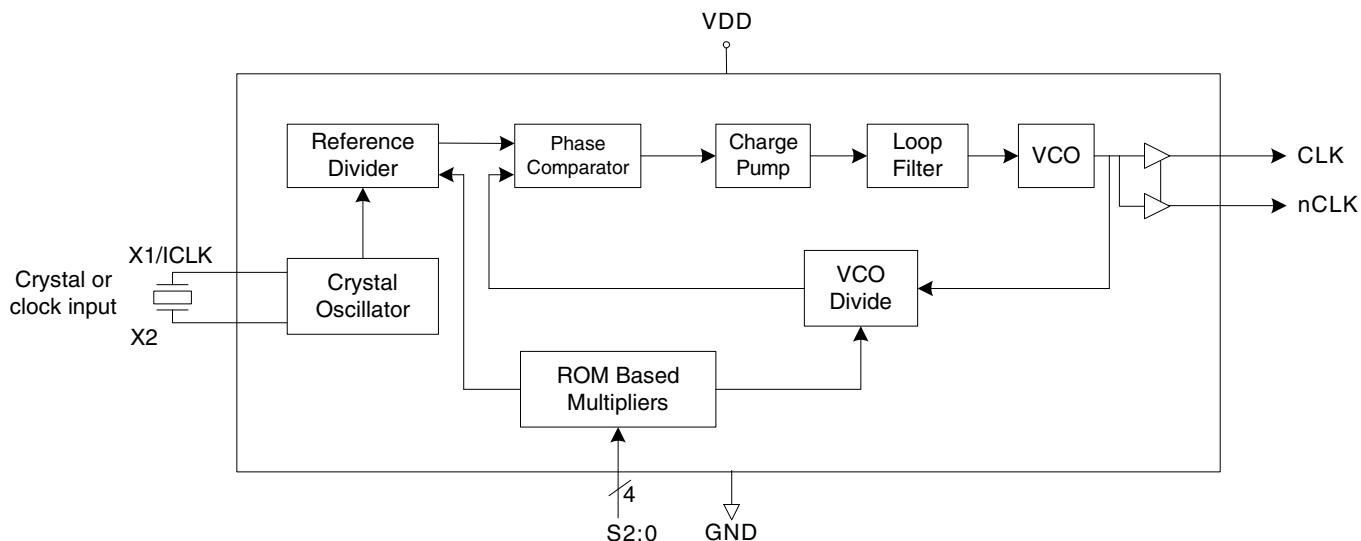
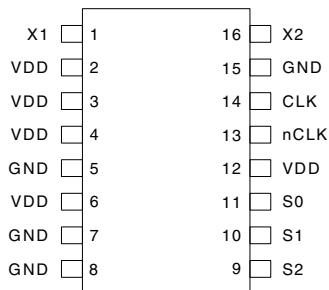


Description


The ICS601-21 is a low-cost, low phase noise, high performance clock synthesizer for applications which require low phase noise and low jitter. It is IDT's lowest phase noise multiplier. Using IDT's patented analog and digital Phase Locked Loop (PLL) techniques, the chip accepts a crystal or clock input, and produces output clocks up to 230 MHz at 3.3 V.

This product is intended for clock generation. It has low output jitter (variation in the output period), but input to output skew and jitter are not defined nor guaranteed.


Features

- Fully integrated PLL, no external loop filter required
- Differential 3.3 V LVPECL outputs
- Uses fundamental crystal or clock
 - Crystal input frequency: 10 to 27MHz
 - Clock input: 10 to 38MHz (mulinply by 6)
10 to 31MHz (all other multiply settings)
- Output clocks up to 230 MHz at 3.3 V
- Low phase noise: -122 dBc/Hz at 10 kHz
- Low jitter - 15 ps one sigma typ.
- Powerdown mode lowers power consumption
- Packaged in 16-pin TSSOP, Pb-free
- Advanced, low power, sub-micron CMOS process
- Operating voltage of 3.3 V
- Commercial temperature range available

