# Old Company Name in Catalogs and Other Documents

On April 1<sup>st</sup>, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: <a href="http://www.renesas.com">http://www.renesas.com</a>

April 1<sup>st</sup>, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to <a href="http://www.renesas.com/inquiry">http://www.renesas.com/inquiry</a>.



### Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
  of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
  No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
  of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
  - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
  - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
  - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.



# 4584 Group

### SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

REJ03B0010-0300Z Rev.3.00 2004.08.06

### **DESCRIPTION**

The 4584 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with four 8-bit timers (each timer has one or two reload registers), a 10-bit A/D converter, interrupts, and oscillation circuit switch function. The various microcomputers in the 4584 Group include variations of the built-in memory type as shown in the table below.

### **FEATURES**

| _ |     |    |    |
|---|-----|----|----|
| • | Γim | ٦Δ | rc |
| • |     | ı  | ıo |

| Timer 1     | 8-bit timer with a reload register  |
|-------------|-------------------------------------|
| Timer 2     | 8-bit timer with a reload register  |
| Timer 3     | 8-bit timer with a reload register  |
| Timer 3 8-b | oit timer with two reload registers |

| ●Interrupt                    | sources |
|-------------------------------|---------|
| ● Key-on wakeup function pins | 10      |

• A/D converter ....... 10-bit successive comparison method, 2ch

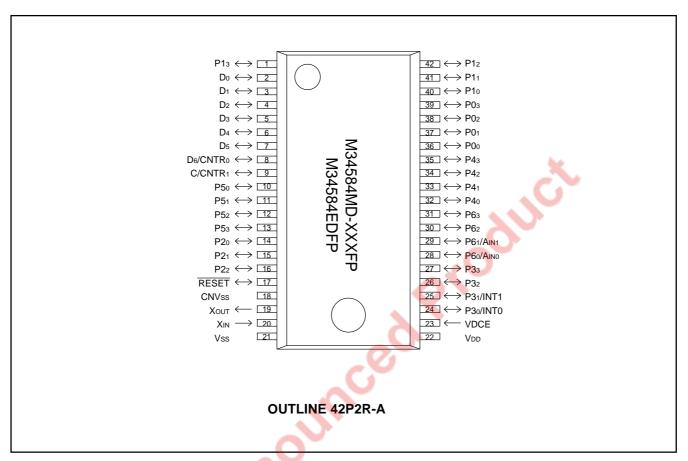
Watchdog timer

 Clock generating circuit (ceramic resonator/RC oscillation/quartz-crystal oscillation/onchip oscillator)

●LED drive directly enabled (port D)

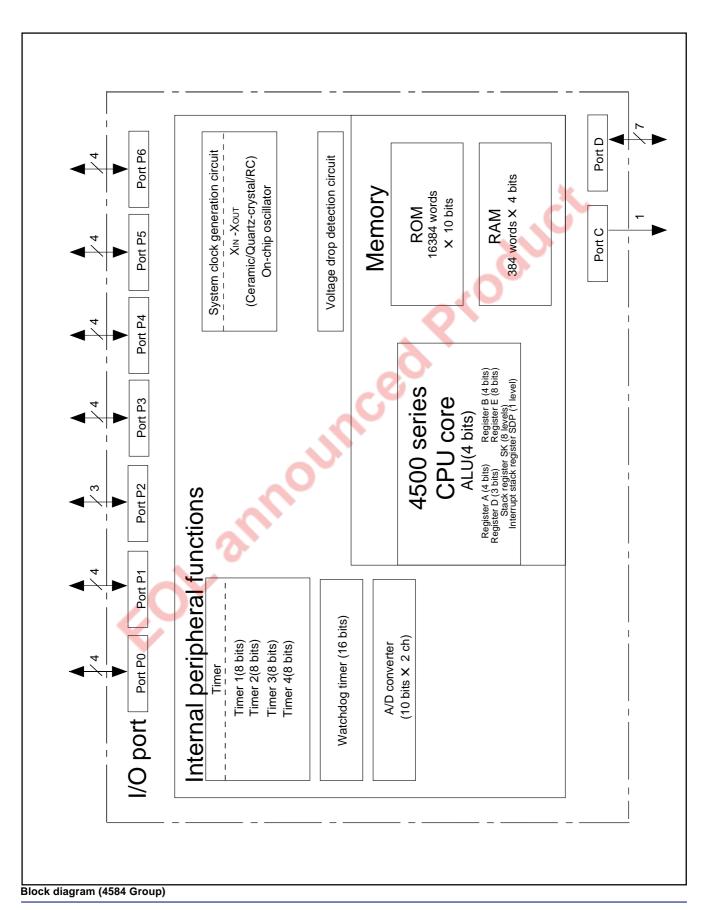
### **APPLICATION**

Remote control transmitter


| Part number       | ROM (PROM) size<br>(X 10 bits) | RAM size<br>(X 4 bits) | Package | ROM type      |
|-------------------|--------------------------------|------------------------|---------|---------------|
| M34584MD-XXXFP    | 16384 words                    | 384 words              | 42P2R-A | Mask ROM      |
| M34584EDFP (Note) | 16384 words                    | 384 words              | 42P2R-A | One Time PROM |

Note: Shipped in blank.




PRELIMINARY

### PIN CONFIGURATION



Pin configuration (top view) (4584 Group)







### **PERFORMANCE OVERVIEW**

|                                 | Paramete                                       | r            | Function                                                                                                                |  |  |
|---------------------------------|------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
| Number of basic instructions    |                                                | ons          | 154                                                                                                                     |  |  |
| Minimum instru                  | ction exec                                     | cution time  | 0.5 μs (at 6.0 MHz oscillation frequency, in XIN through-mode)                                                          |  |  |
| Memory sizes                    | ROM                                            |              | 16384 words X 10 bits                                                                                                   |  |  |
|                                 | RAM                                            |              | 384 words X 4 bits                                                                                                      |  |  |
| Input/Output<br>ports           | D0–D6 I/O (Input is examined by skip decision) |              | Seven independent I/O ports; Port D6 is also used as CNTR0, respectively. The output structure is switched by software. |  |  |
|                                 | P00-P03                                        | I/O          | 4-bit I/O port; a pull-up function, a key-on wakeup function and output structure can be switched by software.          |  |  |
|                                 | P10-P13                                        | I/O          | 4-bit I/O port; a pull-up function, a key-on wakeup function and output structure can be switched by software.          |  |  |
|                                 | P20-P22                                        | I/O          | 3-bit I/O port                                                                                                          |  |  |
|                                 | P30-P33                                        | I/O          | 4-bit I/O port; ports P30 and P31 are also used as INT0 and INT1, respectively.                                         |  |  |
|                                 | P40-P43                                        | I/O          | 4-bit I/O port                                                                                                          |  |  |
|                                 | P50-P53 I/O                                    |              | 4-bit I/O port; the output structure is switched by software.                                                           |  |  |
|                                 | P60-P63 I/O                                    |              | 4-bit I/O port; ports P60, P61 are also used as AIN0, AIN1, respectively.                                               |  |  |
| Timers                          | Timer 1                                        |              | 8-bit timer with a reload register is also used as an event counter.                                                    |  |  |
|                                 |                                                |              | Also, this is equipped with a period/pulse width measurement function.                                                  |  |  |
| Timer 2                         |                                                |              | 8-bit timer with a reload register.                                                                                     |  |  |
| Timer 3                         |                                                |              | 8-bit timer with a reload register is also used as an event counter.                                                    |  |  |
|                                 | Timer 4                                        |              | 8-bit timer with two reload registers and PWM output function.                                                          |  |  |
| A/D converter                   |                                                |              | 10-bit wide X 2 ch, This is equipped with an 8-bit comparator function.                                                 |  |  |
| Interrupt                       | Sources                                        |              | 7 (two for external, four for timer, one for A/D)                                                                       |  |  |
|                                 | Nesting                                        |              | 1 level                                                                                                                 |  |  |
| Subroutine nes                  | sting                                          |              | 8 levels                                                                                                                |  |  |
| Device structur                 | е                                              |              | CMOS silicon gate                                                                                                       |  |  |
| Package                         |                                                |              | 42-pin plastic molded SSOP (42P2R-A)                                                                                    |  |  |
| Operating temperature range     |                                                | ange         | −20 °C to 85 °C                                                                                                         |  |  |
| Supply voltage Mask ROM version |                                                | M version    | 1.8 V to 5.5 V (It depends on operation source clock, oscillation frequency and operating mode.)                        |  |  |
|                                 | One Time                                       | PROM version | 2.5 V to 5.5 V (It depends on operation source clock, oscillation frequency and operating mode.)                        |  |  |
| Power                           | Active mo                                      | ode          | 2.8 mA (Ta=25°C, VDD=5V, f(XIN)=6 MHz, f(STCK)=f(XIN), on-chip oscillator stop)                                         |  |  |
| dissipation                     |                                                |              | 70 μA (Ta=25°C, VDD=5V, f(XIN)=32 kHz, f(STCK)=f(XIN), on-chip oscillator stop)                                         |  |  |
| (typical value)                 |                                                |              | 150 μA (Ta=25°C, VDD=5V, on-chip oscillator is used, f(STCK)=f(RING), f(XIN) stop)                                      |  |  |
|                                 | RAM back                                       | k-up mode    | 0.1 $\mu$ A (Ta=25°C, VDD = 5 V, output transistors in the cut-off state)                                               |  |  |



# **PRELIMINARY** Notice: This is not a final specification. Some parametric limits are subject to change.

### **PIN DESCRIPTION**

| Pin             | Name                                                 | Input/Output | Function                                                                                                                                                                                                                                                                                                                                                |  |
|-----------------|------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| VDD             | Power supply                                         | _            | Connected to a plus power supply.                                                                                                                                                                                                                                                                                                                       |  |
| Vss             | Ground                                               | _            | Connected to a 0 V power supply.                                                                                                                                                                                                                                                                                                                        |  |
| CNVss           | CNVss                                                | _            | Connect CNVss to Vss and apply "L" (0V) to CNVss certainly.                                                                                                                                                                                                                                                                                             |  |
| VDCE            | Voltage drop<br>detection circuit<br>enable          | Input        | This pin is used to operate/stop the voltage drop detection circuit. When "H" level is input to this pin, the circuit starts operating. When "L" level is input to this pin, the circuit stops operating.                                                                                                                                               |  |
| RESET           | Reset input/output                                   | I/O          | An N-channel open-drain I/O pin for a system reset. When the SRST instruction, watchdog timer, the built-in power-on reset or the voltage drop detection circuit causes the system to be reset, the RESET pin outputs "L" level.                                                                                                                        |  |
| XIN             | Main clock input                                     | Input        | I/O pins of the main clock generating circuit. When using a ceramic resonator, connect it between pins XIN and XOUT. When using a 32 kHz quartz-crystal oscillator, connect it                                                                                                                                                                          |  |
| Хоит            | Main clock output                                    | Output       | between pins XIN and XOUT. A feedback resistor is built-in between them. When using the RC oscillation, connect a resistor and a capacitor to XIN, and leave XOUT pin open.                                                                                                                                                                             |  |
| D0-D6           | I/O port D<br>Input is examined by<br>skip decision. | I/O          | Each pin of port D has an independent 1-bit wide I/O function. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port D6 is also used as CNTR0 pin.                                                                       |  |
| P00-P03         | I/O port P0                                          | I/O          | Port P0 serves as a 4-bit I/O port. The output structure can be switched to N-channe open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P0 has a key-on wakeup function and a pull-up function. Both functions can be switched by software.                             |  |
| P10-P13         | I/O port P1                                          | I/O          | Port P1 serves as a 4-bit I/O port. The output structure can be switched to N-channe open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P1 has a key-on wakeup function and a pull-up function. Both functions can be switched by software.                             |  |
| P20-P23         | I/O port P2                                          | I/O          | Port P2 serves as a 3-bit I/O port. The output structure is N-channel open-drain. For input use, set the latch of the specified bit to "1".                                                                                                                                                                                                             |  |
| P30-P33         | I/O port P3                                          | I/O          | Port P3 serves as a 4-bit I/O port. The output structure is N-channel open-drain. For input use, set the latch of the specified bit to "1".  Ports P30 and P31 are also used as INT0 pin and INT1 pin, respectively.                                                                                                                                    |  |
| P40-P43         | I/O port P4                                          | I/O          | Port P4 serves as a 4-bit I/O port. The output structure can be switched to N-channe open-drain. For input use, set the latch of the specified bit to "1".                                                                                                                                                                                              |  |
| P50-P53         | I/O port P5                                          | I/O          | Port P5 serves as a 4-bit I/O port. The output structure can be switched to N-channe open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain.                                                                                                                                      |  |
| P60-P63         | I/O port P6                                          | I/O          | Port P6 serves as a 4-bit I/O port. The output structure can be switched to N-channe open-drain. For input use, set the latch of the specified bit to "1". Ports P60, P61 are also used as AINO, AIN1, respectively.                                                                                                                                    |  |
| С               | Output port C                                        | Output       | Port C serves as a 1-bit port. The output structure is CMOS. For input use, set the latch of the specified bit to "1". Port C is also used as CNTR1.                                                                                                                                                                                                    |  |
| CNTR0,<br>CNTR1 | Timer input/output                                   | I/O          | CNTR0 pin has the function to input the clock for the timer 1 event counter, and to output the timer 1 or timer 2 underflow signal divided by 2.  CNTR1 pin has the function to input the clock for the timer 3 event counter, and to output the PWM signal generated by timer 4.CNTR0 pin and CNTR1 pin are also used as Ports D6 and C, respectively. |  |
| INTO, INT1      | Interrupt input                                      | Input        | INT0 pin and INT1 pin accept external interrupts. They have the key-on wakeup function which can be switched by software. INT0 pin and INT1 pin are also used as Ports P30 and P31, respectively.                                                                                                                                                       |  |
| AIN0, AIN1      | Analog input                                         | Input        | A/D converter analog input pins. AIN0 pin and AIN1 pin are also used as Ports P60 and P61, respectively.                                                                                                                                                                                                                                                |  |



### **MULTIFUNCTION**

| Pin | Multifunction | Pin   | Multifunction | Pin | Multifunction | Pin  | Multifunction |
|-----|---------------|-------|---------------|-----|---------------|------|---------------|
| D6  | CNTR0         | CNTR0 | D6            | P60 | AIN0          | AIN0 | P60           |
| С   | CNTR1         | CNTR1 | С             | P61 | AIN1          | AIN1 | P61           |
| P30 | INT0          | INT0  | P30           |     |               |      |               |
| P31 | INT1          | INT1  | P31           |     |               |      |               |

Notes 1: Pins except above have just single function.

- 2: The input/output of P30 and P31 can be used even when INT0 and INT1 are selected.
- 3: The input/output of D6 can be used even when CNTR0 (input) is selected.
- 4: The input of D6 can be used even when CNTR0 (output) is selected.
- 5: The "H" output of C can be used even when CNTR1 (output) is selected.

### **DEFINITION OF CLOCK AND CYCLE**

### Operation source clock

The operation source clock is the source clock to operate this product. In this product, the following clocks are used.

- Clock (f(XIN)) by the external ceramic resonator
- Clock (f(XIN)) by the external RC oscillation
- Clock (f(XIN)) by the external input
- Clock (f(RING)) of the on-chip oscillator which is the internal oscillator
- Clock (f(XIN)) by the external quartz-crystal oscillation

### System clock (STCK)

The system clock is the basic clock for controlling this product. The system clock is selected by the clock control register MR shown as the table below.

Instruction clock (INSTCK)

The instruction clock is the basic clock for controlling CPU. The instruction clock (INSTCK) is a signal derived by dividing the system clock (STCK) by 3. The one instruction clock cycle generates the one machine cycle.

Machine cycle

The machine cycle is the standard cycle required to execute the instruction.

Table Selection of system clock

|                 | Registe |     |                 | System clock        | Operation mode         |
|-----------------|---------|-----|-----------------|---------------------|------------------------|
| MR <sub>3</sub> | MR2     | MR1 | MR <sub>0</sub> |                     |                        |
| 0               | 0       | 0   | 0               | f(STCK) = f(XIN)    | XIN through mode       |
|                 |         | ×   | 1               | f(STCK) = f(RING)   | Ring through mode      |
| 0               | 1       | 0   | 0               | f(STCK) = f(XIN)/2  | XIN divided by 2 mode  |
|                 |         | ×   | 1               | f(STCK) = f(RING)/2 | Ring divided by 2 mode |
| 1               | 0       | 0   | 0               | f(STCK) = f(XIN)/4  | XIN divided by 4 mode  |
|                 |         | ×   | 1               | f(STCK) = f(RING)/4 | Ring divided by 4 mode |
| 1               | 1       | 0   | 0               | f(STCK) = f(XIN)/8  | XIN divided by 8 mode  |
|                 |         | ×   | 1               | f(STCK) = f(RING)/8 | Ring divided by 8 mode |

X: 0 or 1

Note: The f(RING)/8 is selected after system is released from reset. When on-chip oscillator clock is selected for main clock, set the on-chip oscillator to be operating state.



PRELIMINARY

## PORT FUNCTION

| Port D  | Pin D0-D5           | Output | Output structure                        |      |              |           | Remark                         |
|---------|---------------------|--------|-----------------------------------------|------|--------------|-----------|--------------------------------|
| Port D  | Do De               |        | , , , , , , , , , , , , , , , , , , , , | unit | instructions | registers |                                |
|         | D0-D5               | I/O    | N-channel open-drain/                   | 1    | SD, RD       | FR1, FR2  | Output structure selection     |
|         | D6/CNTR0            | (7)    | CMOS                                    |      | SZD          | W6        | function (programmable)        |
|         |                     |        |                                         |      | CLD          |           |                                |
| Port P0 | P00-P03             | I/O    | N-channel open-drain/                   | 4    | OP0A         | FR0       | Built-in programmable pull-up  |
|         |                     | (4)    | CMOS                                    |      | IAP0         | PU0       | functions, key-on wakeup       |
|         |                     |        |                                         |      |              | K0, K1    | functions and output structure |
|         |                     |        |                                         |      |              |           | selection functions            |
| Port P1 | P10-P13             | I/O    | N-channel open-drain/                   | 4    | OP1A         | FR0       | Built-in programmable pull-up  |
|         |                     | (4)    | CMOS                                    |      | IAP1         | PU1       | functions, key-on wakeup       |
|         |                     |        |                                         |      |              | K0        | functions and output structure |
|         |                     |        |                                         |      |              |           | selection functions            |
| Port P2 | P20, P21, P22       | I/O    | N-channel open-drain                    | 3    | OP2A         |           |                                |
|         |                     | (3)    |                                         |      | IAP2         |           |                                |
| Port P3 | P30/INT0, P31/INT1  | I/O    | N-channel open-drain                    | 4    | OP3A         | I1, I2    |                                |
|         | P32, P33            | (4)    |                                         |      | IAP3         | K2        |                                |
| Port P4 | P40-P43             | I/O    | N-channel open-drain                    | 4    | OP4A         |           |                                |
|         |                     | (4)    |                                         |      | IAP4         |           |                                |
| Port P5 | P50-P53             | I/O    | N-channel open-drain/                   | 4    | OP5A         | FR3       | Output structure selection     |
|         |                     | (4)    | CMOS                                    |      | IAP5         |           | function (programmable)        |
| Port P6 | P60/AIN0, P61/AIN1, | I/O    | N-channel open-drain                    | 4    | OP6A         | Q2        |                                |
|         | P62, P63            | (4)    |                                         |      | IAP6         | Q1        |                                |
| Port C  | C/CNTR1             | Output | CMOS                                    | 1    | SCP          | W4        |                                |
|         |                     | (1)    |                                         |      | RCP          |           |                                |
|         | 40                  | 2      | CMOS                                    |      |              |           |                                |

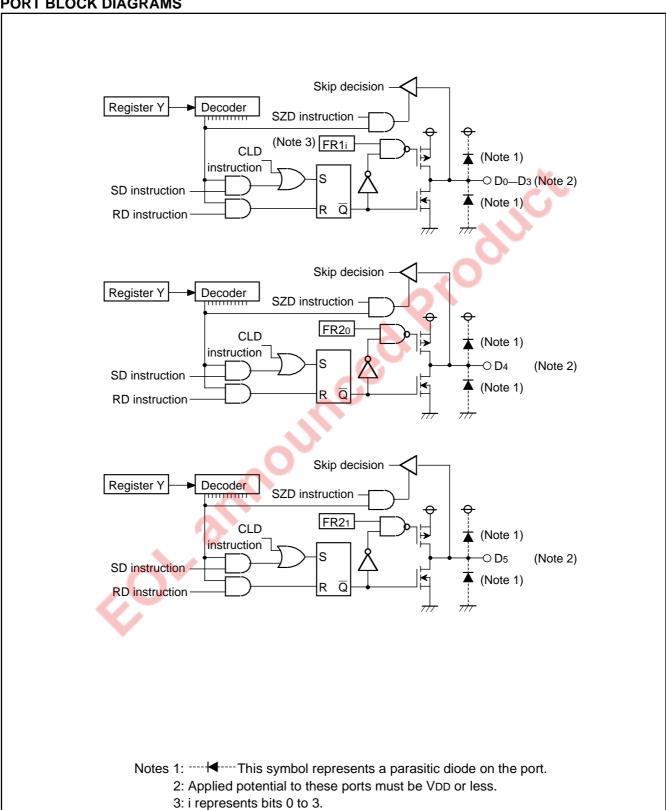


# PRELIMINARY Some parametric limits are subject to change

### **CONNECTIONS OF UNUSED PINS**

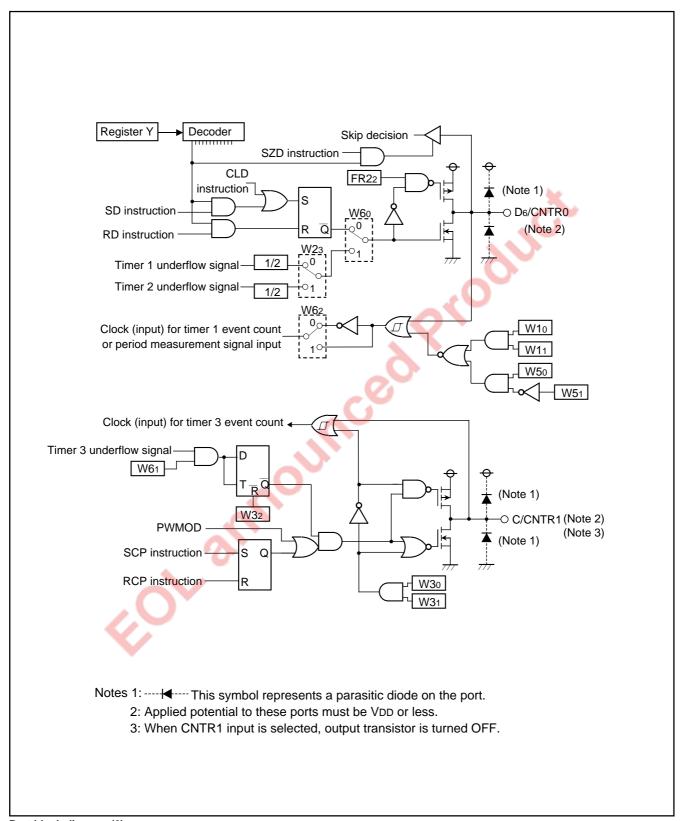
| Pin                | Connection      | Usage condition                                            |          |
|--------------------|-----------------|------------------------------------------------------------|----------|
| XIN                | Open.           | Internal oscillator is selected.                           | (Note 1) |
| Хоит               | Open.           | Internal oscillator is selected.                           | (Note 1) |
|                    |                 | RC oscillator is selected.                                 | (Note 2) |
|                    |                 | External clock input is selected for main clock.           | (Note 3) |
| D0-D5              | Open.           |                                                            |          |
|                    | Connect to Vss. | N-channel open-drain is selected for the output structure. | (Note 4) |
| D6/CNTR0           | Open.           | CNTR0 input is not selected for timer 1 count source.      |          |
|                    | Connect to Vss. | N-channel open-drain is selected for the output structure. | (Note 4) |
| C/CNTR1            | Open.           | CNTR1 input is not selected for timer 3 count source.      |          |
| P00-P03            | Open.           | The key-on wakeup function is not selected.                | (Note 6) |
|                    | Connect to Vss. | N-channel open-drain is selected for the output structure. | (Note 5) |
|                    |                 | The pull-up function is not selected.                      | (Note 4) |
|                    |                 | The key-on wakeup function is not selected.                | (Note 6) |
| P10-P13            | Open.           | The key-on wakeup function is not selected.                | (Note 7) |
|                    | Connect to Vss. | N-channel open-drain is selected for the output structure. | (Note 5) |
|                    |                 | The pull-up function is not selected.                      | (Note 4) |
|                    |                 | The key-on wakeup function is not selected.                | (Note 7) |
| P20                | Open.           |                                                            |          |
|                    | Connect to Vss. |                                                            |          |
| P21                | Open.           |                                                            |          |
|                    | Connect to Vss. |                                                            |          |
| P22                | Open.           |                                                            |          |
|                    | Connect to Vss. |                                                            |          |
| P30/INT0           | Open.           | "0" is set to output latch.                                |          |
|                    | Connect to Vss. |                                                            |          |
| P31/INT1           | Open.           | "0" is set to output latch.                                |          |
|                    | Connect to Vss. |                                                            |          |
| P32, P33           | Open.           | <del></del>                                                |          |
|                    | Connect to Vss. | <del></del>                                                |          |
| P40-P43            | Open.           |                                                            |          |
|                    | Connect to Vss. |                                                            |          |
| P50-P53            | Open.           |                                                            |          |
|                    | Connect to Vss. | N-channel open-drain is selected for the output structure. |          |
| P60/AIN0, P61/AIN1 | Open.           |                                                            |          |
| P62, P63           | Connect to Vss. | <del></del>                                                |          |

Notes 1: After system is released from reset, the internal oscillation (on-chip oscillator) is selected for system clock (RGo=0, MRo=1).

