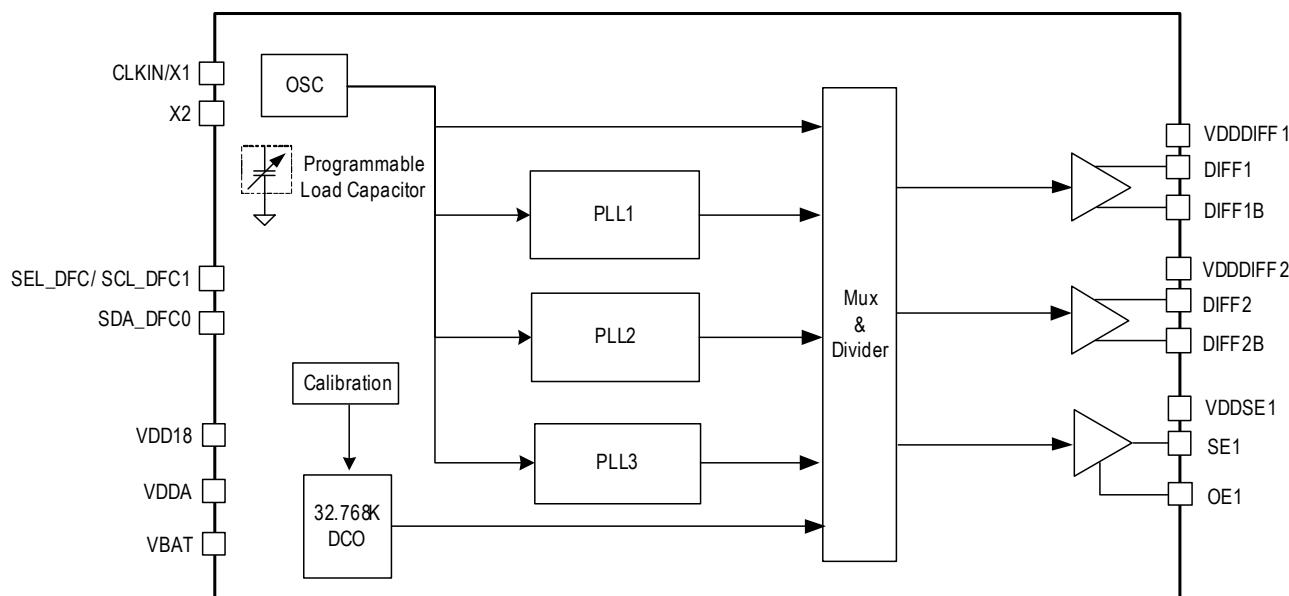


Description

The 5L35021 is a member of the VersaClock 3S programmable clock generator family with 1.8V operation voltage, and is designed for industrial, consumer, and PCI Express applications. The device features a 3 PLL architecture design; each PLL is individually programmable and allowing up to 6 unique frequency outputs.

The 5L35021 has built-in features such as Proactive Power Saving (PPS), Performance-Power Balancing (PPB), Overshoot Reduction Technology (ORT) and extreme low power DCO. An internal OTP memory allows the user to store the configuration in the device without programming after power up, then program the 5L35021 again through the I²C interface.

The device has programmable VCO and PLL source selection, allowing power-performance optimization based on the application requirements.


Typical Applications

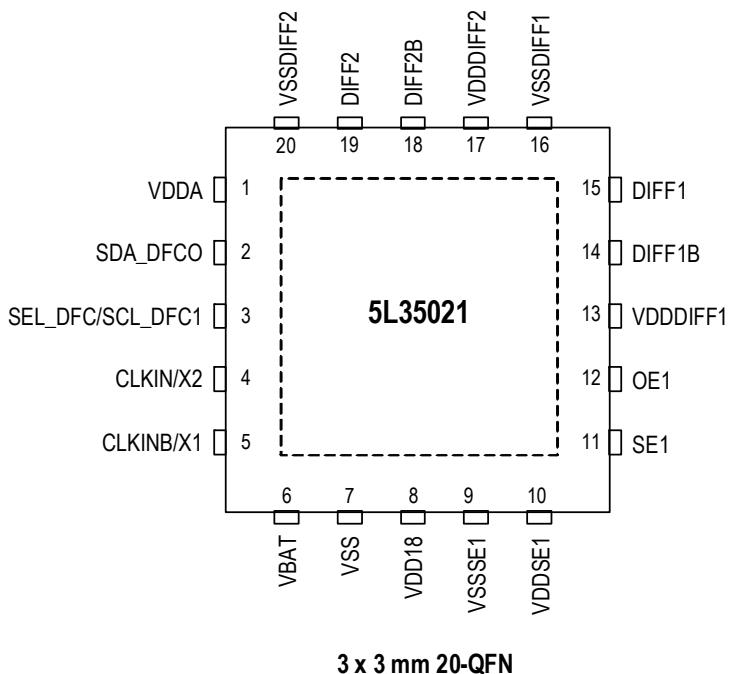
- Embedded computing devices
- Consumer application crystal replacements
- SmartDevice, Handheld, and Consumer applications

Key Specifications

- PCIe Gen1/2/3 compliant
- Typical 1.5ps rms jitter integer range: 12kHz–20MHz
- Typical ultra-power-down current 50µA
- < 2µA RTC clock in Suspend Mode operation

Block Diagram

Features


- Configurable OE pin function as OE, PD#, PPS or DFC control function
- Configurable PLL bandwidth; minimizes jitter peaking
- PPS: Proactive Power Saving features save power during the end device power down mode
- PPB: Performance Power Balancing feature allows minimum power consumption based on required performance
- DFC: Dynamic Frequency Control feature allows user to dynamically switch between and up to 4 different frequencies smoothly
- Spread spectrum clock to lower system EMI
- I²C interface
- Suspend Mode, featuring RTC clock only when system goes into low-power operation modes

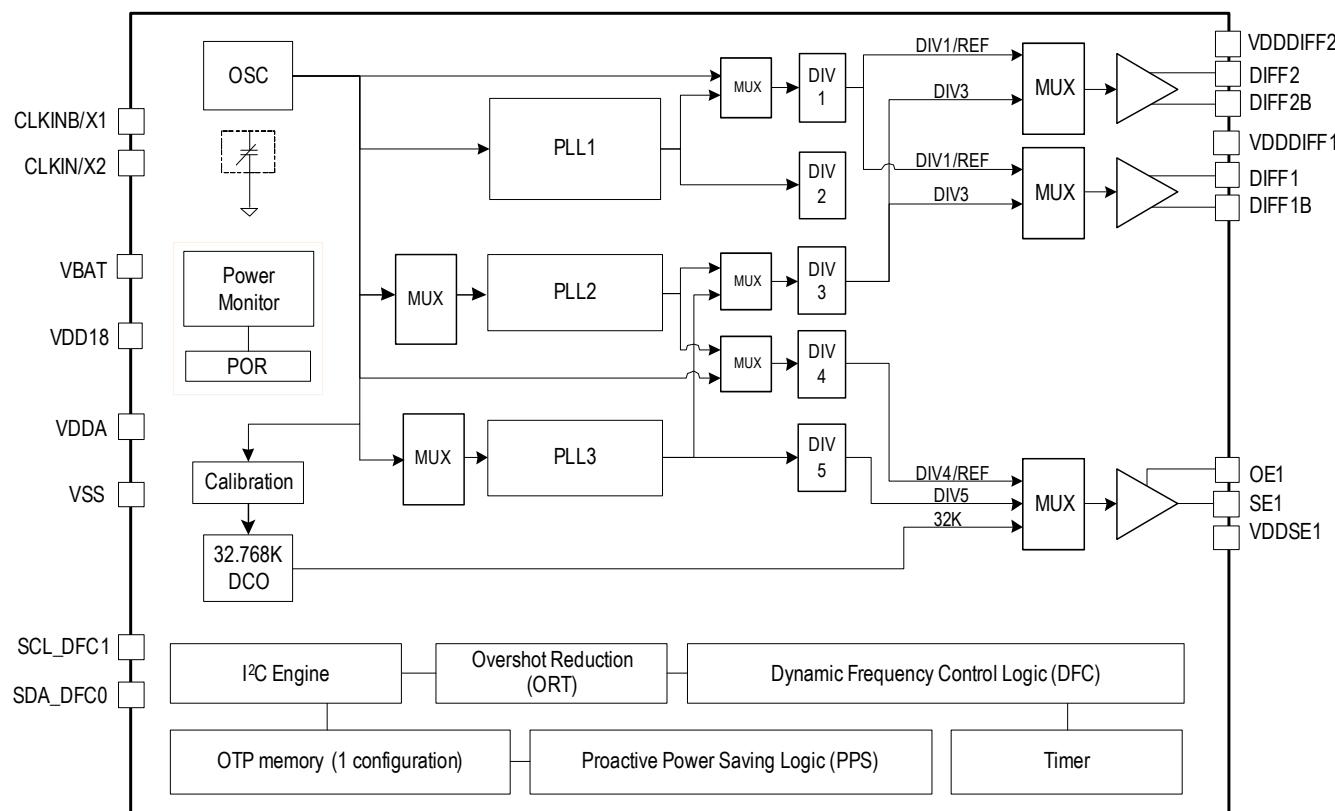
Output Features

- 2 DIFF outputs with configurable LPHSCL, LVCMOS output pairs: 1MHz–250MHz (125MHz with LVCMOS mode)
- 1 LVCMOS output: 1MHz–125MHz
- LVPECL, LVDS, CML and SSTL logic can be easily supported with the LP-HCSL outputs. See application note [AN-891](#) for alternate terminations
- Maximum of 5 LVCMOS outputs as REF + 3 × SE + 2 × DIFF_T/C as LVCMOS
- Low-power 32.768kHz clock supported for SE1 output

Pin Assignments

Figure 1. Pin Assignments for 3 x 3 mm 20-VFQFPN Package – Top View

Pin Descriptions


Table 1. Pin Descriptions

Number	Name	Type	Description
1	V _{DDA}	Power	V _{DD} 1.8V
2	SDA_DFC0	I/O	I ² C data pin. The pin can be DFC0 function by pin 3 SEL_DFC power-on latch status.
3	SEL_DFC/ SCL_DFC1	Input	I ² C CLK pin. SEL_DFC is a latch input pin during the power-up. High on power-on: I ² C mode as SCLK function. Low on power-on: pin 3 SCL and pin 2 SDA as DFC function control pins.
4	CLKIN/X2	I/O	Crystal oscillator interface output or differential clock input pin (CLKIN).
5	CLKINB/X1	Input	Crystal oscillator interface input or differential clock input pin (CLKINB).
6	V _{BAT}	Power	Power supply pin for 32.768kHz DCO; usually connect to coin cell battery, 1.8V. Unused V _{BAT} can be connected to V _{DD18} .
7	V _{SS}	Power	Connect to ground.
8	V _{DD18}	Power	V _{DD} 1.8V.
9	V _{SSSE1}	Power	Connect to ground.
10	V _{DDSE1}	Power	Output power supply. Connect to 1.8V. Sets output voltage levels for SE1.
11	SE1	Output	Output clock SE1.
12	OE1	Input	OE1's function selected from OTP pre-programmed register bits. OE1 pull to 6.5V when burn OTP registers. Refer to <i>OE Pin Functions</i> table for details.

Table 1. Pin Descriptions (Cont.)

Number	Name	Type	Description
13	$V_{DDDIFF1}$	Power	Output power supply. Connect to 1.8V. Sets output voltage levels for DIFF1.
14	DIFF1B	Output	Differential clock output 1_Complement; can be OTP pre-programmed to LVC MOS/LPHCSL output type.
15	DIFF1	Output	Differential clock output 1_True; can be OTP pre-programmed to LVC MOS/LPHCSL output type.
16	$V_{SSDIFF1}$	Power	Connect to ground.
17	$V_{DDDIFF2}$	Power	Output power supply. Connect to 1.8V. Sets output voltage levels for DIFF2.
18	DIFF2B	Output	Differential clock output 2_Complement; can be OTP pre-programmed to LVC MOS/LPHCSL output type.
19	DIFF2	Output	Differential clock output 2_True; can be OTP pre-programmed to LVC MOS/LPHCSL output type.
20	$V_{SSDIFF2}$	Power	Connect to ground.
	EPAD	Power	Connect to ground pad.

Detailed Block Diagram

Power Group

Table 2. Power Group

Power Supply	SE	DIFF	DIV	MUX	PLL	DCO	REF	Xtal
V_{DDSE1}	SE1 ¹							
$V_{DDDIFF1}$		DIFF1	DIV3/4	MUXPLL2	PLL2			
$V_{DDDIFF2}$		DIFF2	DIV1	MUXPLL1				
V_{DD18}			DIV5		PLL3	DCO	REF	Xtal
V_{BAT}						DCO		Xtal
V_{DDA}			DIV2		PLL1			

¹ V_{DDSE1} for non-32kHz outputs should be OFF when V_{DDA}/V_{DD18} turns OFF; V_{BAT} mode only supports 32.768kHz outputs from SE1.

