Description
This FET has the over temperature shut-down capability sensing to the junction temperature. This FET has the built-in over temperature shut-down circuit in the gate area. And this circuit operation to shut-down the gate voltage in case of high junction temperature like applying over power consumption, over current etc..

Features
- Logic level operation (3 V Gate drive).
- Built-in the over temperature shut-down circuit.
- High endurance capability against to the short circuit.
- Hysteresis type shut down operation.
- High density mounting.
- Built-in the current limitation circuit.
- Power supply voltage applies 12 V.
- AEC-Q101compliant.

Outline

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to source voltage</td>
<td>V_{DSS}</td>
<td>–60</td>
<td>V</td>
</tr>
<tr>
<td>Gate to source voltage</td>
<td>V_{GSS}</td>
<td>–16</td>
<td>V</td>
</tr>
<tr>
<td>Gate to source voltage</td>
<td>V_{GSS}</td>
<td>2.5</td>
<td>V</td>
</tr>
<tr>
<td>Drain current</td>
<td>I_D</td>
<td>–1.5</td>
<td>A</td>
</tr>
<tr>
<td>Body-drain diode reverse drain current</td>
<td>I_{BR}</td>
<td>–1.5</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche current</td>
<td>I_{AP}</td>
<td>–1.5</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche energy</td>
<td>E_{AR}</td>
<td>9.6</td>
<td>mJ</td>
</tr>
<tr>
<td>Channel dissipation</td>
<td>P_{ch}</td>
<td>1</td>
<td>W</td>
</tr>
<tr>
<td>Channel temperature</td>
<td>T_{ch}</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>–55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:
1. When using the glass epoxy board (FR4 40 × 40 × 1.6 mm), PW ≤ 10 s
2. $T_{ch} = 25°C$, $R_g ≥ 50$ Ω
3. It provides by the current limitation lower bound value.
Typical Operation Characteristics

(Ta = 25°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>V_{IH}</td>
<td>–3</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{IL}</td>
<td></td>
<td></td>
<td>–1.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input current (Gate non shut down)</td>
<td>I_{IH1}</td>
<td></td>
<td></td>
<td>–100</td>
<td>µA</td>
<td>$V_i = –8 , V, , V_{DS} = 0$</td>
</tr>
<tr>
<td></td>
<td>I_{IH2}</td>
<td></td>
<td></td>
<td>–50</td>
<td>µA</td>
<td>$V_i = –3.5 , V, , V_{DS} = 0$</td>
</tr>
<tr>
<td></td>
<td>I_{IL}</td>
<td></td>
<td></td>
<td>–10</td>
<td>µA</td>
<td>$V_i = –1.2 , V, , V_{DS} = 0$</td>
</tr>
<tr>
<td>Input current (Gate shut down)</td>
<td>I_{IHSD1}</td>
<td></td>
<td>–0.8</td>
<td></td>
<td>mA</td>
<td>$V_i = –8 , V, , V_{DS} = 0$</td>
</tr>
<tr>
<td></td>
<td>I_{IHSD2}</td>
<td></td>
<td>–0.35</td>
<td></td>
<td>mA</td>
<td>$V_i = –3.5 , V, , V_{DS} = 0$</td>
</tr>
<tr>
<td>Shut down temperature</td>
<td>T_{sd}</td>
<td></td>
<td></td>
<td>175</td>
<td>°C</td>
<td>Channel temperature</td>
</tr>
<tr>
<td>Return temperature</td>
<td>T_{hr}</td>
<td></td>
<td></td>
<td>105</td>
<td>°C</td>
<td>Channel temperature</td>
</tr>
<tr>
<td>Gate operation voltage</td>
<td>V_{op}</td>
<td>–3</td>
<td></td>
<td>–12</td>
<td>V</td>
<td>$V_{GS} = –12 , V, , V_{DS} = –10 , V$ Note 4</td>
</tr>
</tbody>
</table>

