - PORT B EN ABLE FUNCTION TABLE

$\overline{\text { CSB }}$	$\overline{\text { W}} /$ RB	ENB	MBB	CLKB	Data B (B0-B35) I/O	PORT FUNCTION
H	X	X	X	X	High-Impedance	None
L	L	L	X	X	Input	None
L	L	H	L	\uparrow	Input	FIFO2 write
L	L	H	H	\uparrow	Input	Mail2write
L	H	L	L	X	Output	None
L	H	H	L	$\uparrow ~$	Output	FIFO1 read
L	H	L	H	X	Output	None
L	H	H	H	\uparrow	Output	Mail1 read (set $\overline{\text { MBF1 HIGH) }}$

pointer comparator that indicates when the FIFO memory status is full, full-1, or full-2. From the time a word is read from a FIFO, its previous memory location is ready to be written in a minimum of two cycles of the Input Ready flag synchronizing clock. Therefore, an Input Ready flag is LOW if less than two cycles of the Input Ready flag synchronizing clock have elapsed since the next memory write location has been read. The second LOW-to-HIGH transition on the Input Ready flag synchronizing Clock after the read sets the Input Ready flag HIGH.

A LOW-to-HIGH transition on an Input Ready flag synchronizing clock begins the first synchronization cycle of a read if the clock transition occurs at time tSKEW1 or greater after the read. Otherwise, the subsequent clock cycle can be the first synchronization cycle (see Figures 10 and 11 for timing diagrams).

ALMOST-EMPTY FLAGS ($\overline{\operatorname{AEA}}, \overline{\mathrm{AEB}})$

The Almost-Empty flag ofaFIFO is synchronized tothe portclock thatreads datafromits array. Thestatemachinethatcontrols anAlmost-Empty flagmonitors
a write pointer and read pointer comparator that indicates when the FIFO memory status is almost-empty, almost-empty +1 , or almost-empty +2 . The almost-empty state is defined by the contents of register X 1 for $\overline{\mathrm{AEB}}$ and register X 2 for $\overline{\mathrm{AEA}}$. These registers are loaded with preset values during a FIFO reset or programmed from port A (see Almost-Empty flag and Almost-Full flag offset programming section). An Almost-Empty flag is LOW when its FIFO contains X or less words and is HIGH when its FIFO contains $(X+1)$ or more words. A data word present in the FIFO output register has been read from memory.

Two LOW-to-HIGH transitions of the Almost-Empty flag synchronizing clock are required after a FIFO write for its Almost-Empty flag to reflectthe new level of fill. Therefore, the Almost-Full flag of aFIFO containing $(X+1)$ or more words remains LOW iftwo cycles of its synchronizing clock have notelapsed since the write that filled the memory to the ($\mathrm{X}+1$) level. An Almost-Empty flag issetHIGH bythe second LOW-to-HIGHtransition ofits synchronizing clock after the FIFO write that fills memory to the (X+1) level. ALOW-to-HIGH transition of anAlmost-Emptyflag synchronizing clock beginsthe firstsynchronization cycle ifitoccurs attimetSKEW2orgreaterafter the writethatfillstheFIFOto(X+1)words.

TABLE 4 - FIFO1 FLAG OPERATION

Number of Words in $\mathrm{FIFO}^{(1,2)}$			Synchronized to CLKB		Synchronizedto CLKA	
IDT723622 ${ }^{(3)}$	IDT723632 ${ }^{(3)}$	IDT723642 ${ }^{(3)}$	ORB	$\overline{\text { AEB }}$	$\overline{\text { AFA }}$	IRA
0	0	0	L	L	H	H
1 to X1	1 to X1	1 to X1	H	L	H	H
(X1+1)to[256-(Y1+1)]	(X1+1) to [512-(Y1+1)]	($\mathrm{X} 1+1$) to [1,024-(Y1+1)]	H	H	H	H
(256-Y1) to 255	(512-Y1) to 511	(1,024-Y1) to 1,023	H	H	L	H
256	512	1,024	H	H	L	L

NOTES:

1. When a word loaded to an empty FIFO is shifted to the output register, its previous FIFO memory location is free.
2. Data in the output register does not count as a "word in FIFO memory". Since the first word written to an empty FIFO goes unrequested to the output register (no read operation necessary), it is not included in the FIFO memory count.
3. X 1 is the Almost-Empty offset for FIFO1 used by $\overline{\mathrm{AEB}}$. Y 1 is the AImost-Full offset for FIFO1 used by $\overline{\mathrm{AFA}}$. Both $\mathrm{X1}$ and Y 1 are selected during a reset of FIFO1 or programmed from port A.