Absolute Maximum Ratings

The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the 5L35021 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Table 3. Absolute Maximum Ratings

Item	Rating
Supply Voltage, V_{DDA} , V_{DD18} , V_{DDSE} , V_{DDDIFF}	$V_{DD} + 5\%$
Supply Voltage, V_{BAT}	$V_{DD} + 5\%$
Inputs	
XIN/CLKIN	0V to 1.8V voltage swing for both LVCMOS or DIFF CLK
Other Inputs	-0.5V to V_{DD18} or V_{DDSE}
Outputs, V_{DDSE} (LVCMOS)	-0.5V to V_{DDSE} or $V_{DDDIFF} + 0.5V$
Outputs, IO (SDA)	10mA
Package Thermal Impedance, θ_{JA}	42°C/W (0mps)
Package Thermal Impedance, θ_{JC}	41.8°C/W (0mps)
Storage Temperature, T_{STG}	-65°C to 150°C
ESD Human Body Model	2000V
Junction Temperature	125°C

Recommended Operating Conditions

Table 4. Recommended Operating Conditions

Symbol	Parameter	Minimum	Typical	Maximum	Unit
V_{DDSE}	Power supply voltage for supporting 1.8V outputs.	1.71	1.8	1.89	V
V_{DD18}	Power supply voltage for core logic functions.	1.71	1.8	1.89	V
V_{DDA}	Analog power supply voltage. Use filtered analog power supply if available.	1.71	1.8	1.89	V
V_{BAT}	Battery power supply voltage.	1.71	1.8	1.89	V
T_A	Operating temperature, ambient.	-40	-	85	°C
C_{LOAD_OUT}	Maximum load capacitance (LVCMOS only).	-	5	-	pF
F_{IN}	External reference crystal.	8	-	40	MHz
	External reference clock CLKIN, CLKINB.	1	-	125	
t_{PU}	Power up time for all V_{DD} s to reach minimum specified voltage (power ramps must be monotonic).	0.05	-	3	ms

Crystal Characteristics

Table 5. Crystal Characteristics

Parameter	Conditions	Minimum	Typical	Maximum	Unit
Mode of Oscillation	-	Fundamental			
Frequency	-	8	-	40	MHz
Frequency when 32.768kHz DCO is used	-	8	25	39	MHz
Equivalent Series Resistance (ESR)	-	-	10	100	Ω
Shunt Capacitance	-	-	2	7	pF
Load Capacitance (C_L)	-	6	8	10	pF
Maximum Crystal Drive Level	-	-	30	100	μ W

Electrical Characteristics

Supply voltage: all $V_{DD} \pm 5\%$, unless otherwise stated

Table 6. Electrical Characteristics – Current Consumption 1,2

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
I_{DDCORE}	Core Supply Current	$V_{DD} = V_{DDSE} = V_{DD18} = 1.8V$; XTAL = 25MHz, PLL2/3 off, no output, PLLs disabled.	-	3.4	4.8	mA
I_{DD_PLL1} ³	PLL1 Supply Current	$V_{DD} = V_{DDSE} = V_{DD18} = 1.8V$; XTAL = 25MHz, PLL2/3 off, no output, PLL1 = 600MHz.	-	12.1	15.3	mA
I_{DD_PLL2} ³	PLL2 Supply Current	$V_{DD} = V_{DDSE} = V_{DD18} = 1.8V$; XTAL = 25MHz, PLL1/3 off, no output, PLL2 = 60MHz.	-	0.5	0.8	mA
I_{DD_PLL3} ³	PLL3 Supply Current	$V_{DD} = V_{DDSE} = V_{DD18} = 1.8V$; XTAL = 25MHz, PLL1/2 off, no output, PLL3 = 480MHz.	-	2.5	3.2	mA
I_{DDOX}	Output Buffer Supply Current	LPHCSL, 125MHz, 1.8V V_{DDDIFF} , no load (DIFF1,2).	-	3.4	4.1	mA
		LPHCSL, 100MHz, 1.8V V_{DDDIFF} , no load (DIFF1,2).	-	2.9	3.5	mA
		LVCMOS, 8MHz, 1.8V, $V_{DDSE}^{1,2}$ (SE1).	-	0.5	0.6	mA
		LVCMOS, 160MHz, 1.8V $V_{DDSE}^{1,2}$ (SE1).	-	2.7	3.4	mA
I_{DDPD} ³	Power Down Current – LPHCSL	I^2C functional during power-down, just 32kHz running (if any); DIFF outputs in LPHCSL mode are high/low.	-	2.6	3.4	mA

Table 6. Electrical Characteristics – Current Consumption ^{1,2}

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
I_{DDPD} ³	Power Down Current – LVCMOS	I^2C functional during power-down, just 32kHz running (if any); DIFF outputs in LVCMOS mode are high/low or low/low.	-	0.5	1	mA
I_{DDUPD} ⁴	Ultra Power Down Current – LPHCSL	I^2C functional during power-down, just 32kHz running (if any); DIFF outputs in LPHCSL mode are low/low.	-	33	65	μA
I_{DDUPD} ⁴	Ultra Power Down Current – LVCMOS	I^2C functional during power-down, just 32kHz running (if any) – DIFF outputs in LVCMOS mode are low/low.	-	33	65	μA
$I_{DDSUSPEND}$ ⁵	Suspend Mode Current – 32kHz x 1	I^2C off in Suspend Mode. One 32kHz output running.	-	1.4	2.1	μA

¹ All output currents measured with 0.5 inch transmission line and 0pF load.

² Single CMOS driver active.

³ Power-down can be controlled by PD (OE1 input pin) and/or I^2C bit.

⁴ Ultra Power-down must be controlled by PD (OE1 input pin).

⁵ Suspend mode requires all V_{DD} to GND except V_{DDSEN} (as desired) and V_{DD18} .

⁶ DIFF outputs in LVCMOS mode can power-down to be high/low or low/low, depending on register 0x22<1:0>.

Table 7. Electrical Characteristics–Input Parameters

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V_{IH}	Input High Voltage	Single-ended inputs – OE pins.	$0.65 \times V_{DDSE}$	-	$V_{DDSE} + 0.3$	V
V_{IL}	Input Low Voltage	Single-ended inputs – OE pins.	GND - 0.3	-	$0.35 \times V_{DDSE}$	V
V_{IH}	Input High Voltage – OE	Single-ended input.	$0.65 \times V_{DDSE}$	-	$V_{DDSE} + 0.3$	V
V_{IL}	Input Low Voltage – OE	Single-ended input.	GND - 0.3	-	$0.35 \times V_{DDSE}$	V
V_{SWING}	Input Amplitude – CLKIN	Single-ended input swing.	600	-	V_{DD}	mV
I_{IL}	Input Leakage Low Current	$V_{IN} = GND$	-20	-	20	μA
I_{IH}	Input Leakage High Current	$V_{IN} = 1.89V$.	-20	-	20	μA
d_{TIN}	Input Duty Cycle	Measurement from differential waveform.	45	-	55	%
C_{IN}	Input capacitance (CLKIN, CLKINB, OE, SDA, SCL, DFC1:0).		-	3	7	pF
R_{PDR}	Pull-down Resistor – OE pin		-	550	-	k Ω
R_{OUT}	LVCMOS output driver impedance ($V_{DDSE} = 1.8V$)		-	17	-	Ω

Table 8. DC Electrical Characteristics – LVCMOS

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V_{OH}	Output High Voltage	$I_{OH} = -8\text{mA}$.	$0.7 \times V_{DDSE}$	-	V_{DDSE}	V
V_{OL}	Output Low Voltage	$I_{OL} = 8\text{mA}$.	-	-	$0.25 \times V_{DDSE}$	V
I_{OZDD}	Output Leakage Current	Tri-state outputs, $V_{DDSE} = 1.89\text{V}$.	-	-	3	μA
$t_{R/F}$	Output Rise/Fall Time	Single-ended LVCMOS output clock rise and fall time, 20% to 80% of $V_{DDSE} 1.8\text{V}$.	-	1.0	-	ns

Table 9. Electrical Characteristics – LPHCSL Differential Outputs

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
dV/dt	Slew Rate	1	2.5	4	V/ns	1,2,3,8
$\Delta dV/dt$	Slew Rate Mismatch	-	-	20	%	1,2,3,8,9
V_{MAX}	Maximum Voltage	-	-	1150	mV	1,6
V_{MIN}	Minimum Voltage	-300	-	-	mV	1,6
V_{SWING}	Voltage Swing	300	-	-	mV	1,2,6
V_{CROSS}	Crossing Voltage Value	250	400	550	mV	1,4,6
ΔV_{CROSS}	Crossing Voltage Variation	-	-	140	mV	1,5,9
Jitter-Cy/Cy	Cycle to Cycle Jitter	-	-	160	ps	1,2
Jitter-STJ	Short Term Period Jitter	-	-	300	ps	1,2
T_{DC}	Duty Cycle	45	-	55	%	1,2

¹ Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform.

³ Slew rate is measured through the V_{SWING} voltage range centered around differential 0V. This results in a $\pm 150\text{mV}$ window around differential 0V.

⁴ V_{CROSS} is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁵ The total variation of all V_{CROSS} measurements in any particular system. Note that this is a subset of V_{CROSS} min/max (V_{CROSS} absolute) allowed. The intent is to limit V_{CROSS} induced modulation by setting ΔV_{CROSS} to be smaller than V_{CROSS} absolute.

⁶ Measured from single-ended waveform.

⁷ Measured with scope averaging off, using statistics function. Variation is the difference between minimum and maximum.

⁸ Scope average on.

⁹ 100MHz, spread off and 0.5% spread.

General AC Electrical Characteristics

$V_{DD} = 1.8V \pm 5\%$, $T_A = -40^\circ C$ to $+85^\circ C$; spread spectrum = off

Table 10. AC Timing Electrical Characteristics

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
f_{IN}^1	Input Frequency	Input frequency limit (XIN).	8	-	40	MHz
		Input frequency limit (LVCMOS to X1).	1	-	125	MHz
f_{OUT}	Output Frequency	Single-ended clock output limit (LVCMOS).	1	-	125	MHz
		Differential clock output frequency (LPHCSL).	1	-	125	MHz
f_{VCO1}	VCO Frequency Range of PLL1	VCO operating frequency range.	300	-	600	MHz
f_{VCO2}	VCO Frequency Range of PLL2	VCO operating frequency range.	30	-	130	MHz
f_{VCO3}	VCO Frequency Range of PLL3	VCO operating frequency range.	300	-	800	MHz
t_{ODC}	Output Duty Cycle	LVCMOS (measured at $V_{DDO}/2$).	45	-	55	%
	Output Duty Cycle – REF	Reference clock output or SE1–3 fan out clock measured at $V_{DDO}/2$.	40	-	60	%
t_J	Clock Jitter	Cycle-to-cycle jitter (peak-to-peak), multiple output frequencies switching, differential outputs (1.8V nominal output voltage). SE1 = 25MHz. DIFF1/2 = 100MHz.	-	50	-	ps
		RMS phase jitter (12kHz to 20MHz integration range) differential output, 1.8V nominal output voltage. 25MHz crystal. SE1 = 12.5MHz – REF/2. DIFF1/2 = 100MHz – PLL1. REF = 25M.	-	1.5	-	ps
t_{SKEW}	Output Skew	Skew between the same frequencies, with outputs using the same driver format.	-	75	-	ps
t_{LOCK}^2	Lock Time	PLL/DCO lock time.	-	-	10	ms

¹ Practical lower frequency is determined by loop filter settings.

² Includes loading the configuration bits from OTP to PLL registers. It does not include OTP programming/write time.

³ Actual PLL lock time depends on the loop configuration.