Block Diagram

Pin Assignment

16 Pin (173 mil) TSSOP

Multiplier Select Table

S2	S1	S0	Multiplier
0	0	0	x1
0	0	1	x2
0	1	0	x3
0	1	1	x4
1	0	0	x5
1	0	1	x6
1	1	0	x8
1	1	1	x16

0 = connect directly to ground

1 = connect directly to VDD

Pin Descriptions

Pin Number	Pin Name	Pin Type	Pin Description
1	X1	XI	Crystal or clock input. Connect to a fundamental parallel mode crystal or clock input. See electrical tables for input frequency ranges.
2 - 4	VDD	Power	Connect to +3.3 V.
5	GND	Power	Connect to ground.
6	VDD	Power	Connect to +3.3 V.
7 - 8	GND	Power	Connect to ground.
9	S2	Input	Select pin 2. Internal pull-up resistor.
10	S1	Input	Select pin 1. Internal pull-up resistor.
11	S0	Input	Select pin 0. Internal pull-up resistor.
12	VDD	Power	Connect to +3.3 V.
13	nCLK	Output	Inverted differential clock output.
14	CLK	Output	Differential clock output.
15	GND	Power	Connect to ground.
16	X2	XO	Crystal connection. Connect to a fundamental parallel mode crystal or leave unconnected for clock input. See electrical tables for input frequency ranges.

External Components

The ICS601-21 requires a minimum number of external components for proper operation. Decoupling capacitors of 0.01 μ F and 0.1 μ F should be connected between VDD and GND, as close to the part as possible. A 50 Ω terminating resistor should be used on each clock output. (See termination diagram on page 5). The crystal must be connected as close to the chip as possible. The crystal should be fundamental mode, parallel resonant. Do not use third overtone. For exact tuning when using a crystal, capacitors should be connected from pins X1 to ground and X2 to ground. In general, the value of these capacitors is given by the following equation, where CL is the crystal load capacitance: Crystal caps (pF) = (CL-5) x 2. So for a crystal with 16 pF load capacitance, two 22 pF caps can be used. For any given board layout, IDT can measure the board capacitance and recommend the exact capacitance value to use.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the ICS601-21. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDD	7 V
All Inputs and Outputs	-0.5 V to VDD+0.5 V
Ambient Operating Temperature, Commercial version	0 to +70 °C
Storage Temperature	-65 to +150 °C
Junction Temperature	125 °C
Soldering Temperature	260 °C

Recommended Operation Conditions

Parameter	Min.	Typ.	Max.	Units
Ambient Operating Temperature	0		+70	°C
Power Supply Voltage (measured in respect to GND)	+3.0		+3.6	V

DC Electrical Characteristics

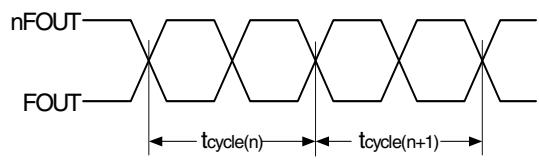
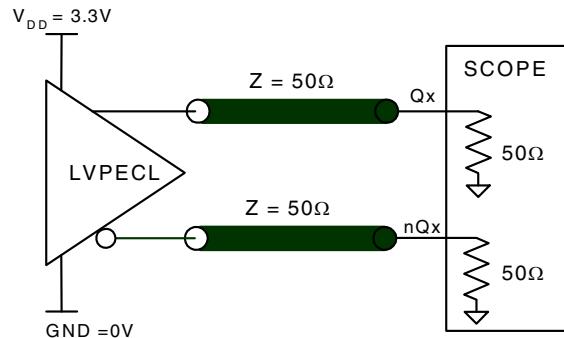
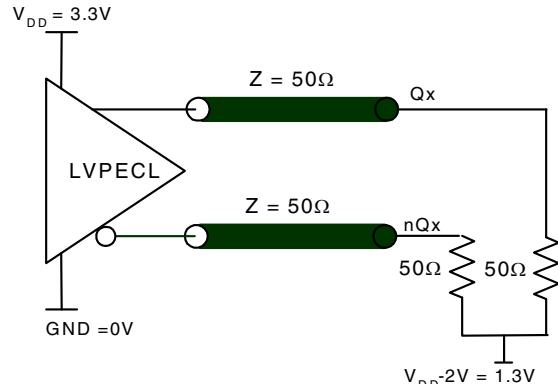
VDD=3.3 V \pm 0.3V, Ambient temperature 0 to +70°C