Notes:
4. Pulse test

Electrical Characteristics

(Ta = 25°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain current</td>
<td>I_{D}</td>
<td>–1.5</td>
<td></td>
<td>–12</td>
<td>A</td>
<td>$V_{GS} = –3.5 , V, , V_{DS} = –10 , V$ Note 5</td>
</tr>
<tr>
<td></td>
<td>I_{D}</td>
<td></td>
<td>–40</td>
<td></td>
<td>mA</td>
<td>$V_{GS} = –1.2 , V, , V_{DS} = –10 , V$</td>
</tr>
<tr>
<td></td>
<td>I_{D}</td>
<td>–1.5</td>
<td></td>
<td></td>
<td>A</td>
<td>$V_{GS} = –12 , V, , V_{DS} = –10 , V$ Note 5</td>
</tr>
<tr>
<td></td>
<td>I_{D}</td>
<td>–0.8</td>
<td></td>
<td></td>
<td>A</td>
<td>$V_{GS} = –3 , V, , V_{DS} = –10 , V$ Note 5</td>
</tr>
<tr>
<td>Drain to source breakdown voltage</td>
<td>$V_{(BR)DSS}$</td>
<td>–60</td>
<td></td>
<td></td>
<td>V</td>
<td>$I_{D} = –10 , mA, , V_{GS} = 0$</td>
</tr>
<tr>
<td>Gate to source breakdown voltage</td>
<td>$V_{(BR)GSS}$</td>
<td>–16</td>
<td></td>
<td></td>
<td>V</td>
<td>$I_{D} = –800 , \mu A, , V_{DS} = 0$</td>
</tr>
<tr>
<td></td>
<td>$V_{(BR)GSS}$</td>
<td>2.5</td>
<td></td>
<td></td>
<td>V</td>
<td>$I_{D} = 100 , \mu A, , V_{DS} = 0$</td>
</tr>
<tr>
<td>Gate to source leak current</td>
<td>I_{DSS}</td>
<td></td>
<td></td>
<td>–100</td>
<td>µA</td>
<td>$V_{GS} = –8 , V, , V_{DS} = 0$</td>
</tr>
<tr>
<td></td>
<td>I_{DSS}</td>
<td></td>
<td></td>
<td>–50</td>
<td>µA</td>
<td>$V_{GS} = –3.5 , V, , V_{DS} = 0$</td>
</tr>
<tr>
<td></td>
<td>I_{DSS}</td>
<td></td>
<td></td>
<td>–10</td>
<td>µA</td>
<td>$V_{GS} = –1.2 , V, , V_{DS} = 0$</td>
</tr>
<tr>
<td></td>
<td>I_{DSS}</td>
<td></td>
<td></td>
<td>100</td>
<td>µA</td>
<td>$V_{GS} = 2.4 , V, , V_{DS} = 0$</td>
</tr>
<tr>
<td>Input current (shut down)</td>
<td>$I_{DSS(OP)}$</td>
<td></td>
<td>–0.8</td>
<td></td>
<td>mA</td>
<td>$V_{GS} = –8 , V, , V_{DS} = 0$</td>
</tr>
<tr>
<td></td>
<td>$I_{DSS(OP)}$</td>
<td></td>
<td>–0.35</td>
<td></td>
<td>mA</td>
<td>$V_{GS} = –3.5 , V, , V_{DS} = 0$</td>
</tr>
<tr>
<td>Zero gate voltage drain current</td>
<td>I_{oss}</td>
<td></td>
<td></td>
<td>–10</td>
<td>µA</td>
<td>$V_{GS} = –48 , V, , V_{DS} = 0$</td>
</tr>
<tr>
<td></td>
<td>I_{oss}</td>
<td></td>
<td></td>
<td>–10</td>
<td>µA</td>
<td>$V_{GS} = –48 , V, , V_{DS} = 0$</td>
</tr>
<tr>
<td></td>
<td>I_{oss}</td>
<td></td>
<td></td>
<td>100</td>
<td>µA</td>
<td>$V_{GS} = 2.4 , V, , V_{DS} = 0$</td>
</tr>
<tr>
<td>Gate to source cutoff voltage</td>
<td>$V_{GS(off)}$</td>
<td>–0.9</td>
<td></td>
<td>–2.1</td>
<td>V</td>
<td>$V_{DS} = –10 , V, , I_{D} = –1 , mA$</td>
</tr>
<tr>
<td>Forward transfer admittance</td>
<td>$</td>
<td>y_{fs}</td>
<td>$</td>
<td>1.5</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>Static drain to source on state resistance</td>
<td>$R_{D(on)}$</td>
<td>445</td>
<td>800</td>
<td></td>
<td>mΩ</td>
<td>$I_{D} = –0.4 , A, , V_{GS} = –3 , V$ Note 5</td>
</tr>
<tr>
<td></td>
<td>$R_{D(on)}$</td>
<td>363</td>
<td>425</td>
<td></td>
<td>mΩ</td>
<td>$I_{D} = –0.75 , A, , V_{GS} = –4 , V$ Note 5</td>
</tr>
<tr>
<td></td>
<td>$R_{D(on)}$</td>
<td>272</td>
<td>350</td>
<td></td>
<td>mΩ</td>
<td>$I_{D} = –0.75 , A, , V_{GS} = –10 , V$ Note 5</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td></td>
<td></td>
<td>213</td>
<td>pF</td>
<td>$V_{DS} = –10 , V, , V_{GS} = 0$, f = 1MHz</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{(on)}$</td>
<td></td>
<td>0.9</td>
<td></td>
<td>µs</td>
<td>$V_{GS} = –10 , V, , I_{D} = –0.75 , A$, $R_{L} = 40 , \Omega$</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td></td>
<td>3.4</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{(off)}$</td>
<td></td>
<td>3.2</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td>6.3</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>Body-drain diode forward voltage</td>
<td>V_{DF}</td>
<td></td>
<td>–0.8</td>
<td></td>
<td>V</td>
<td>$I_{F} = –1.5 , A, , V_{GS} = 0$</td>
</tr>
<tr>
<td>Body-drain diode reverse recovery time</td>
<td>t_{rr}</td>
<td></td>
<td>70</td>
<td></td>
<td>ns</td>
<td>$I_{F} = –1.5 , A, , V_{GS} = 0$, $di/dt = 50 , A/\mu s$</td>
</tr>
<tr>
<td>Over load shut down operation time Note 6</td>
<td>t_{os}</td>
<td></td>
<td>5.4</td>
<td></td>
<td>ms</td>
<td>$V_{GS} = –5 , V, , V_{DD} = –16 , V$</td>
</tr>
</tbody>
</table>