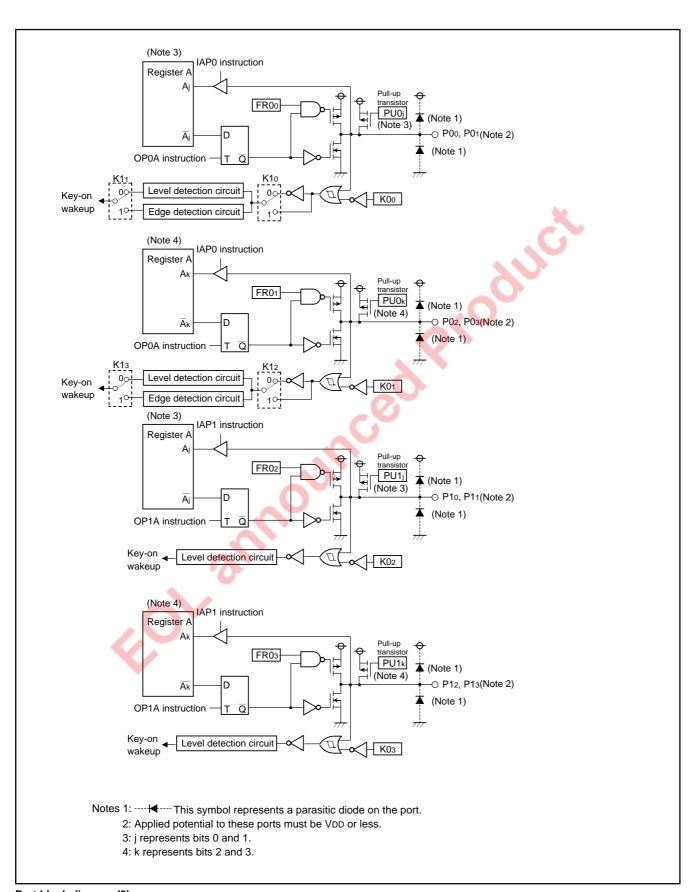

- 2: When the CRCK instruction is executed, the RC oscillation circuit becomes valid. Be careful that the swich of system clock is not executed at oscillation start only by the CRCK instruction execution.
  - In order to start oscillation, setting the main clock f(XIN) oscillation to be valid (MR1=0) is required. (If necessary, generate the oscillation stabilizing wait time by software.)
  - Also, when the main clock (f(XIN)) is selected as system clock, set the main clock f(XIN) oscillation (MR1=0) to be valid, and select main clock f(XIN) (MR0=0). Be careful that the switch of system clock cannot be executed at the same time when main clock oscillation is started.
- 3: In order to use the external clock input for the main clock f(XIN), select the ceramic resonance by executing the CMCK instruction at the beggining of software, and then set the main clock (f(XIN)) oscillation to be valid (MR1=0). Until the main clock (f(XIN)) oscillation becomes valid (MR1=0) after ceramic resonance becomes valid, XIN pin is fixed to "H". When an external clock is used, insert a 1  $k\Omega$  resistor to XIN pin in series for limits of current.
- 4: Be sure to select the output structure of ports Do-D5 and the pull-up function of P0o-P03 and P1o-P13 with every one port. Set the corresponding bits of registers for each port.
- 5: Be sure to select the output structure of ports P00-P03 and P10-P13 with every two ports. If only one of the two pins is used, leave another one
- 6: The key-on wakeup function is selected with every two bits. When only one of key-on wakeup function is used, considering that the value of key-on wake-up control register K1, set the unused 1-bit to "H" input (turn pull-up transistor ON and open) or "L" input (connect to Vss, or open and set the output latch to "0").
- 7: The key-on wakeup function is selected with every two bits. When one of key-on wakeup function is used, turn pull-up transistor of unused one ON

(Note when connecting to Vss and VDD)

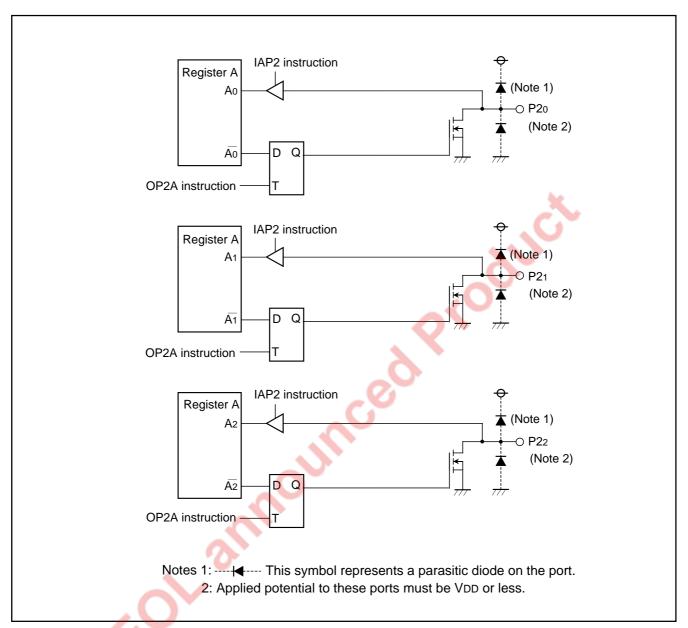
Connect the unused pins to Vss and VDD using the thickest wire at the shortest distance against noise.



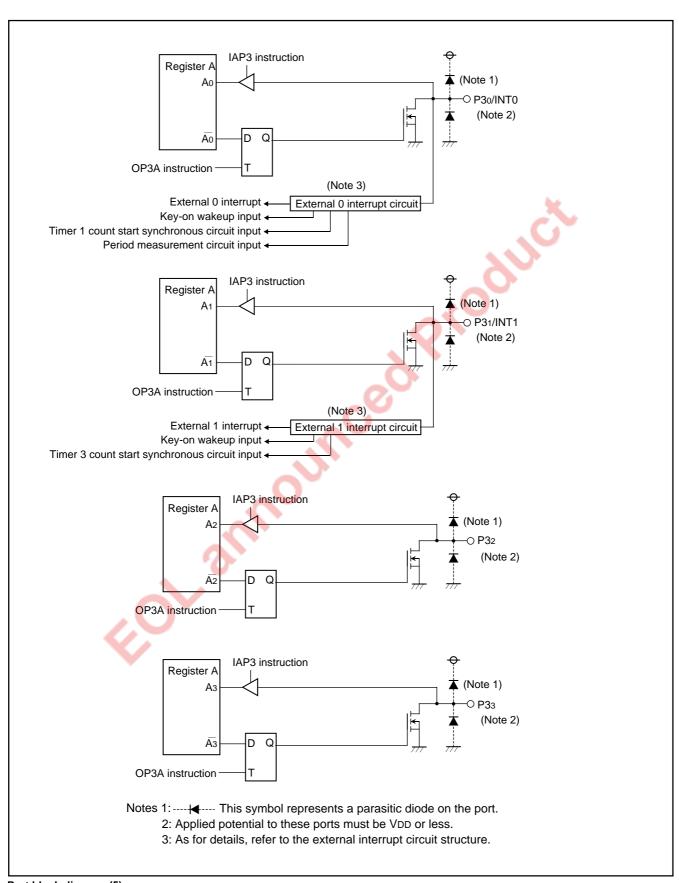

### **PORT BLOCK DIAGRAMS**



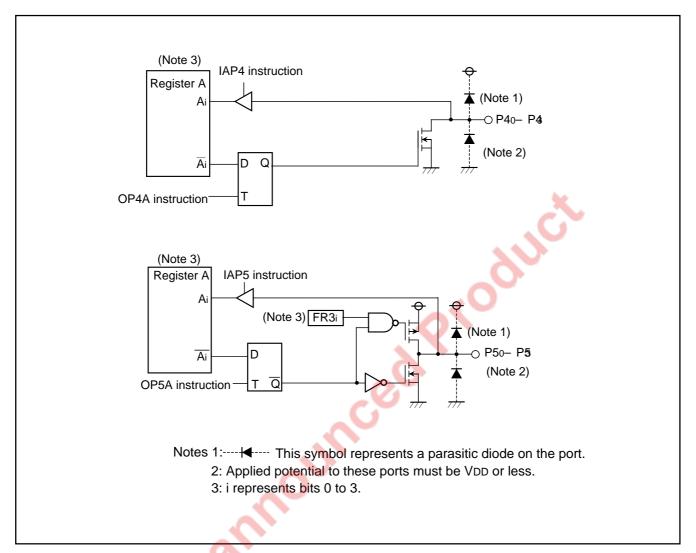

Port block diagram (1)





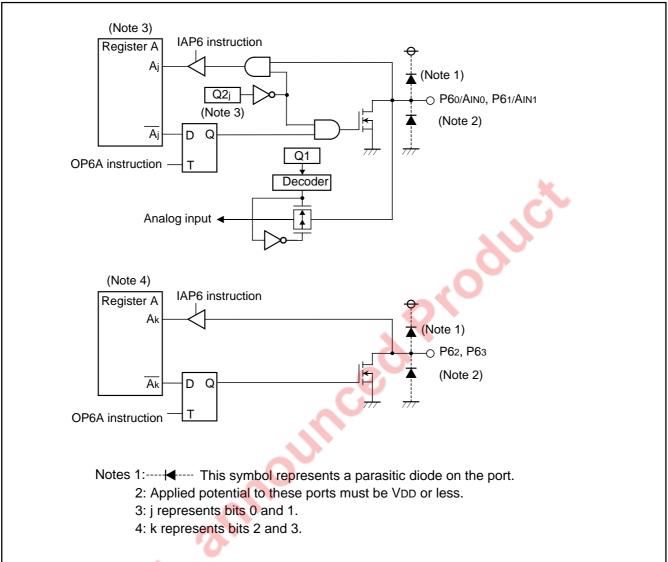


Port block diagram (2)



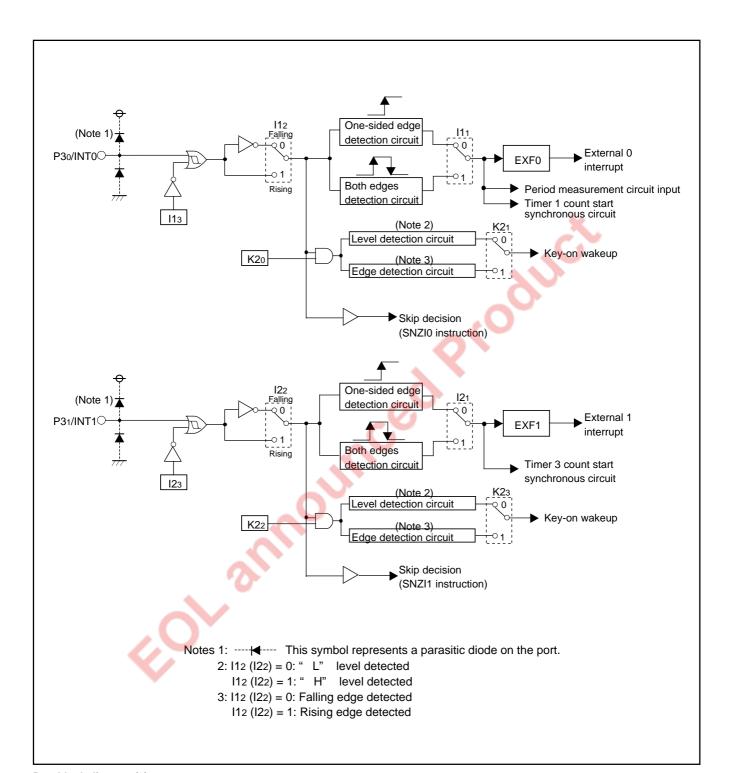

Port block diagram (3)



Port block diagram (4)




Port block diagram (5)




Port block diagram (6)





Port block diagram (7)



Port block diagram (8)

# FUNCTION BLOCK OPERATIONS CPU

### (1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, AND operation, OR operation, and bit manipulation.

### (2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both An instruction and AM instruction. The value of Ao is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

### (3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

Register E is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

### (4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed. Also, when the TABP p instruction is executed, the high-order 2 bits of the reference data in ROM is stored to the low-order 2 bits of register D, and the contents of the high-order 1 bit of register D is "0". (Figure 4).

Register D is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.




Fig. 1 AMC instruction execution example

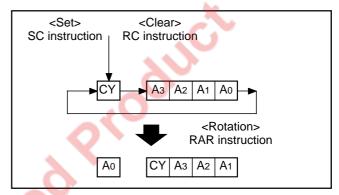



Fig. 2 RAR instruction execution example

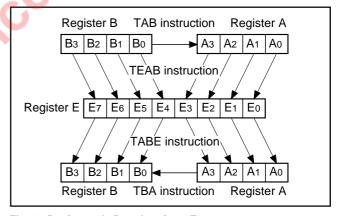



Fig. 3 Registers A, B and register E

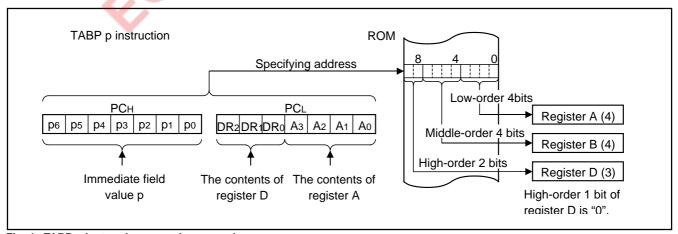



Fig. 4 TABP p instruction execution example



# (5) Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- · performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.

The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.

Figure 5 shows the stack registers (SKs) structure.

Figure 6 shows the example of operation at subroutine call.

### (6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine. Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

### (7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

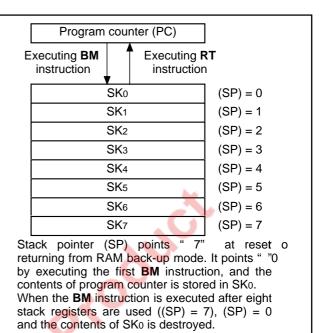



Fig. 5 Stack registers (SKs) structure

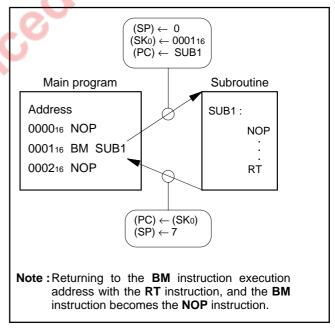



Fig. 6 Example of operation at subroutine call

# (8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PCH does not specify after the last page of the built-in ROM.

### (9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 8)

Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

### Note

Register Z of data pointer is undefined after system is released from reset

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

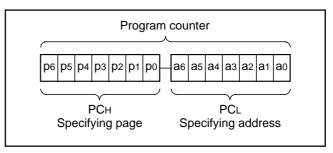



Fig. 7 Program counter (PC) structure

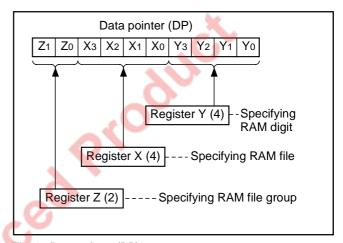



Fig. 8 Data pointer (DP) structure

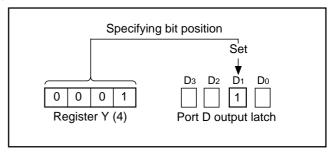



Fig. 9 SD instruction execution example

### PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34584MD/ED.

Table 1 ROM size and pages

| Part number | ROM (PROM) size<br>(X 10 bits) | Pages          |
|-------------|--------------------------------|----------------|
| M34584MD    | 16384 words                    | 128 (0 to 127) |
| M34584ED    | 16384 words                    | 128 (0 to 127) |

Note: Data in pages 64 to 127 can be referred with the TABP p instruction after the SBK instruction is executed.

Data in pages 0 to 63 can be referred with the TABP p instruction after the RBK instruction is executed.

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern (bits 9 to 0) of all addresses can be used as data areas with the TABP p instruction.

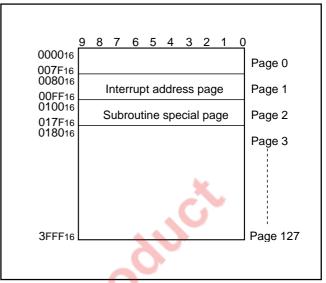



Fig. 10 ROM map of M34584MD/ED

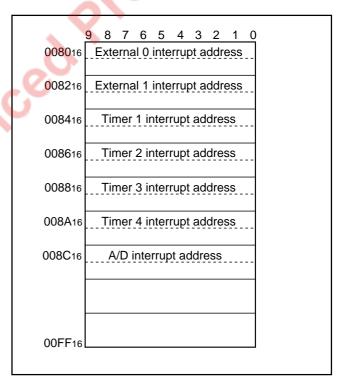



Fig. 11 Page 1 (addresses 008016 to 00FF16) structure

### **DATA MEMORY (RAM)**

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM (also, set a value after system returns from RAM back-up). Table 2 shows the RAM size. Figure 12 shows the RAM map.

### • Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

### Table 2 RAM size

| Part number | RAM size                       |
|-------------|--------------------------------|
| M34584MD/ED | 384 words X 4 bits (1536 bits) |

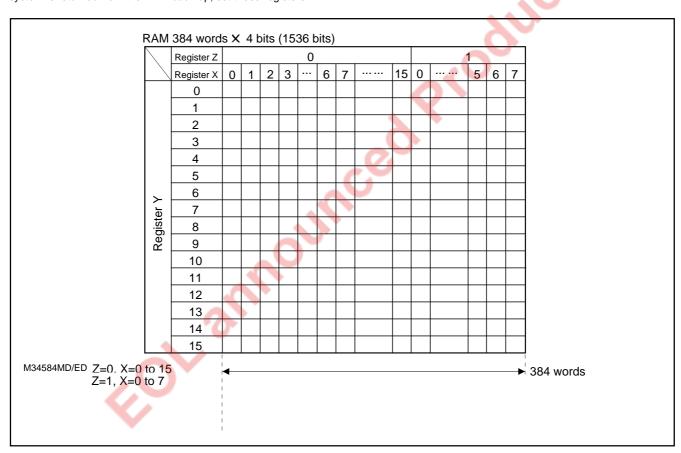



Fig. 12 RAM map

### INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

- An interrupt activated condition is satisfied (request flag = "1")
- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = "1")

Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

### (1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the EI instruction is executed.

### (2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.

Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction.

Table 5 shows the interrupt enable bit function.

### (3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to "0" when either;

- an interrupt occurs, or
- the next instruction is skipped with a skip instruction.

Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.

Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.

If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

| Table 3 In        | terrupt sources      |                              |                     |
|-------------------|----------------------|------------------------------|---------------------|
| Priority<br>level | Interrupt name       | Activated condition          | Interrupt address   |
| 1                 | External 0 interrupt | Level change of INT0 pin     | Address 0 in page 1 |
| 2                 | External 1 interrupt | Level change of INT1 pin     | Address 2 in page 1 |
| 3                 | Timer 1 interrupt    | Timer 1 underflow            | Address 4 in page 1 |
| 4                 | Timer 2 interrupt    | Timer 2 underflow            | Address 6 in page 1 |
| 5                 | Timer 3 interrupt    | Timer 3 underflow            | Address 8 in page 1 |
| 6                 | Timer 4 interrupt    | Timer 4 underflow            | Address A in page 1 |
| 7                 | A/D interrupt        | Completion of A/D conversion | Address C in page 1 |

Table 4 Interrupt request flag, interrupt enable bit and skip instruction

| Struction            | *                      |                  |                      |
|----------------------|------------------------|------------------|----------------------|
| Interrupt name       | Interrupt request flag | Skip instruction | Interrupt enable bit |
| External 0 interrupt | EXF0                   | SNZ0             | V10                  |
| External 1 interrupt | EXF1                   | SNZ1             | V11                  |
| Timer 1 interrupt    | T1F                    | SNZT1            | V12                  |
| Timer 2 interrupt    | T2F                    | SNZT2            | V13                  |
| Timer 3 interrupt    | T3F                    | SNZT3            | V20                  |
| Timer 4 interrupt    | T4F                    | SNZT4            | V21                  |
| A/D interrupt        | ADF                    | SNZAD            | V22                  |

### Table 5 Interrupt enable bit function

| Interrupt enable bit | Occurrence of interrupt | Skip instruction |
|----------------------|-------------------------|------------------|
| 1                    | Enabled                 | Invalid          |
| 0                    | Disabled                | Valid            |

### (4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 14).

- Program counter (PC)
   An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically
- Interrupt enable flag (INTE)
   INTE flag is cleared to "0" so that interrupts are disabled.
- Interrupt request flag
   Only the request flag for the current interrupt source is cleared to "0."
- Data pointer, carry flag, skip flag, registers A and B
   The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

### (5) Interrupt processing

stored in the stack register (SK).

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address.

Use the RTI instruction to return from an interrupt service routine. Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 13)

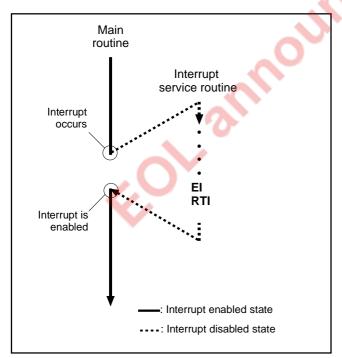



Fig. 13 Program example of interrupt processing

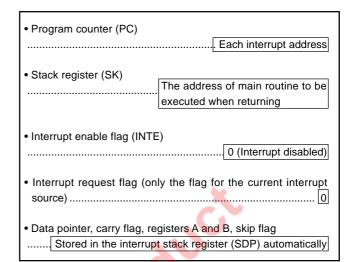



Fig. 14 Internal state when interrupt occurs

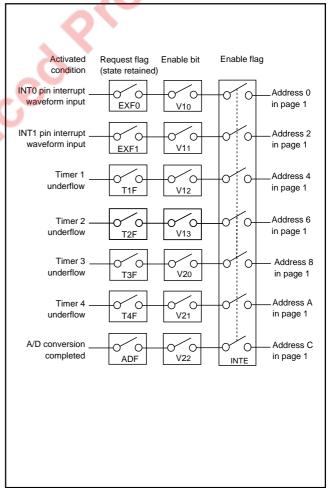



Fig. 15 Interrupt system diagram

## (6) Interrupt control registers

Interrupt control register V1
 Interrupt enable bits of external 0, external 1, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A.

Interrupt control register V2
 The timer 3, timer 4 and A/D interrupt enable bit is assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A.

### Table 6 Interrupt control registers

|      | Interrupt control register V1       | at | reset : 00002       | at RAM back-up : 00002        | R/W<br>TAV1/TV1A |
|------|-------------------------------------|----|---------------------|-------------------------------|------------------|
| V13  | Timer 2 interrupt enable bit        | 0  | Interrupt disabled  | (SNZT2 instruction is valid)  |                  |
| V 13 | Timer 2 interrupt enable bit        | 1  | Interrupt enabled ( | SNZT2 instruction is invalid) |                  |
| V12  | V/4 - Timen 4 interment analys hit  | 0  | Interrupt disabled  | (SNZT1 instruction is valid)  |                  |
| V 12 | Timer 1 interrupt enable bit        | 1  | Interrupt enabled ( |                               |                  |
| \/14 | External 1 interrupt enable hit     | 0  | Interrupt disabled  | (SNZ1 instruction is valid)   |                  |
| VII  | V11 External 1 interrupt enable bit |    | Interrupt enabled ( | SNZ1 instruction is invalid)  |                  |
| V10  | External 0 interrupt enable bit     | 0  | Interrupt disabled  | (SNZ0 instruction is valid)   |                  |
| V 10 | External officerrupt enable bit     | 1  | Interrupt enabled ( | SNZ0 instruction is invalid)  |                  |

|      | Interrupt control register V2    |   | reset : 00002        | at RAM back-up : 00002            | R/W<br>TAV2/TV2A |
|------|----------------------------------|---|----------------------|-----------------------------------|------------------|
| V23  | Not used                         | 0 | This bit has no fun  | ction, but read/write is enabled. |                  |
| \/Os | V22 A/D interrupt enable bit     | 0 | Interrupt disabled ( | (SNZAD instruction is valid)      |                  |
| V Z2 |                                  | 1 | Interrupt enabled (  | SNZAD instruction is invalid)     |                  |
| \/O. | Timor 4 interrupt enable hit     | 0 | Interrupt disabled ( | (SNZT4 instruction is valid)      |                  |
| V21  | V21 Timer 4 interrupt enable bit |   | Interrupt enabled (  | SNZT4 instruction is invalid)     |                  |
| \/Os | Vo Timor 2 interrupt enable hit  | 0 | Interrupt disabled ( | (SNZT3 instruction is valid)      |                  |
| V20  | V20 Timer 3 interrupt enable bit |   | Interrupt enabled (  | SNZT3 instruction is invalid)     |                  |

Note: "R" represents read enabled, and "W" represents write enabled.

### (7) Interrupt sequence

Interrupts only occur when the respective INTE flag, interrupt enable bits (V10–V13, V20–V23), and interrupt request flag are "1." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 16).



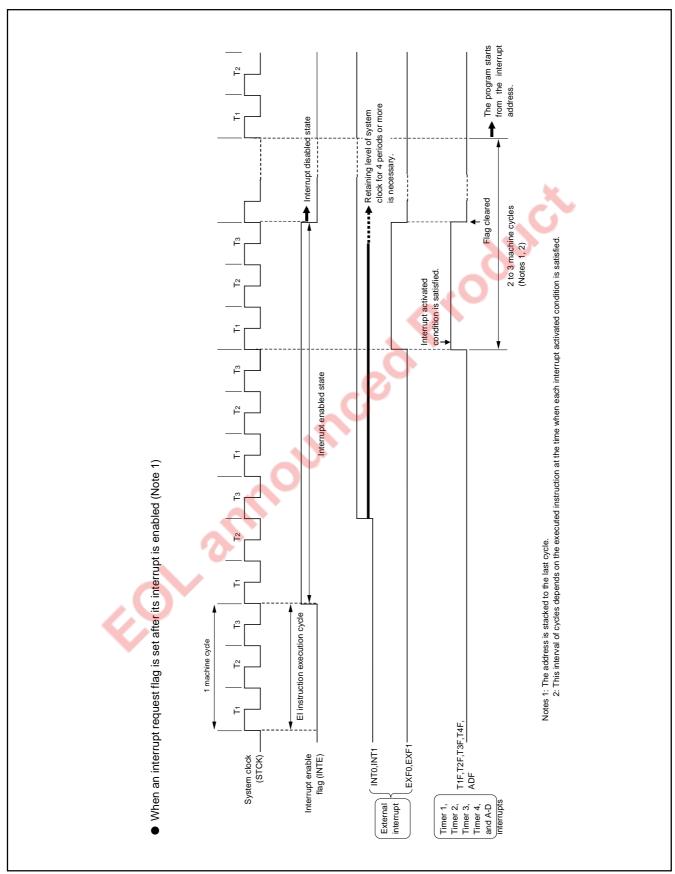



Fig. 16 Interrupt sequence

### **EXTERNAL INTERRUPTS**

The 4584 Group has the external 0 interrupt and external 1 interrupt.

An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).

The external interrupt can be controlled with the interrupt control registers I1 and I2.