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Operating Voltage	VDD		3.0		3.6	V
Input High Voltage	V _{IH}	X1/ICLK pin only	VDD/2+1			V
Input Low Voltage	V _{IL}	X1/ICLK pin only			VDD/2-1	V

DC Electrical Characteristics (continued)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Input High Voltage	V_{IH}	Input select pins	2		VDD	V
Input Low Voltage	V_{IL}	Input select pins			0.8	V
Output High Voltage	V_{OH}	Note 1	VDD-1.4		VDD-1.0	V
Output Low Voltage	V_{OL}	Note 1	VDD-2.0		VDD-1.7	V
Output Voltage Swing	V_{swing}	Peak to Peak	0.6		0.95	V
Operating Supply Current	IDD	Note 1, 125 MHz		30	45	mA
Input Capacitance	C_{IN}	Input select pins		5		pF
On Chip Pull-up Resistor	R_{PU}	Input select pins		510		k Ω

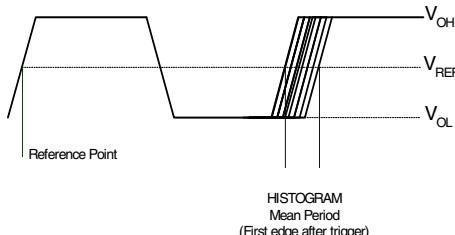
Note 1: Outputs terminated with 50Ω to VDD-2V




AC Electrical Characteristics

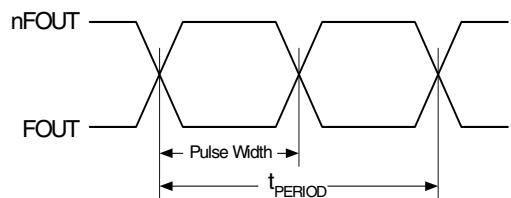
VDD = 3.3 V ± 0.3 V, Ambient Temperature 0 to +70° C

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Crystal Input Frequency	Fin	Note 2	10		27	MHz
Clock Input Frequency	Fin	Note 2, "Multiply by 6" setting	10		38	MHz
		Note 2, excluding "Multiply by 6" setting	10		31	MHz
Output Frequency			10		230	MHz
Output Rise Time	t_{OR}	20% to 80%, no load		600	900	ps
Output Fall Time	t_{OF}	80% to 20%, no load		900	1200	ps
Output Clock Duty Cycle		at VDD/2	45	50	55	%
Maximum Absolute Jitter, short term, 125 MHz		No load		± 50	± 75	ps
Maximum Jitter, one sigma, 125 MHz (x5)		No load		12	20	ps
Phase Noise, relative to carrier, 125 MHz (x5)		100 Hz offset	-90	-94		dBc/Hz
Phase Noise, relative to carrier, 125 MHz (x5)		1 kHz	-116	-120		dBc/Hz
Phase Noise, relative to carrier, 125 MHz (x5)		10 kHz offset	-118	-122		dBc/Hz
Phase Noise, relative to carrier, 125 MHz (x5)		100 kHz offset	-115	-119		dBc/Hz

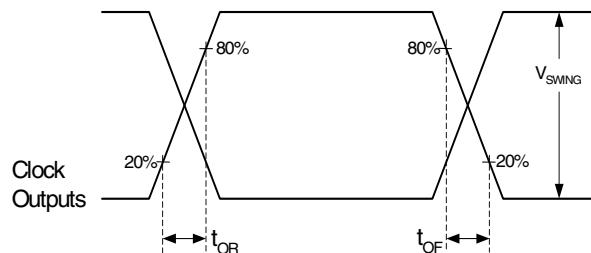
Note 2: Input frequency limited by maximum output frequency and multiplication factor (i.e. For 16x, maximum input frequency is 13.75 MHz).