TABLE 5 - FIFO2 FLAG OPERATION

Number of Words in $\mathrm{FIFO}^{(1,2)}$			Synchronizedto CLKA		Synchronized to CLKB	
IDT723622 ${ }^{(3)}$	IDT723632 ${ }^{(3)}$	IDT723642 ${ }^{(3)}$	ORA	$\overline{\text { AEA }}$	$\overline{\text { AFB }}$	IRB
0	0	0	L	L	H	H
1 to X2	1 to X2	1 to X2	H	L	H	H
(X2+1)to [256-(Y2+1)]	(X2+1)to[$512-(\mathrm{Y} 2+1)$]	(X2+1) to [1,024-(Y2+1)]	H	H	H	H
(256-Y2) to 255	(512-Y2) to 511	(1,024-Y2) to 1,023	H	H	L	H
256	512	1,024	H	H	L	L

NOTES:

1. When a word loaded to an empty FIFO is shifted to the output register, its previous FIFO memory location is free.
2. Data in the output register does not count as a "word in FIFO memory". Since the first word written to an empty FIFO goes unrequested to the output register (no read operation necessary), it is not included in the FIFO memory count.
3. X2 is the Almost-Empty offset for FIFO2 used by $\overline{\mathrm{AEA}}$. Y2 is the Almost-Full offset for FIFO2 used by $\overline{\mathrm{AFB}}$. Both X2 and Y2 are selected during a reset of FIFO2 or programmed from port A .

Otherwise, the subsequent synchronizing clock cycle may be the first synchronization cycle. (See Figures 12 and 13).

ALMOST-FULL FLAGS ($\overline{\text { AFA }}, \overline{\mathrm{AFB}}$)

The Almost-Full flag of a FIFO is synchronized to the port clock that writes data to its array. The state machine that controls an Almost-Full flag monitors a write pointer and read pointer comparator that indicates when the FIFO memory status is almost-full, almost-full-1, or almost-full-2. The almost-full state is defined by the contents of register Y 1 for $\overline{\mathrm{AFA}}$ and register Y 2 for $\overline{\mathrm{AFB}}$. These registers are loaded with preset values during a FIFO reset or programmed from port A (see Almost-Empty flag and Almost-Full flag offset programming section). An Almost-Full flag is LOW when the number of words in its FIFO is greater than or equal to (256-Y), (512-Y), or ($1,024-\mathrm{Y}$) for the IDT723622, IDT723632, or IDT723642 respectively. An Almost-Full flag is HIGH when the number of words in its FIFO is less than or equal to [256-(Y+1)], [512-(Y+1)], or [1,024-(Y+1)] for the IDT723622, IDT723632, or IDT723642 respectively. Note that a data word present in the FIFO output register has been read from memory.

Two LOW-to-HIGHtransitions ofthe Almost-Fullf flag synchronizing clock are required after a FIFO read for its Almost-Full flag to reflect the new level of fill. Therefore, the Almost-Full flag of FFIFO containing [256/512/1,024-(Y+1)] or less words remains LOW if two cycles of its synchronizing clock have not elapsed since the read that reduced the number of words in memory to [256/

512/1,024-(Y+1)]. An Almost-Full flag is set HIGH by the second LOW-to-HIGH transition of its synchronizing clock after the FIFO read that reduces the number of words in memory to [256/512/1,024-(Y+1)]. A LOW-to-HIGH transition of an Almost-Full flag synchronizing clock begins the first synchronization cycle if it occurs at time tSKEW2 or greater after the read that reduces the number of words in memory to [256/512/1,024$(\mathrm{Y}+1)]$. Otherwise, the subsequent synchronizing clock cycle may be the first synchronization cycle (see Figures 14 and 15).