Table 7 External interrupt activated conditions

| Name                 | Input pin | Activated condition                             | Valid waveform selection bit |
|----------------------|-----------|-------------------------------------------------|------------------------------|
| External 0 interrupt | P3o/INT0  | When the next waveform is input to P30/INT0 pin | l11                          |
|                      |           | Falling waveform ("H"→"L")                      | l12                          |
|                      |           | • Rising waveform ("L"→"H")                     |                              |
|                      |           | Both rising and falling waveforms               |                              |
| External 1 interrupt | P31/INT1  | When the next waveform is input to P31/INT1 pin | I21                          |
|                      |           | Falling waveform ("H"→"L")                      | I22                          |
|                      |           | Rising waveform ("L"→"H")                       |                              |
|                      |           | Both rising and falling waveforms               |                              |

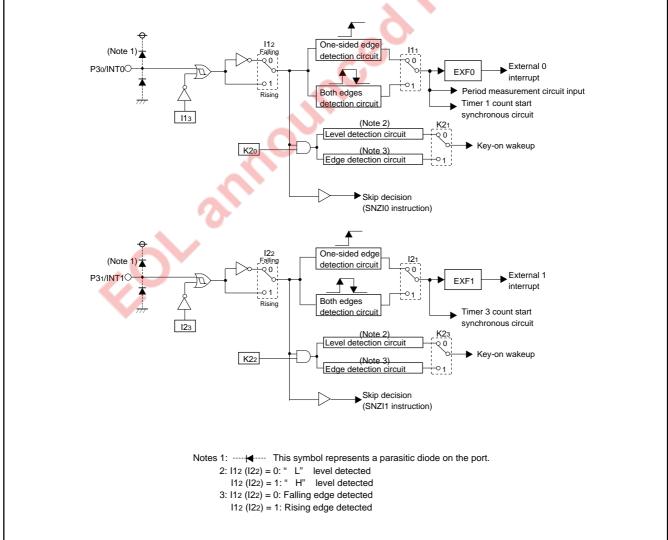



Fig. 17 External interrupt circuit structure

### (1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to P30/INT0 pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 0 interrupt activated condition
  - External 0 interrupt activated condition is satisfied when a valid waveform is input to P3o/INT0 pin.
  - The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.
- ① Set the bit 3 of register I1 to "1" for the INT0 pin to be in the input enabled state.
- 2 Select the valid waveform with the bits 1 and 2 of register I1.
- ③ Clear the EXF0 flag to "0" with the SNZ0 instruction.
- Set the NOP instruction for the case when a skip is performed
   with the SNZ0 instruction.
- Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the P30/INT0 pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs.

### (2) External 1 interrupt request flag (EXF1)

External 1 interrupt request flag (EXF1) is set to "1" when a valid waveform is input to P31/INT1 pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF1 flag can be examined with the skip instruction (SNZ1). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF1 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 1 interrupt activated condition
  - External 1 interrupt activated condition is satisfied when a valid waveform is input to P31/INT1 pin.
- The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 1 interrupt is as follows.
- ① Set the bit 3 of register I2 to "1" for the INT1 pin to be in the input enabled state.
- 2 Select the valid waveform with the bits 1 and 2 of register I2.
- 3 Clear the EXF1 flag to "0" with the SNZ1 instruction.
- Set the NOP instruction for the case when a skip is performed
   with the SNZ1 instruction.
- Set both the external 1 interrupt enable bit (V11) and the INTE flag to "1."

The external 1 interrupt is now enabled. Now when a valid waveform is input to the P31/INT1 pin, the EXF1 flag is set to "1" and the external 1 interrupt occurs.



### (3) External interrupt control registers

• Interrupt control register I1

Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A.

• Interrupt control register I2

Register I2 controls the valid waveform for the external 1 interrupt. Set the contents of this register through register A with the TI2A instruction. The TAI2 instruction can be used to transfer the contents of register I2 to register A.

Table 8 External interrupt control register

|                 | Interrupt control register I1                                        |   | reset : 00002                                                              | at RAM back-up : state retained                      | R/W<br>TAI1/TI1A |
|-----------------|----------------------------------------------------------------------|---|----------------------------------------------------------------------------|------------------------------------------------------|------------------|
| l13             | I13 INT0 pin input control bit                                       |   | INT0 pin input disabled                                                    |                                                      |                  |
| 113             | in 10 pin input control bit                                          | 1 | INT0 pin input ena                                                         | bled                                                 |                  |
| 110             | Interrupt valid waveform for INT0 pin/<br>return level selection bit | 0 | Falling waveform/"L" level ("L" level is recognized with the sinstruction) |                                                      |                  |
| 112             |                                                                      | 1 | Rising waveform/" instruction)                                             | H" level ("H" <mark>level is rec</mark> ognized with | the SNZI0        |
| l1 <sub>1</sub> | INTO pin odge detection circuit central hit                          | 0 | One-sided edge de                                                          | etected                                              |                  |
| '''             | I11 INTO pin edge detection circuit control bit                      |   | Both edges detect                                                          | ed                                                   |                  |
| l10             | INT0 pin Timer 1 count start synchronous                             |   | Timer 1 count start synchronous circuit not selected                       |                                                      |                  |
| 110             | circuit selection bit                                                | 1 | Timer 1 count star                                                         | t synchronous circuit selected                       |                  |

|             | Interrupt control register I2                                                 |   | reset: 00002                                    | at RAM back-up : state retained                                                | R/W<br>TAI2/TI2A  |  |  |
|-------------|-------------------------------------------------------------------------------|---|-------------------------------------------------|--------------------------------------------------------------------------------|-------------------|--|--|
| 123         | I23 INT1 pin input control bit (Note 2)                                       |   | INT1 pin input disa                             | bled                                                                           |                   |  |  |
| 123         | in i i più input control bit (Note 2)                                         | 1 | INT1 pin input ena                              | bled                                                                           |                   |  |  |
| 122         | Interrupt valid waveform for INT1 pin/<br>return level selection bit (Note 2) | 0 | instruction)                                    | L" level ("L" level is recognized with  H" level ("H" level is recognized with |                   |  |  |
| <b>I</b> 21 | I21 INT1 pin edge detection circuit control bit                               |   | I21 INT1 pin edge detection circuit control bit | 0                                                                              | One-sided edge de |  |  |
|             | 1                                                                             | 1 | Both edges detect                               | ed                                                                             |                   |  |  |
| 120         | INT1 pin Timer 3 count start synchronous                                      | 0 | Timer 3 count start                             | synchronous circuit not selected                                               | ·                 |  |  |
| 120         | circuit selection bit                                                         | 1 | Timer 3 count start                             | synchronous circuit selected                                                   |                   |  |  |

Notes 1: "R" represents read enabled, and "W" represents write enabled.



<sup>2:</sup> When the contents of I12, I13 I22 and I23 are changed, the external interrupt request flag (EXF0, EXF1) may be set.

### (4) Notes on External 0 interrupt

① Note [1] on bit 3 of register I1

When the input of the INTO pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

Depending on the input state of the P30/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 18 ①) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 18 ②).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 18 ③).

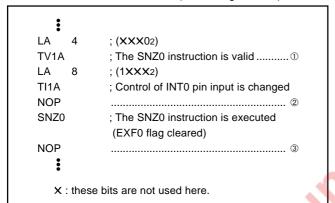



Fig. 18 External 0 interrupt program example-1

- 2 Note [2] on bit 3 of register I1
  - When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT0 pin is disabled, be careful about the following notes.
- When the input of INT0 pin is disabled (register I13 = "0"), set the key-on wakeup function to be invalid (register K20 = "0") before system enters to the RAM back-up mode. (refer to Figure 19①).

```
LA 0 ; (XXX02)
TK2A ; Input of INT0 key-on wakeup invalid .. ①
DI
EPOF
POF ; RAM back-up

X: these bits are not used here.
```

Fig. 19 External 0 interrupt program example-2

### 3 Note on bit 2 of register I1

When the interrupt valid waveform of the P30/INT0 pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

Depending on the input state of the P30/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 20①) and then, change the bit 2 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 20@).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 20<sup>®</sup>).

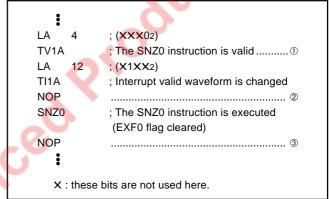



Fig. 20 External 0 interrupt program example-3

### (5) Notes on External 1 interrupt

① Note [1] on bit 3 of register I2

When the input of the INT1 pin is controlled with the bit 3 of register I2 in software, be careful about the following notes.

• Depending on the input state of the P31/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 3 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 21①) and then, change the bit 3 of register I2.

In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 21®).

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 21③).

```
LA
            ; (XX X2)
            ; The SNZ1 instruction is valid ...... ①
TV1A
LA
            ; (1XXX2)
TI2A
            ; Control of INT1 pin input is changed
NOP
            SNZ1
            ; The SNZ1 instruction is executed
            (EXF1 flag cleared)
NOP
   :
  X: these bits are not used here.
```

Fig. 21 External 1 interrupt program example-1

- 2 Note [2] on bit 3 of register I2
  - When the bit 3 of register I2 is cleared to "0", the RAM back-up mode is selected and the input of INT1 pin is disabled, be careful about the following notes.
- When the input of INT1 pin is disabled (register I23 = "0"), set the key-on wakeup function to be invalid (register K22 = "0") before system enters to the RAM back-up mode. (refer to Figure 22①).

```
LA 0 ; (X0XX2)

TK2A ; Input of INT1 key-on wakeup invalid .. ①

DI

EPOF

POF ; RAM back-up

X: these bits are not used here.
```

Fig. 22 External 1 interrupt program example-2

- 3 Note on bit 2 of register I2
- When the interrupt valid waveform of the P31/INT1 pin is changed with the bit 2 of register I2 in software, be careful about the following notes.
- Depending on the input state of the P31/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 23①) and then, change the bit 2 of register I2.

In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 23®)

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 23<sup>3</sup>).

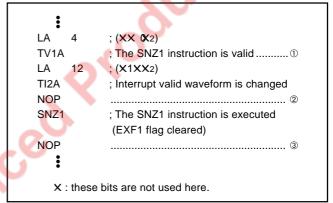



Fig. 23 External 1 interrupt program example-3

### **TIMERS**

The 4584 Group has the following timers.

· Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n + 1), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

Fixed dividing frequency timer
 The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to "1" after every n count of a count pulse.

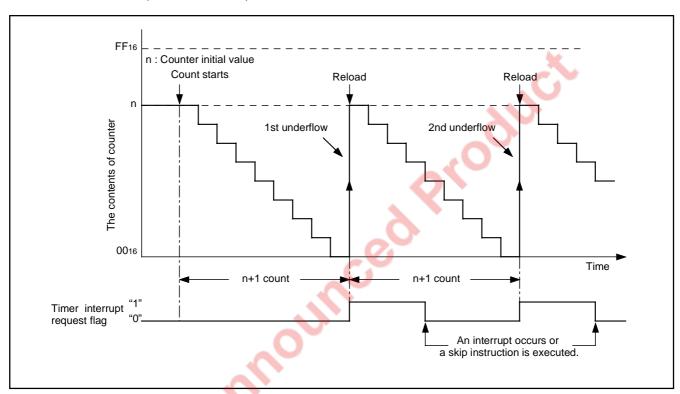



Fig. 24 Auto-reload function

The 4584 Group timer consists of the following circuits.

- Prescaler : 8-bit programmable timer
- Timer 1 : 8-bit programmable timer
- Timer 2 : 8-bit programmable timer
- Timer 3: 8-bit programmable timer
- Timer 4: 8-bit programmable timer
- Watchdog timer: 16-bit fixed dividing frequency timer
   (Timers 1, 2, 3, and 4 have the interrupt function, respectively)

Prescaler and timers 1, 2, 3, and 4 can be controlled with the timer control registers PA, W1 to W6. The watchdog timer is a free counter which is not controlled with the control register. Each function is described below.



Some parametric limits are subject to change.

| Circuit   | Structure             | Count source               | Frequency dividing ratio | Use of output signal                 | Control register |
|-----------|-----------------------|----------------------------|--------------------------|--------------------------------------|------------------|
| Prescaler | 8-bit programmable    | Instruction clock (INSTCK) | 1 to 256                 | • Timer 1, 2, 3, amd 4 count sources | PA               |
|           | binary down counter   |                            |                          |                                      |                  |
| Timer 1   | 8-bit programmable    | Instruction clock (INSTCK) | 1 to 256                 | Timer 2 count source                 | W1               |
|           | binary down counter   | Prescaler output (ORCLK)   |                          | CNTR0 output                         | W2               |
|           | (link to INT0 input)  | XIN input                  |                          | Timer 1 interrupt                    | W5               |
|           | (period/pulse width   | CNTR0 input                |                          |                                      |                  |
|           | measurement function) |                            |                          |                                      |                  |
| Timer 2   | 8-bit programmable    | System clock (STCK)        | 1 to 256                 | Timer 3 count source                 | W2               |
|           | binary down counter   | Prescaler output (ORCLK)   |                          | CNTR0 output                         |                  |
|           |                       | Timer 1 underflow          |                          | Timer 2 interrupt                    |                  |
|           |                       | (T1UDF)                    |                          |                                      |                  |
|           |                       | PWM output (PWMOUT)        |                          |                                      |                  |
| Timer 3   | 8-bit programmable    | PWM output (PWMOUT)        | 1 to 256                 | CNTR1 output control                 | W3               |
|           | binary down counter   | Prescaler output (ORCLK)   |                          | Timer 3 interrupt                    |                  |
|           | (link to INT1 input)  | • Timer 2 underflow        |                          |                                      |                  |
|           | (mint to intra imput) | (T2UDF)                    |                          | 30                                   |                  |
|           |                       | • CNTR1 input              |                          |                                      |                  |
| Timer 4   | 8-bit programmable    | • XIN input                | 1 to 256                 | • Timer 2, 3 count source            | W4               |
|           | binary down counter   | Prescaler output (ORCLK)   | 1 10 200                 | • CNTR1 output                       | ***              |
|           | (PWM output function) | Troccaior catpat (errozit) |                          | Timer 4 interrupt                    |                  |
| Watchdog  | 16-bit fixed dividing | Instruction clock (INSTCK) | 65534                    | System reset (count twice)           |                  |
| timer     | frequency             | mendenen eleek (interest)  | 00001                    | WDF flag decision                    |                  |
|           |                       |                            |                          |                                      | 1                |
|           |                       | annour                     |                          |                                      |                  |
|           |                       |                            |                          |                                      |                  |
|           |                       | 3                          |                          |                                      |                  |
|           |                       |                            |                          |                                      |                  |
|           |                       |                            |                          |                                      |                  |
|           |                       |                            |                          |                                      |                  |



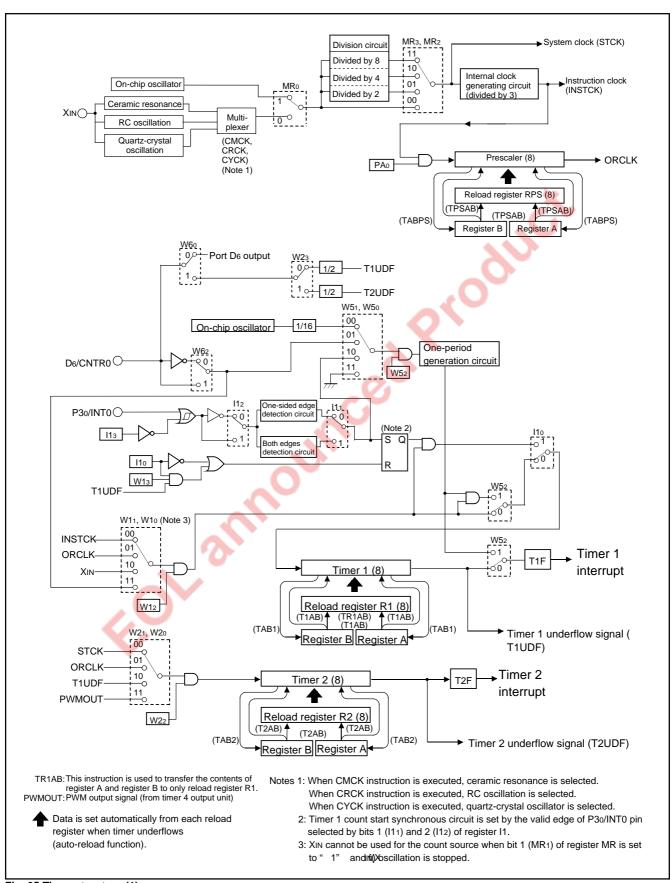



Fig. 25 Timer structure (1)

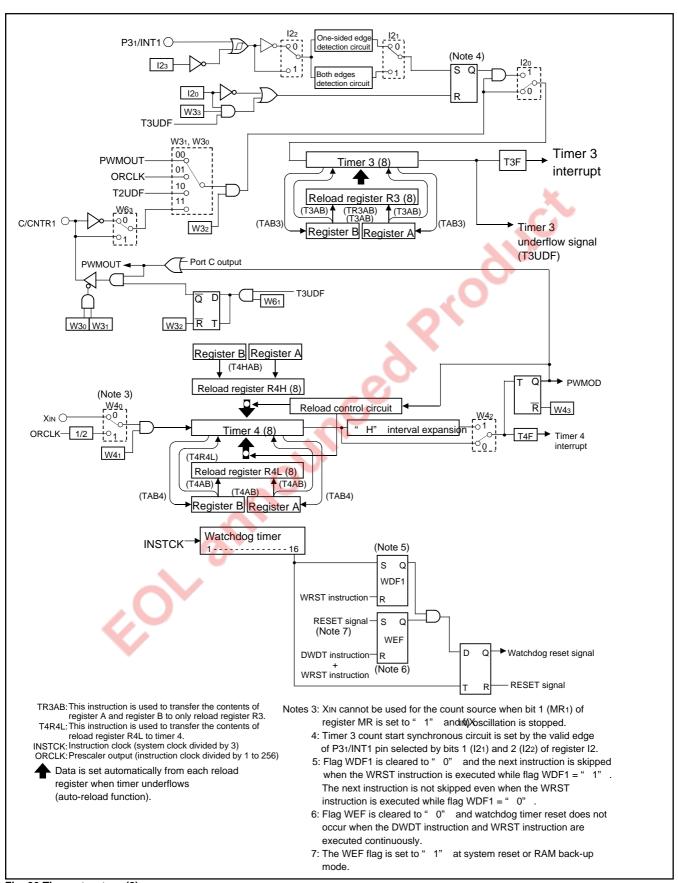



Fig. 26 Timer structure (2)

#### Table 10 Timer related registers

| Timer control register PA |                       | í | at reset : 02          | at RAM back-up : 02 | W<br>TPAA |
|---------------------------|-----------------------|---|------------------------|---------------------|-----------|
| PA0                       | Prescaler control bit | 0 | Stop (state initialize | ed)                 |           |
| PAU                       |                       | 1 | Operating              |                     |           |

| Timer control register W1 |                                           | at reset : 00002 |   |                       | at RAM back-up : state retained          | R/W<br>TAW1/TW1A |  |  |
|---------------------------|-------------------------------------------|------------------|---|-----------------------|------------------------------------------|------------------|--|--|
| W13                       | Timer 1 count auto-stop circuit selection | (                | 0 | Timer 1 count auto    | -stop circuit not selected               |                  |  |  |
| WIS                       | bit (Note 2)                              |                  | 1 | Timer 1 count auto    | Timer 1 count auto-stop circuit selected |                  |  |  |
| W12                       | Timer 1 control bit                       | 0                |   | Stop (state retained) |                                          |                  |  |  |
| VV 12                     | Timer i control bit                       |                  | 1 | Operating             |                                          |                  |  |  |
|                           |                                           | W11 W10          |   | Count source          |                                          |                  |  |  |
| W11                       |                                           | 0                | 0 | Instruction clock (II | NSTCK)                                   |                  |  |  |
|                           | Timer 1 count source selection bits       | 0                | 1 | Prescaler output (0   | DRCLK)                                   |                  |  |  |
| W10                       |                                           | 1                | 0 | XIN input             |                                          |                  |  |  |
|                           |                                           | 1                | 1 | CNTR0 input           |                                          |                  |  |  |
|                           | •                                         |                  |   |                       | 40                                       |                  |  |  |

| Timer control register W2 |                                       | at  |                         | reset : 00002 at RAM back-up : state retained R/W TAW2/TW2A |  |  |  |
|---------------------------|---------------------------------------|-----|-------------------------|-------------------------------------------------------------|--|--|--|
| W23                       | W23 CNTR0 output signal selection bit |     | 0                       | Timer 1 underflow signal divided by 2 output                |  |  |  |
| 1123                      | CNTRO output signal selection bit     | 1   |                         | Timer 2 underflow signal divided by 2 output                |  |  |  |
| W22                       | W22 Timer 2 control bit               |     | 0 Stop (state retained) |                                                             |  |  |  |
| VVZ2                      | Timer 2 control bit                   |     | 1                       | Operating                                                   |  |  |  |
| 1112                      |                                       | W21 | W20                     | Count source                                                |  |  |  |
| W21                       |                                       | 0   | 0                       | System clock (STCK)                                         |  |  |  |
|                           | Timer 2 count source selection bits   | 0   | 1                       | Prescaler output (ORCLK)                                    |  |  |  |
| W20                       |                                       | 1   | 0                       | Timer 1 underflow signal (T1UDF)                            |  |  |  |
|                           |                                       | 1   | 1                       | PWM signal (PWMOUT)                                         |  |  |  |

|       | Timer control register W3                     |     |                     | reset : 00002                    | at RAM back-up : state retained | R/W<br>TAW3/TW3A |
|-------|-----------------------------------------------|-----|---------------------|----------------------------------|---------------------------------|------------------|
| W33   | W33 Timer 3 count auto-stop circuit selection |     | 0 Timer 3 count aut |                                  | p-stop circuit not selected     |                  |
| ***** | bit (Note 3)                                  | 1   |                     | Timer 3 count auto               | -stop circuit selected          |                  |
| W32   | Timer 3 control bit                           | (   | )                   | Stop (state retained)            |                                 |                  |
| VV 32 |                                               |     | 1                   | Operating                        |                                 |                  |
|       |                                               | W31 | W30                 |                                  | Count source                    |                  |
| W31   | The second second section bits                | 0   | 0                   | PWM signal (PWM                  | OUT)                            |                  |
| -     | Timer 3 count source selection bits (Note 4)  | 0   | 1                   | Prescaler output (ORCLK)         |                                 |                  |
| W30   |                                               | 1   | 0                   | Timer 2 underflow signal (T2UDF) |                                 |                  |
|       |                                               |     | 1                   | CNTR1 input                      |                                 |                  |

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: This function is valid only when the timer 1 count start synchronous circuit is selected (I10="1").

- 3: This function is valid only when the timer 3 count start synchronous circuit is selected (I20="1").
- 4: The port C output is invalid when CNTR1 output is selected for the timer 3 count source.



| Notice: This is not a final specification.<br>Some parametric limits are subject to change. |  |
|---------------------------------------------------------------------------------------------|--|
|                                                                                             |  |

**PRELIMINARY** 

|      | Timer control register W4                              |   | reset : 00002                                      | at RAM back-up : 00002 | R/W<br>TAW4/TW4A |
|------|--------------------------------------------------------|---|----------------------------------------------------|------------------------|------------------|
| W43  | CNTP1 pin output control bit                           | 0 | CNTR1 output inva                                  | alid                   |                  |
| VV43 | CNTR1 pin output control bit                           | 1 | CNTR1 output valid                                 |                        |                  |
| W42  | PWM signal "H" interval expansion function control bit | 0 | PWM signal "H" interval expansion function invalid |                        |                  |
| VV42 |                                                        | 1 | PWM signal "H" interval expansion function valid   |                        |                  |
| W41  | Timer 4 control bit                                    | 0 | Stop (state retained)                              |                        |                  |
| VV41 |                                                        | 1 | Operating                                          |                        |                  |
| W40  | Timer 4 count source selection bit                     | 0 | XIN input                                          |                        |                  |
| VV40 |                                                        | 1 | Prescaler output (0                                | ORCLK) divided by 2    |                  |

|      | Timer control register W5                    |     | at reset : 00002 |                             | at RAM back-up : state retained                      | R/W<br>TAW5/TW5A |  |
|------|----------------------------------------------|-----|------------------|-----------------------------|------------------------------------------------------|------------------|--|
| W53  | Not used                                     |     | )                | This bit has no fund        | This bit has no function, but read/write is enabled. |                  |  |
| ""   |                                              | 1   |                  |                             |                                                      |                  |  |
| W52  | Period measurement circuit control bit       | 0   |                  | Stop                        |                                                      |                  |  |
| VV32 | T choc measurement order control bit         | 1   | 1                | Operating                   |                                                      |                  |  |
|      | Signal for period measurement selection bits | W51 | W50              |                             | Count source                                         |                  |  |
| W51  |                                              | 0   | 0                | On-chip oscillator (        | f(RING/16))                                          |                  |  |
|      |                                              | 0   | 1                | CNTR <sub>0</sub> pin input |                                                      |                  |  |
| W50  |                                              | 1   | 0                | INT0 pin input              | •                                                    |                  |  |
|      |                                              | 1   | 1                | Not available               |                                                      |                  |  |

| Timer control register W6 |                                              |   | at reset : 00002 |   | reset : 00002                              | at RAM back-up : state retained | R/W<br>TAW6/TW6A |
|---------------------------|----------------------------------------------|---|------------------|---|--------------------------------------------|---------------------------------|------------------|
| W63                       | W63 CNTR1 pin input count edge selection bit |   | 0                | 4 | Falling edge                               |                                 |                  |
| *****                     | CNTRT pill input count eage selection bit    |   | 1                |   | Rising edge                                |                                 |                  |
| W62                       | CNTR0 pin input count edge selection bit     | _ | 0                | P | Falling edge                               |                                 |                  |
| VV02                      |                                              |   | 1                |   | Rising edge                                |                                 |                  |
| W61                       | CNTR1 output auto-control circuit            |   | 0                |   | CNTR1 output auto                          | o-control circuit not selected  |                  |
| VVO                       | selection bit                                |   | 1                |   | CNTR1 output auto-control circuit selected |                                 |                  |
| W60                       | D6/CNTR0 pin function selection bit          |   | 0                |   | D6 (I/O) / CNTR0 (                         | input)                          |                  |
| VV60                      | Do/Civi No pin function selection bit        |   | 1                |   | CNTR0 (I/O) /D6 (                          | input)                          |                  |

Note: "R" represents read enabled, and "W" represents write enabled.



# Notice: This is not a final specification. Some parametric limits are subject to change.

PRELIMINARY

### (1) Timer control registers

· Timer control register PA

Register PA controls the count operation of prescaler. Set the contents of this register through register A with the TPAA instruction.