PCI Express Jitter Specifications

$V_{DDDIFF} = 1.8V \pm 5\%$ $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$

Table 11. PCI Express Jitter Specifications

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Industry Specification	Unit	Notes
t_J (PCIe Gen1)	Phase Jitter Peak-to-Peak	$f = 100\text{MHz}/125\text{MHz}$, 25MHz crystal input. Evaluation band: 0Hz – Nyquist (clock frequency/2).	-	27	-	86	ps	1,4
$t_{REFCLK_HF_RMS}$ (PCIe Gen2)	Phase Jitter RMS	$f = 100\text{MHz}/125\text{MHz}$, 25MHz crystal input. High band: 1.5MHz – Nyquist (clock frequency/2).	-	1.9	-	3.10	ps	2,4
$t_{REFCLK_LF_RMS}$ (PCIe Gen2)	Phase Jitter RMS	$f = 100\text{MHz}/125\text{MHz}$, 25MHz crystal input. Low band: 10kHz – 1.5MHz.	-	0.9	-	3.0	ps	2,4
t_{REFCLK_RMS} (PCIe Gen3)	Phase Jitter RMS	$f = 100\text{MHz}/125\text{MHz}$, 25MHz crystal input. Evaluation band: 0Hz – Nyquist (clock frequency/2).	-	0.5	-	1.0	ps	3,4

Note: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

¹ Peak-to-peak jitter after applying system transfer function for the common clock architecture. Maximum limit for PCI Express Gen1.

² RMS jitter after applying the two evaluation bands to the two transfer functions defined in the common clock architecture and reporting the worst case results for each evaluation band. Maximum limit for PCI Express Gen2 is 3.1ps RMS for $t_{REFCLK_HF_RMS}$ (high band) and 3.0ps RMS for $t_{REFCLK_LF_RMS}$ (low band).

³ RMS jitter after applying system transfer function for the common clock architecture. This specification is based on the PCI_Express_Base_r3.0 10 Nov. 2010 specification, and is subject to change pending the final release version of the specification.

⁴ This parameter is guaranteed by characterization. Not tested in production.

I²C Bus Characteristics

Table 12. I²C Bus DC Characteristics

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V_{IH}	Input High Level		$0.7 \times V_{DD18}$	-	-	V
V_{IL}	Input Low Level		-	-	$0.3 \times V_{DD18}$	V
V_{HYS}	Hysteresis of Inputs		$0.05 \times V_{DD18}$	-	-	V
I_{IN}	Input Leakage Current		-	-	± 1	μA
V_{OL}	Output Low Voltage	$I_{OL} = 3\text{mA}$.	-	-	0.4	V

Table 13. I²C Bus AC Characteristics

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
F_{SCLK}	Serial Clock Frequency (SCL)		-	100	400	kHz
t_{BUF}	Bus Free Time between STOP and START		1.3	-	-	μs
$t_{SU:START}$	Setup Time, START		0.6	-	-	μs
$t_{HD:START}$	Hold Time, START		0.6	-	-	μs
$t_{SU:DATA}$	Setup Time, data input (SDA)		100	-	-	ns
$t_{HD:DATA}$	Hold Time, data input (SDA) ¹		0	-	-	μs
t_{OVD}	Output Data Valid from Clock		-	-	0.9	μs
C_B	Capacitive Load for Each Bus Line		-	-	400	pF
t_R	Rise Time, data and clock (SDA, SCL)		$20 + 0.1 \times C_B$	-	300	ns
t_F	Fall Time, data and clock (SDA, SCL)		$20 + 0.1 \times C_B$	-	300	ns
t_{HIGH}	High Time, clock (SCL)		0.6	-	-	μs
t_{LOW}	Low Time, clock (SCL)		1.3	-	-	μs
$t_{SU:STOP}$	Setup Time, STOP		0.6	-	-	μs

¹ A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the $V_{IH(MIN)}$ of the SCL signal) to bridge the undefined region of the falling edge of SCL.

Glossary of Features

Table 14. Glossary of Features

Term	Function Description	Apply to
DFC	Dynamic Frequency Control; from selected PLL to support four VCO frequencies; means two different output frequencies by assigned H/W pin state changes (H-L or L-H) needs to have frequency change Glitch-Free function in order to not crash application system.	PLL2
ORT	Overshot Reduction; when the DFC dynamic frequency change is functional, the VCO changes frequencies smoothly to target frequency without overshoot or undershoot.	PLL2
OE	Output enable function; each output can be controlled by assigned OE pin and the dedicated OE pin can be OTP programmable as global Power Down function (PD#) or Output Enable (OE) or Proactive Power Saving function (PPS) or RESET pin function.	OE1
SS	Spread spectrum clock.	PLL1/PLL2
Slew Rate	LVCMOS outputs with slew rate control – slow and fast.	LVCMOS
PPS	Proactive Power Saving; utilize OE pin as monitor pin for end device X2 clock status. See <i>PPS Function</i> description for details.	SE1

Device Features and Functions

Performance Power Balancing

VersaClock 3S features Performance Power Balancing with three individual programmable PLL designs and provides a balance between performance and power consumption.

The device can operate within single-digit mA low-power operation or support high-performance requirements such as PCIe Gen 3 with additional power.

In order to satisfy system trade-off, outputs have the option to route from different PLL/input sources.

Table 15. Power Saving Modes Summary

Power Mode	External Condition	Internal Operating Condition	Core Current Consumption
Power-down Mode	V_{DD} all connected.	All off, I ² C still active.	2mA
Ultra-power-down	V_{DD} all connected.	All off.	50 μ A
Suspend Mode	Only V_{BAT} connected.	All off, only DCO on with RTC (32.768kHz) output only.	2 μ A

Table 16. Output Source

Source	Outputs		
	SE1	DIFF1	DIFF2
Xtal REF	Xtal REF	Xtal REF	Xtal REF
32.768kHz	32.768kHz		
PLL1		PLL1	PLL1
PLL2	PLL2	PLL2	PLL2
PLL3	PLL3	PLL3	PLL3

Table 17. SE1 Output

SE1	B36<4>	B36<3>	B31<1>	B29<3>
From 32kHz	0	1	0	0
From PLL3 + Divider 5	1	0	0	0
From PLL2 + Divider 4	1	1	1	0
From REF + Divider 4	1	1	0	1

Table 18. DIFF1 Output

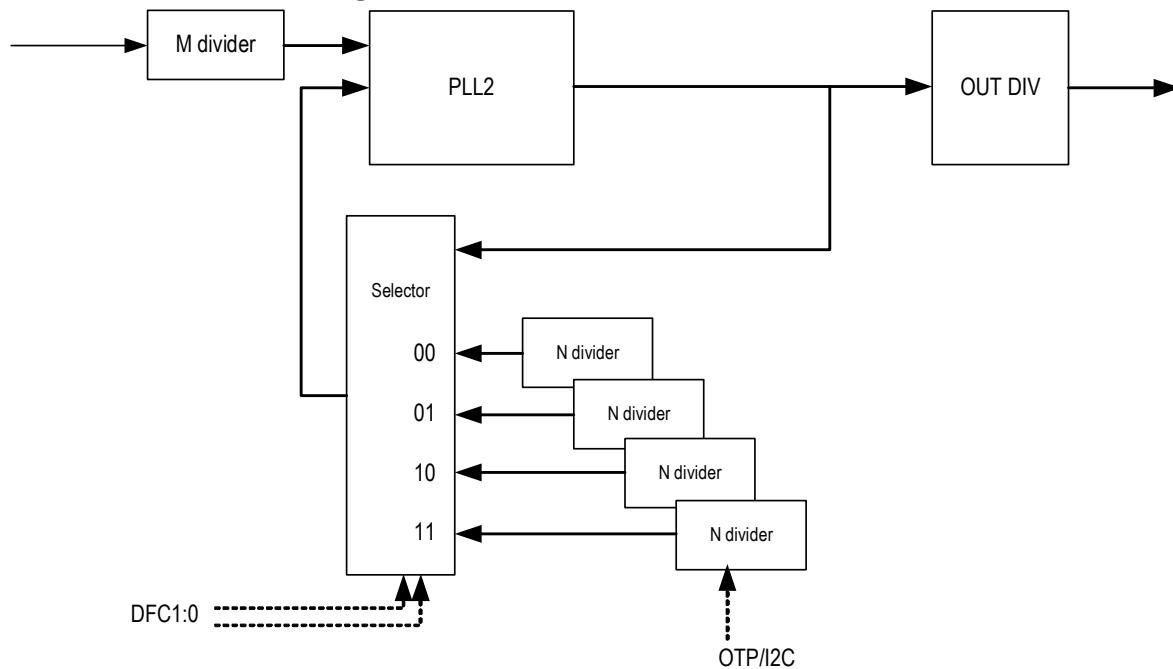

DIFF1	B34<7>	B0<3>
From PLL1 + Divider 1	0	0
From PLL2 + Divider 3	1	0
From REF + Divider 1	0	1

Table 19. DIFF2 Output

DIFF2	B35<7>	B0<3>
From PLL1 + Divider 1	0	0
From PLL2 + Divider 3	1	0
From REF + Divider 1	0	1

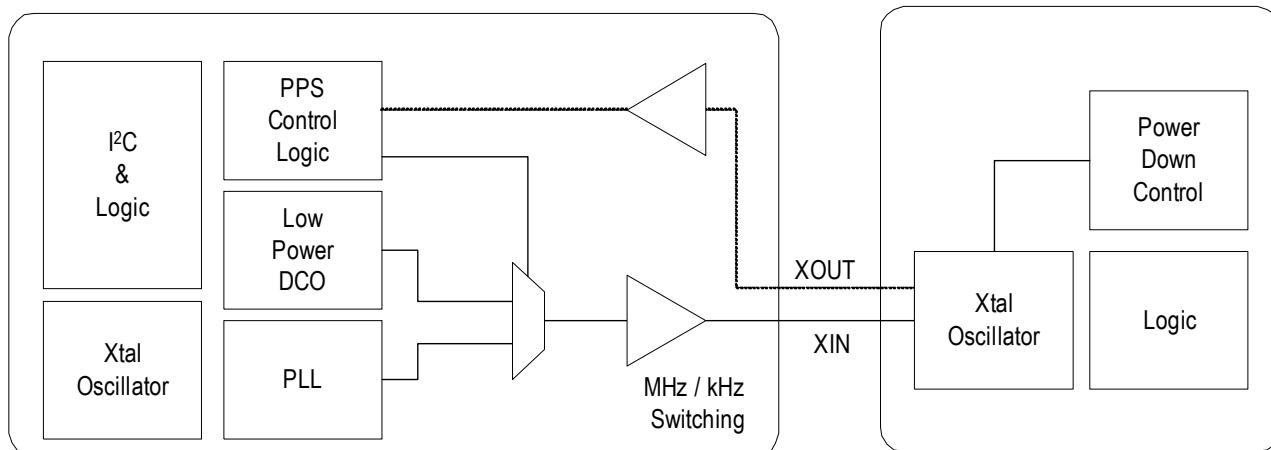
DFC – Dynamic Frequency Control

- OTP programmable—4 different feedback fractional dividers (4 VCO frequencies) that apply to PLL2.
- ORT (over shoot reduction) function will be applied automatically during the VCO frequency change.
- Smooth frequency incremental or decremental from current VCO to targeted VCO base on DFC hardware pins selection.

Figure 2. DFC Function Block Diagram**Table 20. DFC Function Priority**

DFC_EN bit (W32[4])	OE1_fun_sel (W30[6:5])	*OE3_fun_sel (W30[3:2])	SCL_DFC1	DFC[1:0]	Notes
0	x	x	x	0	DFC disable
1	11 (DFC)	00–10 (DFC)	x	[0,OE1]	One pin DFC–OE1
1	11 (DFC)	11 (DFC)	x	[OE3,OE1]	Two pin DFC–OE3, OE1
1	00–10	11	x	Not permitted	Not supported
1	00–10	00–10	0	[SCL_DFC1, SDA_DFC0]	I ² C pin as DFC control pins mode
1	00–10	00–10	1	W30[1:0]	I ² C control DFC mode

* The 5L35021 has only OE1 pin for DFC function hardware pin selection. For OE1/OE3 two pins DFC control, use 5L35023 24-QFN package device.


DFC Function Programming

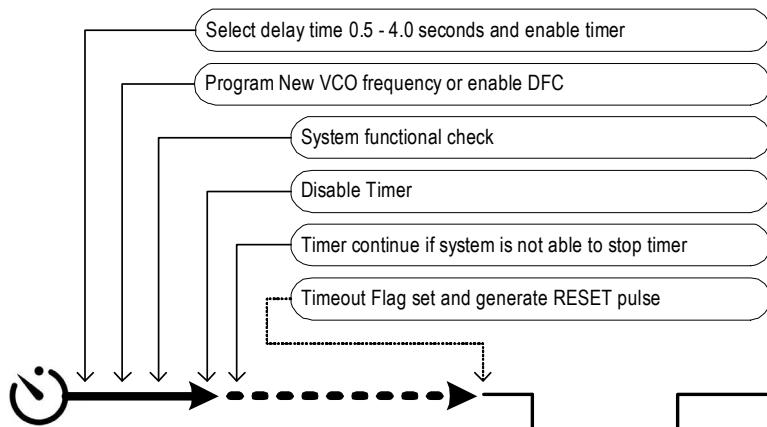
- Register B63b3:2 selects DFC00–DFC11 configuration.
- Byte16–19 are the registers for PLL2 VCO setting, based on B63b3:2 configuration selection, the data write to B16–19 will be stored in selected configuration OTP memory.
- Refer to *DFC Function Priority* table. Select proper control pin(s) to activate DFC function.
- Note the DFC function can also be controlled by I²C access.