MAILBOX REGISTERS

Each FIFO has a 36-bit bypass register to pass command and control information between port A and port B without putting it in queue. The Mailbox select (MBA, MBB) inputs choose between a mail register and a FIFO for a port data transfer operation. A LOW-to-HIGH transition on CLKA writes A0-A35 data to the mail 1 registerwhen a portAWrite is selected by $\overline{C S A}$, W/RAA, andENA and withMBAHIGH.ALOW-to-HIGHtransition onCLKB writes B0-B35 data to the mail2 register when a portB Write is selected by $\overline{C S B}, \bar{W} /$ RB, and ENB and with MBB HIGH. Writing data to a mail register sets its corresponding flag ($\overline{\mathrm{MBF} 1}$ or $\overline{\mathrm{MBF} 2}$) LOW. Attempted writes to a mail register are ignored while the mail flag is LOW.

When data outputs of a port are active, the data on the bus comes from the FIFO output register when the port Mailbox select input is LOW and from the mail register when the port-mailbox select input is HIGH. The Mail1 RegisterFlag ($\overline{\mathrm{MBF}}$) is setHIGH byaLOW-to-HIGHtransition onCLKB when a port B Read is selected by $\overline{C S B}, \bar{W} / R B$, and ENB and with MBB HIGH. The Mail2RegisterFlag(MBF2) is setHIGH byaLOW-to-HIGH transitiononCLKA when a portA read is selected by $\overline{C S A}, W / \bar{R} A$, and ENA and with MBA HIGH. The data in a mail register remains intactafter itis read and changes only when new data is written to the register. For mail register and Mail Registerflag timing diagrams, see Figure 16 and 17.

Figure 2. FIFO1 Reset and Loading X1 and Y1 with a Preset Value of Eight ${ }^{(1)}$

NOTES:

1. tskewi is the minimum time between the rising CLKA edge and a rising CLKB edge for IRB to transition HIGH in the next cycle. If the time between the rising edge of CLKA and rising edge of CLKB is less than tskEw1, then IRB may transition HIGH one CLKB cycle later than shown.
2. $\overline{C S A}=$ LOW, W/RA $=$ HIGH, MBA $=$ LOW. It is not necessary to program offset register on consecutive clock cycles.

Figure 3. Parallel Programming of the Almost-Full Flag and Almost-Empty Flag Offset Values after Reset
 NOTE:

1. Written to FIFO1.

Figure 4. Port A Write Cycle Timing for FIFO1

NOTE:

1. Written to FIFO2.

Figure 5. Port B Write Cycle Timing for FIFO2

NOTE:

1. Read From FIFO1.

Figure 6. Port B Read Cycle Timing for FIFO1

NOTE:

1. Read From FIFO2.

Figure 7. Port A Read Cycle Timing for FIFO2

NOTE:

1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for ORB to transition HIGH and to clock the next word to the FIFO1 output register in three CLKB cycles. If the time between the rising CLKA edge and rising CLKB edge is less than tsKEw1, then the transition of ORB HIGH and load of the first word to the output register may occur one CLKB cycle later than shown.

Figure 8. ORB Flag Timing and First Data Word Fall Through when FIFO1 is Empty

NOTE:

1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for ORA to transition HIGH and to clock the next word to the FIFO2 output register in three CLKA cycles. If the time between the rising CLKB edge and rising CLKA edge is less than tskEw1, then the transition of ORA HIGH and load of the first word to the output register may occur one CLKA cycle later than shown.

Figure 9. ORA Flag Timing and First Data Word Fall Through when FIFO2 is Empty

NOTE:

1. tsKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for IRA to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tskEw1, then IRA may transition HIGH one CLKA cycle later than shown.

Figure 10. IRA Flag Timing and First Available Write when FIFO1 is Full
CRA

NOTE:

1. tsKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for IRB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskEw1, then IRB may transition HIGH one CLKB cycle later than shown.

Figure 11. IRB Flag Timing and First Available Write when FIFO2 is Full

NOTES:

1. tskEwz is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{A E B}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskEw2, then $\overline{\text { AEB }}$ may transition HIGH one CLKB cycle later than shown.
2. FIFO1 Write ($\overline{C S A}=$ LOW, W/ $\bar{R} A=L O W, M B A=L O W)$, FIFO1 read $(\overline{C S B}=L O W, \bar{W} / R B=H I G H, M B B=L O W)$. Data in the FIFO1 output register has been read from the FIFO.