· Timer control register W1

Register W1 controls the selection of timer 1 count auto-stop circuit, and the count operation and count source of timer 1. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

Timer control register W2

Register W2 controls the selection of CNTR0 output, and the count operation and count source of timer 2. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

· Timer control register W3

Register W3 controls the selection of the count operation and count source of timer 3 count auto-stop circuit. Set the contents of this register through register A with the TW3A instruction. The TAW3 instruction can be used to transfer the contents of register W3 to register A.

· Timer control register W4

Register W4 controls the CNTR1 output, the expansion of "H" interval of PWM output, and the count operation and count source of timer 4. Set the contents of this register through register A with the TW4A instruction. The TAW4 instruction can be used to transfer the contents of register W4 to register A.

• Timer control register W5

Register W5 controls the period measurement circuit and target signal for period measurement. Set the contents of this register through register A with the TW5A instruction. The TAW5 instruction can be used to transfer the contents of register W5 to register A.

• Timer control register W6

Register W6 controls the count edges of CNTR0 pin and CNTR1 pin, selection of CNTR1 output auto-control circuit and the D6/CNTR0 pin function. Set the contents of this register through register A with the TW6A instruction. The TAW6 instruction can be used to transfer the contents of register W6 to register A..

#### (2) Prescaler

Prescaler is an 8-bit binary down counter with the prescaler reload register PRS. Data can be set simultaneously in prescaler and the reload register RPS with the TPSAB instruction. Data can be read from reload register RPS with the TABPS instruction.

Stop counting and then execute the TPSAB or TABPS instruction to read or set prescaler data.

Prescaler starts counting after the following process;

① set data in prescaler, and

2 set the bit 0 of register PA to "1."

When a value set in reload register RPS is n, prescaler divides the count source signal by n + 1 (n = 0 to 255).

Count source for prescaler is the instruction clock (INSTCK).

Once count is started, when prescaler underflows (the next count pulse is input after the contents of prescaler becomes "0"), new data is loaded from reload register RPS, and count continues (auto-reload function).

The output signal (ORCLK) of prescaler can be used for timer 1, 2, 3, and 4 count sources.

#### (3) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction. Data can be written to reload register (R1) with the TR1AB instruction. Data can be read from timer 1 with the TAB1 instruction.

Stop counting and then execute the T1AB or TAB1 instruction to read or set timer 1 data.

When executing the TR1AB instruction to set data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

Timer 1 starts counting after the following process;

- ① set data in timer 1
- 2 set count source by bits 0 and 1 of register W1, and
- 3 set the bit 2 of register W1 to "1."

When a value set in reload register R1 is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function).

INT0 pin input can be used as the start trigger for timer 1 count operation by setting the bit 0 of register I1 to "1."

Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 3 of register W1 to "1."

Timer 1 underflow signal divided by 2 can be output from CNTR0 pin by clearing bit 3 of register W2 to "0" and setting bit 0 of register W6 to "1".

The period measurement circuit starts operating by setting bit 2 of register W5 to "1" and timer 1 is used to count the one-period of the target signal for the period measurement. In this time, the timer 1 interrupt request flag (T1F) is not set by the timer 1 underflow signal, it is the flag for detecting the completion of period measurement.



PRELIMINARY

# (4) Timer 2 (interrupt function)

Timer 2 is an 8-bit binary down counter with the timer 2 reload register (R2). Data can be set simultaneously in timer 2 and the reload register (R2) with the T2AB instruction. Data can be read from timer 2 with the TAB2 instruction. Stop counting and then execute the T2AB or TAB2 instruction to read or set timer 2 data.

Timer 2 starts counting after the following process;

- 1) set data in timer 2.
- 2 select the count source with the bits 0 and 1 of register W2, and
- 3 set the bit 2 of register W2 to "1."

When a value set in reload register R2 is n, timer 2 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2, and count continues (auto-reload function).

Timer 2 underflow signal divided by 2 can be output from CNTR0 pin by setting bit 3 of register W2 to "1" and setting bit 0 of register W6 to "1".

#### (5) Timer 3 (interrupt function)

Timer 3 is an 8-bit binary down counter with the timer 3 reload register (R3). Data can be set simultaneously in timer 3 and the reload register (R3) with the T3AB instruction. Data can be written to reload register (R3) with the TR3AB instruction. Data can be read from timer 3 with the TAB3 instruction.

Stop counting and then execute the T3AB or TAB3 instruction to read or set timer 3 data.

When executing the TR3AB instruction to set data to reload register R3 while timer 3 is operating, avoid a timing when timer 3 underflows.

Timer 3 starts counting after the following process;

- ① set data in timer 3
- 2 set count source by bits 0 and 1 of register W3, and
- 3 set the bit 2 of register W3 to "1."

When a value set in reload register R3 is n, timer 3 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 3 underflows (the next count pulse is input after the contents of timer 3 becomes "0"), the timer 3 interrupt request flag (T3F) is set to "1," new data is loaded from reload register R3, and count continues (auto-reload function).

INT1 pin input can be used as the start trigger for timer 3 count operation by setting the bit 0 of register I2 to "1."

Also, in this time, the auto-stop function by timer 3 underflow can be performed by setting the bit 3 of register W3 to "1."

#### (6) Timer 4 (interrupt function)

Timer 4 is an 8-bit binary down counter with two timer 4 reload registers (R4L, R4H). Data can be set simultaneously in timer 4 and the reload register R4L with the T4AB instruction. Data can be set in the reload register R4H with the T4HAB instruction. The contents of reload register R4L set with the T4AB instruction can be set to timer 4 again with the T4R4L instruction. Data can be read from timer 4 with the TAB4 instruction.

Stop counting and then execute the T4AB or TAB4 instruction to read or set timer 4 data.

When executing the T4HAB instruction to set data to reload register R4H while timer 4 is operating, avoid a timing when timer 4 underflows.

Timer 4 starts counting after the following process;

- 1 set data in timer 4
- 2 set count source by bit 0 of register W4, and
- 3 set the bit 1 of register W4 to "1."

When a value set in reload register R4L is n, timer 4 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 4 underflows (the next count pulse is input after the contents of timer 4 becomes "0"), the timer 4 interrupt request flag (T4F) is set to "1," new data is loaded from reload register R4L, and count continues (auto-reload function).

The PWM signal generated by timer 4 can be output from CNTR1 pin by setting bit 3 of the timer control register W4 to "1".

Timer 4 can control the PWM output to CNTR1 pin with timer 3 by setting bit 1 of the timer control register W6 to "1".



#### Notice: This is not a final specification Some parametric limits are subject to change

### (7) Period measurement function (Timer 1, period measurement circuit)

Timer 1 has the period measurement circuit which performs timer count operation synchronizing with the one cycle of the signal divided by 16 of an on-chip oscillator, D6/CNTR0 pin input, or P30/ INTO pin input (one cycle, "H", or "L" pulse width at the case of a P30/INT0 pin input).

When the target signal for period measurement is set by bits 0 and 1 of register W5, a period measurement circuit is started by setting the bit 2 of register W5 to "1".

Then, if a XIN input is set as the count source of a timer 1 and the bit 2 of register W1 is set to "1", timer 1 starts operation.

Timer 1 starts operation synchronizing with the falling edge of the target signal for period measurement, and stops count operation synchronizing with the next falling edge (one-period generation circuit).

When selecting D6/CNTR0 pin input as target signal for period measurement, the period measurement synchronous edge can be changed into a rising edge by setting the bit 2 of register W6 to "1".

When selecting P3o/INT0 pin input as target signal for period measurement, period measurement synchronous edge can be changed into a rising edge by setting the bit 2 of register I1 to "1". A timer 1 interrupt request flag (T1F) is set to "1" after completing measurement operation.

When a period measurement circuit is set to be operating, timer 1 interrupt request flag (T1F) is not set by timer 1 underflow signal, but turns into a flag which detects the completion of period measurement.

In addition, a timer 1 underflow signal can be used as timer 2 count source.

Once period measurement operation is completed, even if period measurement valid edge is input next, timer 1 is in a stop state and measurement data is held.

When a period measurement circuit is used again, stop a period measurement circuit at once by setting the bit 2 of register W5 to "0", and change a period measurement circuit into a state of operation by setting the bit 2 of register W5 to "1" again.

When a period measurement circuit is used, clear bit 0 of register I1 to "0", and set a timer 1 count start synchronous circuit to be "not selected".

Start timer operation immediately after operation of a period measurement circuit is started.

When the target edge for measurement is input until timer operation is started from the operation of period measurement circuit is started, the count operation is not executed until the timer operation becomes valid. Accordingly, be careful of count data.

When data is read from timer, stop the timer and clear bit 2 of register W5 to "0" to stop the period measurement circuit, and then execute the data read instruction.

Depending on the state of timer 1, the timer 1 interrupt request flag (T1F) may be set to "1" when the period measurement circuit is stopped by clearing bit 2 of register W5 to "0". In order to avoid the occurrence of an unexpected interrupt, clear the bit 2 of register V1 to "0" (refer to Figure 271) and then, stop the bit 2 of register W5 to "0" to stop the period measurement circuit.

In addition, execute the SNZT1 instruction to clear the T1F flag after executing at least one instruction (refer to Figure 272). Also, set the NOP instruction for the case when a skip is performed with the SNZT1 instruction (refer to Figure 273).

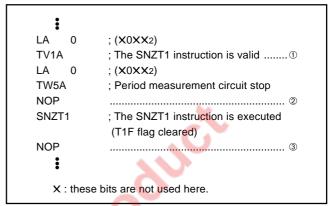



Fig. 27 Period measurement circuit program example

When a period measurement circuit is used, select the sufficiently higher-speed frequency than the signal for measurement for the count source of a timer 1.

When the target signal for period measurement is D6/CNTR0 pin input, do not select D6/CNTR0 pin input as timer 1 count source. (The XIN input is recommended as timer 1 count source at the time of period measurement circuit use.)

### (8) Pulse width measurement function (timer 1, period measurement circuit)

A period measurement circuit can measure "H" pulse width (from rising to falling) or "L" pulse width (from falling to rising) of P30/ INTO pin input (pulse width measurement function) when the following is set;

- Set the bit 0 of register W5 to "0", and set a bit 1 to "1" (target for period measurement circuit: 30/INT0 pin input).
- Set the bit 1 of register I1 to "1" (INT0 pin edge detection circuit: both edges detection)

The measurement pulse width ("H" or "L") is decided by the period measurement circuit and the P3o/INT0 pin input level at the start time of timer operation.

At the time of the start of a period measurement circuit and timer operation, "L" pulse width (from falling to rising) when the input level of P3o/INT0 pin is "H" or "H" pulse width (from rising to falling) when its level is "L" is measured.

When the input of P30/INT0 pin is selected as the target for measurement, set the bit 3 of register I1 to "1", and set the input of INT0 pin to be enabled.



# PRELIVENARY Notice: This is not a final specification. Some parametric limits are subject to change.

# (9) Count start synchronization circuit (timer 1, timer 3)

Timer 1 and timer 3 have the count start synchronous circuit which synchronizes the input of INT0 pin and INT1 pin, and can start the timer count operation.

Timer 1 count start synchronous circuit function is selected by setting the bit 0 of register I1 to "1" and the control by INT0 pin input can be performed.

Timer 3 count start synchronous circuit function is selected by setting the bit 0 of register I2 to "1" and the control by INT1 pin input can be performed.

When timer 1 or timer 3 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to each timer by inputting valid waveform to INT0 pin or INT1 pin.

The valid waveform of INT0 pin or INT1 pin to set the count start synchronous circuit is the same as the external interrupt activated condition

Once set, the count start synchronous circuit is cleared by clearing the bit I10 or I20 to "0" or reset.

However, when the count auto-stop circuit is selected, the count start synchronous circuit is cleared (auto-stop) at the timer 1 or timer 3 underflow.

#### (10) Count auto-stop circuit (timer 1, timer 3)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.

The count auto-stop cicuit is valid by setting the bit 3 of register W1 to "1". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.

This function is valid only when the timer 1 count start synchronous circuit is selected.

Timer 3 has the count auto-stop circuit which is used to stop timer 3 automatically by the timer 3 underflow when the count start synchronous circuit is used.

The count auto-stop cicuit is valid by setting the bit 3 of register W3 to "1". It is cleared by the timer 3 underflow and the count source to timer 3 is stopped.

This function is valid only when the timer 3 count start synchronous circuit is selected.

# (11) Timer input/output pin (D6/CNTR0 pin, C/CNTR1 pin)

CNTR0 pin is used to input the timer 1 count source and output the timer 1 and timer 2 underflow signal divided by 2.

CNTR1 pin is used to input the timer 3 count source and output the PWM signal generated by timer 4.

When the PWM signal is output from C/CNTR1 pin, set the output latch of port C to "0".

The D6/CNTR0 pin function can be selected by bit 0 of register W6. The selection of CNTR1 output signal can be controlled by bit 3 of register W4.

When the CNTR0 input is selected for timer 1 count source, timer 1 counts the rising or falling waveform of CNTR0 input. The count edge is selected by the bit 2 of register W6.

When the CNTR1 input is selected for timer 3 count source, timer 3 counts the rising or falling waveform of CNTR1 input. The count edge is selected by the bit 3 of register W6.

When CNTR1 input is selected, the output of port C is invalid (high-impedance).

# (12) PWM output function (C/CNTR1, timer 3, timer 4)

When bit 3 of register W4 is set to "1", timer 4 reloads data from reload register R4L and R4H alternately each underflow.

Timer 4 generates the PWM signal (PWMOUT) of the "L" interval set as reload register R4L, and the "H" interval set as reload register R4H. The PWM signal (PWMOUT) is output from CNTR1 pin.

When bit 2 of register W4 is set to "1" at this time, the interval (PWM signal "H" interval) set to reload register R4H for the counter of timer 4 is extended for a half period of count source.

In this case, when a value set in reload register R4H is n, timer 4 divides the count source signal by n + 1.5 (n = 1 to 255).

When this function is used, set "1" or more to reload register R4H. When bit 1 of register W6 is set to "1", the PWM signal output to CNTR1 pin is switched to valid/invalid each timer 3 underflow. However, when timer 3 is stopped (bit 2 of register W3 is cleared to "0"), this function is canceled.

Even when bit 1 of a register W4 is cleared to "0" in the "H" interval of PWM signal, timer 4 does not stop until it next timer 4 underflow. When clearing bit 1 of register W4 to "0" to stop timer 4 at the use of PWM output function, avoid a timing when timer 4 underflows.



# (13) Timer interrupt request flags (T1F, T2F, T3F, T4F)

Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2, SNZT3, SNZT4).

Use the interrupt control register V1, V2 to select an interrupt or a skip instruction.

An interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction. The timer 1 interrupt request flag (T1F) is not set by the timer 1 underflow signal, it is the flag for detecting the completion of period measurement.

#### (14) Precautions

Note the following for the use of timers.

#### Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.

Stop counting and then execute the TPSAB instruction to set prescaler data.

#### · Timer count source

Stop timer 1, 2, 3 and 4 counting to change its count source.

#### · Reading the count value

Stop timer 1, 2, 3 or 4 counting and then execute the data read instruction (TAB1, TAB2, TAB3, TAB4) to read its data.

#### · Writing to the timer

Stop timer 1, 2, 3 or 4 counting and then execute the data write instruction (T1AB, T2AB, T3AB, T4AB) to write its data.

#### · Writing to reload register R1, R3, R4H

When writing data to reload register R1, reload register R3 or reload regiser R4H while timer 1, timer 3 or timer 4 is operating, avoid a timing when timer 1, timer 3 or timer 4 underflows.

#### Timer 4

Avoid a timing when timer 4 underflows to stop timer 4 at the use of PWM output function.

When "H" interval extension function of the PWM signal is set to be "valid", set "1" or more to reload register R4H.

# • Timer input/output pin

When the PWM signal is output from C/CNTR1 pin, set the output latch of port C to "0".

#### • Period measurement function

When a period measurement circuit is used, clear bit 0 of register I1 to "0", and set a timer 1 count start synchronous circuit to be "not selected".

Start timer operation immediately after operation of a period measurement circuit is started.

When the target edge for measurement is input until timer operation is started from the operation of period measurement circuit is started, the count operation is not executed until the timer operation becomes valid. Accordingly, be careful of count data.

When data is read from timer, stop the timer and clear bit 2 of register W5 to "0" to stop the period measurement circuit, and then execute the data read instruction.

Depending on the state of timer 1, the timer 1 interrupt request flag (T1F) may be set to "1" when the period measurement circuit is stopped by clearing bit 2 of register W5 to "0". In order to avoid the occurrence of an unexpected interrupt, clear the bit 2 of register V1 to "0" (refer to Figure 28①) and then, stop the bit 2 of register W5 to "0" to stop the period measurement circuit.

In addition, execute the SNZT1 instruction to clear the T1F flag after executing at least one instruction (refer to Figure 282).

Also, set the NOP instruction for the case when a skip is performed with the SNZT1 instruction (refer to Figure 283).

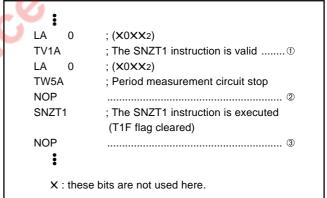



Fig. 28 Period measurement circuit program example

While a period measurement circuit is operating, the timer 1 interrupt request flag (T1F) is not set by the timer 1 underflow signal, it is the flag for detecting the completion of period measurement.

When a period measurement circuit is used, select the sufficiently higher-speed frequency than the signal for measurement for the count source of a timer 1.

When the target signal for period measurement is D6/CNTR0 pin input, do not select D6/CNTR0 pin input as timer 1 count source. (The XIN input is recommended as timer 1 count source at the time of period measurement circuit use.)

When the input of P30/INT0 pin is selected for measurement, set the bit 3 of a register I1 to "1", and set the input of INTO pin to be enabled.





Fig. 29 Timer 4 operation (reload register R4L: "0316", R4H: "0216")

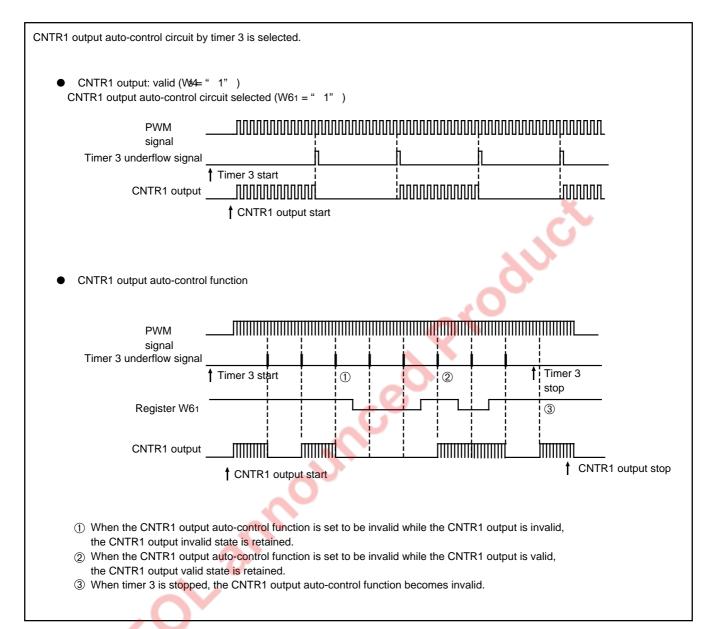



Fig. 30 CNTR1 output auto-control function by timer 3

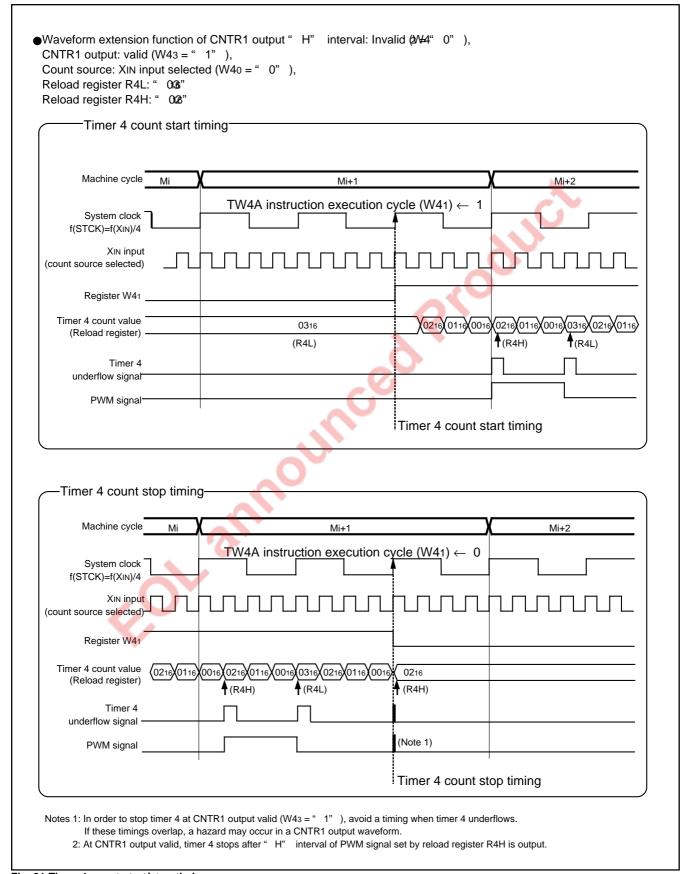



Fig. 31 Timer 4 count start/stop timing

#### WATCHDOG TIMER

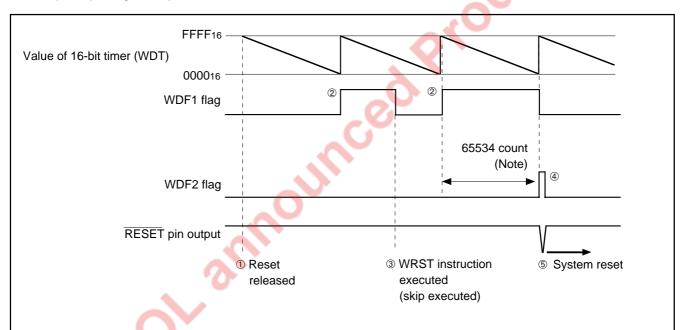
Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).

The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset.

After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches "000016," the next count pulse is input), the WDF1 flag is set to "1."

If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to "1," and the  $\overline{\text{RESET}}$  pin outputs "L" level to reset the microcomputer.

Execute the WRST instruction at each period of 65534 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally.


When the WEF flag is set to "1" after system is released from reset, the watchdog timer function is valid.

When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to "0" and the watchdog timer function is invalid.

The WEF flag is set to "1" at system reset or RAM back-up mode. The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped.

When the WRST instruction is executed while the WDF1 flag is "0", the next instruction is not skipped.

The skip function of the WRST instruction can be used even when the watchdog timer function is invalid.



- ① After system is released from reset (= after program is started), timer WDT starts count down.
- 2 When timer WDT underflow occurs, WDF1 flag is set to "1."
- ③ When the WRST instruction is executed, WDF1 flag is cleared to "0," the next instruction is skipped.
- When timer WDT underflow occurs while WDF1 flag is "1," WDF2 flag is set to "1" and the watchdog reset signal is output.
- ⑤ The output transistor of RESET pin is turned "ON" by the watchdog reset signal and system reset is executed.

Note: The number of count is equal to the number of cycle because the count source of watchdog timer is the instruction clock.

Fig. 32 Watchdog timer function



Some parametric limits are subject to change.

When the watchdog timer is used, clear the WDF1 flag at the period of 65534 machine cycles or less with the WRST instruction. When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 33). The watchdog timer is not stopped with only the DWDT instruction. The contents of WDF1 flag and timer WDT are initialized at the RAM back-up mode.

When using the watchdog timer and the RAM back-up mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the RAM back-up state (refer to Figure 34). The watchdog timer function is valid after system is returned from the RAM back-up. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the RAM back-up, and stop the watchdog timer function.

```
WRST; WDF1 flag cleared

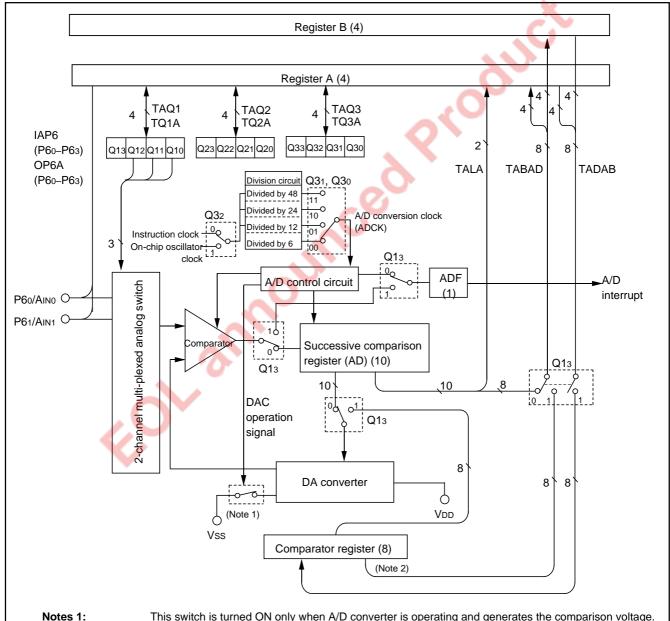
DI
DWDT; Watchdog timer function enabled/disabled
WRST; WEF and WDF1 flags cleared
```

Fig. 33 Program example to start/stop watchdog timer

```
WRST; WDF1 flag cleared
NOP
DI; Interrupt disabled
EPOF; POF instruction enabled
POF

U
Oscillation stop
```

Fig. 34 Program example to enter the mode when using the watchdog timer




# A/D CONVERTER (Comparator)

The 4584 Group has a built-in A/D conversion circuit that performs conversion by 10-bit successive comparison method. Table 11 shows the characteristics of this A/D converter. This A/D converter can also be used as an 8-bit comparator to compare analog voltages input from the analog input pin with preset values.

Table 11 A/D converter characteristics

| Table 11742 Content Characterionec |                                                                                |  |  |  |  |  |  |
|------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|--|--|
| Parameter                          | Characteristics                                                                |  |  |  |  |  |  |
| Conversion format                  | Successive comparison method                                                   |  |  |  |  |  |  |
| Resolution                         | 10 bits                                                                        |  |  |  |  |  |  |
| Relative accuracy                  | Linearity error: ±2LSB (2.7 V ≤ VDD ≤ 5.5V)                                    |  |  |  |  |  |  |
|                                    | Differential non-linearity error:                                              |  |  |  |  |  |  |
|                                    | $\pm 0.9$ LSB (2.2 V $\leq$ VDD $\leq$ 5.5V)                                   |  |  |  |  |  |  |
| Conversion speed                   | 31 $\mu$ s (f(XIN) = 6 MHz, STCK = f(XIN) (XIN through-mode), ADCK = INSTCK/6) |  |  |  |  |  |  |
| Analog input pin                   | 2                                                                              |  |  |  |  |  |  |



In this switch is turned ON only when A/D converter is operating and generates the comparison voltage.
Writing/reading data to the comparator register is possible only in the comparator mode (№1).