PPS – Proactive Power Saving Function

PPS (Proactive Power Saving) is an IDT patented unique design for the clock generator that proactively detects end device power down state and then switches output clocks between normal operation clock frequency and low power mode 32kHz clock that only consumes <2 μ A current. The system could save power when the device goes into power down or sleep mode. The PPS function diagram is shown as below.

Figure 3. PPS Function Block Diagram

Figure 4. PPS Assertion/Deassertion Timing Chart


PPS Function Programming

1. Refer to the *OE Pin Functions* table to have the proper PPS function selected for OE pin(s). Note that the register default is set to Output enable (OE) function for OE pins.
2. Have proper setup to Byte 30 and 32 for OE1–OE3 function selection; for PPS function, select 10 to control register bits.

Timer Function Description

1. The timer function can be used together with the DFC -Dynamic Frequency Control function or with another PLL frequency programming.
2. The timer provides 4 different delay times as 0.5 sec – 1 sec – 2 sec – 4 sec by two bits selection.
3. The timeout flag will be set when timer times out and the flag can be cleared by writing 0 to timer enable bit.
4. When timer times out, RESET pin can generate a 250ms pulse signal if RESET control bit is enabled.
5. When timer times out, DFC stage will switch back to DFC00 setting if DFC function is enabled and DFC function will be disabled after RESET.

Figure 5. Timer Functions

OE Pin Function

The OE pin in the 5L35021 have multiple functions. The OE pins can be configured as output enable control (OE) or chip power-down control (PD#) or Proactive Power Saving function (PPS). Furthermore, the OE pins can be configured as a single Dynamic Frequency Control (DFC), or the RESET out function that is associated with the Timer function.

Table 21. OE Pin Functions

Function	Pin
	OE1
SE Output Enable/Disable	SE1 (default)
DIFF Output Enable/Disable	—
Global Power Down (PD#)	PD#
Proactive Power Saving Input	SE1_PPS
DOC Control (Only PLL2)	DFC0
RESET OUT	—

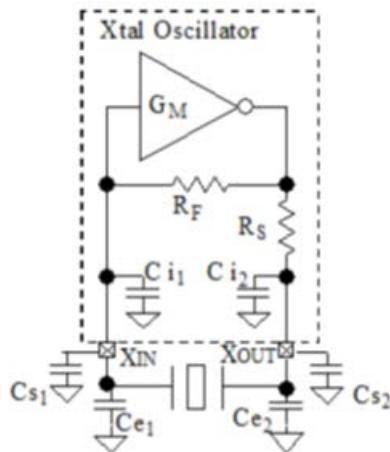
Table 22. OE Pin Function Summary

OE Pin	Description
OE1: SE1	OE1 only control SE1 enable/disable; other outputs are not affected by this pin status.
OE1: PD#	OE1 control chip global power down (PD#) except 32.768kHz on OE1 (when 32kHz is enabled). When the PD# pin is active low, the chip goes to lowest power down mode and all outputs are disabled except 32kHz output and only keep 32k/Xtal calibration.
OE1: SE1_PPS	Configure OE1 as SE1_PPS (Proactive Power Saving) function pin.
OE1: DFC0	Configure OE1 as DFC0 control pin 0.

Table 23. PD# Priority

PD#	I2C_OE_EN_bit	SE1/2/3, DIFF1/DIFF2	Output	Notes
0	x	x	Stop	32kHz free run
1	0	x	Stop	
1	1	0	Stop	
1	1	1	Running	

Crystal Input (X1/X2)


The crystal oscillators should be fundamental mode quartz crystals; overtone crystals are not suitable. Crystal frequency should be specified for parallel resonance with 40MHz maximum.

A crystal manufacturer will calibrate its crystals to the nominal frequency with a certain load capacitance value. When the oscillator load capacitance matches the crystal load capacitance, the oscillation frequency will be accurate as 0 PPM. When the oscillator load capacitance is lower than the crystal load capacitance, the oscillation frequency will be higher than nominal. In order to get an accurate oscillation frequency, the matching the oscillator load capacitance with the crystal load capacitance is required.

To set the oscillator load capacitance, 5L35021 has built-in two programmable tuning capacitors inside the chip, one at XIN and one at XOUT. They can be adjusted independently. The value of each capacitor is composed of a fixed capacitance amount plus a variable capacitance amount set with the XTAL[7:0] register. Adjustment of the crystal tuning capacitors allows for maximum flexibility to accommodate crystals from various manufacturers. The range of tuning capacitor values available are in accordance with the following table.

Table 24. Programmable Tuning Caps

Parameter	Bits	Range	Minimum (pF)	Maximum (pF)
Xtal [7:0]	4 × 2	+1 / +2 / +4 / +8pF	0	15pF

$$XTAL[3:0] = XTAL[7:4] = 2 \times XTAL C_L - 8pF \quad (\text{Eq.1})$$

Equation 1 and the table of XTAL[7:0] tuning capacitor characteristics show that the parallel tuning capacitance can be set between 0pF to 15pF with a resolution of 1pF.

For a crystal $C_L = 8pF$, where C_L is the parallel capacity specified by the crystal vendor that sets the crystal frequency to the nominal value. Under the assumptions that the stray capacity between the crystal leads on the circuit board is zero and that no external tuning caps are placed on the crystal leads, then the internal parallel tuning capacity is equal to the load capacity presented to the crystal by the device.

The internal load capacitors are true parallel-plate capacitors for ultra-linear performance. Parallel-plate capacitors were chosen to reduce the frequency shift that occurs when non-linear load capacitance interacts with load, bias, supply, and temperature changes. External non-linear crystal load capacitors should not be used for applications that are sensitive to absolute frequency requirements.

The 5L35023 supports spread spectrum clocks from PLL1 and PLL2; the PLL1 built-in with analog spread spectrum and PLL2 has digital spread spectrum.

Spread Spectrum

The 5L35021 supports spread spectrum clocks from PLL1 and PLL2; the PLL1 built-in with analog spread spectrum and PLL2 has digital spread spectrum.

Table 25. Spread Spectrum Generation Specifications

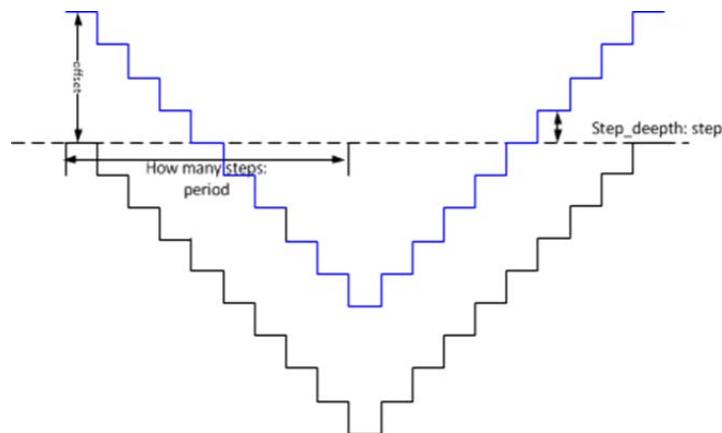

Symbol	Parameter	Description	Minimum	Typical	Maximum	Unit
f_{OUT}	Output Frequency	Output frequency range.	1	-	125	MHz
f_{MOD}	Mod Frequency	Modulation frequency.	30 to 63			kHz
f_{SPREAD}	Spread Value	Amount of spread value (programmable) – down spread.	-0.5% to -2%			% f_{OUT}
%tolerance	Spread% Value	Variation of spread range.	-	15	-	%

Figure 6. Digital Spread Spectrum

$$N = \frac{F_{VCO}}{2 * F_{OUT}}$$

$$\text{period} = \frac{F_{PFD}}{2 * F_{SS}}$$

$$\text{step} = \frac{N * \text{SSamount}}{\text{period}}$$

Down spread or Spread off

$$N = F_{VCO}/F_{PFD}$$

Center Spread

$$N = N_{SOFF} + N * \text{SSamount}/2$$

N: include integer and fraction

F_{VCO}: VCOs frequency

F_{PFD}: PLLs pfd frequency

F_{SS}: spread modulation rate

SSamount: spread percentage

The black line is for the down spread; N will decrease to make the center frequency is lower than spread off.

The blue line is for the center spread; there is an offset put on divider ratio to make the center frequency keep same as spread off.

Example: 0.5% down spread at 32kHz modulation rate.

Suspend Mode with RTC Clock Only

VersaClock 3S can operate on the following two modes:

- Full-power mode:
 - Full chip active with the most functionality and all V_{DD}s are connected to power supply.
- Low-power Suspend Mode:
 - Device power-up with below sequence:
 1. V_{BAT} and all other V_{DD}s are powered up. V_{BAT} ramp must be earlier or same time as other V_{DD}s.
 2. After full power up is completed, the device can go into Suspend Mode triggered by V_{BAT} is powered and rest of the V_{DD}s ramped down (ramp down time slower than 3ms).

In Suspend Mode, device will operate with a 2µA core power with only V_{BAT} powered up. Producing 32kHz outputs on SEx outputs (it can be multiple copies). Operating at this state helps system in power-down, or sleep mode without losing date-time information at a very low power budget. When system waking up, device will go back to full power mode automatically and produce outputs upon user configuration.

When there is core power present (V_{DD18} and V_{DDA}), the device will switch DCO supply to core power to save battery.

ORT-VCO Overshoot Reduction Technology

The 5L35021 supports the VCO overshoot reduction technology (ORT) to prevent an output clock frequency spike when the device is changing frequency on the fly or doing DFC (Dynamic Frequency Control) function. The VCO frequency changes are under control instead of free-run to targeted frequency.

PLL Features and Descriptions

Table 26. Output 1 Divider

Output Divider bits <1:0>	Output Divider bits <3:2>			
	00	01	10	11
00	1	2	4	8
01	4	8	16	32
10	5	10	20	40
11	6	12	24	48

Table 27. Output 2, 4, and 5 Divider

Output Divider bits <1:0>	Output Divider bits <3:2>			
	00	01	10	11
00	1	2	4	5
01	3	6	12	15
10	5	10	20	25
11	10	20	40	50

Table 28. Output 3 Divider

Output Divider bits <1:0>	Output Divider bits <3:2>			
	00	01	10	11
00	1	2	4	8
01	3	6	12	24
10	5	10	20	40
11	10	20	40	80

Applications

Input Clock Recommendations

CLKINB/X1 and CLKIN/X2

If used as crystal inputs, each set of pins must be connected to a crystal. If using these pins as X1/X2 see Xtal section, if using as CLKINB/CLKIN, see [Crystal Input \(X1/X2\)](#) and [Input-Driving the XIN/CLKIN or CLKIN](#) sections. If overdriving, set byte 0 bit 1 to enable.

Recommendations for Unused Input and Output Pins

LVC MOS Control Pins

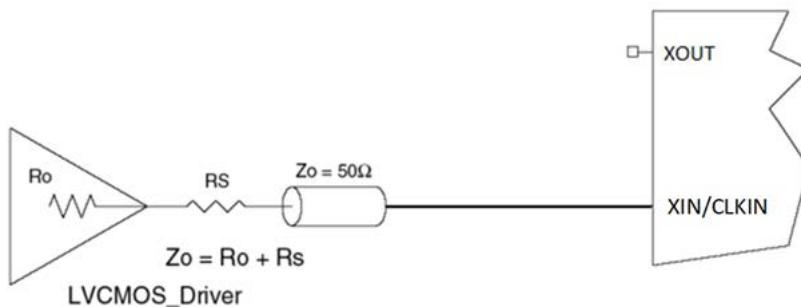
LVC MOS control pins have internal pull-downs outlined in [Table 29](#). Additional resistance is not required but may be added for additional protection. A $10\text{k}\Omega$ resistor can be used.

LVC MOS Outputs

Any LVC MOS output can be left floating if unused. There should be no trace attached. The output buffer should be disabled by setting $0x22[0]$ to 0.

Differential Outputs

All unused differential outputs can be left floating. Renesas recommends that no trace be attached and that the outputs be disabled through $0x1D[3]$ and $0x1D[4]$. Both sides of the differential output pair should be treated the same, either left floating or terminated.


Input-Driving the XIN/CLKIN or CLKIN

In some cases, it is encouraged to have CLKINB/X1 driven by a clock input for reasons like better SNR, multiple input select with device CLKIN, etc. The CLKINB/X1 pin requires an input amplitude outlined in the [Driving XIN/CLKIN with a CMOS Driver](#).