Figure 12. Timing for $\overline{\operatorname{AEB}}$ when FIFO1 is Almost-Empty

NOTES:

1. tskEw2 is the minimum time between a rising CLKB edge and a rising CLKA edge for $\overline{\operatorname{AEA}}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tskEwz, then $\overline{\text { AEA }}$ may transition HIGH one CLKA cycle later than shown.
2. FIFO2 Write ($\overline{C S B}=L O W, \bar{W} / R B=L O W, M B B=L O W)$, $F I F O 2$ read $(\overline{C S A}=L O W, W / \bar{R} A=L O W, M B A=L O W)$. Data in the FIFO2 output register has been read from the FIFO.

Figure 13. Timing for $\overline{\text { AEA }}$ when FIFO2 is Almost-Empty

NOTES:

1. tSKEw2 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{\mathrm{AFA}}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskew2, then $\overline{\mathrm{AFA}}$ may transition HIGH one CLKA cycle later than shown.
2. FIFO1 Write ($\overline{C S A}=L O W, W / \bar{R} A=H I G H, M B A=L O W)$, FIFO1 read ($\overline{C S B}=L O W, \bar{W} / R B=H I G H, M B B=L O W)$. Data in the FIFO1 output register has been read from the FIFO.
3. $\mathrm{D}=$ Maximum FIFO Depth $=256$ for the IDT723622, 512 for the IDT723632, 1,024 for the IDT723642.

Figure 14. Timing for $\overline{\text { AFA }}$ when FIFO1 is Almost-Full

NOTES:

1. tskew2 is the minimum time between a rising CLKB edge and a rising CLKA edge for $\overline{\mathrm{AFB}}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tskew2, then $\overline{\mathrm{AFB}}$ may transition HIGH one CLKB cycle later than shown.
2. FIFO2 write ($\overline{C S B}=\mathrm{LOW}, \overline{\mathrm{W}} / \mathrm{RB}=\mathrm{LOW}, \mathrm{MBB}=\mathrm{LOW}$), FIFO2 read $(\overline{\mathrm{CSA}}=\mathrm{LOW}, \mathrm{W} / \overline{\mathrm{R}} A=\mathrm{LOW}, \mathrm{MBA}=\mathrm{LOW})$. Data in the FIFO2 output register has been read from the FIFO. 3. $\mathrm{D}=$ Maximum FIFO Depth $=256$ for the IDT723622, 512 for the IDT723632, 1,024 for the IDT723642.

Figure 15. Timing for $\overline{\operatorname{AFB}}$ when FIFO2 is Almost-Full

Figure 16. Timing for Mail1 Register and $\overline{\text { MBF1 }}$ Flag

Figure 17. Timing for Mail2 Register and $\overline{\text { MBF2 }}$ Flag

PARAMETER MEASUREMENT INFORMATION

PROPAGATION DELAY LOAD CIRCUIT

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PULSE DURATIONS

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES 3022 drw 20

NOTE:

1. Includes probe and jig capacitance.

Figure 18. Load Circuit and Voltage Waveforms

ORDERING INFORMATION

Tube or Tray
Tape and Reel
Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Green

Thin Quad Flat Pack (TQFP, PNG120)

Commercial Only $\} \begin{aligned} & \text { Clock Cycle Time (tCLK) } \\ & \text { Speed in Nanoseconds }\end{aligned}$
Low Power
$256 \times 36 \times 2-$ SyncBiFIFO™ $^{\text {T }}$
$512 \times 36 \times 2-$ SyncBiFIFOm
$1,024 \times 36 \times 2$-SyncBiFIFO™

DATASHEET DOCUMENT HISTORY

[^1]
IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

[^0]: 1. X 1 register holds the offset for $\overline{\mathrm{AEB}} ; \mathrm{Y} 1$ register holds the offset for $\overline{\mathrm{AFA}}$.
 2. X2 register holds the offset for $\overline{\mathrm{AEA}} ; \mathrm{Y} 2$ register holds the offset for $\overline{\mathrm{AFB}}$.
[^1]: 10/04/2000 pgs. 1 through 25 , except pages 35.
 pgs. 6 and 7 .
 pgs. 1, 6, 8, 9 and 25.
 pg. 23.
 pgs. 1 and 25.
 pgs. 1, 2, 5, 7, 8, 9 and 24 .

