

General Description

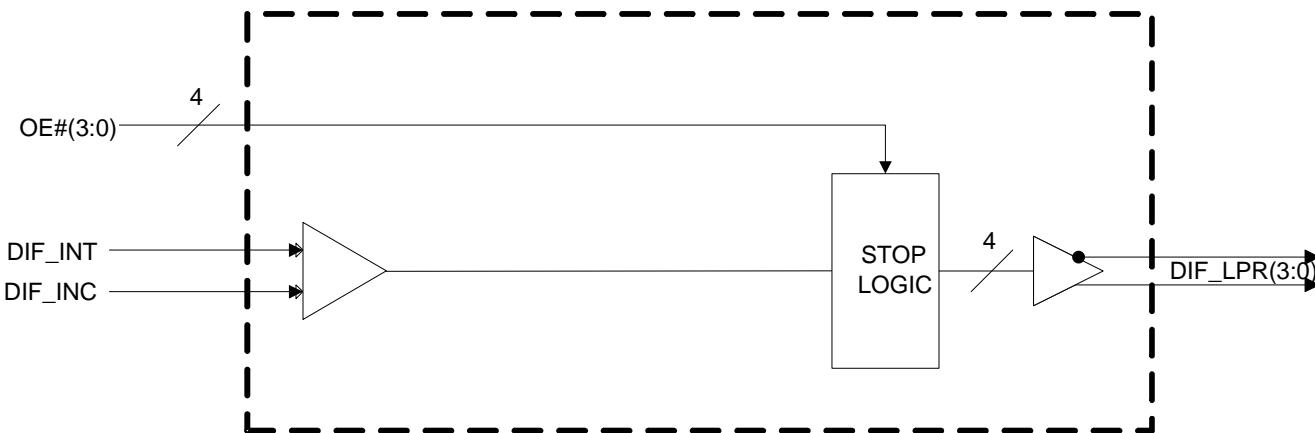
The IDT6V31021 is a 4-output low- power differential buffer. Each output has its own OE# pin. It has a maximum operating frequency of 167 MHz and supports all SERDES clock frequencies for Freescale QorIQ CPUs.

Recommended Application

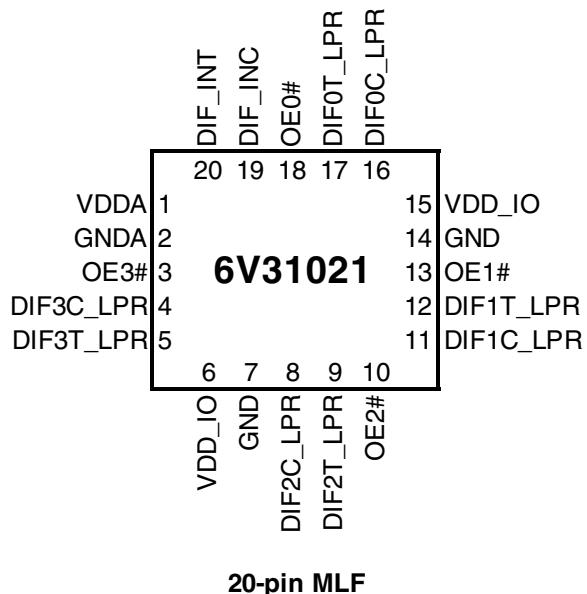
PCIe Gen1/2/3 or Ethernet Fanout Buffer, or any application requiring low additive phase jitter.

Output Features

- 4 - low power differential output pairs
- Individual OE# control of each output pair

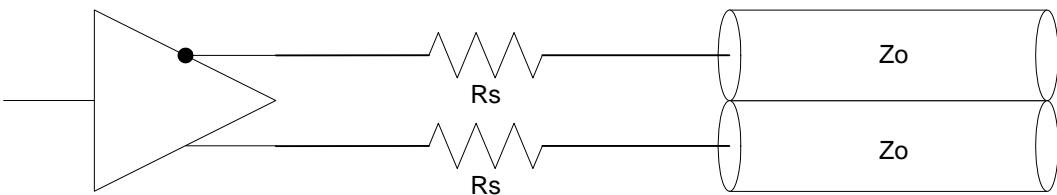

Features/Benefits

- Low power differential outputs; power efficient
- Power down mode when all OE# are high; reduces system standby power
- Industrial temperature range; can be used in demanding environments
- 20-pin MLF; space savings