Driving XIN/CLKIN with a CMOS Driver

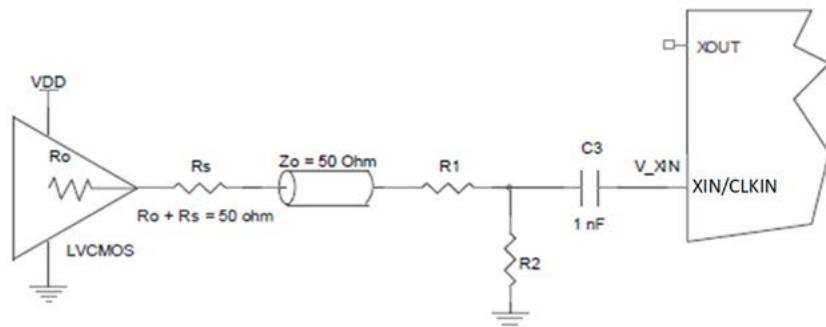
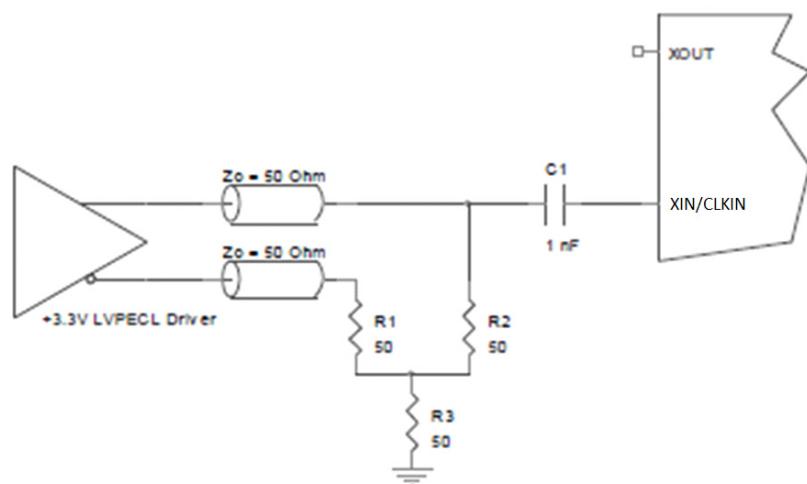

The CLKINB/X1 input can be overdriven by an LVC MOS driver or by one side of a differential driver through an AC coupling capacitor. The CLKIN/X2 pin must be left floating.

Figure 7. LVC MOS Driver to XTAL Input Interface

If using an input of 3.3V or 2.5V or 1.8V to drive the part, a voltage divider configuration like this is needed:

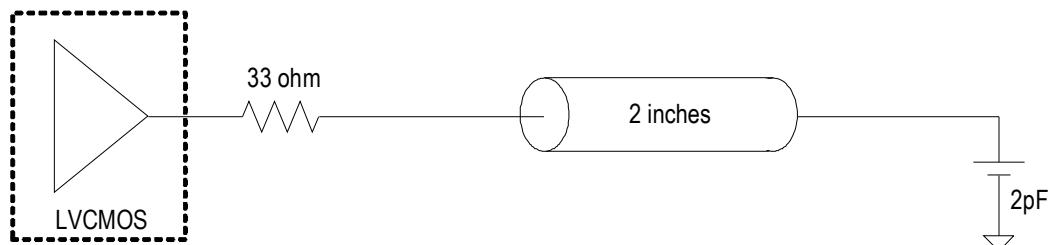
Figure 8. LVCMS Driver to XTAL Input Interface

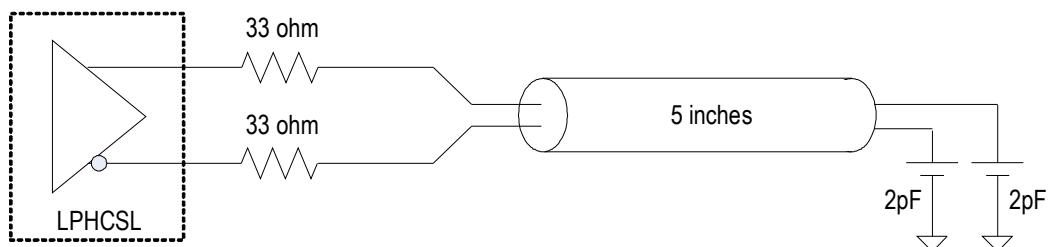

Table 29. Nominal Voltage Divider Values for Overdriving XIN with Single-ended Driver

LVCMS Driver V _{DD}	R _o +R _s	R1	R2	V _{XIN}	R _o +R ₁ +R ₂
3.3	50.0	130	75	0.97	255
2.5	50.0	100	100	1.00	250
1.8	50.0	62	130	0.97	242

Driving XIN with an LVPECL Driver

Figure x. shows an example of the interface diagram for a +3.3V LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the CLKINB/X1 input. It is recommended that all components in the schematics be placed in the layout; though some components might not be used, they can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a quartz crystal as the input. If the driver is 2.5V LVPECL, the only change necessary is to use the appropriate value of R3.


Figure 9. Overdriving XIN with an LVPECL Driver


CLKIN is able to accept both LVDS and LVPECL input signals as it is internally AC coupled. However, occasionally, it is desired to have CLKIN to take CMOS levels. This is achieved by using the same configuration as shown in [Figure 8](#), without the C3 capacitor.

Output Clock Test Conditions

Figure 10. LVC MOS Output Test Conditions

Figure 11. LP-HCSL Output Test Conditions

General I²C Mode Operations

The device acts as a slave device on the I²C bus using one of the four I²C addresses (0xD0, 0xD2, 0xD4, or 0xD6) to allow multiple devices to be used in the system. The interface accepts byte-oriented block write and block read operations. Two address bytes specify the register address of the byte position of the first register to write or read. Data bytes (registers) are accessed in sequential order from the lowest to the highest byte (most significant bit first). Read and write block transfers can be stopped after any complete byte transfer. During a write operation, data will not be moved into the registers until the STOP bit is received, at which point, all data received in the block write will be written simultaneously.

For full electrical I²C compliance, it is recommended to use external pull-up resistors for SDATA and SCLK. The internal pull-down resistors have a size of 100kΩ typical.

Figure 12. I²C Slave Read and Write Cycle Sequencing

Current Read

Sequential Read

Sequential Write

from master to slave
 from slave to master

S = start
 Sr = repeated start
 A = acknowledge
 Abar = none acknowledge
 P = stop

Byte 0: General Control

Byte 00h	Name	Control Function	Type	0	1	PWD
Bit 7	OTP_Burned	OTP memory programming indication	R/W	OTP memory non-programmed	OTP memory programmed	0
Bit 6	I ² C_addr[1]	I ² C address select bit 1	R/W	00: D0 / 10: D4	01: D2	0
Bit 5	I ² C_addr[0]	I ² C address select bit 0	R/W		11: D6	0
Bit 4	PLL1_SSEN	PLL1 Spread Spectrum enable	R/W	disable	enable	0
Bit 3	DIV1_src_sel	Divider 1 source clock select	R/W	PLL1	Xtal	0
Bit 2	PLL3_refin_sel	PLL3 source selection	R/W	Xtal	Seed (DIV2)	0
Bit 1	EN_CLKIN	Enable CLKIN	R/W	disable	enable	0
Bit 0	OTP_protect	OTP memory protection	R/W	read/write	write locked	0

Byte 1: Dash Code ID (optional)

Byte 01h	Name	Control Function	Type	0	1	PWD
Bit 7	DashCode ID[7]	Dash code ID	R/W	-	-	0
Bit 6	DashCode ID[6]	Dash code ID	R/W	-	-	0
Bit 5	DashCode ID[5]	Dash code ID	R/W	-	-	0
Bit 4	DashCode ID[4]	Dash code ID	R/W	-	-	0
Bit 3	DashCode ID[3]	Dash code ID	R/W	-	-	0
Bit 2	DashCode ID[2]	Dash code ID	R/W	-	-	0
Bit 1	DashCode ID[1]	Dash code ID	R/W	-	-	0
Bit 0	DashCode ID[0]	Dash code ID	R/W	-	-	0

Byte 2: Crystal Cap Setting

Byte 02h	Name	Control Function	Type	0	1	PWD
Bit 7	Xtal_Cap[7]	Xtal cap load trimming bits	R/W	x1 x2 x4 x8 total 15pf	0	0
Bit 6	Xtal_Cap[6]	Xtal cap load trimming bits	R/W		0	0
Bit 5	Xtal_Cap[5]	Xtal cap load trimming bits	R/W		0	0
Bit 4	Xtal_Cap[4]	Xtal cap load trimming bits	R/W		1	1
Bit 3	Xtal_Cap[3]	Xtal cap load trimming bits	R/W		0	0
Bit 2	Xtal_Cap[2]	Xtal cap load trimming bits	R/W		0	0
Bit 1	Xtal_Cap[1]	Xtal cap load trimming bits	R/W		0	0
Bit 0	Xtal_Cap[0]	Xtal cap load trimming bits	R/W		1	1

Byte 3: PLL3 M Divider

Byte 03h	Name	Control Function	Type	0	1	PWD
Bit 7	PLL3_MDIV1	PLL3 source clock divider	R/W	disable M DIV1	bypadd divider (/1)	0
Bit 6	PLL3_MDIV2	PLL3 source clock divider	R/W	disable M DIV2	bypadd divider (/2)	0
Bit 5	PLL3_M_DIV[5]	PLL3 reference integer divider	R/W	3-64	default 25	0
Bit 4	PLL3_M_DIV[4]	PLL3 reference integer divider	R/W	-	-	1
Bit 3	PLL3_M_DIV[3]	PLL3 reference integer divider	R/W	-	-	1
Bit 2	PLL3_M_DIV[2]	PLL3 reference integer divider	R/W	-	-	0
Bit 1	PLL3_M_DIV[1]	PLL3 reference integer divider	R/W	-	-	0
Bit 0	PLL3_M_DIV[0]	PLL3 reference integer divider	R/W	-	-	1

Byte 4: PLL3 N Divider

Byte 04h	Name	Control Function	Type	0	1	PWD
Bit 7	PLL3_N_DIV[7]	PLL3 VCO feedback integer divider bit7	R/W	12-2048, default VCO setting is 480MHz	1	
Bit 6	PLL3_N_DIV[6]	PLL3 VCO feedback integer divider bit6	R/W		1	
Bit 5	PLL3_N_DIV[5]	PLL3 VCO feedback integer divider bit5	R/W		1	
Bit 4	PLL3_N_DIV[4]	PLL3 VCO feedback integer divider bit4	R/W		0	
Bit 3	PLL3_N_DIV[3]	PLL3 VCO feedback integer divider bit3	R/W		0	
Bit 2	PLL3_N_DIV[2]	PLL3 VCO feedback integer divider bit2	R/W		0	
Bit 1	PLL3_N_DIV[1]	PLL3 VCO feedback integer divider bit1	R/W		0	
Bit 0	PLL3_N_DIV[0]	PLL3 VCO feedback integer divider bit0	R/W		0	

Byte 5: PLL3 Loop Filter Setting and N Divider 10:8

Byte 05h	Name	Control Function	Type	0	1	PWD
Bit 7	PLL3_R100K	PLL3 Loop filter resister 100kohm	R/W	bypass	plus 100kohm	0
Bit 6	PLL3_R50K	PLL3 Loop filter resister 50kohm	R/W	bypass	plus 50kohm	0
Bit 5	PLL3_R25K	PLL3 Loop filter resister 25kohm	R/W	bypass	plus 25kohm	0
Bit 4	PLL3_R12.5K	PLL3 Loop filter resister 12.5kohm	R/W	bypass	plus 12.5kohm	1
Bit 3	PLL3_R6K	PLL3 Loop filter resister 6kohm	R/W	bypass	only 6kohm applied	0
Bit 2	PLL3_N_DIV[10]	PLL3 VCO feedback integer divider bit10	R/W	12-2048, default VCO setting is 480MHz	0	
Bit 1	PLL3_N_DIV[9]	PLL3 VCO feedback integer divider bit9	R/W		0	
Bit 0	PLL3_N_DIV[8]	PLL3 VCO feedback integer divider bit8	R/W		1	