Notes:
5. Pulse test
6. Including the junction temperature rise of the over loaded condition.
Main Characteristics

Power vs. Temperature Derating

- Ambient Temperature T_a ($^\circ$C)
- Channel Dissipation P_{ch} (W)

Maximum Safe Operation Area

- Drain to Source Voltage V_{DS} (V)
- Drain Current I_D (A)

Typical Output Characteristics

- Drain Current I_D (A)
- Drain to Source Voltage V_{DS} (V)

Static Drain to Source On State Resistance

- Gate to Source Voltage V_{GS} (V)
- Static Drain to Source On State Resistance $R_{DS(on)}$ (mW)

Typical Transfer Characteristics

- Gate to Source Voltage V_{GS} (V)
- Drain Current I_D (A)

Drain Source Saturation Voltage vs. Gate to Source Voltage

- Drain Source Saturation Voltage $V_{DS(on)}$ (mV)
- Gate to Source Voltage V_{GS} (V)

Note 7:
When using the glass epoxy board.
(FR4 40 x 40 x 1.6 mm)
Static Drain to Source On State Resistance vs. Temperature

Switching Characteristics

Reverse Drain Current vs. Source to Drain Voltage

Gate to Source Voltage vs. Shutdown Time of Load-Short Test

Body-Drain Diode Reverse Recovery Time

Typical Capacitance vs. Drain to Source Voltage

Static Drain to Source On State Resistance (mΩ)

Reverse Drain Current IDR (A)

Capacitance C (pF)

Reverse Recovery Time trr (ns)

Source to Drain Voltage VSD (V)