Key Specifications

- Output cycle-cycle jitter <15ps additive
- Output to Output skew: <50ps
- PCIe Gen3 additive phase jitter <0.3ps rms
- 10.3125G/64 additive phase jitter <100fs rms

Block Diagram


Pin Configuration

Power Connections

Pin Number (MLF)		Description
VDD	GND	
6,15	7,14	VDD_IO for DIF(3:0)
1	2	3.3V Analog VDD & GND

Terminations

$Zo - 17 = Rs$ (ohms), where Zo is the single-ended intrinsic impedance of the board transmission line. Single-ended intrinsic impedance is $\frac{1}{2}$ that of the differential impedance.

Single Ended Impedance (Zo)	Rs 5% tolerance	Rs 2% tolerance	Notes
50	33	33.2	In general, 5% resistors may be used. All values are in ohms.
45	27	27.4	
42.5	24 or 27	24.9	

Pin Descriptions

PIN #	PIN NAME	PIN TYPE	DESCRIPTION
1	VDDA	PWR	3.3V Power for the Analog Core
2	GNDA	GND	Ground for the Analog Core
3	OE3#	IN	Output Enable for DIF3 output. Control is as follows: 0 = enabled, 1 = Low-Low
4	DIF3C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
5	DIF3T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
6	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V
7	GND	GND	Ground pin
8	DIF2C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
9	DIF2T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
10	OE2#	IN	Output Enable for DIF2 output. Control is as follows: 0 = enabled, 1 = Low-Low
11	DIF1C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
12	DIF1T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
13	OE1#	IN	Output Enable for DIF1 output. Control is as follows: 0 = enabled, 1 = Low-Low
14	GND	GND	Ground pin
15	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V
16	DIF0C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
17	DIF0T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
18	OE0#	IN	Output Enable for DIF0 output. Control is as follows: 0 = enabled, 1 = Low-Low
19	DIF_INC	IN	Complement side of differential input clock
20	DIF_INT	IN	True side of differential input clock

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the IDT6V31021. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes	
Maximum Supply Voltage	VDDA	Core Supply Voltage			4.6	V	1,7	
Maximum Supply Voltage	VDD _{_IO}	Low-Voltage Differential I/O	0.99		3.8	V	1,7	
Maximum Input Voltage	V _{IH}	3.3V LVC MOS Inputs			4.6	V	1,7,8	
Minimum Input Voltage	V _{IL}	Any Input	V _{SS} - 0.5			V	1,7	
Ambient Operating Temp	T _{ambIND}	Industrial Range	-40		85	°C	1	
Storage Temperature	T _s	-	-65		150	°C	1,7	
Input ESD protection	ESD prot	Human Body Model	2000			V	1,7	

Electrical Characteristics–Input/Supply/Common Output Parameters

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes	
Supply Voltage	VDDA	Supply Voltage	3.000	3.3	3.600	V	1	
Supply Voltage	VDDxxx _{_IO}	Low-Voltage Differential I/O Supply	0.99	1.05-3.3	3.600	V	1	
Input High Voltage	V _{IHSE}	Single-ended inputs	2		V _{DD} + 0.3	V	1	
Input Low Voltage	V _{ILSE}	Single-ended inputs	V _{SS} - 0.3		0.8	V	1	
Differential Input High Voltage	V _{IHDIF}	Differential inputs (single-ended measurement)	600		1.15	V	1	
Differential Input Low Voltage	V _{ILDIF}	Differential inputs (single-ended measurement)	V _{SS} - 0.3		300	V	1	
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4		8	V/ns	2	
Input Leakage Current	I _{IN}	V _{IN} = V _{DD} , V _{IN} = GND	-5		5	uA	1	
Operating Supply Current	I _{DD_3.3V}	VDDA supply current		15	20	mA	1	
	I _{DD_IO_133M}	VDD _{_IO} supply @ fOP = 133MHz		12	20	mA	1	
Power Down Current (All OE# pins High)	I _{DD_SB_3.3V}	VDDA supply current, Input stopped, OE# pins all high		500	750	uA	1	
	I _{DD_SBIO}	VDD _{_IO} supply, Input stopped, OE# pins all high		100	150	uA	1	
Input Frequency	F _i	V _{DD} = 3.3 V	15		167	MHz	2	
Pin Inductance	L _{pin}				7	nH	1	
Input Capacitance	C _{IN}	Logic Inputs	1.5		5	pF	1	
	C _{OUT}	Output pin capacitance			6	pF	1	
OE# latency (at least one OE# is low)	T _{OE#LAT}	Number of clocks to enable or disable output from assertion/deassertion of OE#	1	2	3	periods	1	
Clock stabilization time (from all OE# high to first OE# low).	T _{STAB}	Delay from assertion of first OE# to first clock out (assumes input clock running and device in power down state))			150	ns	1	
T _{drive_OE#}	T _{DROE#}	Output enable after OE# de-assertion			10	ns	1	
T _{fall_OE#}	T _{FALL}	Fall/rise time of OE# inputs			5	ns	1	
T _{rise_OE#}	T _{RISE}				5	ns	1	