Byte 6: PLL3 Charge Pump Control

Byte 06h	Name	Control Function	Type	0	1	PWD
Bit 7	OUTDIV 3 Source	Output divider 3 source clock selection	R/W	PLL2	PLL3	0
Bit 6	PLL3_CP_8X	PLL3 charge pump control	R/W	-	x8	1
Bit 5	PLL3_CP_4X	PLL3 charge pump control	R/W	-	x4	1
Bit 4	PLL3_CP_2X	PLL3 charge pump control	R/W	-	x2	0
Bit 3	PLL3_CP_1X	PLL3 charge pump control	R/W	-	x1	1
Bit 2	PLL3_CP_24	PLL3 charge pump control	R/W	-	/24	1
Bit 1	PLL3_CP_3	PLL3 charge pump control	R/W	-	/3	0
Bit 0	PLL3_SIREF	PLL3 SiRef current selection	R/W	10µA	20µA	0

Formula: $(i_{Ref} (10\mu A) \times (1 + SIREF) \times (1 \times 1X + 2 \times 2X + 4 \times 4X + 8 \times 8X + 16 \times 16X)) / ((24 \times /24) + (3 \times /3))$

Byte 7: PLL1 Control and OUTDIV5 Divider

Byte 07h	Name	Control Function	Type	0	1	PWD
Bit 7	PLL1_MDIV_Doubler	PLL1 reference clock doubler	R/W	disable	enable	0
Bit 6	PLL1_SIREF	PLL1 SiRef current selection	R/W	10.8µA	21.6µA	0
Bit 5	PLL1_EN_CH2	PLL1 output Channel 2 control	R/W	disable	enable	1
Bit 4	PLL1_EN_3rdpole	PLL1 3rd Pole control	R/W	disable	enable	0
Bit 3	OUTDIV5[3]	Output divider5 control bit 3	R/W	-	-	0
Bit 2	OUTDIV5[2]	Output divider5 control bit 2	R/W	-	-	0
Bit 1	OUTDIV5[1]	Output divider5 control bit 1	R/W	-	-	1
Bit 0	OUTDIV5[0]	Output divider5 control bit 0	R/W	-	-	1

Byte 8: PLL1 M Divider

Byte 08h	Name	Control Function	Type	0	1	PWD
Bit 7	PLL1_MDIV1	PLL3 VCO reference clock divider 1	R/W	disable M DIV1	bypass divider (/1)	0
Bit 6	PLL1_MDIV2	PLL3 VCO reference clock divider 2	R/W	disable M DIV2	bypass divider (/2)	0
Bit 5	PLL1_M_DIV[5]	PLL1 reference clock divider control bit 5	R/W	3–64, default is 25	0	
Bit 4	PLL1_M_DIV[4]	PLL1 reference clock divider control bit 4	R/W		1	
Bit 3	PLL1_M_DIV[3]	PLL1 reference clock divider control bit 3	R/W		1	
Bit 2	PLL1_M_DIV[2]	PLL1 reference clock divider control bit 2	R/W		0	
Bit 1	PLL1_M_DIV[1]	PLL1 reference clock divider control bit 1	R/W		0	
Bit 0	PLL1_M_DIV[0]	PLL1 reference clock divider control bit 0	R/W		1	

Byte 9: PLL1 VCO N Divider

Byte 09h	Name	Control Function	Type	0	1	PWD
Bit 7	PLL1_N_DIV[7]	PLL1 VCO feedback divider control bit 7	R/W	12–2048, default is 600	0	0
Bit 6	PLL1_N_DIV[6]	PLL1 VCO feedback divider control bit 6	R/W		1	1
Bit 5	PLL1_N_DIV[5]	PLL1 VCO feedback divider control bit 5	R/W		0	0
Bit 4	PLL1_N_DIV[4]	PLL1 VCO feedback divider control bit 4	R/W		1	1
Bit 3	PLL1_N_DIV[3]	PLL1 VCO feedback divider control bit 3	R/W		1	1
Bit 2	PLL1_N_DIV[2]	PLL1 VCO feedback divider control bit 2	R/W		0	0
Bit 1	PLL1_N_DIV[1]	PLL1 VCO feedback divider control bit 1	R/W		0	0
Bit 0	PLL1_N_DIV[0]	PLL1 VCO feedback divider control bit 0	R/W		0	0

Byte 10: PLL Loop Filter and N Divider

Byte 0Ah	Name	Control Function	Type	0	1	PWD
Bit 7	PLL1_R100K	PLL1 Loop filter resister 100kohm	R/W	bypass	plus 100kohm	1
Bit 6	PLL1_R50K	PLL1 Loop filter resister 50kohm	R/W	bypass	plus 50kohm	0
Bit 5	PLL1_R25K	PLL1 Loop filter resister 25kohm	R/W	bypass	plus 25kohm	1
Bit 4	PLL1_R12.5K	PLL1 Loop filter resister 12.5kohm	R/W	bypass	plus 12.5kohm	1
Bit 3	PLL1_R1.0K	PLL1 Loop filter resister 1kohm	R/W	bypass	only 1.0kohm applied	0
Bit 2	PLL1_N_DIV[10]	PLL1 VCO feedback integer divider bit10	R/W	12–2048, default is 600	0	0
Bit 1	PLL1_N_DIV[9]	PLL1 VCO feedback integer divider bit9	R/W		1	1
Bit 0	PLL1_N_DIV[8]	PLL1 VCO feedback integer divider bit8	R/W		0	0

Byte 11: PLL1 Charge Pump

Byte 0Bh	Name	Control Function	Type	0	1	PWD
Bit 7	PLL1_CP_32X	PLL1 charge pump control	R/W	-	x32	0
Bit 6	PLL1_CP_16X	PLL1 charge pump control	R/W	-	x16	0
Bit 5	PLL1_CP_8X	PLL1 charge pump control	R/W	-	x8	0
Bit 4	PLL1_CP_4X	PLL1 charge pump control	R/W	-	x4	0
Bit 3	PLL1_CP_2X	PLL1 charge pump control	R/W	-	x2	0
Bit 2	PLL1_CP_1X	PLL1 charge pump control	R/W	-	x1	1
Bit 1	PLL1_CP_24	PLL1 charge pump control	R/W	-	/24	1
Bit 0	PLL1_CP_3	PLL1 charge pump control	R/W	-	/3	0

Byte 12: PLL1 Spread Spectrum Control

Byte 0Ch	Name	Control Function	Type	0	1	PWD
Bit 7	PLL1_SS_REFDIV23	PLL1 Spread Spectrum control - Ref divider 23	R/W	-	-	0
Bit 6	PLL1_SS_REFDIV[6]	PLL1 Spread Spectrum control - Ref divider 6	R/W	-	-	0
Bit 5	PLL1_SS_REFDIV[5]	PLL1 Spread Spectrum control - Ref divider 5	R/W	-	-	0
Bit 4	PLL1_SS_REFDIV[4]	PLL1 Spread Spectrum control - Ref divider 4	R/W	-	-	0
Bit 3	PLL1_SS_REFDIV[3]	PLL1 Spread Spectrum control - Ref divider 3	R/W	-	-	0
Bit 2	PLL1_SS_REFDIV[2]	PLL1 Spread Spectrum control - Ref divider 2	R/W	-	-	0
Bit 1	PLL1_SS_REFDIV[1]	PLL1 Spread Spectrum control - Ref divider 1	R/W	-	-	0
Bit 0	PLL1_SS_REFDIV[0]	PLL1 Spread Spectrum control - Ref divider 0	R/W	-	-	0

Byte 13: PLL1 Spread Spectrum Control

Byte 0Dh	Name	Control Function	Type	0	1	PWD
Bit 7	PLL1_SS_FBDIV[15]	PLL1 Spread Spectrum - feedback divider 15	R/W	-	-	0
Bit 6	PLL1_SS_FBDIV[14]	PLL1 Spread Spectrum - feedback divider 14	R/W	-	-	0
Bit 5	PLL1_SS_FBDIV[13]	PLL1 Spread Spectrum - feedback divider 13	R/W	-	-	0
Bit 4	PLL1_SS_FBDIV[12]	PLL1 Spread Spectrum - feedback divider 12	R/W	-	-	0
Bit 3	PLL1_SS_FBDIV[11]	PLL1 Spread Spectrum - feedback divider 11	R/W	-	-	0
Bit 2	PLL1_SS_FBDIV[10]	PLL1 Spread Spectrum - feedback divider 10	R/W	-	-	0
Bit 1	PLL1_SS_FBDIV[9]	PLL1 Spread Spectrum - feedback divider 9	R/W	-	-	0
Bit 0	PLL1_SS_FBDIV[8]	PLL1 Spread Spectrum - feedback divider 8	R/W	-	-	0

Byte 14: PLL1 Spread Spectrum Control

Byte 0Eh	Name	Control Function	Type	0	1	PWD
Bit 7	PLL1_SS_FBDIV[7]	PLL1 Spread Spectrum - feedback divider 7	R/W	-	-	0
Bit 6	PLL1_SS_FBDIV[6]	PLL1 Spread Spectrum - feedback divider 6	R/W	-	-	0
Bit 5	PLL1_SS_FBDIV[5]	PLL1 Spread Spectrum - feedback divider 5	R/W	-	-	0
Bit 4	PLL1_SS_FBDIV[4]	PLL1 Spread Spectrum - feedback divider 4	R/W	-	-	0
Bit 3	PLL1_SS_FBDIV[3]	PLL1 Spread Spectrum - feedback divider 3	R/W	-	-	0
Bit 2	PLL1_SS_FBDIV[2]	PLL1 Spread Spectrum - feedback divider 2	R/W	-	-	0
Bit 1	PLL1_SS_FBDIV[1]	PLL1 Spread Spectrum - feedback divider 1	R/W	-	-	0
Bit 0	PLL1_SS_FBDIV[0]	PLL1 Spread Spectrum - feedback divider 0	R/W	-	-	0

Byte 15: Output Divider1 Control

Byte 0Fh	Name	Control Function	Type	0	1	PWD
Bit 7	OUTDIV1[3]	Output divider1 control bit 3	R/W	-	-	0
Bit 6	OUTDIV1[2]	Output divider1 control bit 2	R/W	-	-	0
Bit 5	OUTDIV1[1]	Output divider1 control bit 1	R/W	-	-	1
Bit 4	OUTDIV1[0]	Output divider1 control bit 0	R/W	-	-	1
Bit 3	OUTDIV2[3]	Output divider2 control bit 3	R/W	-	-	0
Bit 2	OUTDIV2[2]	Output divider2 control bit 2	R/W	-	-	0
Bit 1	OUTDIV2[1]	Output divider2 control bit 1	R/W	-	-	1
Bit 0	OUTDIV2[0]	Output divider2 control bit 0	R/W	-	-	1

Byte 16: PLL2 Integer Feedback Divide

Byte 10h	Name	Control Function	Type	0	1	PWD
Bit 7		Reserved				0
Bit 6		Reserved				0
Bit 5		Reserved				0
Bit 4		Reserved				0
Bit 3		Reserved				0
Bit 2	PLL2_FB_INT[10]	PLL2 feedback integer divider 10	R/W	-	-	0
Bit 1	PLL2_FB_INT[9]	PLL2 feedback integer divider 9	R/W	-	-	0
Bit 0	PLL2_FB_INT[8]	PLL2 feedback integer divider 8	R/W	-	-	0

Byte 17: PLL2 Integer Feedback Divider

Byte 11h	Name	Control Function	Type	0	1	PWD
Bit 7	PLL2_FB_INT_DIV[7]	PLL2 feedback integer divider 7	R/W	-	-	0
Bit 6	PLL2_FB_INT_DIV[6]	PLL2 feedback integer divider 6	R/W	-	-	0
Bit 5	PLL2_FB_INT_DIV[5]	PLL2 feedback integer divider 5	R/W	-	-	1
Bit 4	PLL2_FB_INT_DIV[4]	PLL2 feedback integer divider 4	R/W	-	-	1
Bit 3	PLL2_FB_INT_DIV[3]	PLL2 feedback integer divider 3	R/W	-	-	1
Bit 2	PLL2_FB_INT_DIV[2]	PLL2 feedback integer divider 2	R/W	-	-	1
Bit 1	PLL2_FB_INT_DIV[1]	PLL2 feedback integer divider 1	R/W	-	-	0
Bit 0	PLL2_FB_INT_DIV[0]	PLL2 feedback integer divider 0	R/W	-	-	0

Byte 18: PLL2 Fractional Feedback Divider

Byte 12h	Name	Control Function	Type	0	1	PWD
Bit 7	PLL2_FB_FRC_DIV[15]	PLL2 feedback fractional divider 15	R/W	-	-	0
Bit 6	PLL2_FB_FRC_DIV[14]	PLL2 feedback fractional divider 14	R/W	-	-	0
Bit 5	PLL2_FB_FRC_DIV[13]	PLL2 feedback fractional divider 13	R/W	-	-	0
Bit 4	PLL2_FB_FRC_DIV[12]	PLL2 feedback fractional divider 12	R/W	-	-	0
Bit 3	PLL2_FB_FRC_DIV[11]	PLL2 feedback fractional divider 11	R/W	-	-	0
Bit 2	PLL2_FB_FRC_DIV[10]	PLL2 feedback fractional divider 10	R/W	-	-	0
Bit 1	PLL2_FB_FRC_DIV[9]	PLL2 feedback fractional divider 9	R/W	-	-	0
Bit 0	PLL2_FB_FRC_DIV[8]	PLL2 feedback fractional divider 8	R/W	-	-	0