The value of the comparator register is retained even when the mode is switched to the A/D conversion mode (Q13=0) because it is separated from the successive comparison register (AD). Also, the resolution in the comparator mode is 8 bits because the comparator register consists of 8 bits.

Fig. 35 A/D conversion circuit structure



# Table 12 A/D control registers

| A/D control register Q1              |                                  | at reset : 00002 |                                                      | at RAM back-up : state retained | R/W<br>TAQ1/TQ1A |  |
|--------------------------------------|----------------------------------|------------------|------------------------------------------------------|---------------------------------|------------------|--|
| Q13 A/D operation mode selection bit |                                  | 0                | A/D conversion mo                                    | de                              |                  |  |
| QIS                                  | A/D operation mode selection bit | 1                | Comparator mode                                      |                                 |                  |  |
| Q12                                  | Not used                         | 0                | This bit has no function, but read/write is enabled. |                                 |                  |  |
| Q12                                  |                                  | 1                | This bit has no function, but read/white is enabled. |                                 |                  |  |
| Q1 <sub>1</sub>                      | Not used                         | 0                | This hit has no function, but road/units is anabled  |                                 |                  |  |
| Q I I                                | Not used                         | 1                | This bit has no function, but read/write is enabled. |                                 |                  |  |
| Q10                                  | Analog input pin selection bits  | 0                | AIN0                                                 |                                 |                  |  |
| Q10                                  | Analog input pin selection bits  | 1                | AIN1                                                 |                                 |                  |  |

| A/D control register Q2 |                                       | at reset : 00002 |                                                      | at RAM back-up : state retained   | R/W<br>TAQ2/TQ2A |  |  |
|-------------------------|---------------------------------------|------------------|------------------------------------------------------|-----------------------------------|------------------|--|--|
| Q23                     | Not used                              | 0                | This bit has no function, but read/write is enabled. |                                   |                  |  |  |
| QZS                     | Not used                              | 1                | This bit has no function, but read/white is enabled. |                                   |                  |  |  |
| Q22                     | Not used                              | 0                | This bit has no function, but read/write is enabled. |                                   |                  |  |  |
| QZZ                     |                                       | 1                | This bit has no run                                  | ction, but read/write is enabled. |                  |  |  |
| Q21                     | D64/Albia nin function coloration hit | 0                | P61                                                  |                                   |                  |  |  |
| QZI                     | P61/AIN1 pin function selection bit   | 1                | AIN1                                                 |                                   |                  |  |  |
| Q20                     | P60/AIN0 pin function selection bit   | 0                | P60                                                  |                                   |                  |  |  |
| <b>Q</b> 20             |                                       | 1                | AIN0                                                 | *                                 |                  |  |  |

| A/D control register Q3 |                                                | at reset : 00002 |     | reset : 00002         | at RAM back-up : state retained   | R/W<br>TAQ3/TQ3A |
|-------------------------|------------------------------------------------|------------------|-----|-----------------------|-----------------------------------|------------------|
| Q33                     | Not used                                       | 1                |     | This bit has no fund  | ction, but read/write is enabled. |                  |
| Q32                     | O20 A/D converter energian clock colection bit |                  |     | Instruction clock (II | NSTCK)                            |                  |
| Q32                     | A/D converter operation clock selection bit    | 1                |     | On-chip oscillator (  | f(RING))                          |                  |
|                         |                                                | Q31              | Q30 |                       | Division ratio                    |                  |
| Q31                     |                                                | 0                | 0   | Frequency divided     | by 6                              |                  |
|                         | A/D converter operation clock division         | 0                | 1   | Frequency divided     | by 12                             |                  |
| Q30                     | ratio selection bits                           | 1                | 0   | Frequency divided     | by 24                             |                  |
|                         | <b>'</b>                                       | 1                | 1   | Frequency divided     | by 48                             |                  |

Note: "R" represents read enabled, and "W" represents write enabled.



# (1) A/D control register

· A/D control register Q1

Register Q1 controls the selection of A/D operation mode and the selection of analog input pins. Set the contents of this register through register A with the TQ1A instruction. The TAQ1 instruction can be used to transfer the contents of register Q1 to register A.

• A/D control register Q2

Register Q2 controls the selection of P60/AIN0, P61/AIN1. Set the contents of this register through register A with the TQ2A instruction. The TAQ2 instruction can be used to transfer the contents of register Q2 to register A.

A/D control register Q3

Register Q3 controls the selection of A/D converter operation clock. Set the contents of this register through register A with the TQ3A instruction. The TAQ3 instruction can be used to transfer the contents of register Q3 to register A.

#### (2) Operating at A/D conversion mode

The A/D conversion mode is set by setting the bit 3 of register Q1 to "0."

# (3) Successive comparison register AD

Register AD stores the A/D conversion result of an analog input in 10-bit digital data format. The contents of the high-order 8 bits of this register can be stored in register B and register A with the TABAD instruction. The contents of the low-order 2 bits of this register can be stored into the high-order 2 bits of register A with the TALA instruction. However, do not execute these instructions during A/D conversion.

When the contents of register AD is n, the logic value of the comparison voltage Vref generated from the built-in DA converter can be obtained with the reference voltage VDD by the following formula:

Logic value of comparison voltage Vref

$$V_{ref} = \frac{V_{DD}}{1024} \times n$$

n: The value of register AD (n = 0 to 1023)

# (4) A/D conversion completion flag (ADF)

A/D conversion completion flag (ADF) is set to "1" when A/D conversion completes. The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

#### (5) A/D conversion start instruction (ADST)

A/D conversion starts when the ADST instruction is executed. The conversion result is automatically stored in the register AD.

# (6) Operation description

A/D conversion is started with the A/D conversion start instruction (ADST). The internal operation during A/D conversion is as follows:

- When the A/D conversion starts, the register AD is cleared to "00016."
- ② Next, the topmost bit of the register AD is set to "1," and the comparison voltage Vref is compared with the analog input voltage Vin.
- When the comparison result is Vref < VIN, the topmost bit of the register AD remains set to "1." When the comparison result is Vref > VIN, it is cleared to "0."

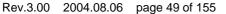

The 4584 Group repeats this operation to the lowermost bit of the register AD to convert an analog value to a digital value. A/D conversion stops after 2 machine cycles + A/D conversion clock (31  $\mu$ s when f(XIN) = 6.0 MHz in XIN through mode, f(ADCK) = f(INSTCK)/6) from the start, and the conversion result is stored in the register AD. An A/D interrupt activated condition is satisfied and the ADF flag is set to "1" as soon as A/D conversion completes (Figure 36).

Table 13 Change of successive comparison register AD during A/D conversion

| At starting conversion          | Change of successive comparison register AD Comparison voltage (Vref) value                                   |
|---------------------------------|---------------------------------------------------------------------------------------------------------------|
| 1st comparison                  | 1 0 0 0 0 0 <del>VDD</del> 2                                                                                  |
| 2nd comparison                  | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                        |
| 3rd comparison                  | *1 *2 1 0 0 0 0 VDD 2 ± VDD 4 ± VDD 8                                                                         |
| After 10th comparison completes | A/D conversion result       *1     *2     *3      *8     *9     *A         VDD     2     ±     VDD       1024 |

\*1: 1st comparison result\*3: 3rd comparison result\*9: 9th comparison result

\*2: 2nd comparison result\*8: 8th comparison result\*A: 10th comparison result



# Notice: This is not a final specification. Some parametric limits are subject to change.

# (7) A/D conversion timing chart

Figure 36 shows the A/D conversion timing chart.

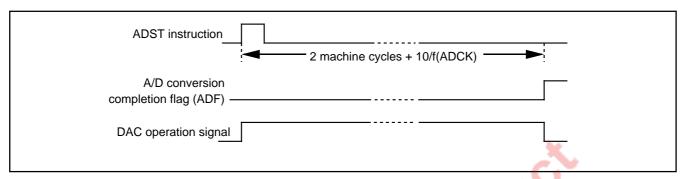



Fig. 36 A/D conversion timing chart

# (8) How to use A/D conversion

How to use A/D conversion is explained using as example in which the analog input from P60/AINO pin is A/D converted, and the high-order 4 bits of the converted data are stored in address M(Z, X, Y) = (0, 0, 0), the middle-order 4 bits in address M(Z, X, Y) = (0, 0, 1), and the low-order 2 bits in address M(Z, X, Y) = (0, 0, 2) of RAM. The A/D interrupt is not used in this example.

Instruction clock/6 is selected as the A/D converter operation clock.

- ① Select the AINO pin function with the bit 0 of the register Q2. Select the AINO pin function and A/D conversion mode with the register Q1. Also, the instruction clock divided by 6 is selected with the register Q3. (refer to Figure 37)
- 2 Execute the ADST instruction and start A/D conversion.
- ③ Examine the state of ADF flag with the SNZAD instruction to determine the end of A/D conversion.
- Transfer the low-order 2 bits of converted data to the high-order 2 bits of register A (TALA instruction).
- Transfer the contents of register A to M (Z, X, Y) = (0, 0, 2).
- © Transfer the high-order 8 bits of converted data to registers A and B (TABAD instruction).
- ® Transfer the contents of register B to register A, and then, store into M(Z, X, Y) = (0, 0, 0).

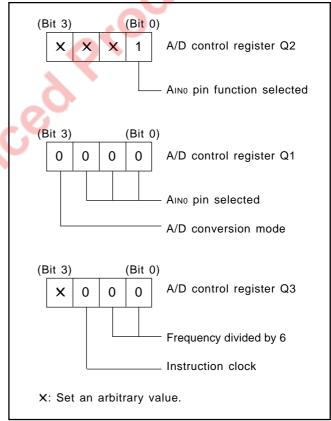



Fig. 37 Setting registers

# (9) Operation at comparator mode

The A/D converter is set to comparator mode by setting bit 3 of the register Q1 to "1."

Below, the operation at comparator mode is described.

#### (10) Comparator register

In comparator mode, the built-in DA comparator is connected to the 8-bit comparator register as a register for setting comparison voltages. The contents of register B is stored in the high-order 4 bits of the comparator register and the contents of register A is stored in the low-order 4 bits of the comparator register with the TADAB instruction.

When changing from A/D conversion mode to comparator mode, the result of A/D conversion (register AD) is undefined.

However, because the comparator register is separated from register AD, the value is retained even when changing from comparator mode to A/D conversion mode. Note that the comparator register can be written and read at only comparator mode.

If the value in the comparator register is n, the logic value of comparison voltage V<sub>ref</sub> generated by the built-in DA converter can be determined from the following formula:

Logic value of comparison voltage 
$$V_{ref} = \frac{V_{DD}}{256} \times n$$

n: The value of register AD (n = 0 to 255)

#### (11) Comparison result store flag (ADF)

In comparator mode, the ADF flag, which shows completion of A/D conversion, stores the results of comparing the analog input voltage with the comparison voltage. When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1." The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

# (12) Comparator operation start instruction (ADST instruction)

In comparator mode, executing ADST starts the comparator operating.

The comparator stops 2 machine cycles + A/D conversion clock f(ADCK) 1 clock after it has started (4  $\mu$ s at f(XIN) = 6.0 MHz in XIN through mode, f(ADCK) = f(INSTCK)/6). When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1"

#### (13) Notes for the use of A/D conversion

#### TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."

#### Operation mode of A/D converter

Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with the bit 3 of register Q1 while the A/D converter is operating.

Clear the bit 2 of register V2 to "0" to change the operating mode of the A/D converter from the comparator mode to A/D conversion mode.

The A/D conversion completion flag (ADF) may be set when the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to the register Q1, and execute the SNZAD instruction to clear the ADF flag.

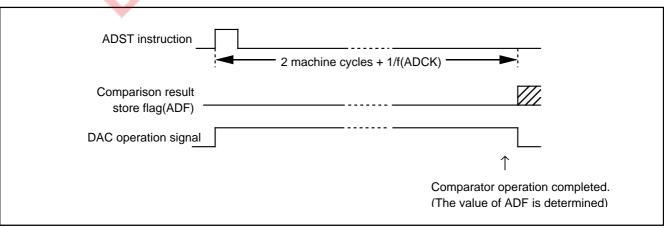



Fig. 38 Comparator operation timing chart



# (14) Definition of A/D converter accuracy

The A/D conversion accuracy is defined below (refer to Figure 39).

· Relative accuracy

① Zero transition voltage (VoT)

This means an analog input voltage when the actual A/D conversion output data changes from "0" to "1."

② Full-scale transition voltage (VFST)

This means an analog input voltage when the actual A/D conversion output data changes from "1023" to "1022."

3 Linearity error

This means a deviation from the line between VoT and VFST of a converted value between VoT and VFST.

④ Differential non-linearity error

This means a deviation from the input potential difference required to change a converter value between VoT and VFST by 1 LSB at the relative accuracy.

Absolute accuracy

This means a deviation from the ideal characteristics between 0 to VDD of actual A/D conversion characteristics.

Vn: Analog input voltage when the output data changes from "n" to "n+1" (n = 0 to 1022)

• 1LSB at relative accuracy 
$$\rightarrow \frac{VFST-V0T}{1022}$$
 (V)

• 1LSB at absolute accuracy 
$$\rightarrow \frac{VDD}{1024}$$
 (V)

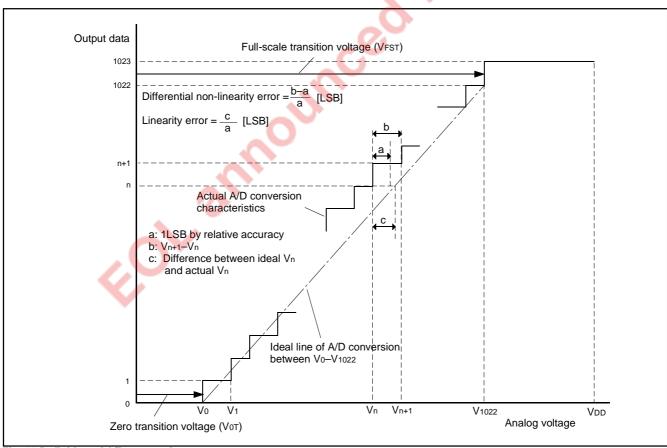



Fig. 39 Definition of A/D conversion accuracy

#### **RESET FUNCTION**

System reset is performed by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied; the value of supply voltage is the minimum value or more of the recommended operating conditions.

Then when "H" level is applied to  $\overline{\text{RESET}}$  pin, software starts from address 0 in page 0.

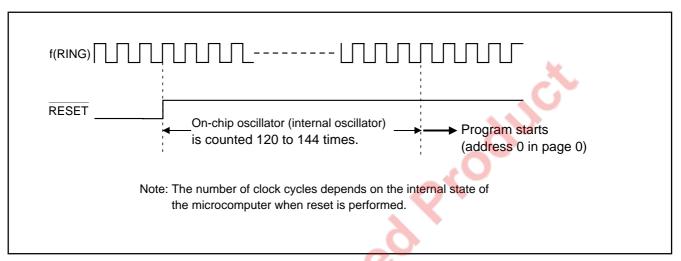



Fig. 40 Reset release timing

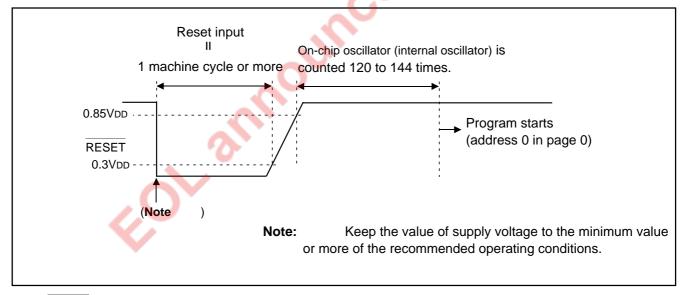



Fig. 41 RESET pin input waveform and reset operation



# (1) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V until the value of supply voltage reaches the minimum operating voltage must be set to 100  $\mu s$  or less.

If the rising time exceeds 100  $\mu$ s, connect a capacitor between the  $\overline{\text{RESET}}$  pin and Vss at the shortest distance, and input "L" level to  $\overline{\text{RESET}}$  pin until the value of supply voltage reaches the minimum operating voltage.

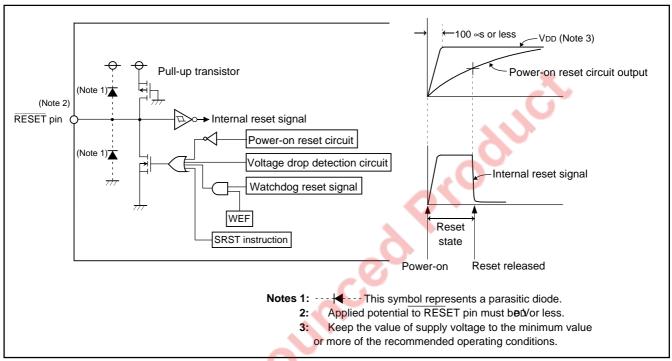



Fig. 42 Structure of reset pin and its peripherals, and power-on reset operation

Table 14 Port state at reset

| Name                         | Function | State                          |  |
|------------------------------|----------|--------------------------------|--|
| D0-D5                        | D0-D5    | High-impedance (Notes 1, 2)    |  |
| D6/CNTR0                     | D6       | High-impedance (Notes 1, 2)    |  |
| C/CNTR1                      | С        | "L" (Vss) level                |  |
| P00-P03                      | P00-P03  | High-impedance (Notes 1, 2, 3) |  |
| P10-P13                      | P10-P13  | High-impedance (Notes 1, 2, 3) |  |
| P20, P21, P22                | P20-P22  | High-impedance (Note 1)        |  |
| P30/INT0, P31/INT1, P32, P33 | P30-P33  | High-impedance (Note 1)        |  |
| P40-P43                      | P40-P43  | High-impedance (Note 1)        |  |
| P50-P53                      | P50-P53  | High-impedance (Notes 1, 2)    |  |
| P60/AIN0, P61/AIN1, P62, P63 | P60-P63  | High-impedance (Note 1)        |  |

Notes 1: Output latch is set to "1."

2: Output structure is N-channel open-drain.

3: Pull-up transistor is turned OFF.



# Some parametric limits are subject to change.

# (2) Internal state at reset

Figure 43 and 44 show internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure are undefined, so set the initial value to them.

| Program counter (PC)                           |                           |
|------------------------------------------------|---------------------------|
| Address 0 in page 0 is set to program counter. |                           |
| Interrupt enable flag (INTE)                   | 0 (Interrupt disabled)    |
| Power down flag (P)                            |                           |
| External 0 interrupt request flag (EXF0)       |                           |
| External 1 interrupt request flag (EXF1)       |                           |
| Interrupt control register V1                  |                           |
| Interrupt control register V2                  |                           |
| Interrupt control register I1                  |                           |
| Interrupt control register I2                  |                           |
| Timer 1 interrupt request flag (T1F)           |                           |
| Timer 2 interrupt request flag (T2F)           |                           |
| Timer 3 interrupt request flag (T3F)           |                           |
| Timer 4 interrupt request flag (T4F)           |                           |
| Watchdog timer flags (WDF1, WDF2)              |                           |
| Watchdog timer enable flag (WEF)               |                           |
| Timer control register PA                      |                           |
| Timer control register W1                      |                           |
| Timer control register W2                      |                           |
| Timer control register W3                      |                           |
| Timer control register W4                      |                           |
| Timer control register W5                      |                           |
| Timer control register W6                      |                           |
| Clock control register MR                      |                           |
| Clock control register RG                      |                           |
| 8-bit general register SIX X                   | XXXXXX                    |
| A/D conversion completion flag (ADF)           |                           |
| A/D control register Q1                        |                           |
| A/D control register Q2                        |                           |
| A/D control register Q3                        |                           |
| Successive comparison register ADX X X X       | XXXXXX                    |
| Comparator register   X X                      | X   X   X   X   X   X     |
| Key-on wakeup control register K0              |                           |
| Key-on wakeup control register K1              |                           |
| Key-on wakeup control register K2              |                           |
| Pull-up control register PU0                   |                           |
| Pull-up control register PU1                   |                           |
|                                                | "X" represents undefined. |

Fig. 43 Internal state at reset 1

"X" represents undefined.

Fig. 44 Internal state at reset 2

#### **VOLTAGE DROP DETECTION CIRCUIT**

The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer if the supply voltage drops below a set value.

When the level of the VDCE pin is "H" and CPU is operating, the voltage drop detection circuit is valid.

#### (1) SVDE instruction

When the SVDE instruction is executed, the voltage drop detection circuit is valid even after system enters into the RAM back-up mode. The SVDE instruction can be executed only once. In order to release the execution of the SVDE instruction, the system reset is required.

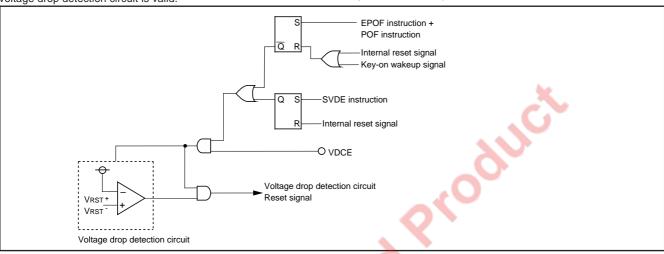



Fig. 45 Voltage drop detection reset circuit

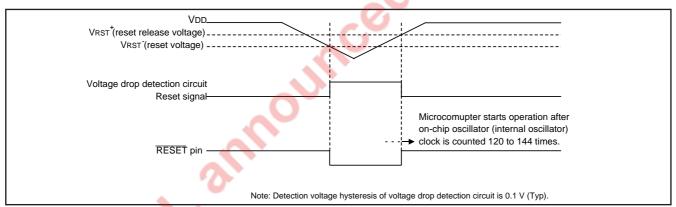



Fig. 46 Voltage drop detection circuit operation waveform

Table 15 Voltage drop detection circuit operation state

| VDCE pin | At CPU operating | At RAM back-up (SVDE instruction not executed) | At RAM back-up (SVDE instruction executed) |
|----------|------------------|------------------------------------------------|--------------------------------------------|
| "L"      | Invalid          | Invalid                                        | Invalid                                    |
| "H"      | Valid            | Invalid                                        | Valid                                      |

#### (2) Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 47);

supply voltage does not fall below to VRST-, and

its voltage re-goes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to VRST- and re-goes up after that.

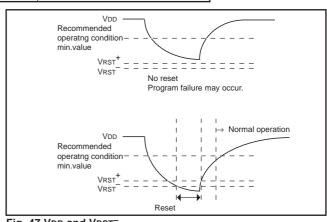



Fig. 47 VDD and VRST



#### **RAM BACK-UP MODE**

The 4584 Group has the RAM back-up mode.

When the EPOF and POF instructions are executed continuously, system enters the RAM back-up state. The POF instruction is equal to the NOP instruction when the EPOF instruction is not executed before the POF instruction.

As oscillation stops retaining RAM, the function of reset circuit and states at RAM back-up mode, current dissipation can be reduced without losing the contents of RAM. Table 16 shows the function and states retained at RAM back-up. Figure 47 shows the state transition.

# (1) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the power down flag (P) with the SNZP instruction.

#### (2) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the EPOF and POF instructions continuously, the CPU starts executing the program from address 0 in page 0. In this case, the P flag is "1."

### (3) Cold start condition

The CPU starts executing the program from address 0 in page 0 when;

- reset pulse is input to RESET pin, or
- · reset by watchdog timer is performed, or
- voltage drop detection circuit detects the voltage drop, or
- SRST instruction is executed.

In this case, the P flag is "0."

Table 16 Functions and states retained at RAM back-up

| Function                                     | RAM back-up |
|----------------------------------------------|-------------|
| Program counter (PC), registers A, B,        |             |
| carry flag (CY), stack pointer (SP) (Note 2) | X           |
| Contents of RAM                              | 0           |
| Interrupt control registers V1, V2           | ×           |
| Interrupt control registers I1, I2           | 0           |
| Selection of oscillation circuit             | 0           |
| Clock control register MR                    | ×           |
| Timer 1 function                             | (Note 3)    |
| Timer 2 function                             | (Note 3)    |
| Timer 3 function                             | (Note 3)    |
| Timer 4 function                             | (Note 3)    |
| Watchdog timer function                      | X (Note 4)  |
| Timer control register PA, W4                | ×           |
| Timer control registers W1 to W3, W5, W6     | 0           |
| A/D conversion function                      | ×           |
| A/D control registers Q1 to Q3               | 0           |
| Voltage drop detection circuit               | (Note 5)    |
| Port level                                   | (Note 6)    |
| Key-on wakeup control register K0 to K2      | 0           |
| Pull-up control registers PU0, PU1           | 0           |
| Port output direction registers FR0 to FR3   | 0           |
| External 0 interrupt request flag (EXF0)     | ×           |
| External 1 interrupt request flag (EXF1)     | ×           |
| Timer 1 interrupt request flag (T1F)         | (Note 3)    |
| Timer 2 interrupt request flag (T2F)         | (Note 3)    |
| Timer 3 interrupt request flag (T3F)         | (Note 3)    |
| Timer 4 interrupt request flag (T4F)         | (Note 3)    |
| A/D conversion completion flag (ADF)         | ×           |
| Interrupt enable flag (INTE)                 | ×           |
| Watchdog timer flags (WDF1, WDF2)            | X (Note 4)  |
| Watchdog timer enable flag (WEF)             | X (Note 4)  |
|                                              | -           |

Notes 1:"O" represents that the function can be retained, and "X" represents that the function is initialized.

Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.

- 2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at RAM back-up.
- 3: The state of the timer is undefined.
- 4: Initialize the watchdog timer with the WRST instruction, and then execute the POF instruction.
- 5: The voltage drop detection circuit is valid at RAM back-up when the SVDE instruction is executed while VDCE pin is "H".
- 6: In the RAM back-up mode, C/CNTR1 pin outputs "L" level. However, when the CNTR input is selected (W11, W10="11"), C/CNTR1 pin is in an input enabled state (output=high-impedance). Other ports retain their respective output levels.



# (4) Return signal

An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped. Table 17 shows the return condition for each return source.

#### (5) Related registers

- Key-on wakeup control register K0
  Register K0 controls the ports P0 and P1 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the contents of register K0 to register A.
- Key-on wakeup control register K1
  Register K1 controls the return condition and valid waveform/
  level selection for port P0. Set the contents of this register
  through register A with the TK1A instruction. In addition, the
  TAK1 instruction can be used to transfer the contents of register
  K1 to register A.
- Key-on wakeup control register K2
  Register K2 controls the INTO and INT1 key-on wakeup functions
  and return condition function. Set the contents of this register
  through register A with the TK2A instruction. In addition, the
  TAK2 instruction can be used to transfer the contents of register
  K2 to register A.