AC Electrical Characteristics—DIF Low Power Differential Outputs

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Rising/Falling Edge Slew Rate	t_{SLR}	Differential Measurement	1.5	2.2	4	V/ns	1,2
Slew Rate Variation	t_{SLVAR}	Single-ended Measurement		13	20	%	1
Maximum Output Voltage	V_{HIGH}	Includes overshoot		783	1150	mV	1
Minimum Output Voltage	V_{LOW}	Includes undershoot	-300	-22		mV	1
Differential Voltage Swing	V_{SWING}	Differential Measurement	1200			mV	1
Crossing Point Voltage	V_{XABS}	Single-ended Measurement	250	336	550	mV	1,3,4
Crossing Point Variation	$V_{XABSVAR}$	Single-ended Measurement		14	140	mV	1,3,5
Duty Cycle Distortion	$D_{CYCDISO}$	Differential Measurement, $f_{IN} \leq 133.33\text{MHz}$		1.6	3	%	1,6
Additive Cycle-to-Cycle Jitter	$DIF_{J_{C2CADD}}$	Differential Measurement, Additive		2.1	7	ps	1
DIF[3:0] Skew	DIF_{SKEW}	Differential Measurement		19	50	ps	1, 11
Propagation Delay	t_{PD}	Input to output Delay	2.5	3.3	3.8	ns	1
Additive Phase Jitter - PCIe Gen1	$t_{phase_addPCIG1}$	$1.5\text{MHz} < 22\text{MHz}$		1.6	6	ps Pk-Pk	1,9
Additive Phase Jitter - PCIe Gen2 High Band	$t_{phase_addPCIG2HI}$	High Band is 1.5MHz to Nyquist (50MHz)		0.1	0.3	ps rms	1,9
Additive Phase Jitter - PCIe Gen2 Low Band	$t_{phase_addPCIG2LO}$	Low Band is 10KHz to 1.5MHz		0.5	0.8	ps rms	1,9
Additive Phase Jitter - PCIe Gen3	$t_{phase_addPCIG3}$	$2\text{MHz} - 4\text{MHz}$, $2\text{MHz} - 5\text{MHz}$		0.19	0.3	ps rms	1,9
Additive Phase Jitter $161.1328125\text{MHz} = 10.3125\text{G}/64$	$t_{phase_add10G/64}$	12KHz to 100MHz		60	100	fs rms	1,10

Notes on Electrical Characteristics (all measurements use $R_S=33\text{ohms}/C_L=2\text{pF}$ test load):

¹Guaranteed by design and characterization, not 100% tested in production.

²Slew rate measured through V_{swing} centered around differential zero

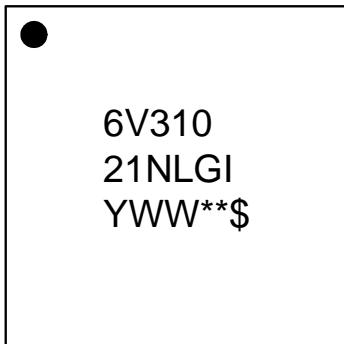
³ V_{xabs} is defined as the voltage where $CLK = CLK\#$

⁴Only applies to the differential rising edge (CLK rising and CLK# falling)

⁵Defined as the total variation of all crossing voltages of CLK rising and CLK# falling. Matching applies to rising edge rate of CLK and falling edge of CLK#. It is measured using a +/-75mV window centered on the average cross point where CLK meets CLK#.

⁶This figure refers to the maximum distortion of the input wave form.