Parameter Measurement Information

$$t_{jitter(cc)} = t_{cycle(n)} - t_{cycle(n+1)}$$

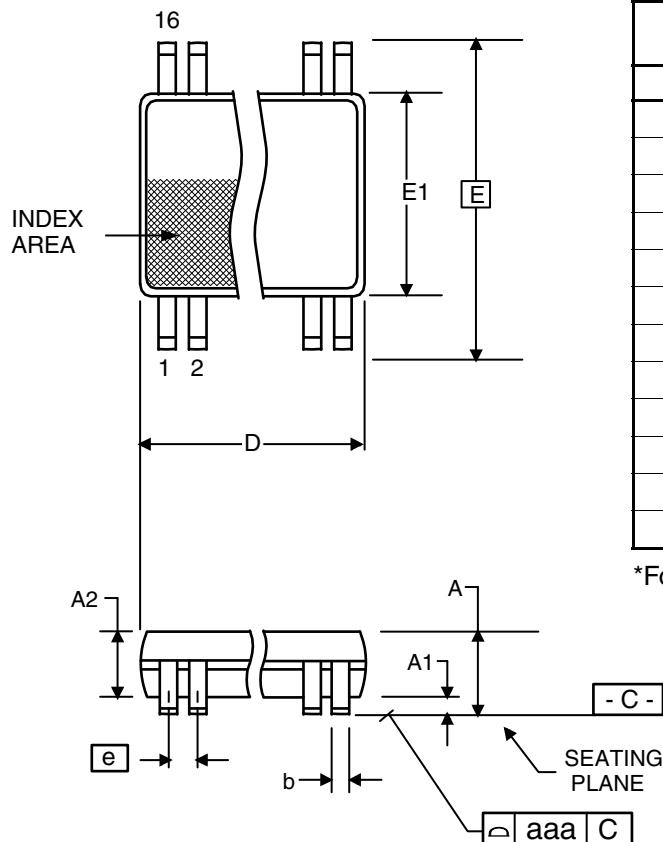

1000 Cycles

CYCLE-TO-CYCLE JITTER



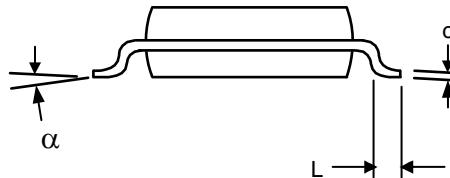
1s contains 68.26% of all measurements
2s contains 95.4% of all measurements
3s contains 99.73% of all measurements
4s contains 99.99366% of all measurements
6s contains $(100 - 1.973 \times 10^{-7})\%$ of all measurements

Period Jitter


$$ODC = \frac{t_{PW}}{t_{PERIOD}}$$

OUTPUT DUTY CYCLE AND t_{PERIOD}

OUTPUT RISE/FALL TIME


Package Outline and Package Dimensions (16-pin TSSOP, 173 Mil. Narrow Body)

Package dimensions are kept current with JEDEC Publication No. 95

Symbol	Millimeters		Inches*	
	Min	Max	Min	Max
A	--	1.20	--	0.047
A1	0.05	0.15	0.002	0.006
A2	0.80	1.05	0.032	0.041
b	0.19	0.30	0.007	0.012
C	0.09	0.20	0.0035	0.008
D	4.90	5.1	0.193	0.201
E	6.40 BASIC		0.252 BASIC	
E1	4.30	4.50	0.169	0.177
e	0.65 Basic		0.0256 Basic	
L	0.45	0.75	0.018	0.030
α	0°	8°	0°	8°
aaa	--	0.10	--	0.004

*For reference only. Controlling dimensions in mm.

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
601G-21LF	601G-21LF	Tubes	16-pin TSSOP	0 to +70° C
601G-21LFT	601G-21LF	Tape and Reel	16-pin TSSOP	0 to +70° C

"LF" suffix to the part number denotes Pb-Free configuration, RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.

Revision History

Rev.	Date	Originator	Description of Change
J	12/14/12	A. Tsui	<ol style="list-style-type: none">1. Updated Clock Input and Output frequencies in AC Char table and on front page of DS per characterization report.2. Removed leaded parts from Orderables table.

ICS601-21

LOW PHASE NOISE CLOCK MULTIPLIER

CLOCK MULTIPLIER

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.