- Pull-up control register PU0
  - Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPU0A instruction. In addition, the TAPU0 instruction can be used to transfer the contents of register PU0 to register A.
- Pull-up control register PU1
   Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction. In addition, the TAPU1 instruction can be

used to transfer the contents of register PU0 to register A.

- External interrupt control register I1
  Register I1 controls the valid waveform of external 0 interrupt, input control of INT0 pin, and return input level. Set the contents of this register through register A with the TI1A instruction. In addition, the TAI1 instruction can be used to transfer the contents of register I1 to register A.
- External interrupt control register I2
  Register I2 controls the valid waveform of external 1 interrupt, input control of INT1 pin, and return input level. Set the contents of this register through register A with the TI2A instruction. In addition, the TAI2 instruction can be used to transfer the contents of register I2 to register A.

Table 17 Return source and return condition

| R               | Return source | Return condition                                                      | Remarks                                                                                                                                                                                                                                                      |
|-----------------|---------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| signal          | Ports P00-P03 | "L" level input, or rising edge ("L" \rightarrow "H") or falling edge | The key-on wakeup function can be selected with 2 port units. Select the return level ("L" level or "H" level), and return condition (return by level or edge) with the register K1 according to the external state before going into the RAM back-up state. |
| akeup s         | Ports P10-P13 | Return by an external "L" level input.                                | The key-on wakeup function can be selected with 2 port units. Set the port using the key-on wakeup function to "H" level before going into the RAM back-up state.                                                                                            |
| External wakeup | INT0<br>INT1  | "L" level input, or rising edge                                       | Select the return level ("L" level or "H" level) with the registers I1 and I2 according to the external state, and return condition (return by level or edge) with the register K2 before going into the RAM back-up state.                                  |
|                 |               | The external interrupt request flags (EXF0, EXF1) are not set.        |                                                                                                                                                                                                                                                              |



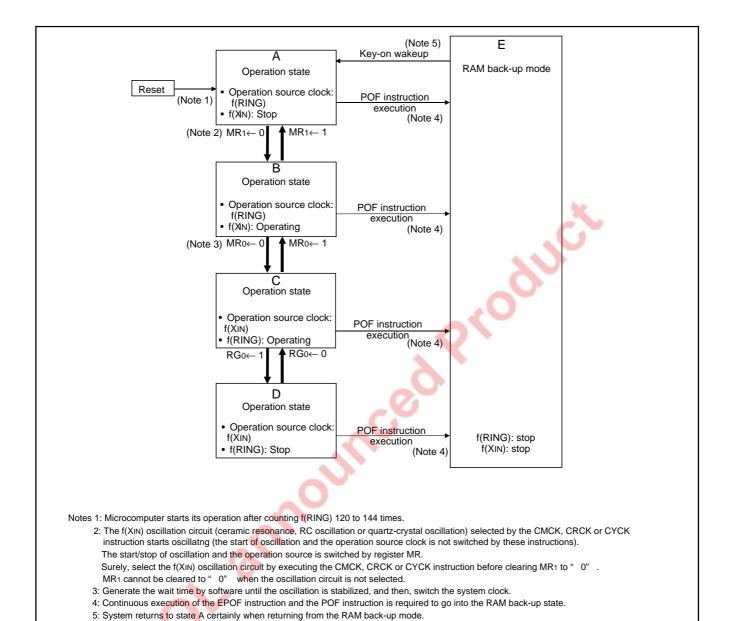



Fig. 48 State transition

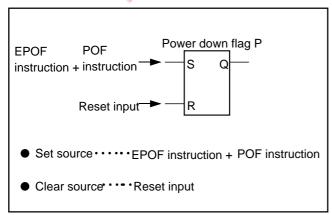



Fig. 49 Set source and clear source of the P flag

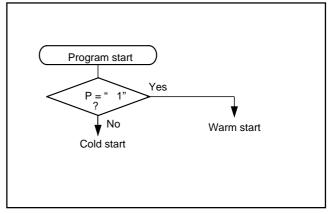



Fig. 50 Start condition identified example using the SNZP instruction



However, the selected contents (CMCK, CRCK, CYCK instruction execution state) of f(XIN) oscillation circuit is retained.

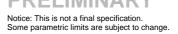



Table 18 Key-on wakeup control register, pull-up control register

| Key-on wakeup control register K0           |                                              | at reset : 00002         |                            | at RAM back-up : state retained | R/W<br>TAK0/TK0A |  |
|---------------------------------------------|----------------------------------------------|--------------------------|----------------------------|---------------------------------|------------------|--|
| Pins P12 and P13 key-on wakeup              |                                              | 0                        | Key-on wakeup not          | used                            |                  |  |
| K03                                         | control bit                                  | 1 Key-on wakeup use      |                            | ed                              |                  |  |
| 1/0-                                        | Pins P10 and P11 key-on wakeup               | 0                        | Key-on wakeup not          | used                            |                  |  |
| K02                                         | control bit                                  | 1                        | Key-on wakeup use          | ed                              |                  |  |
| K01                                         | Pins P02 and P03 key-on wakeup               | 0                        | Key-on wakeup not          | used                            |                  |  |
| KU1                                         | control bit                                  | 1                        | Key-on wakeup use          | ed                              |                  |  |
| K00                                         | Pins P00 and P01 key-on wakeup               | 0                        | Key-on wakeup not          | used                            |                  |  |
| KU0                                         | control bit                                  | 1                        | Key-on wakeup use          | ed 🌭                            |                  |  |
|                                             | Key-on wakeup control register K1            | at                       | reset : 00002              | at RAM back-up : state retained | R/W<br>TAK1/TK1  |  |
| 1/4 -                                       | Ports P02 and P03 return condition selection | 0                        | Return by level            |                                 | '                |  |
| K13                                         | bit                                          | 1                        | Return by edge             |                                 |                  |  |
| K12                                         | Ports P02 and P03 valid waveform/            |                          | Falling waveform/"L" level |                                 |                  |  |
| K12                                         | level selection bit                          | 1                        | ł" level                   |                                 |                  |  |
| 1/4 /                                       | Ports P01 and P00 return condition selection | 0                        | Return by level            | 30                              |                  |  |
| K11                                         | bit                                          | 1                        | Return by edge             |                                 |                  |  |
| K10                                         | Ports P01 and P00 valid waveform/            | 0                        | Falling waveform/"L        | ." level                        |                  |  |
| K10                                         | level selection bit                          | 1                        | Rising waveform/"H         | l" level                        |                  |  |
|                                             | Key-on wakeup control register K2            | at                       | reset : 00002              | at RAM back-up : state retained | R/W<br>TAK2/TK2/ |  |
| K23                                         | INT1 pin return condition selection bit      | 0                        | Return by level            |                                 |                  |  |
| NZS                                         | INT I pili retarri condition selection bit   | 1                        | Return by edge             |                                 |                  |  |
| <b>K2</b> 2                                 | INT1 pin key-on wakeup contro bit            | 0 Key-on wakeup not used |                            |                                 |                  |  |
| NZ2                                         | int i pili key-oli wakeup colillo bit        | 1                        | Key-on wakeup used         |                                 |                  |  |
| K21                                         | INTO his return condition collection bit     |                          | Return by level            |                                 |                  |  |
| K21 INT0 pin return condition selection bit |                                              | 1                        | Return by edge             |                                 |                  |  |
| <b>K2</b> 0                                 | IX20 INITO nin koy on wakaya cantra hit      |                          | Key-on wakeup not          | used                            |                  |  |
| K20 INT0 pin key-on wakeup contro bit       |                                              | 1                        | Key-on wakeup use          | ed                              |                  |  |

Note: "R" represents read enabled, and "W" represents write enabled.



Table 19 Key-on wakeup control register, pull-up control register

| Pull-up control register PU0   |                              | at | reset : 00002          | at RAM back-up : state retained | R/W<br>TAPU0/<br>TPU0A |  |  |
|--------------------------------|------------------------------|----|------------------------|---------------------------------|------------------------|--|--|
| Pug P03 pin pull-up transistor |                              | 0  | Pull-up transistor O   | FF                              | 11 00/1                |  |  |
| PU03 control bit               |                              | 1  | Pull-up transistor ON  |                                 |                        |  |  |
| PU02                           | P02 pin pull-up transistor   | 0  | Pull-up transistor OFF |                                 |                        |  |  |
| PU02                           | control bit                  | 1  | Pull-up transistor O   | N                               |                        |  |  |
| DUIG                           | P01 pin pull-up transistor   | 0  | Pull-up transistor O   | FF                              |                        |  |  |
| PU01 control bit               |                              | 1  | Pull-up transistor O   | N                               |                        |  |  |
| P00 pin pull-up transistor     |                              | 0  | Pull-up transistor OFF |                                 |                        |  |  |
| PU00 control bit               |                              | 1  | Pull-up transistor ON  |                                 |                        |  |  |
|                                | Pull-up control register PU1 | at | reset : 00002          | at RAM back-up : state retained | R/W<br>TAPU1/<br>TPU1A |  |  |
| DU4-                           | P13 pin pull-up transistor   | 0  | Pull-up transistor O   | FF                              |                        |  |  |
| PU13                           | control bit                  | 1  | Pull-up transistor ON  |                                 |                        |  |  |
| DU4-                           | P12 pin pull-up transistor   | 0  | Pull-up transistor OFF |                                 |                        |  |  |
| PU12                           | control bit                  | 1  | Pull-up transistor ON  |                                 |                        |  |  |
| P11 pin pull-up transistor     |                              | 0  | Pull-up transistor OFF |                                 |                        |  |  |
| PU11                           | control bit                  |    | Pull-up transistor ON  |                                 |                        |  |  |
| DUI                            | P1o pin pull-up transistor   | 0  | Pull-up transistor O   | FF                              |                        |  |  |
| PU10                           | control bit                  | 1  | Pull-up transistor ON  |                                 |                        |  |  |

Note: "R" represents read enabled, and "W" represents write enabled.



#### **CLOCK CONTROL**

The clock control circuit consists of the following circuits.

- On-chip oscillator (internal oscillator)
- · Ceramic resonator
- · RC oscillation circuit
- · Quartz-crystal oscillation circuit
- Multi-plexer (clock selection circuit)
- · Frequency divider
- · Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.

Figure 51 shows the structure of the clock control circuit.

The 4584 Group operates by the on-chip oscillator clock (f(RING)) which is the internal oscillator after system is released from reset. Also, the ceramic resonator, the RC oscillation or quartz-crystal oscillator can be used for the main clock (f(XIN)) of the 4584 Group. The CMCK instruction, CRCK instruction or CYCK instruction is executed to select the ceramic resonator, RC oscillator or quartz-crystal oscillator respectively.

The CMCK, CRCK, and CYCK instructions can be used only to select main clock (f(XIN)). In this time, the start of oscillation and the switch of system clock are not performed.

The oscillation start/stop of main clock f(XIN) is controlled by bit 1 of register MR. The system clock is selected by bit 0 of register MR. The oscillation start/stop of on-chip oscillator is controlled by register RG.

The oscillation circuit by the CMCK, CRCK or CYCK instruction can be selected only at once.

The oscillation circuit corresponding to the first executed one of these instructions is valid.

Execute the main clock (f(XIN)) selection instruction (CMCK, CRCK or CYCK instruction) in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

When the CMCK, CRCK, and CYCK instructions are never executed, main clock (f(XIN)) cannot be used and system can be operated only by on-chip oscillator.

The no operated clock source (f(RING)) or (f(XIN)) cannot be used for the system clock. Also, the clock source (f(RING) or f(XIN)) selected for the system clock cannot be stopped.

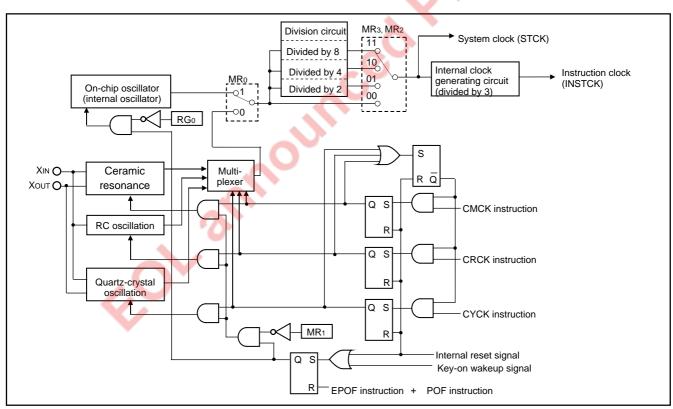



Fig. 51 Clock control circuit structure

roduci

# (1) Main clock generating circuit (f(XIN))

The ceramic resonator, RC oscillation or quartz-crystal oscillator can be used for the main clock of this MCU.

After system is released from reset, the MCU starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

When the ceramic resonator is used, execute the CMCK instruction. When the RC oscillation is used, execute the CRCK instruction. When the quartz-crystal oscillator is used, execute the CYCK instruction. The oscillation start/stop of main clock f(XIN) is controlled by bit 1 of register MR. The system clock is selected by bit 0 of register MR. The oscillation circuit by the CMCK, CRCK or CYCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these instructions is valid.

Execute the CMCK, CRCK or CYCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended). Also, when the CMCK, CRCK or CYCK instruction is not executed in program, this MCU operates by the on-chip oscillator..

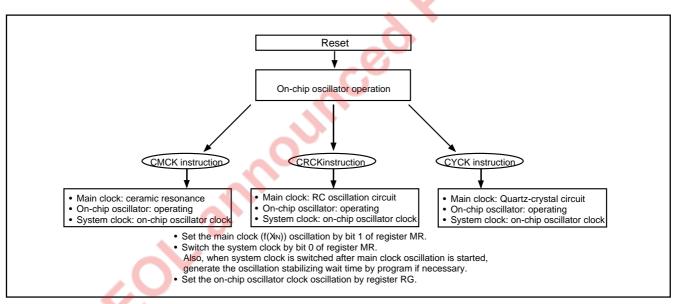



Fig. 52 Switch to ceramic resonance/RC oscillation/quartz-crystal oscillation



# (2) On-chip oscillator operation

When the MCU operates by the on-chip oscillator as the main clock (f(XIN)) without using the ceramic resonator, RC oscillator or quartz-crystal oscillation, leave XIN pin and XOUT pin open (Figure 53).

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

#### (3) Ceramic resonator

When the ceramic resonator is used as the main clock (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. Then, execute the CMCK instruction. A feedback resistor is built in between pins XIN and XOUT (Figure 54).

#### (4) RC oscillation

When the RC oscillation is used as the main clock (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the CRCK instruction (Figure 55).

The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

# (5) Quartz-crystal oscillator

When a quartz-crystal oscillator is used as the main clock (f(XIN)), connect this external circuit and a quartz-crystal oscillator to pins XIN and XOUT at the shortest distance. Then, execute the CYCK instruction. A feedback resistor is built in between pins XIN and XOUT (Figure 56).

#### (6) External clock

When the external clock signal for the main clock (f(XIN)) is used, connect the clock source to XIN pin and XOUT pin open. In program, after the CMCK instruction is executed, set main clock (f(XIN)) oscillation start to be enabled (MR1=0).

For this product, when RAM back-up mode and main clock (f(XIN)) stop (MR1=1), XIN pin is fixed to "H" in order to avoid the through current by floating of internal logic. The XIN pin is fixed to "H" until main clock (f(XIN)) oscillation starts to be valid (MR1=0) by the CMCK instruction from reset state. Accordingly, when an external clock is used, connect a 1 k $\Omega$  or more resistor to XIN pin in series to limit of current by competitive signal.

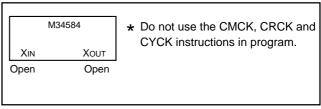



Fig. 53 Handling of XIN and XOUT when operating on-chip oscillator

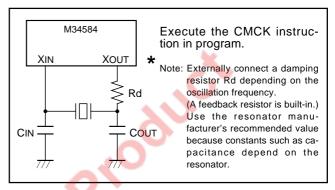



Fig. 54 Ceramic resonator external circuit

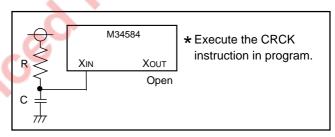



Fig. 55 External RC oscillation circuit

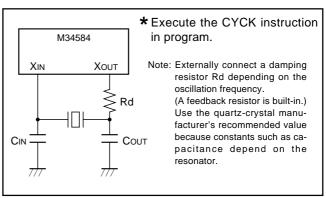



Fig. 56 External quartz-crystal circuit

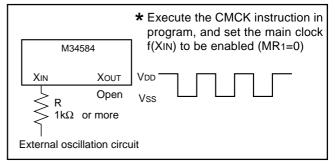



Fig. 57 External clock input circuit



# (7) Clock control register MR

Register MR controls system clock. Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.

# (8) Clock control register RG

Register RG controls start/stop of on-chip oscillator. Set the contents of this register through register A with the TRGA instruction.

Table 20 Clock control registers

| Table 20 Glock Control registers |                                                         |   |                  |                                      |                                      |                      |  |  |
|----------------------------------|---------------------------------------------------------|---|------------------|--------------------------------------|--------------------------------------|----------------------|--|--|
|                                  | Clock control register MR                               |   | at reset : 11112 |                                      | at RAM back-up : 11112               | R/W<br>TAMR/<br>TMRA |  |  |
|                                  |                                                         |   | MR2              |                                      | Operation mode                       |                      |  |  |
| MR3                              |                                                         | 0 | 0                | Through mode (free                   | Through mode (frequency not divided) |                      |  |  |
|                                  | Operation mode selection bits                           | 0 | 1                | Frequency divided by 2 mode          |                                      |                      |  |  |
| MR <sub>2</sub>                  |                                                         | 1 | 0                | Frequency divided                    | by 4 mode                            |                      |  |  |
|                                  |                                                         | 1 | 1                | Frequency divided                    | by 8 mode                            |                      |  |  |
| MR1                              | Main clock f(XIN) oscillation circuit control bit       | ( | )                | Main clock (f(XIN))                  | oscillation enabled                  |                      |  |  |
| IVIIX                            | WICH IMAIN CLOCK I(AIN) OSCIIIATION CITCUIT CONTROL DIL |   | 1                | Main clock (f(XIN)) oscillation stop |                                      |                      |  |  |
| MR <sub>0</sub>                  | System clock oscillation source selection bit           | ( | )                | Main clock (f(XIN))                  | 0                                    |                      |  |  |
| IVIIXO                           |                                                         | 1 | 1                | On-chip oscillator c                 | lock (f(RING))                       |                      |  |  |

| Clock control register RG |                                          | at reset : 02 |                      | at RAM back-up : 02          | W<br>TRGA |
|---------------------------|------------------------------------------|---------------|----------------------|------------------------------|-----------|
| RG0                       | On-chip oscillator (f(RING)) control bit | 0             | On-chip oscillator ( | f(RING)) oscillation enabled |           |
| KG0                       |                                          | 1             | On-chip oscillator ( | f(RING)) oscillation stop    |           |

Note: "R" represents read enabled, and "W" represents write enabled.

#### **ROM ORDERING METHOD**

- 1.Mask ROM Order Confirmation Form\*
- 2.Mark Specification Form\*
- 3.Data to be written to ROM, in EPROM form (three identical copies) or one floppy disk.
- \* For the mask ROM confirmation and the mark specifications, refer to the "Renesas Technology Corp." Homepage (http://www.renesas.com/en/rom).





#### LIST OF PRECAUTIONS

#### Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. 0.1  $\mu$ F) between pins VDD and Vss at the shortest distance.
- · equalize its wiring in width and length, and
- use relatively thick wire.

In the One Time PROM version, CNVss pin is also used as VPP pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about 5 k $\Omega$  (connect this resistor to CNVss/ VPP pin as close as possible).

#### ② Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

#### 3 Register initial values 2

The initial value of the following registers are undefined at RAM backup. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

#### Stack registers (SKs)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

#### ⑤ Multifunction

- The input/output of P30 and P31 can be used even when INT0 and INT1 are selected.
- The input/output of De can be used even when CNTR0 (input) is selected.
- $\bullet$  The input of D6 can be used even when CNTR0 (output) is selected.
- The "H" output of C can be used even when CNTR1 (output) is selected.

# Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.

Stop counting and then execute the TPSAB instruction to set prescaler data.

#### ⑦ Timer count source

Stop timer 1, 2, 3 and 4 counting to change its count source.

#### ® Reading the count value

Stop timer 1, 2, 3 or 4 counting and then execute the data read instruction (TAB1, TAB2, TAB3, TAB4) to read its data.

#### Writing to the timer

Stop timer 1, 2, 3 or 4 counting and then execute the data write instruction (T1AB, T2AB, T3AB, T4AB) to write its data.

#### <sup>®</sup>Writing to reload register R1, R3, R4H

When writing data to reload register R1, reload register R3 or reload regiser R4H while timer 1, timer 3 or timer 4 is operating, avoid a timing when timer 1, timer 3 or timer 4 underflows.

#### 10 Timer 4

Avoid a timing when timer 4 underflows to stop timer 4 at the use of PWM output function..

When "H" interval extension function of the PWM signal is set to be "valid", set "1" or more to reload register R4H.

#### Timer input/output pin

When the PWM signal is output from C/CNTR1 pin, set the output latch of port C to "0".

# <sup>®</sup> Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function.
- The watchdog timer function is valid after system is returned from the RAM back-up state. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the RAM back-up state, and stop the watchdog timer function.
- When the watchdog timer function and RAM back-up function are used at the same time, execute the WRST instruction before system enters into the RAM back-up state and initialize the flag WDF1.



d Product

### <sup>(4)</sup> Period measurement circuit

When a period measurement circuit is used, clear bit 0 of register I1 to "0", and set a timer 1 count start synchronous circuit to be "not selected".

Start timer operation immediately after operation of a period measurement circuit is started.

When the edge for measurement is input until timer operation is started from the operation of period measurement circuit is started, the count operation is not executed until the timer operation becomes valid. Accordingly, be careful of count data.

When data is read from timer, stop the timer and clear bit 2 of register W5 to "0" to stop the period measurement circuit, and then execute the data read instruction.

Depending on the state of timer 1, the timer 1 interrupt request flag (T1F) may be set to "1" when the period measurement circuit is stopped by clearing bit 2 of register W5 to "0". In order to avoid the occurrence of an unexpected interrupt, clear the bit 2 of register V1 to "0" (refer to Figure 58①) and then, stop the bit 2 of register W5 to "0" to stop the period measurement circuit.

In addition, execute the SNZT1 instruction to clear the T1F flag after executing at least one instruction (refer to Figure 58<sup>2</sup>).

Also, set the NOP instruction for the case when a skip is performed with the SNZT1 instruction (refer to Figure 58<sup>®</sup>).

While a period measurement circuit is operating, the timer 1 interrupt request flag (T1F) is not set by the timer 1 underflow signal, it is the flag for detecting the completion of period measurement.

When a period measurement circuit is used, select the sufficiently higher-speed frequency than the signal for measurement for the count source of a timer 1.

When the signal for period measurement is D6/CNTR0 pin input, do not select D6/CNTR0 pin input as timer 1 count source.

(The XIN input is recommended as timer 1 count source at the time of period measurement circuit use.)

When the input of P30/INT0 pin is selected for measurement, set the bit 3 of a register I1 to "1", and set the input of INT0 pin to be enabled.

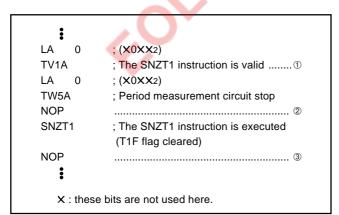



Fig. 58 Period measurement circuit program example



### P30/INT0 pin

• Note [1] on bit 3 of register I1

When the input of the INT0 pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

Depending on the input state of the P30/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 59 ①) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 59 @).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 59 ③).

Fig. 59 External 0 interrupt program example-1

- Note [2] on bit 3 of register I1
  When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INTO pin is disabled, be careful about the following notes.
- When the input of INT0 pin is disabled (register I13 = "0"), set the key-on wakeup function to be invalid (register K20 = "0") before system enters to the RAM back-up mode. (refer to Figure 60<sup>1</sup>).

```
LA 0 ; (XXX02)
TK2A ; Input of INT0 key-on wakeup invalid .. ①
DI
EPOF
POF ; RAM back-up

X: these bits are not used here.
```

Fig. 60 External 0 interrupt program example-2

#### Note on bit 2 of register I1

When the interrupt valid waveform of the P30/INT0 pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

Depending on the input state of the P30/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 61①) and then, change the bit 2 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 612).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 61®).

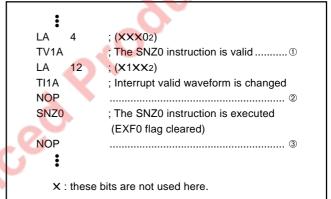



Fig. 61 External 0 interrupt program example-3

# <sup>®</sup>P31/INT1 pin

• Note [1] on bit 3 of register I2

When the input of the INT1 pin is controlled with the bit 3 of register I2 in software, be careful about the following notes.

Depending on the input state of the P31/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 3 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 62<sup>®</sup>) and then, change the bit 3 of register I2.

In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 62®).

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 62<sup>3</sup>).

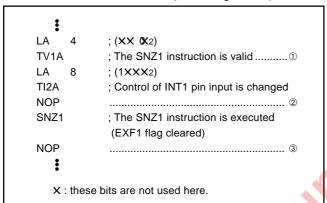



Fig. 62 External 1 interrupt program example-1

- Note [2] on bit 3 of register I2 When the bit 3 of register I2 is cleared to "0", the RAM back-up mode is selected and the input of INT1 pin is disabled, be careful about the following notes.
- When the input of INT1 pin is disabled (register I23 = "0"), set the key-on wakeup function to be invalid (register K22 = "0") before system enters to the RAM back-up mode. (refer to Figure 63①).

```
LA 0 ; (X0XX2)
TK2A ; Input of INT1 key-on wakeup invalid .. ①
DI
EPOF
POF ; RAM back-up

X: these bits are not used here.
```

Fig. 63 External 1 interrupt program example-2

- Note on bit 2 of register I2
  - When the interrupt valid waveform of the P31/INT1 pin is changed with the bit 2 of register I2 in software, be careful about the following notes.
- Depending on the input state of the P31/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 64①) and then, change the bit 2 of register I2.

In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 642).

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 64<sup>3</sup>).