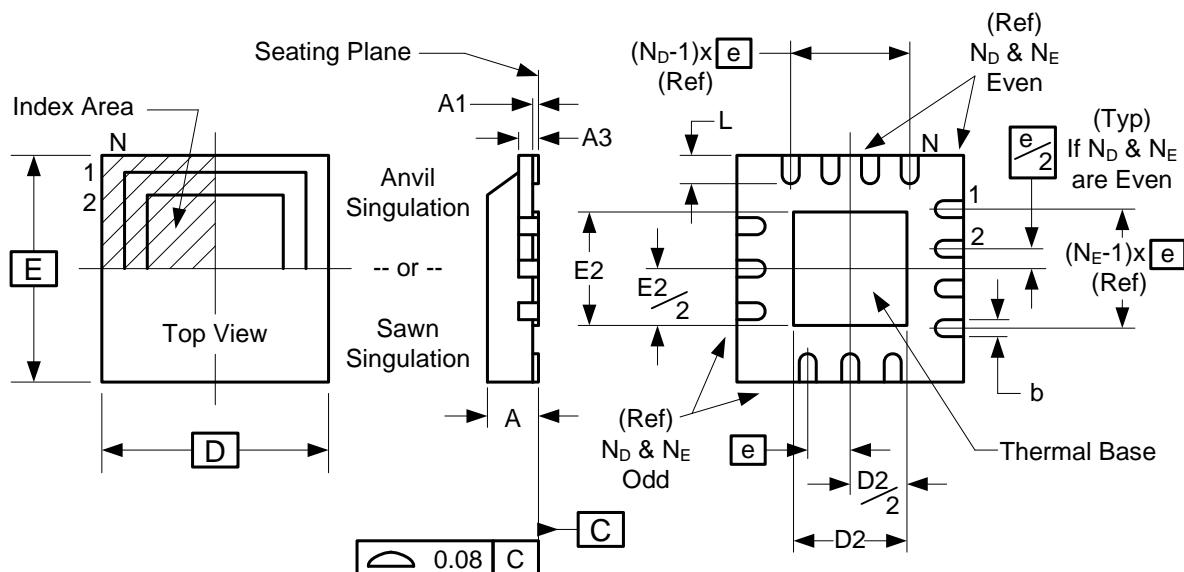
⁷Operation under these conditions is neither implied, nor guaranteed.


⁸Maximum input voltage is not to exceed maximum VDD

⁹The 6V31021 has no PLL, so the part itself contributes very little jitter to the input clock. But this also means that the 9DBL411 cannot 'de-jitter' a noisy input clock. Values calculated per PCI SIG and per Intel Clock Jitter tool version 1.6.6. For PCIe RMS figures, additive jitter is calculated by solving the following equation: Additive jitter = $\text{SQRT}[(\text{total jitter})^2 - (\text{input jitter})^2]$

¹⁰Calculated from Agilent E5052A phase noise machine.

¹¹Mean value not including cycle-to-cycle jitter


Marking Diagram

Notes:

1. '**' is the lot sequence.
2. '\$' is the mark code.
3. 'YWW' is the year and week that the part was assembled.
4. 'G' denotes RoHS compliant package.
5. 'I' denotes industrial temperature range.
6. Bottom marking: country of origin if not USA.

Package Outline and Package Dimensions (20-pin MLF)

Symbol	Millimeters	
	Min	Max
A	0.8	1.0
A1	0	0.05
A3	0.20 Reference	
b	0.18	0.3
e	0.50 BASIC	
D x E BASIC	4.00 x 4.00	
D2 MIN./MAX.	2.00	2.25
E2 MIN./MAX.	2.00	2.25
L MIN./MAX.	0.45	0.65
N	20	
N _D	5	
N _E	5	

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
6V31021NLGI	Trays	20-pin MLF	-40 to +85°C
6V31021NLGI8	Tape and Reel	20-pin MLF	-40 to +85°C

"G" after the two-letter package code indicates Pb-Free configuration, RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History

Rev.	Originator	Issue Date	Description	Page #
0.1	RDW	10/18/2011	Initial Release	
A	RDW	12/12/2011	1. Updated General Description and Key Specifications 2. Added Mark Spec 3. Moved to Final	1, 6

IDT6V31021

4-OUTPUT LOW POWER FANOUT BUFFER FOR PCIE GEN3 AND 10G ETHERNET

SYNTHEZIZERS

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.