Gate to Source Voltage vs. Shutdown Time of Load-Short Test

Pulse Test

VGS = 0

r = 1 MHz

VGS = 0

VGS = −3 V

ID = −1.5 A

VGS = −10 V, VDD = −30 V

PW = 300 μs, duty ≤ 1%

VDD = −16 V

Source to Drain Voltage VSD (V)

Shutdown Time of Load-Short Test Pw (ms)

VGS = −10 V

VDD = −30 V

PW = 300 μs, duty ≤ 1%

VDD = −16 V

VGS = 0

VGS = −10 V

VDD = −30 V

PW = 300 μs, duty ≤ 1%
When using the glass epoxy board (FR4 40 x 40 x 1.6 mm)

\[\theta_{ch-f} = \gamma_s(t) \cdot \theta_{ch-f} \]

\[\theta_{ch-f} = 125^\circ C/W, \ Ta = 25^\circ C \]

When using the glass epoxy board (FR4 40 x 40 x 1.6 mm)

\[D = \frac{PW}{T} \]

\[\text{Pulse Width} = PW \]

\[\text{Normalized Transient Thermal Impedance} = \gamma_s(t) \]

\[\text{Gate to Source Voltage} = V_{GS} (V) \]

\[\text{Shutdown Case Temperature} = T_c (\circ C) \]

\[\text{Gate to Source Voltage} = V_{DS} = -10 \text{ V} \]

\[\text{Pulse Test} \]

\[\text{Normalized Transient Thermal Impedance vs. Pulse Width} \]

\[\text{Forward transfer admittance vs. Drain Current} \]

\[\text{Shutdown Case Temperature vs. Gate to Source Voltage} \]
Switching Time Test Circuit

- **Vin Monitor**
- **Vout Monitor**
- **D.U.T.**
- **Rg**
- **RL**
- **VDD** = -30 V
- **Vin** = -10 V

Waveform

- **Vin**
- **Vout**
- **Id(on)**
- **Id(off)**

Avalanche Test Circuit

- **VDD Monitor**
- **L**
- **IAP Monitor**
- **D. U. T.**
- **Rg**
- **50 Ω**
- **Vin** = -10 V

Avalanche Waveform

\[
E_{AR} = \frac{1}{2} L \cdot I_{AP}^2 \cdot \frac{V_{DSS}}{V_{DSS} - V_{DD}}
\]

- **VDD**
- **VDS**
- **VBR,DSS**
Package Dimensions

<table>
<thead>
<tr>
<th>Package Name</th>
<th>JEITA Package Code</th>
<th>RENESAS Code</th>
<th>Previous Code</th>
<th>MASS[Typ.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOP-8</td>
<td>P-SOP8-3.95/4.9/1.27</td>
<td>PRSPR003DD-D</td>
<td>FF-80AXV</td>
<td>0.055g</td>
</tr>
</tbody>
</table>

Ordering Information

<table>
<thead>
<tr>
<th>Orderable Part Number</th>
<th>Quantity</th>
<th>Shipping Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>RJE0623JSP-00-J0</td>
<td>2500 pcs/reel</td>
<td>Taping</td>
</tr>
</tbody>
</table>

Note: The symbol of 2nd'-' is occasionally presented as "#".
SALES OFFICES

Renesas Electronics Corporation

Refer to "http://www.renesas.com" for the latest and detailed information.

Renesas Electronics Corporation
TOYSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

Renesas Electronics America Inc.
1001 Murpy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-434-3531
Fax: +1-408-434-8899

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe GmbH
Amardrastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-3, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 101-701, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China
Tel: +86-10-6235-1155, Fax: +86-10-6235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Tower, 555 Langao Road, Putuo District, Shanghai 200333, China
Tel: +86-21-2228-0888, Fax: +86-21-2228-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-4658, Fax: +852-2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886-2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit 805-02 Hylux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia
Tel: +60-3-5322-1290, Fax: +60-3-5322-1289

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Slage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700

Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yongsan Tower, 262, Gangnam-daero, Gangnam-gu, Seoul 06265 Korea
Tel: +82-2-598-3773, Fax: +82-2-598-3339

© 2019 Renesas Electronics Corporation. All rights reserved.

Colophon 8.0