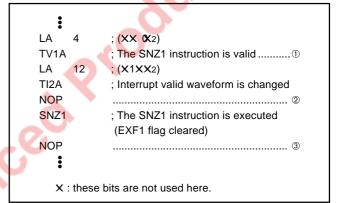



Fig. 64 External 1 interrupt program example-3



#### ⊕ A/D converter-1

- When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."
- Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with the bit 3 of register Q1 while the A/D converter is operating.
- Clear the bit 2 of register V2 to " 0" to change the operating mode of the A/D converter from the comparator mode to A/D conversion mode.
- The A/D conversion completion flag (ADF) may be set when the
  operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a
  value to the register Q1, and execute the SNZAD instruction to
  clear the ADF flag.

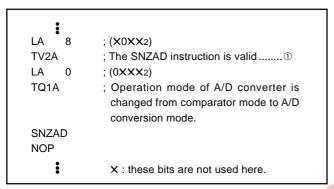



Fig. 65 A/D converter program example-3

#### ® A/D converter-2

Each analog input pin is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/discharge noise is generated and the sufficient A/D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor (0.01  $\mu$ F to 1  $\mu$ F) to analog input pins (Figure 66).

When the overvoltage applied to the A/D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 67. In addition, test the application products sufficiently.

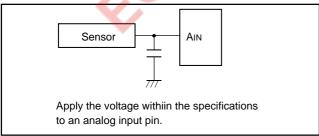



Fig. 66 Analog input external circuit example-1

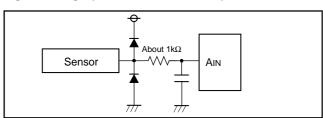



Fig. 67 Analog input external circuit example-2

#### <sup>®</sup>POF instruction

When the POF instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state.

Note that system cannot enter the RAM back-up state when executing only the POF instruction.

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF instruction continuously.

#### 

Make sure that the PC does not specify after the last page of the built-in ROM.

#### Power-on reset

When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to the value of supply voltage or more must be set to 100 µs or less. If the rising time exceeds 100 µs, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

#### Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 68);

supply voltage does not fall below to VRST-, and its voltage re-goes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to VRST- and re-goes up after that.

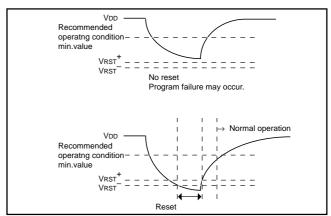



Fig. 68 VDD and VRST

#### Clock control

Execute the main clock (f(XIN)) selection instruction (CMCK, CRCK or CYCK instruction) in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

The oscillation circuit by the CMCK, CRCK or CYCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these instructions is valid.

The CMCK, CRCK, and CYCK instructions can be used only to select main clock (f(XIN)). In this time, the start of oscillation and the switch of system clock are not performed.

When the CMCK, CRCK, and CYCK instructions are never executed, main clock (f(XIN)) cannot be used and system can be operated only by on-chip oscillator.

The no operated clock source (f(RING)) or (f(XIN)) cannot be used for the system clock. Also, the clock source (f(RING) or f(XIN)) selected for the system clock cannot be stopped.

#### On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

When considering the oscillation stabilize wait time at the switch of clock, be careful that the variable frequency of the on-chip oscillator clock.

#### 

When the external clock signal for the main clock (f(XIN)) is used, connect the clock source to XIN pin and XOUT pin open. In program, after the CMCK instruction is executed, set main clock (f(XIN)) oscillation start to be enabled (MR1=0).

For this product, when RAM back-up mode and main clock (f(XIN)) stop (MR1=1), XIN pin is fixed to "H" in order to avoid the through current by floating of internal logic. The XIN pin is fixed to "H" until main clock (f(XIN)) oscillation start to be valid (MR1=0) by the CMCK instruction from reset state. Accordingly, when an external clock is used, connect a 1 k $\Omega$  or more resistor to XIN pin in series to limit of current by competitive signal.

#### ® Electric Characteristic Differences Between Mask ROM and One Time PROM Version MCU

There are differences in electric characteristics, operation margin, noise immunity, and noise radiation between Mask ROM and One Time PROM version MCUs due to the difference in the manufacturing processes.

When manufacturing an application system with the One time PROM version and then switching to use of the Mask ROM version, please perform sufficient evaluations for the commercial samples of the Mask ROM version.

#### Ø Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.

In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.



#### **CONTROL REGISTERS**

| Interrupt control register V1 |                                  | at reset : 00002 |                     | at RAM back-up : 00002        | R/W<br>TAV1/TV1A |
|-------------------------------|----------------------------------|------------------|---------------------|-------------------------------|------------------|
| \/10                          | V13 Timer 2 interrupt enable bit | 0                | Interrupt disabled  | (SNZT2 instruction is valid)  |                  |
| V 13                          |                                  | 1                | Interrupt enabled ( | SNZT2 instruction is invalid) |                  |
| V12                           | Timer 1 interrupt enable bit     | 0                | Interrupt disabled  | (SNZT1 instruction is valid)  |                  |
| V 12                          | Timer i interrupt enable bit     | 1                | Interrupt enabled ( | SNZT1 instruction is invalid) |                  |
| V11                           | External 1 interrupt anable hit  | 0                | Interrupt disabled  | (SNZ1 instruction is valid)   |                  |
| V 11                          | External 1 interrupt enable bit  | 1                | Interrupt enabled ( | SNZ1 instruction is invalid)  |                  |
| 1/40                          | External 0 interrupt anable hit  | 0                | Interrupt disabled  | (SNZ0 instruction is valid)   |                  |
| V10                           | External 0 interrupt enable bit  | 1                | Interrupt enabled ( | SNZ0 instruction is invalid)  |                  |

| Interrupt control register V2 |                              | at reset : 00002 |                                                      | at RAM back-up : 00002        | R/W<br>TAV2/TV2A |  |
|-------------------------------|------------------------------|------------------|------------------------------------------------------|-------------------------------|------------------|--|
| V/20                          | Not used                     | 0                | This his harman for a first harman 16 and a salah da |                               |                  |  |
| V23                           | Not used                     | 1                | This bit has no function, but read/write is enabled. |                               |                  |  |
| ۸ ۸                           | A/D interrupt enable bit     | 0                | Interrupt disabled (SNZAD instruction is valid)      |                               |                  |  |
| V22                           |                              | 1                | Interrupt enabled (                                  | SNZAD instruction is invalid) |                  |  |
| V0.                           | Timor 4 interrupt anable bit | 0                | Interrupt disabled                                   | (SNZT4 instruction is valid)  |                  |  |
| V21                           | Timer 4 interrupt enable bit | 1                | Interrupt enabled (SNZT4 instruction is invalid)     |                               |                  |  |
| \/Oc                          | Timor 3 interrupt enable bit | 0                | Interrupt disabled (SNZT3 instruction is valid)      |                               |                  |  |
| V20                           | Timer 3 interrupt enable bit | 1                | Interrupt enabled (                                  | SNZT3 instruction is invalid) |                  |  |

| Interrupt control register I1 |                                              | at reset : 00002                                   |                           | at RAM back-up : state retained        | R/W<br>TAI1/TI1A |  |  |
|-------------------------------|----------------------------------------------|----------------------------------------------------|---------------------------|----------------------------------------|------------------|--|--|
| l13                           | I13 INT0 pin input control bit (Note 2)      |                                                    | 0 INTO pin input disabled |                                        |                  |  |  |
| 113                           | IN TO pill iliput control bit (Note 2)       | 1                                                  | INT0 pin input ena        | bled                                   |                  |  |  |
|                               |                                              | 0                                                  | Falling waveform/"        | L" level ("L" level is recognized with | the SNZI0        |  |  |
| 112                           | Interrupt valid waveform for INT0 pin/       |                                                    | instruction)              |                                        |                  |  |  |
| 112                           | return level selection bit (Note 2)          | <b>1</b>                                           | Rising waveform/"         | H" level ("H" level is recognized with | the SNZI0        |  |  |
|                               |                                              | '                                                  | instruction)              |                                        |                  |  |  |
| l11                           | INT0 pin edge detection circuit control bit  | 0                                                  | One-sided edge de         | etected                                |                  |  |  |
| 111                           | in to pin eage detection circuit control bit | 1                                                  | Both edges detected       | ed                                     |                  |  |  |
| I10                           | INT0 pin Timer 1 count start synchronous     | 0                                                  | Timer 1 count start       | synchronous circuit not selected       |                  |  |  |
| 110                           | circuit selection bit                        | 1 Timer 1 count start synchronous circuit selected |                           |                                        |                  |  |  |

|                 | Interrupt control register I2                                                 |   | reset : 00002                                                     | at RAM back-up : state retained        | R/W<br>TAI2/TI2A |  |
|-----------------|-------------------------------------------------------------------------------|---|-------------------------------------------------------------------|----------------------------------------|------------------|--|
| 123             | I23 INT1 pin input control bit (Note 2)                                       |   | INT1 pin input disa                                               | abled                                  |                  |  |
| 123             | in i pin input control bit (Note 2)                                           | 1 | INT1 pin input ena                                                | bled                                   |                  |  |
|                 |                                                                               | 0 | Falling waveform/"                                                | L" level ("L" level is recognized with | the SNZI1        |  |
| 122             | Interrupt valid waveform for INT1 pin/<br>return level selection bit (Note 2) | " | instruction)                                                      |                                        |                  |  |
| 122             |                                                                               | 1 | Rising waveform/"H" level ("H" level is recognized with the SNZI1 |                                        |                  |  |
|                 |                                                                               | ' | instruction)                                                      |                                        |                  |  |
| I2 <sub>1</sub> | INT1 pin edge detection circuit control bit                                   | 0 | One-sided edge de                                                 | etected                                |                  |  |
| 121             | INT I pin eage detection circuit control bit                                  | 1 | Both edges detected                                               |                                        |                  |  |
| 120             | INT1 pin Timer 3 count start synchronous                                      | 0 | Timer 3 count start                                               | t synchronous circuit not selected     |                  |  |
| 120             | circuit selection bit                                                         | 1 | Timer 3 count start                                               | t synchronous circuit selected         |                  |  |

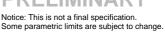


<sup>2:</sup> When the contents of I12, I13 I22 and I23 are changed, the external interrupt request flag (EXF0, EXF1) may be set to "1".

| PRELIMINARY                                                                               |
|-------------------------------------------------------------------------------------------|
| Notice: This is not a final specification.  Some parametric limits are subject to change. |

| Clock control register MR |                                                   | at reset : 11112 |     | reset : 11112                        | at RAM back-up : 11112 | R/W<br>TAMR/<br>TMRA |  |
|---------------------------|---------------------------------------------------|------------------|-----|--------------------------------------|------------------------|----------------------|--|
|                           |                                                   | MRз              | MR2 |                                      | Operation mode         |                      |  |
| MR3                       |                                                   | 0                | 0   | Through mode (free                   | quency not divided)    |                      |  |
|                           | Operation mode selection bits                     | 0                | 1   | Frequency divided I                  | by 2 mode              |                      |  |
| MR <sub>2</sub>           |                                                   | 1                | 0   | Frequency divided by 4 mode          |                        |                      |  |
| 1411.12                   |                                                   | 1                | 1   | Frequency divided by 8 mode          |                        |                      |  |
| MR <sub>1</sub>           | Main clock f(XIN) appillation circuit control bit | C                | )   | Main clock (f(XIN))                  | oscillation enabled    |                      |  |
| IVIKT                     | Main clock f(XIN) oscillation circuit control bit | 1                |     | Main clock (f(XIN)) oscillation stop |                        |                      |  |
| MR <sub>0</sub>           | System clock oscillation source selection bit     | 0                |     | Main clock (f(XIN))                  |                        |                      |  |
| IVIKU                     |                                                   | 1                |     | On-chip oscillator clock (f(RING))   |                        |                      |  |

| Clock control register RG |                                          |   | at reset : 02        | at RAM back-up : 02           | W<br>TRGA |
|---------------------------|------------------------------------------|---|----------------------|-------------------------------|-----------|
| RG0                       | On-chip oscillator (f(RING)) control bit | 0 | On-chip oscillator ( | (f(RING)) oscillation enabled |           |
| KG0                       |                                          | 1 | On-chip oscillator ( | (f(RING)) oscillation stop    |           |
|                           |                                          | _ |                      |                               |           |


| Timer control register PA |                       | at reset : 02 |                        | 1   | at RAM back-up : 02 | W<br>TPAA |
|---------------------------|-----------------------|---------------|------------------------|-----|---------------------|-----------|
| PA <sub>0</sub>           | Prescaler control bit | 0             | Stop (state initialize | ed) |                     |           |
| FAU                       |                       | 1             | Operating              |     |                     |           |

|     | Timer control register W1                              |                                    | at reset : 00002 |                                                                                        | at RAM back-up : state retained | R/W<br>TAW1/TW1A |
|-----|--------------------------------------------------------|------------------------------------|------------------|----------------------------------------------------------------------------------------|---------------------------------|------------------|
| W13 | Timer 1 count auto-stop circuit selection bit (Note 2) | 0                                  |                  | Timer 1 count auto-stop circuit not selected  Timer 1 count auto-stop circuit selected |                                 |                  |
| W12 | Timer 1 control bit                                    | 0 Stop (state retained 1 Operating |                  |                                                                                        | 1)                              |                  |
| W11 |                                                        | 0                                  | W10<br>0         | Instruction clock (IN                                                                  | ,                               |                  |
| W10 | Timer 1 count source selection bits                    | 1                                  | 0 1              | Prescaler output (C<br>XIN input<br>CNTR0 input                                        | rclk)                           |                  |

| Timer control register W2 |                                     | at reset : 00002 |     | reset : 00002                                | at RAM back-up : state retained | R/W<br>TAW2/TW2A |
|---------------------------|-------------------------------------|------------------|-----|----------------------------------------------|---------------------------------|------------------|
| W23                       | CNTR0 output signal selection bit   | 0                |     | Timer 1 underflow signal divided by 2 output |                                 |                  |
| 1 1123                    | CIVI No output signal selection bit | 1                |     | Timer 2 underflow                            | signal divided by 2 output      |                  |
| W22                       | Timer 2 control bit                 | (                | )   | Stop (state retained)                        |                                 |                  |
| VVZ2                      |                                     | •                | l   | Operating                                    |                                 |                  |
|                           |                                     | W21              | W20 |                                              | Count source                    |                  |
| W21                       |                                     | 0                | 0   | System clock (STC                            | CK)                             |                  |
|                           | Timer 2 count source selection bits | 0                | 1   | Prescaler output (ORCLK)                     |                                 |                  |
| W20                       |                                     | 1                | 0   | Timer 1 underflow signal (T1UDF)             |                                 |                  |
|                           |                                     | 1                | 1   | PWM signal (PWM                              | OUT)                            |                  |

2: This function is valid only when the timer 1 count start synchronous circuit is selected (I10="1").





|       | Timer control register W3                    |     | at reset : 00002 |                                              | at RAM back-up : state retained | R/W<br>TAW3/TW3A |
|-------|----------------------------------------------|-----|------------------|----------------------------------------------|---------------------------------|------------------|
| W33   | Timer 3 count auto-stop circuit selection    | (   | 0                | Timer 3 count auto-stop circuit not selected |                                 |                  |
| ***** | bit (Note 2)                                 | 1   |                  | Timer 3 count auto                           | -stop circuit selected          |                  |
| W32   | Timer 3 control bit                          | 0   |                  | Stop (state retained)                        |                                 |                  |
| VV32  | Timer 3 control bit                          | •   | 1                | Operating                                    |                                 |                  |
|       |                                              | W31 | W30              |                                              | Count source                    |                  |
| W31   | Times 2 count counts and ation hits          | 0   | 0                | PWM signal (PWMOUT)                          |                                 |                  |
| -     | Timer 3 count source selection bits (Note 3) | 0   | 1                | Prescaler output (C                          | DRCLK)                          |                  |
| W30   |                                              | 1   | 0                | Timer 2 underflow signal (T2UDF)             |                                 |                  |
|       |                                              | 1   | 1                | CNTR1 input                                  |                                 |                  |

| Timer control register W4 |                                             | at reset : 00002 |                                                    | at RAM back-up : 00002          | R/W<br>TAW4/TW4A |  |  |
|---------------------------|---------------------------------------------|------------------|----------------------------------------------------|---------------------------------|------------------|--|--|
| W43                       | CNTR1 pin function selection bit            | 0                | CNTR1 output inva                                  | alid                            |                  |  |  |
| VV43                      | CNTRT pin function selection bit            | 1                | CNTR1 output vali                                  | CNTR1 output valid              |                  |  |  |
| W42                       | PWM signal                                  | 0                | PWM signal "H" interval expansion function invalid |                                 |                  |  |  |
| VV42                      | "H" interval expansion function control bit | 1                | PWM signal "H" int                                 | terval expansion function valid |                  |  |  |
| W41                       | Timer 4 control bit                         | 0                | Stop (state retaine                                | d)                              |                  |  |  |
| VV41                      | Timer 4 control bit                         | 1                | Operating                                          |                                 |                  |  |  |
| W40                       | Timer 4 count source selection bit          | 0                | XIN input                                          |                                 |                  |  |  |
| VV40                      | Timer 4 count source selection bit          | 1                | Prescaler output (0                                | ORCLK) divided by 2             |                  |  |  |

|      | Timer control register W5                |     | at     | reset : 00002               | at RAM back-up : state retained   | R/W<br>TAW5/TW5A |
|------|------------------------------------------|-----|--------|-----------------------------|-----------------------------------|------------------|
| W53  | Not used                                 |     | )<br>1 | This bit has no fund        | ction, but read/write is enabled. |                  |
| W52  | Period measurement circuit control bit   |     | )      | Stop                        |                                   |                  |
| VV32 | T office modelinement should be made but |     | 1      | Operating                   |                                   |                  |
|      |                                          | W51 | W50    |                             | Count source                      |                  |
| W51  | Signal for period measurement selection  | 0   | 0      | On-chip oscillator (        | f(RING/16))                       |                  |
|      | bits                                     | 0   | 1      | CNTR <sub>0</sub> pin input |                                   |                  |
| W50  |                                          | 1   | 0      | INT0 pin input              |                                   |                  |
|      |                                          | 1   | 1      | Not available               |                                   |                  |

| Timer control register W6                    |                                            | at reset : 00002 |                    | at RAM back-up : state retained | R/W<br>TAW6/TW6A |
|----------------------------------------------|--------------------------------------------|------------------|--------------------|---------------------------------|------------------|
| W63 CNTR1 pin input count edge selection bit |                                            | 0                | Falling edge       |                                 |                  |
| *****                                        | Civi Ki pin input count edge selection bit | 1                | Rising edge        |                                 |                  |
| W62                                          | CNTR0 pin input count edge selection bit   | 0                | Falling edge       |                                 |                  |
| ***02                                        | CNTRO pin input count edge selection bit   | 1                | Rising edge        |                                 |                  |
| W61                                          | CNTR1 output auto-control circuit          | 0                | CNTR1 output aut   | o-control circuit not selected  |                  |
|                                              | selection bit                              | 1                | CNTR1 output auto  | o-control circuit selected      |                  |
| W60                                          | D6/CNTR0 pin function selection bit        | 0                | D6 (I/O) / CNTR0 ( | (input)                         |                  |
| VV60                                         |                                            | 1                | CNTR0 (I/O) /D6 (  | (input)                         |                  |



<sup>2:</sup> This function is valid only when the timer 3 count start synchronous circuit is selected (I20="1").

 $<sup>3\!:</sup>$  The port C output is invalid when CNTR1 output is selected for the timer 3 count source.

| A/D control register Q1 |                                      | at reset : 00002 |                                                      | at RAM back-up : state retained | R/W<br>TAQ1/TQ1A |  |
|-------------------------|--------------------------------------|------------------|------------------------------------------------------|---------------------------------|------------------|--|
| 012                     | Q13 A/D operation mode selection bit |                  | A/D conversion mo                                    | ode                             |                  |  |
| QIS                     |                                      |                  | Comparator mode                                      |                                 |                  |  |
| 012                     | Q12 Not used                         | 0                | This bit has no function, but read/write is enabled. |                                 |                  |  |
| Q12                     |                                      | 1                | This bit has no function, but read/write is enabled. |                                 |                  |  |
| Q11                     | Not used                             | 0                | This bit has no function, but read/write is enabled. |                                 |                  |  |
| QII                     | Q11 Not used                         |                  | This bit has no function, but read/white is enabled. |                                 |                  |  |
| Q10 Analog input pin s  | Analog input hin selection hits      | 0                | AIN0                                                 |                                 |                  |  |
| ا لا لا                 | Analog input pin selection bits      | 1                | AIN1                                                 |                                 |                  |  |

| A/D control register Q2 |                                         | at reset : 00002 |                                                      | at RAM back-up : state retained                     | R/W<br>TAQ2/TQ2A |  |
|-------------------------|-----------------------------------------|------------------|------------------------------------------------------|-----------------------------------------------------|------------------|--|
| Q23 Not used            |                                         | 0                | This hit has no fun                                  | This hit has no function, but read/units is enabled |                  |  |
| Q23                     | Q23 Not used                            |                  | This bit has no function, but read/write is enabled. |                                                     |                  |  |
| 022                     | Q22 Not used                            | 0                | This bit has no foresting but read/ority is anabled  |                                                     |                  |  |
| Q22                     |                                         | 1                | This bit has no function, but read/write is enabled. |                                                     |                  |  |
| Q21                     | D64/Albia pin function coloration bit   | 0                | P61                                                  | 40                                                  |                  |  |
| QZ1                     | Q21 P61/AIN1 pin function selection bit |                  | AIN1                                                 |                                                     |                  |  |
| Q20                     | DGG/AING pin function coloction hit     | 0                | P60                                                  | <del>/                                    </del>    |                  |  |
|                         | P60/AIN0 pin function selection bit     | 1                | AIN0                                                 |                                                     |                  |  |

| A/D control register Q3 |                                             | at reset : 00002 |        | reset : 00002                                 | at RAM back-up : state retained   | R/W<br>TAQ3/TQ3A |
|-------------------------|---------------------------------------------|------------------|--------|-----------------------------------------------|-----------------------------------|------------------|
| Q33                     | Not used                                    |                  | 0<br>1 | This bit has no fund                          | ction, but read/write is enabled. |                  |
| Q32                     | A/D converter operation clock selection bit |                  | 0      | Instruction clock (II<br>On-chip oscillator ( | <i>'</i>                          |                  |
|                         |                                             | Q31              | Q30    | •                                             | Division ratio                    |                  |
| Q31                     |                                             | 0                | 0      | Frequency divided                             | by 6                              |                  |
|                         | A/D converter operation clock division      | 0                | 1      | Frequency divided                             | by 12                             |                  |
| Q30                     | ratio selection bits                        | 1                | 0      | Frequency divided                             | by 24                             |                  |
|                         |                                             | 1                | 1      | Frequency divided                             | by 48                             |                  |



| PRELIMINARY                                                                                 |
|---------------------------------------------------------------------------------------------|
| Notice: This is not a final specification.<br>Some parametric limits are subject to change. |

|             | Key-on wakeup control register K0            | at                       | reset : 00002       | at RAM back-up : state retained | R/W<br>TAK0/TK0A |
|-------------|----------------------------------------------|--------------------------|---------------------|---------------------------------|------------------|
| I/Os        | Pins P12 and P13 key-on wakeup               | 0 Key-on wakeup not      |                     | used                            |                  |
| K03         | control bit                                  | 1                        | Key-on wakeup use   | ed                              |                  |
| I/Os        | Pins P10 and P11 key-on wakeup               | 0                        | Key-on wakeup not   | used                            |                  |
| K02         | control bit                                  | 1                        | Key-on wakeup use   | ed                              |                  |
| K01         | Pins P02 and P03 key-on wakeup               | 0                        | Key-on wakeup not   | used                            |                  |
| KU1         | control bit                                  | 1                        | Key-on wakeup use   | ed                              |                  |
| K00         | Pins P00 and P01 key-on wakeup               | 0                        | Key-on wakeup not   | used                            |                  |
| KU0         | control bit                                  | 1                        | Key-on wakeup use   | ed                              |                  |
|             | Key-on wakeup control register K1            | at                       | reset : 00002       | at RAM back-up : state retained | R/W<br>TAK1/TK1A |
| K13         | Ports P02 and P03 return condition selection | 0                        | Return by level     |                                 |                  |
| K13         | bit                                          | 1                        | Return by edge      |                                 |                  |
| K12         | Ports P02 and P03 valid waveform/            | 0                        | Falling waveform/"L | ." level                        |                  |
| K12         | level selection bit                          | 1                        | Rising waveform/"H  | l" level                        |                  |
| K11         | Ports P01 and P00 return condition selection | 0                        | Return by level     |                                 |                  |
| KII         | bit                                          | 1                        | Return by edge      | 40                              |                  |
| <b>K1</b> 0 | Ports P01 and P00 valid waveform/            | 0                        | Falling waveform/"L | ." level                        |                  |
| KIU         | level selection bit                          | 1                        | Rising waveform/"H  | " level                         |                  |
|             | Key-on wakeup control register K2            | at                       | reset : 00002       | at RAM back-up : state retained | R/W<br>TAK2/TK2A |
| <b>K2</b> 3 | INT1 pin return condition selection bit      | 0                        | Return by level     |                                 |                  |
| NZ3         | INT I pin return condition selection bit     | 1                        | Return by edge      |                                 |                  |
| K22         | INT1 pin key-on wakeup contro bit            | 0 Key-on wakeup not used |                     |                                 |                  |
| NZ2         | INT I pill key-off wakeup contro bit         | 1 🐇                      | Key-on wakeup use   | ed                              |                  |
| K21         | INT0 pin return condition selection bit      | 0                        | Return by level     |                                 |                  |
| NZ I        | 11410 piii returii condition selection bit   | 1                        | Return by edge      |                                 |                  |
| <b>K2</b> 0 | INT0 pin key-on wakeup contro bit            | 0                        | Key-on wakeup not   | used                            |                  |
| NZU         | in to pill key-off wakeup contro bit         | 1                        | Key-on wakeup use   | ed                              |                  |



| PRELIMINARY                                                                                 |
|---------------------------------------------------------------------------------------------|
| Notice: This is not a final specification.<br>Some parametric limits are subject to change. |