Byte 19: PLL2 Fractional Feedback Divider

Byte 13h	Name	Control Function	Type	0	1	PWD
Bit 7	PLL2_FB_FRC_DIV[7]	PLL2 feedback fractional divider 7	R/W	-	-	0
Bit 6	PLL2_FB_FRC_DIV[6]	PLL2 feedback fractional divider 6	R/W	-	-	0
Bit 5	PLL2_FB_FRC_DIV[5]	PLL2 feedback fractional divider 5	R/W	-	-	0
Bit 4	PLL2_FB_FRC_DIV[4]	PLL2 feedback fractional divider 4	R/W	-	-	0
Bit 3	PLL2_FB_FRC_DIV[3]	PLL2 feedback fractional divider 3	R/W	-	-	0
Bit 2	PLL2_FB_FRC_DIV[2]	PLL2 feedback fractional divider 2	R/W	-	-	0
Bit 1	PLL2_FB_FRC_DIV[1]	PLL2 feedback fractional divider 1	R/W	-	-	0
Bit 0	PLL2_FB_FRC_DIV[0]	PLL2 feedback fractional divider 0	R/W	-	-	0

Byte 20: PLL2 Spread Spectrum Control

Byte 14h	Name	Control Function	Type	0	1	PWD
Bit 7	PLL2_STEP[7]	PLL2 spread step size control bit 7	R/W	-	-	0
Bit 6	PLL2_STEP[6]	PLL2 spread step size control bit 6	R/W	-	-	0
Bit 5	PLL2_STEP[5]	PLL2 spread step size control bit 5	R/W	-	-	0
Bit 4	PLL2_STEP[4]	PLL2 spread step size control bit 4	R/W	-	-	0
Bit 3	PLL2_STEP[3]	PLL2 spread step size control bit 3	R/W	-	-	0
Bit 2	PLL2_STEP[2]	PLL2 spread step size control bit 2	R/W	-	-	0
Bit 1	PLL2_STEP[1]	PLL2 spread step size control bit 1	R/W	-	-	0
Bit 0	PLL2_STEP[0]	PLL2 spread step size control bit 0	R/W	-	-	0

Byte 21: PLL2 Spread Spectrum Control

Byte 15h	Name	Control Function	Type	0	1	PWD
Bit 7	PLL2_STEP_DELTA[7]	PLL2 spread step size control delta bit 7	R/W	-	-	0
Bit 6	PLL2_STEP_DELTA[6]	PLL2 spread step size control delta bit 6	R/W	-	-	0
Bit 5	PLL2_STEP_DELTA[5]	PLL2 spread step size control delta bit 5	R/W	-	-	0
Bit 4	PLL2_STEP_DELTA[4]	PLL2 spread step size control delta bit 4	R/W	-	-	0
Bit 3	PLL2_STEP_DELTA[3]	PLL2 spread step size control delta bit 3	R/W	-	-	0
Bit 2	PLL2_STEP_DELTA[2]	PLL2 spread step size control delta bit 2	R/W	-	-	0
Bit 1	PLL2_STEP_DELTA[1]	PLL2 spread step size control delta bit 1	R/W	-	-	0
Bit 0	PLL2_STEP_DELTA[0]	PLL2 spread step size control delta bit 0	R/W	-	-	0

Byte 22: PLL2 Spread Spectrum Control

Byte 16h	Name	Control Function	Type	0	1	PWD
Bit 7	PLL2_STEP[15]	PLL2 spread step size control bit 15	R/W	-	-	0
Bit 6	PLL2_STEP[14]	PLL2 spread step size control bit 14	R/W	-	-	0
Bit 5	PLL2_STEP[13]	PLL2 spread step size control bit 13	R/W	-	-	0
Bit 4	PLL2_STEP[12]	PLL2 spread step size control bit 12	R/W	-	-	0
Bit 3	PLL2_STEP[11]	PLL2 spread step size control bit 11	R/W	-	-	0
Bit 2	PLL2_STEP[10]	PLL2 spread step size control bit 10	R/W	-	-	0
Bit 1	PLL2_STEP[9]	PLL2 spread step size control bit 9	R/W	-	-	0
Bit 0	PLL2_STEP[8]	PLL2 spread step size control bit 8	R/W	-	-	0

Byte 23: PLL2 Period Control

Byte 17h	Name	Control Function	Type	0	1	PWD
Bit 7	PLL2_PERIOD[7]	PLL2 period control bit 7	R/W	-	-	0
Bit 6	PLL2_PERIOD[6]	PLL2 period control bit 6	R/W	-	-	0
Bit 5	PLL2_PERIOD[5]	PLL2 period control bit 5	R/W	-	-	0
Bit 4	PLL2_PERIOD[4]	PLL2 period control bit 4	R/W	-	-	0
Bit 3	PLL2_PERIOD[3]	PLL2 period control bit 3	R/W	-	-	0
Bit 2	PLL2_PERIOD[2]	PLL2 period control bit 2	R/W	-	-	0
Bit 1	PLL2_PERIOD[1]	PLL2 period control bit 1	R/W	-	-	0
Bit 0	PLL2_PERIOD[0]	PLL2 period control bit 0	R/W	-	-	0

Byte 24: PLL2 Control Register

Byte 18h	Name	Control Function	Type	0	1	PWD
Bit 7	PLL2_PERIOD[9]	PLL2 period control bit 9	R/W	-	-	0
Bit 6	PLL2_PERIOD[8]	PLL2 period control bit 8	R/W	-	-	0
Bit 5	PLL2_SSEN	PLL2 spread spectrum enable	R/W	disable	enable	0
Bit 4	PLL2_R100K	PLL2 Loop filter resister 100kohm	-	bypass	plus 100kohm	0
Bit 3	PLL2_R50K	PLL2 Loop filter resister 50kohm	-	bypass	plus 50kohm	1
Bit 2	PLL2_R25K	PLL2 Loop filter resister 25kohm	-	bypass	plus 25kohm	1
Bit 1	PLL2_R12.5K	PLL2 Loop filter resister 12.5kohm	-	bypass	plus 12.5kohm	1
Bit 0	PLL2_R6K	PLL2 Loop filter resister 6kohm	-	bypass	only 6kohm applied	0

Byte 25: PLL2 Charge Pump Control

Byte 19h	Name	Control Function	Type	0	1	PWD
Bit 7	PLL2_CP_16X	PLL2 charge pump control	R/W	-	x16	0
Bit 6	PLL2_CP_8X	PLL2 charge pump control	R/W	-	x8	0
Bit 5	PLL2_CP_4X	PLL2 charge pump control	R/W	-	x4	0
Bit 4	PLL2_CP_2X	PLL2 charge pump control	R/W	-	x2	1
Bit 3	PLL2_CP_1X	PLL2 charge pump control	R/W	-	x1	0
Bit 2	PLL2_CP_24	PLL2 charge pump control	R/W	-	/24	1
Bit 1	PLL2_CP_3	PLL2 charge pump control	R/W	-	/3	0
Bit 0	PLL2_SIREF	PLL2 SiRef current selection	R/W	10µA	20µA	0

Byte 26: PLL2 M Divider Setting

Byte 1Ah	Name	Control Function	Type	0	1	PWD
Bit 7	PLL2_MDIV_Doubler	PLL2 reference divider - doubler	R/W	disable	enable	0
Bit 6	PLL2_MDIV1	PLL2 reference divider 1	R/W	disable M DIV1	bypadd divider (/1)	0
Bit 5	PLL2_MDIV2	PLL2 reference divider 2	R/W	disable M DIV2	bypadd divider (/2)	0
Bit 4	PLL2_MDIV[4]	PLL2 reference divider control bit 4	R/W	3–64, default is 25		
Bit 3	PLL2_MDIV[3]	PLL2 reference divider control bit 3	R/W			
Bit 2	PLL2_MDIV[2]	PLL2 reference divider control bit 2	R/W			
Bit 1	PLL2_MDIV[1]	PLL2 reference divider control bit 1	R/W			
Bit 0	PLL2_MDIV[0]	PLL2 reference divider control bit 0	R/W			

Byte 27: Output Divider 4

Byte 1Bh	Name	Control Function	Type	0	1	PWD
Bit 7	OUTDIV3[3]	Out divider 4 control bit 7	R/W	-	-	0
Bit 6	OUTDIV3[2]	Out divider 4 control bit 6	R/W	-	-	1
Bit 5	OUTDIV3[1]	Out divider 4 control bit 5	R/W	-	-	0
Bit 4	OUTDIV3[0]	Out divider 4 control bit 4	R/W	-	-	0
Bit 3	OUTDIV4[3]	Out divider 4 control bit 3	R/W	-	-	0
Bit 2	OUTDIV4[2]	Out divider 4 control bit 2	R/W	-	-	0
Bit 1	OUTDIV4[1]	Out divider 4 control bit 1	R/W	-	-	1
Bit 0	OUTDIV4[0]	Out divider 4 control bit 0	R/W	-	-	1

Byte 28: PLL Operation Control Register

Byte 1Ch	Name	Control Function	Type	0	1	PWD
Bit 7	PLL2_HRS_EN	PLL2 spread high resolution selection enable	R/W	normal	enable (shift 4 bits)	0
Bit 6	PLL2_refin_sel	PLL2 reference clock source select	R/W	Xtal	DIV2	0
Bit 5	PLL3_PDB	PLL3 Power Down	R/W	Power Down	running	1
Bit 4	PLL3_LCKBYPSSB	PLL3 lock bypass	R/W	bypass lock	lock	1
Bit 3	PLL2_PDB	PLL2 Power Down	R/W	Power Down	running	1
Bit 2	PLL2_LCKBYPSSB	PLL2 lock bypass	R/W	bypass lock	lock	1
Bit 1	PLL1_PDB	PLL1 Power Down	R/W	Power Down	running	1
Bit 0	PLL1_LCKBYPSSB	PLL1 lock bypass	R/W	bypass lock	lock	1

Byte 29: Output Control

Byte 1Dh	Name	Control Function	Type	0	1	PWD
Bit 7	DIFF1_SEL	Differential clock 1 output OE2 control		not controlled	controlled	0
Bit 6	DIFF2_SEL	Differential clock 2 output OE2 control		not controlled	controlled	0
Bit 5	DIFF1_EN	Differential clock 1 output enable	R/W	disable	enable	1
Bit 4	DIFF2_EN	Differential clock 2 output enable	R/W	disable	enable	1
Bit 3	OUTDIV4_Source	Output divider 4 source clock selection	R/W	PLL2	Xtal	0
Bit 2	SE1_SLEW	SE 1 slew rate control	R/W	normal	strong	0
Bit 1	VDD1_SEL[1]	VDD1 level control bit 1	R/W	11: 1.8		1
Bit 0	VDD1_SEL[0]	VDD1 level control bit 0	R/W			1

Byte 30: OE and DFC Control

Byte 1Eh	Name	Control Function	Type	0	1	PWD
Bit 7	SE1_EN	SE1 output enable control	R/W	disable	enable	1
Bit 6	OE1_fun_sel[1]	OE1 pin function selection bit 1	R/W	11:DFC0 01: PD#	10: SE1_PPS 00: SE1 OE	0
Bit 5	OE1_fun_sel[0]	OE1 pin function selection bit 0	R/W			0
Bit 4		Reserved				1
Bit 3		Reserved				0
Bit 2		Reserved				0
Bit 1	DFC_SW_Sel[1]	DFC frequency select bit 1	R/W	00: N0 01: N1 10: N2 11: N3		0
Bit 0	DFC_SW_Sel[0]	DFC frequency select bit 0	R/W			0

Byte 31: Control Register

Byte 1Fh	Name	Control Function	Type	0	1	PWD
Bit 7		Reserved				1
Bit 6		Reserved				0
Bit 5		Reserved				0
Bit 4		Reserved				0
Bit 3	PLL2_3rd_EN_CFG	PLL2 3rd order control		1st order	3rd order	0
Bit 2	PLL2_EN_CH2	PLL2 channel 2 enable control	R/W	disable	enable	1
Bit 1	PLL2_EN_3rdpole	PLL2 3rd Pole control	R/W	disable	enable	0
Bit 0		Reserved				0

Byte 32: Control Register

Byte 20h	Name	Control Function	Type	0	1	PWD
Bit 7		Reserved				1
Bit 6		Reserved				0
Bit 5		Reserved				0
Bit 4	DFC_EN	DFC function control	R/W	disable	enable	0
Bit 3	WD_EN	Watchdog timer control	R/W	disable	enable	0
Bit 2	Timer_sel<1>	Watchdog timer select bit 1	R/W	00: 250ms 10: 2s	01: 500ms 11: 4s	0
Bit 1	Timer_sel<0>	Watchdog timer select bit 0	R/W			0
Bit 0	Alarm_Flag	Alarm Status (Read Only)	R	No alarm	Alarmed	0

Byte 33: DIFF1 Control Register

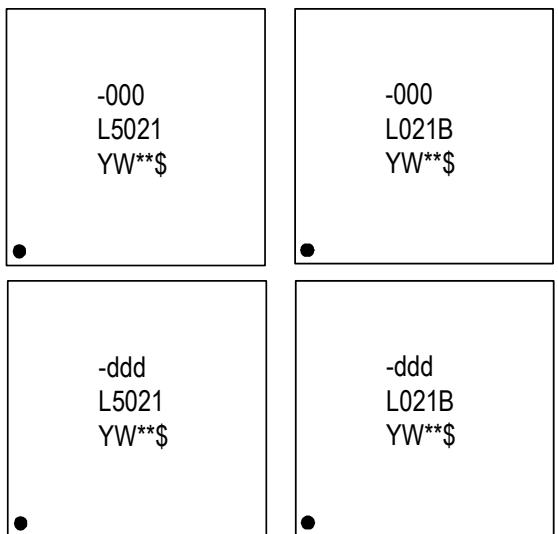
Byte 21h	Name	Control Function	Type	0	1	PWD
Bit 7		Reserved				1
Bit 6		Reserved				0
Bit 5		Reserved				1
Bit 4		Reserved				1
Bit 3		Reserved				0
Bit 2	DIFF_PDBHiZEN	Differential output high-Z at power down	R/W	TBD	output tri-state, bias off	0
Bit 1	DIFF1_CMOS2_FLIP	Differential 1/2 LVCMOS output control	R/W	DIFF1_B inverted	DIFF1_B non-inverted	0
Bit 0	DIFF2_CMOS2_FLIP	Differential 1/2 LVCMOS output control	R/W	DIFF2_B inverted	DIFF2_B non-inverted	0

Byte 34: DIFF1 Control Register

Byte 22h	Name	Control Function	Type	0	1	PWD
Bit 7	DIFF1_CLK_SEL	Differential clock 1 source selection	R/W	DIV1	DIV3	1
Bit 6		Reserved				1
Bit 5	DIFF1_OUTPUT_TYPE[1]	Differential clock 1 type select bit 1	R/W	00: LVMOS 01: Reserved		1
Bit 4	DIFF1_OUTPUT_TYPE[0]	Differential clock 1 type select bit 0		10: Reserved 11: LPHCSL		1
Bit 3		Reserved				0
Bit 2		Reserved				1
Bit 1	DIFF1_CMOS_SLEW	Differential clock 1 LVCMOS slew rate control	R/W	normal	strong	0
Bit 0	D1FF1_CMOS2_EN	Differential clock 1 LVCMOS output_B control	R/W	disable	enable	0

Byte 35: DIFF2 Control Register

Byte 23h	Name	Control Function	Type	0	1	PWD
Bit 7	DIFF2_CLK_SEL	Differential clock 2 source selection	R/W	DIV1	DIV3	0
Bit 6		Reserved				1
Bit 5	DIFF2_OUTPUT_TYPE[1]	Differential clock 2 type select bit 1	R/W	00: LVMOS	01: Reserved	1
Bit 4	DIFF2_OUTPUT_TYPE[0]	Differential clock 2 type select bit 0		10: Reserved	11: LPHCSL	1
Bit 3		Reserved				0
Bit 2		Reserved				1
Bit 1	DIFF2_CMOS_SLEW	Differential clock 2 LVCMOS slew rate control	R/W	normal	strong	0
Bit 0	DIFF2_CMOS2_EN	Differential clock 2 LVCMOS output_B control	R/W	disable	enable	0

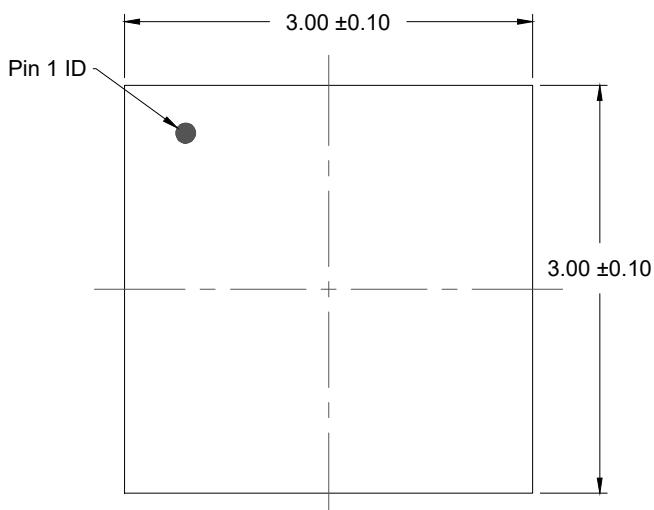
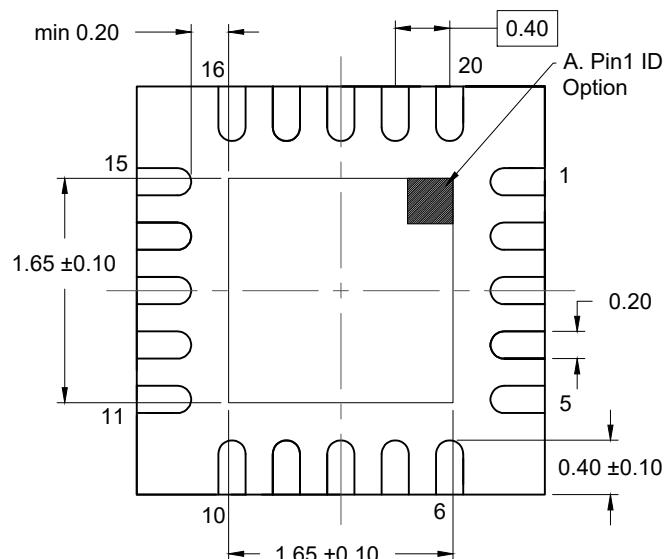
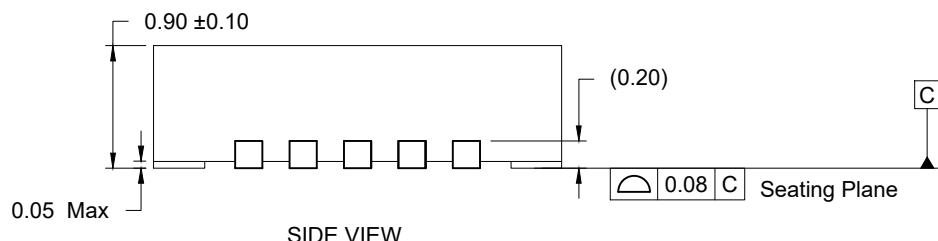
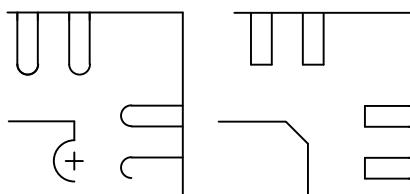
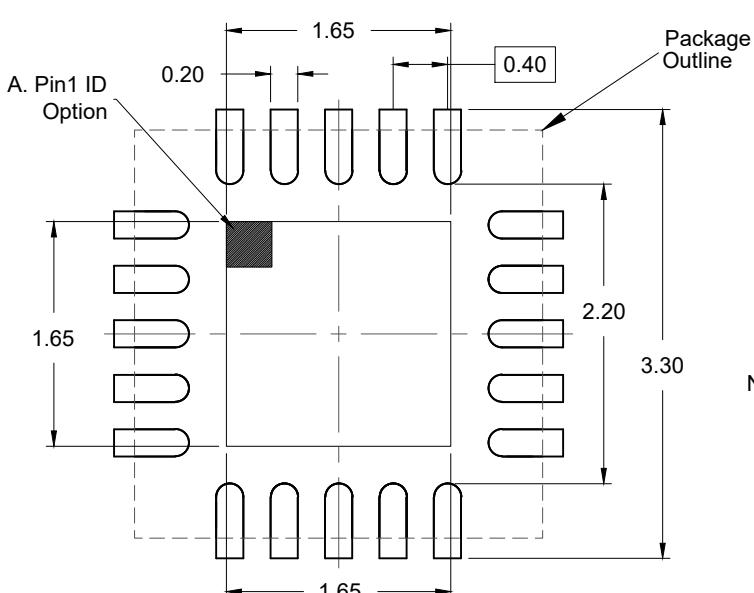

Byte 36: SE1 and DIV4 control

Byte 24h	Name	Control Function	Type	0	1	PWD
Bit 7	I2C_PDB	chip power down control bit	R/W	power down	normal	1
Bit 6	Ref_free_run	Reference clock output	R/W	stop	freerun	0
Bit 5		Reserved				0
Bit 4	SE1_Freerun_32K	SE1 clock output default	R/W	32k freerun	B36bit3 control	0
Bit 3	SE1_CLKSEL1	SEL1 output select	R/W	DIV5	DIV4	1
Bit 2	REF_EN	REF output enable	R/W	disable	enable	1
Bit 1	DIV4_CH3_EN	DIV4 channel 3 output control	R/W	disable	enable	0
Bit 0	DIV4_CH2_EN	DIV4 channel 3 output control	R/W	disable	enable	0

Package Outline Drawings

The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available.

Marking Diagrams






- Line 2 is the truncated part number.
- "-000" denotes un-programmed part. Configuration left blank for user customization.
- "-ddd" denotes dash code.
- "YW" is the last digit of the year and week that the part was assembled.
- "**" denotes lot sequence number.
- "\$" denotes mark code.

Ordering Information

Orderable Part Number	Package Description	Carrier Type	Temperature Range
5L35021-000NDGI	3 x 3 mm, 0.4mm pitch 20-VFQFPN	Trays	-40 to +85°C
5L35021-000NDGI8	3 x 3 mm, 0.4mm pitch 20-VFQFPN	Tape and Reel	-40 to +85°C
5L35021-dddNDGI	3 x 3 mm, 0.4mm pitch 20-VFQFPN	Trays	-40 to +85°C
5L35021-dddNDGI8	3 x 3 mm, 0.4mm pitch 20-VFQFPN	Tape and Reel	-40 to +85°C
5L35021B-000NDGI	3 x 3 mm, 0.4mm pitch 20-VFQFPN	Trays	-40 to +85°C
5L35021B-000NDGI8	3 x 3 mm, 0.4mm pitch 20-VFQFPN	Tape and Reel	-40 to +85°C
5L35021B-dddNDGI	3 x 3 mm, 0.4mm pitch 20-VFQFPN	Trays	-40 to +85°C
5L35021B-dddNDGI8	3 x 3 mm, 0.4mm pitch 20-VFQFPN	Tape and Reel	-40 to +85°C

Revision History

Revision Date	Description of Change
December 15, 2025	Added Applications section.
November 20, 2025	Updated description for pin 6 in Pin Descriptions .
July 17, 2025	<ul style="list-style-type: none">▪ Updated capacitor values and equation in section Crystal Input (X1/X2).▪ Updated package outline drawing (POD) link in Ordering Information.
October 4, 2019	Removed comment “VBAT power ramp-up should be same or earlier time than other VDD power rail.” from Power Group table.
September 26, 2019	<ul style="list-style-type: none">▪ Updated Supply Voltage values in Absolute Maximum Ratings table.▪ Updated fVCO3 VCO Frequency Range of PLL3 in AC Timing Electrical Characteristics table.▪ Updated VMAX values in Electrical Characteristics - LPHCSL Differential Outputs table.▪ Updated PPS Assertion/Deassertion Timing diagram.▪ Updated Package Outline Drawings section.▪ Added “B” revision orderable part numbers and marking diagrams.
November 29, 2017	Updated I ² C section.
July 13, 2017	Corrected typo in block diagram.
June 29, 2017	Initial release.

TOP VIEW

BOTTOM VIEW

SIDE VIEW

A. PIN1 ID OPTION DETAILS

NOTES:

1. JEDEC compatible.
2. All dimensions are in mm and angles are in degrees.
3. Use ± 0.05 mm for the non-toleranced dimensions.
4. Numbers in () are for references only.
5. Pin#1 ID is identified by either chamfer or notch.

RECOMMENDED LAND PATTERN
(PCB Top View, NSMD Design)

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.