| Pull-up control register PU0 |                              | at                       | reset : 00002          | at RAM back-up : state retained | R/W<br>TAPU0/<br>TPU0A |
|------------------------------|------------------------------|--------------------------|------------------------|---------------------------------|------------------------|
| PU03                         | P03 pin pull-up transistor   | 0 Pull-up transistor C   |                        | FF                              |                        |
| PU03                         | control bit                  | 1                        | Pull-up transistor O   | N                               |                        |
| DUOs                         | P02 pin pull-up transistor   | 0                        | Pull-up transistor O   | FF                              |                        |
| PU02                         | control bit                  | 1                        | Pull-up transistor O   | N                               |                        |
| DI IO                        | P01 pin pull-up transistor   | 0                        | Pull-up transistor O   | FF                              |                        |
| PU01                         | control bit                  | 1 Pull-up transistor ON  |                        |                                 |                        |
| DI IO-                       | P00 pin pull-up transistor   | 0 Pull-up transistor OFF |                        |                                 |                        |
| PU0 <sub>0</sub>             | control bit                  | 1 Pull-up transistor ON  |                        |                                 |                        |
|                              | Pull-up control register PU1 | at                       | reset : 00002          | at RAM back-up : state retained | R/W<br>TAPU1/<br>TPU1A |
| DUIA                         | P13 pin pull-up transistor   | 0                        | Pull-up transistor O   | FF                              |                        |
| PU13                         | control bit                  | 1                        | Pull-up transistor O   | N                               |                        |
| DUIA                         | P12 pin pull-up transistor   | 0                        | Pull-up transistor O   | FF                              |                        |
| PU12                         | control bit                  | 1                        | Pull-up transistor O   | N                               |                        |
| DI.IA.                       | P11 pin pull-up transistor   | 0                        | Pull-up transistor OFF |                                 |                        |
| PU11                         | control bit                  | 1                        | Pull-up transistor O   | N N                             |                        |
| DUIA                         | P10 pin pull-up transistor   | 0                        | Pull-up transistor O   | FF                              |                        |
| PU10                         | control bit                  | 1                        | Pull-up transistor O   | N                               |                        |



| PRELIMINARY                                                                                 |
|---------------------------------------------------------------------------------------------|
| Notice: This is not a final specification.<br>Some parametric limits are subject to change. |

| Port output structure control register FR0 |                                           | at reset : 00002 |                    | at RAM back-up : state retained | W<br>TFR0A |
|--------------------------------------------|-------------------------------------------|------------------|--------------------|---------------------------------|------------|
| FR03                                       | Ports P12, P13 output structure selection | 0                | N-channel open-dra | ain output                      |            |
| FRU3                                       | bit                                       | 1                | CMOS output        |                                 |            |
| FR02                                       | Ports P10, P11 output structure selection | 0                | N-channel open-dra | ain output                      |            |
| FRU2                                       | bit                                       | 1                | CMOS output        |                                 |            |
| EDO.                                       | Ports P02, P03 output structure selection | 0                | N-channel open-dra | ain output                      |            |
| FR01                                       | bit                                       | 1                | CMOS output        |                                 |            |
| FR00                                       | Ports P00, P01 output structure selection | 0                | N-channel open-dra | ain output                      |            |
| FRU0                                       | bit                                       | 1                | CMOS output        |                                 |            |

| Port output structure control register FR1 |                                             | at reset : 00002 |                     | at RAM back-up : state retained | W<br>TFR1A |
|--------------------------------------------|---------------------------------------------|------------------|---------------------|---------------------------------|------------|
| FR4 S 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                             | 0                | N-channel open-drai | in output                       |            |
| FK13                                       | FR13 Port D3 output structure selection bit |                  | CMOS output         |                                 |            |
| FD4                                        | Dant Do autout atmosting paleation hit      | 0                | N-channel open-drai | in output                       |            |
| FR12                                       | Port D2 output structure selection bit      | 1                | CMOS output         |                                 |            |
| ED4.                                       | Bart Barata data data da barta da la Marata | 0                | N-channel open-drai | in output                       |            |
| FR11                                       | Port D1 output structure selection bit      | 1                | CMOS output         |                                 |            |
| ED4-                                       | Port Do output structure selection bit      | 0                | N-channel open-drai | in output                       |            |
| FR10                                       |                                             | 1                | CMOS output         |                                 |            |

| Por  | t output structure control register FR2      | á | at re | eset : 00002         | at RAM back-up : state retained | W<br>TFR2A |  |
|------|----------------------------------------------|---|-------|----------------------|---------------------------------|------------|--|
| FR23 | Not used                                     | 0 |       | This bit has no func | tion, but write is enabled.     |            |  |
|      | D (D)(O)(TD)                                 | 0 | 1     | N-channel open-dra   | nin output                      |            |  |
| FR22 | Port D6/CNTR0 output structure selection bit | 1 |       | CMOS output          |                                 |            |  |
| FR21 | Port Dr. output atructure coloction hit      | 0 |       | N-channel open-dra   | in output                       |            |  |
| FRZT | Port D5 output structure selection bit       | 1 |       | CMOS output          |                                 |            |  |
| FR20 | Port D4 output structure selection bit       | 0 |       | N-channel open-dra   | in output                       |            |  |
| FR20 | For D4 output structure selection bit        | 1 |       | CMOS output          |                                 | ·          |  |

| Por  | t output structure control register FR3          | at | reset : 00002      | at RAM back-up : state retained | W<br>TFR3A |  |
|------|--------------------------------------------------|----|--------------------|---------------------------------|------------|--|
| ED20 | Deat DEs autout attracture sale ation hit        | 0  | N-channel open-dra | ain output                      |            |  |
| FR33 | Port P53 output structure selection bit          | 1  | CMOS output        |                                 |            |  |
| ED20 | Dant DEscription to attract use sale attended to | 0  | N-channel open-dra | ain output                      |            |  |
| FR32 | Port P52 output structure selection bit          | 1  | CMOS output        |                                 |            |  |
| ED2. | Deat DE contrat atmost are a leaffer 15%         | 0  | N-channel open-dra | ain output                      |            |  |
| FR31 | Port P51 output structure selection bit          | 1  | CMOS output        |                                 |            |  |
| ED20 | Dant DEs autout atmenture calcution hit          | 0  | N-channel open-dra | ain output                      |            |  |
| FR30 | Port P50 output structure selection bit          | 1  | CMOS output        |                                 |            |  |

| 8-bit general-purpose register SI                        | at reset : undefined            | at RAM back-up : undefined | R/W |
|----------------------------------------------------------|---------------------------------|----------------------------|-----|
| 8-bit general purpose register.                          |                                 | •                          |     |
| 8-bit data can be transferred between register A and reg | gister B with the TABSI and TSI | AB instructions.           |     |



#### INSTRUCTIONS

The 4584 Group has the 154 instructions. Each instruction is described as follows;

- (1) Index list of instruction function
- (2) Machine instructions (index by alphabet)
- (3) Machine instructions (index by function)
- (4) Instruction code table



#### **SYMBOL**

The symbols shown below are used in the following list of instruction function and the machine instructions.

| Symbol | Contents                                         | Symbol            | Contents                                           |
|--------|--------------------------------------------------|-------------------|----------------------------------------------------|
| A      | Register A (4 bits)                              | PS                | Prescaler                                          |
| В      | Register B (4 bits)                              | T1                | Timer 1                                            |
| DR     | Register DR (3 bits)                             | T2                | Timer 2                                            |
| E      | Register E (8 bits)                              | T3                | Timer 3                                            |
| V1     | Interrupt control register V1 (4 bits)           | T4                | Timer 4                                            |
| V2     | Interrupt control register V2 (4 bits)           | T1F               | Timer 1 interrupt request flag                     |
| l1     | Interrupt control register I1 (4 bits)           | T2F               | Timer 2 interrupt request flag                     |
| 12     | Interrupt control register I2 (4 bits)           | T3F               | Timer 3 interrupt request flag                     |
| MR     | Clock control register MR (4 bits)               | T4F               | Timer 4 interrupt request flag                     |
| RG     | Clock control register RG (1 bit)                | WDF1              | Watchdog timer flag                                |
| PA     | Timer control register PA (1 bit)                | WEF               | Watchdog timer enable flag                         |
| W1     | Timer control register W1 (4 bits)               | INTE              | Interrupt enable flag                              |
| W2     | Timer control register W2 (4 bits)               | EXF0              | External 0 interrupt request flag                  |
| W3     | Timer control register W3 (4 bits)               | EXF1              | External 1 interrupt request flag                  |
| W4     | Timer control register W4 (4 bits)               | Р                 | Power down flag                                    |
| W5     | Timer control register W5 (4 bits)               | ADF               | A/D conversion completion flag                     |
| W6     | Timer control register W6 (4 bits)               |                   |                                                    |
| Q1     | A/D control register Q1 (4 bits)                 | D 🧆               | Port D (7 bits)                                    |
| Q2     | A/D control register Q2 (4 bits)                 | P0                | Port P0 (4 bits)                                   |
| Q3     | A/D control register Q3 (4 bits)                 | P1                | Port P1 (4 bits)                                   |
| PU0    | Pull-up control register PU0 (4 bits)            | P2                | Port P2 (3 bits)                                   |
| PU1    | Pull-up control register PU1 (4 bits)            | P3                | Port P3 (4 bits)                                   |
| FR0    | Port output format control register FR0 (4 bits) | P4                | Port P4 (4 bits)                                   |
| FR1    | Port output format control register FR1 (4 bits) | P5                | Port P5 (4 bits)                                   |
| FR2    | Port output format control register FR2 (4 bits) | P6                | Port P6 (4 bits)                                   |
| FR3    | Port output format control register FR3 (4 bits) | 0                 | 1 011 1 0 (4 013)                                  |
| K0     | Key-on wakeup control register K0 (4 bits)       | v                 | Hexadecimal variable                               |
| K1     | , , ,                                            | X                 | Hexadecimal variable                               |
|        | Key-on wakeup control register K1 (4 bits)       | у                 |                                                    |
| K2     | Key-on wakeup control register K2 (4 bits)       | Z                 | Hexadecimal variable                               |
| SI     | General-purpose register SI (8 bits)             | p                 | Hexadecimal variable                               |
| X      | Register X (4 bits)                              | n<br>:            | Hexadecimal constant                               |
| Y      | Register Y (4 bits)                              |                   | Hexadecimal constant                               |
| Z      | Register Z (2 bits)                              | J                 | Hexadecimal constant                               |
| DP     | Data pointer (10 bits)                           | A3A2A1A0          | Binary notation of hexadecimal variable A          |
| 50     | (It consists of registers X, Y, and Z)           |                   | (same for others)                                  |
| PC     | Program counter (14 bits)                        |                   |                                                    |
| РСн    | High-order 7 bits of program counter             | ←                 | Direction of data movement                         |
| PCL    | Low-order 7 bits of program counter              | $\leftrightarrow$ | Data exchange between a register and memory        |
| SK     | Stack register (14 bits X 8)                     | ?                 | Decision of state shown before "?"                 |
| SP     | Stack pointer (3 bits)                           | ( )               | Contents of registers and memories                 |
| CY     | Carry flag                                       | <u> </u>          | Negate, Flag unchanged after executing instruction |
| RPS    | Prescaler reload register (8 bits)               | M(DP)             | RAM address pointed by the data pointer            |
| R1     | Timer 1 reload register (8 bits)                 | а                 | Label indicating address a6 a5 a4 a3 a2 a1 a0      |
| R2     | Timer 2 reload register (8 bits)                 | р, а              | Label indicating address a6 a5 a4 a3 a2 a1 a0      |
| R3     | Timer 3 reload register (8 bits)                 |                   | in page p5 p4 p3 p2 p1 p0                          |
| R4L    | Timer 4 reload register (8 bits)                 | C<br>+            | Hex. C + Hex. number x                             |
| R4H    | Timer 4 reload register (8 bits)                 | x x               |                                                    |
|        |                                                  |                   |                                                    |
|        |                                                  |                   |                                                    |

Note: Some instructions of the 4584 Group has the skip function to unexecute the next described instruction. The 4584 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.



#### INDEX LIST OF INSTRUCTION FUNCTION

| Group-                        |          | F INSTRUCTION FUNCT                                                       |          | Group-                   |          |                                                               |          |
|-------------------------------|----------|---------------------------------------------------------------------------|----------|--------------------------|----------|---------------------------------------------------------------|----------|
| ing                           | Mnemonic | Function                                                                  | Page     | ing                      | Mnemonic | Function                                                      | Page     |
| l                             | TAB      | (A) ← (B)                                                                 | 106, 126 |                          | XAMI j   | $(A) \leftarrow \rightarrow (M(DP))$                          | 125, 126 |
|                               |          | (5)                                                                       | 440 400  | sfer                     |          | $(X) \leftarrow (X)EXOR(j)$                                   |          |
|                               | TBA      | $(B) \leftarrow (A)$                                                      | 116, 126 | tran                     |          | j = 0 to 15                                                   |          |
|                               | TAY      | $(A) \leftarrow (Y)$                                                      | 115, 126 | RAM to register transfer |          | (Y) ← (Y) + 1                                                 |          |
|                               |          |                                                                           | , -      | regi                     | ТМА ј    | $(M(DP)) \leftarrow (A)$                                      | 119, 126 |
|                               | TYA      | $(Y) \leftarrow (A)$                                                      | 124, 126 | 1 to                     |          | $(X) \leftarrow (X)EXOR(j)$                                   |          |
|                               |          | (= = ) (=)                                                                | 440 400  | RAN                      |          | j = 0 to 15                                                   |          |
| _                             | TEAB     | $(E7-E4) \leftarrow (B)$ $(E3-E0) \leftarrow (A)$                         | 116, 126 |                          |          | (4)                                                           | 0.4.400  |
| Register to register transfer |          | (E3−E0) ← (A)                                                             |          |                          | LA n     | (A) ← n<br>n = 0 to 15                                        | 94, 128  |
| r tra                         | TABE     | (B) ← (E7–E4)                                                             | 108, 126 |                          |          | 11 = 0 to 13                                                  |          |
| istel                         |          | (A) ← (E3–E0)                                                             |          |                          | TABP p   | (SP) ← (SP) + 1                                               | 108, 128 |
| reg                           |          |                                                                           |          |                          |          | $(SK(SP)) \leftarrow (PC)$                                    |          |
| er to                         | TDA      | $(DR2-DR0) \leftarrow (A2-A0)$                                            | 116, 126 |                          | A        | (PCH) ← p                                                     |          |
| giste                         | TAD      | $(A_2-A_0) \leftarrow (DR_2-DR_0)$                                        | 109, 126 |                          |          | $(PCL) \leftarrow (DR2-DR0, A3-A0)$                           |          |
| Re                            | IAD      | $(A3) \leftarrow 0$                                                       | 100, 120 |                          | X        | $(DR2) \leftarrow 0$<br>$(DR1, DR0) \leftarrow (ROM(PC))9, 8$ |          |
|                               |          |                                                                           |          |                          |          | $(B) \leftarrow (ROM(PC))7-4$                                 |          |
|                               | TAZ      | $(A_1,A_0) \leftarrow (Z_1,Z_0)$                                          | 115, 126 |                          |          | $(A) \leftarrow (ROM(PC))3-0$                                 |          |
|                               |          | $(A3, A2) \leftarrow 0$                                                   |          | . W                      |          | $(PC) \leftarrow (SK(SP))$                                    |          |
|                               | TAX      | $(A) \leftarrow (X)$                                                      | 115, 126 | 9                        |          | (SP) ← (SP) – 1                                               |          |
|                               | IAX      | (A) ← (∧)                                                                 | 110, 120 |                          | AM       | $(A) \leftarrow (A) + (M(DP))$                                | 87, 128  |
|                               | TASP     | $(A2-A0) \leftarrow (SP2-SP0)$                                            | 113, 126 |                          | Aivi     | $(A) \leftarrow (A) + (M(DI))$                                | 07, 120  |
|                               |          | (A3) ← 0                                                                  |          | _                        | AMC      | $(A) \leftarrow (A) + (M(DP)) + (CY)$                         | 87, 128  |
|                               |          |                                                                           | 94, 126  | Arithmetic operation     |          | (CY) ← Carry                                                  |          |
|                               | LXY x, y | $(X) \leftarrow x \ x = 0 \text{ to } 15$                                 | 94, 126  | ber                      |          | (4)                                                           | 07.400   |
| es                            |          | $(Y) \leftarrow y \ y = 0 \text{ to } 15$                                 |          | etic o                   | A n      | $(A) \leftarrow (A) + n$ $n = 0 \text{ to } 15$               | 87, 128  |
| ress                          | LZ z     | $(Z) \leftarrow z z = 0 \text{ to } 3$                                    | 94, 126  | hme                      |          | 11 = 0 10 13                                                  |          |
| add                           |          |                                                                           |          | Arit                     | AND      | $(A) \leftarrow (A) \text{ AND } (M(DP))$                     | 88, 128  |
| RAM addresses                 | INY      | $(Y) \leftarrow (Y) + 1$                                                  | 94, 126  |                          |          |                                                               |          |
| <u>~</u>                      | DEV      |                                                                           | 91, 126  |                          | OR       | $(A) \leftarrow (A) OR (M(DP))$                               | 97, 128  |
|                               | DEY      | $(Y) \leftarrow (Y) - 1$                                                  | 01, 120  |                          | 80       | (CV) / 1                                                      | 100 129  |
|                               | TAM j    | $(A) \leftarrow (M(DP))$                                                  | 111, 126 |                          | SC       | (CY) ← 1                                                      | 100, 128 |
|                               | ,        | $(X) \leftarrow (X)EXOR(j)$                                               |          |                          | RC       | (CY) ← 0                                                      | 98, 128  |
| <u>_</u>                      |          | j = 0 to 15                                                               |          |                          |          |                                                               |          |
| ansfe                         |          |                                                                           | 124, 126 |                          | SZC      | (CY) = 0 ?                                                    | 104, 128 |
| er tra                        | XAM j    | $(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$          | 124, 120 |                          | 0.44     | (A) (A)                                                       | 00.400   |
| giste                         |          | $ i\rangle \leftarrow (\lambda) = \lambda OR(j)$<br>$ i\rangle = 0$ to 15 |          |                          | СМА      | $(A) \leftarrow (\overline{A})$                               | 90, 128  |
| o re                          |          |                                                                           |          |                          | RAR      | $\rightarrow \boxed{CY} \rightarrow \boxed{A3A2A1A0}$         | 97, 128  |
| RAM to register transfer      | XAMD j   | $(A) \leftarrow \rightarrow (M(DP))$                                      | 125, 126 |                          |          |                                                               | ,        |
| ΣŽ                            |          | $(X) \leftarrow (X)EXOR(j)$                                               |          |                          |          |                                                               |          |
|                               |          | j = 0 to 15                                                               |          |                          |          |                                                               |          |
|                               |          | $(Y) \leftarrow (Y) - 1$                                                  |          |                          |          |                                                               |          |

Note: p is 0 to 127 for M34584MD/ED.



**INDEX LIST OF INSTRUCTION FUNCTION (continued)** 

| SB j  RB j  SZB j  SEAM  SEA n | $(Mj(DP)) \leftarrow 1$<br>j = 0  to  3<br>$(Mj(DP)) \leftarrow 0$<br>j = 0  to  3<br>(Mj(DP)) = 0 ?<br>j = 0  to  3<br>(A) = (M(DP)) ? | 99, 128<br>97, 128<br>104, 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DI<br>EI<br>SNZ0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (INTE) ← 0 $(INTE) ← 1$                                                        | 91, 132<br>91, 132          |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------|
| SZB j<br>SEAM                  | $(Mj(DP)) \leftarrow 0$<br>j = 0  to  3<br>(Mj(DP)) = 0 ?<br>j = 0  to  3                                                               | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                | 91, 132                     |
| SEAM                           | (Mj(DP)) = 0 ?<br>j = 0 to 3                                                                                                            | 104, 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V10 = 0: (EXF0) = 1 ?                                                          | 101, 132                    |
|                                | (A) = (M(DP)) ?                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O/120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | After skipping, (EXF0) ← 0<br>V10 = 1: NOP                                     | 101, 102                    |
| SEA n                          |                                                                                                                                         | 101, 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SNZ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V11 = 0: (EXF1) = 1 ?<br>After skipping, (EXF1) $\leftarrow$ 0<br>V11 = 1: NOP | 101, 132                    |
|                                | (A) = n?<br>n = 0 to 15                                                                                                                 | 101, 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SNZI0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I12 = 1 : (INT0) = "H" ?<br>I12 = 0 : (INT0) = "L" ?                           | 102, 132                    |
| B a<br>BL p, a                 | $(PCL) \leftarrow a6-a0$ $(PCH) \leftarrow p$                                                                                           | 88, 130<br>88, 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oeration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SNZI1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l22 = 1 : (INT1) = "H" ?<br>l22 = 0 : (INT1) = "L" ?                           | 102, 132                    |
| DI A n                         | ,                                                                                                                                       | 99 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rrupt op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TAV1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (A) ← (V1)                                                                     | 113, 132                    |
| ься р                          | $(PCH) \leftarrow p$<br>$(PCL) \leftarrow (DR2-DR0, A3-A0)$                                                                             | 66, 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TV1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (V1) ← (A)                                                                     | 122, 132                    |
| ВМ а                           | (SP) ← (SP) + 1<br>(SK(SP)) ← (PC)                                                                                                      | 89, 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TAV2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (A) ← (V2)                                                                     | 113, 132                    |
|                                | (PCH) ← 2<br>(PCL) ← a6–a0                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TV2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (V2) ← (A)                                                                     | 122, 132                    |
| BML p, a                       | (SP) ← (SP) + 1<br>(SK(SP)) ← (PC)                                                                                                      | 89, 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TAI1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(A) \leftarrow (I1)$ $(I1) \leftarrow (A)$                                    | 109, 132                    |
|                                | (PCL) ← a6–a0                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TAI2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (A) ← (I2)                                                                     | 110, 132                    |
| BMLA p                         | $(SP) \leftarrow (SP) + 1$<br>$(SK(SP)) \leftarrow (PC)$                                                                                | 89, 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TI2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (I2) ← (A)                                                                     | 118, 132                    |
|                                | $(PCH) \leftarrow p$<br>$(PCL) \leftarrow (DR2-DR0, A3-A0)$                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TPAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (PA <sub>0</sub> ) ← (A <sub>0</sub> )                                         | 119, 132                    |
| RTI                            |                                                                                                                                         | 98, 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TAW1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (A) ← (W1)                                                                     | 113, 132                    |
|                                | $(SP) \leftarrow (SP) - 1$                                                                                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TW1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (W1) ← (A)                                                                     | 122, 132                    |
| RT                             | $(PC) \leftarrow (SK(SP))$<br>$(SP) \leftarrow (SP) - 1$                                                                                | 98, 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TAW2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (A) ← (W2)                                                                     | 114, 132                    |
| RTS                            | $(PC) \leftarrow (SK(SP))$                                                                                                              | 99, 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | imer op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TW2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (W2) ← (A)                                                                     | 123, 132                    |
|                                | (SP) ← (SP) – 1                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TAW3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (A) ← (W3)                                                                     | 114, 132                    |
|                                |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TW3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (W3) ← (A)                                                                     | 123, 132                    |
| E E                            | BL p, a  BLA p  BM a  BML p, a  RTI  RT  RTS                                                                                            | B a $(PCL) \leftarrow a6-a0$ BL p, a $(PCH) \leftarrow p$ $(PCL) \leftarrow a6-a0$ BLA p $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ BM a $(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a6-a0$ BML p, a $(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow a6-a0$ BMLA p $(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow a6-a0$ BMLA p $(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ RTI $(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$ RT $(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$ | B a (PCL) ← a6−a0 88, 130  BL p, a (PCH) ← p (PCL) ← a6−a0  BLA p (PCH) ← p (PCL) ← (DR2−DR0, A3−A0)  BM a (SP) ← (SP) + 1 (SK(SP)) ← (PC) (PCH) ← 2 (PCL) ← a6−a0  BML p, a (SP) ← (SP) + 1 (SK(SP)) ← (PC) (PCH) ← p (PCL) ← a6−a0  BML p, a (SP) ← (SP) + 1 (SK(SP)) ← (PC) (PCH) ← p (PCL) ← a6−a0  BMLA p (SP) ← (SP) + 1 (SK(SP)) ← (PC) (PCH) ← p (PCL) ← (DR2−DR0, A3−A0)  BTI (PC) ← (SK(SP)) (SP) − 1  BTI (PC) ← (SK(SP)) (SP) ← (SP) − 1  BTI (PC) ← (SK(SP)) (SP) ← (SP) − 1  BTS (PC) ← (SK(SP)) (SP) ← (SP) − 1  BTS (PC) ← (SK(SP)) (SP) ← (SP) − 1 | B a (PCL) ← a6–a0 88, 130  BL p, a (PCH) ← p 88, 130  BLAp (PCH) ← p 88, 130  BLAp (PCL) ← (DR2–DR0, A3–A0)  BM a (SP) ← (SP) + 1 89, 130  BML p, a (SP) ← (SP) + 1 (SK(SP)) ← (PC) (PCH) ← 2 (PCL) ← a6–a0  BML p, a (SP) ← (SP) + 1 (SK(SP)) ← (PC) (PCH) ← p (PCL) ← a6–a0  BMLAp (SP) ← (SP) + 1 89, 130  BMLAp (SP) ← (SP) − 1  BMLAp (PC) ← (SK(SP)) 98, 130  BMLAp (SP) ← (SP) − 1  BMLAp (PC) ← (SK(SP)) 98, 130  BMLAp (SP) ← (SP) − 1  BMLAp (PC) ← (SK(SP)) 99, 130 | Ba (PCL) $\leftarrow$ a6–a0 (PCH) $\leftarrow$ p (PCH) $\leftarrow$ p (PCL) $\leftarrow$ a6–a0 (PCH) $\leftarrow$ p (PCL) $\leftarrow$ a6–a0 (PCL) $\leftarrow$ (DR2–DR0, A3–A0) (PCL) $\leftarrow$ (DR2–DR0, A3–A0) (SK(SP)) $\leftarrow$ (PC) (PCH) $\leftarrow$ 2 (PCL) $\leftarrow$ a6–a0 (SK(SP)) $\leftarrow$ (PC) (PCH) $\leftarrow$ 2 (PCL) $\leftarrow$ a6–a0 (PCL) $\leftarrow$ a6–a0 (PCL) $\leftarrow$ a6–a0 (PCL) $\leftarrow$ a6–a0 (PCL) $\leftarrow$ a7 (SK(SP)) $\leftarrow$ (PC) (PCH) $\leftarrow$ p (PCL) $\leftarrow$ a6–a0 (PCL) $\leftarrow$ a7 (SK(SP)) $\leftarrow$ (PC) (PCH) $\leftarrow$ p (PCL) $\leftarrow$ (DR2–DR0, A3–A0) (PCL) $\leftarrow$ (DR2–DR0, A3–A0) (PCL) $\leftarrow$ (SP) $\leftarrow$ (SP) $\leftarrow$ 1 (PC) $\leftarrow$ (SK(SP)) (SP) $\leftarrow$ (SP) – 1 (PC) (PC) (PC) (PC) (PC) (PC) (PC) (PC) | Ba (PCL) ← a6–a0                                                               | Ba (PCL) $\leftarrow$ a6-a0 |

Note: p is 0 to 127 for M34584MD/ED.

**INDEX LIST OF INSTRUCTION FUNCTION (continued)** 

| Group-<br>ing   | Mnemonic | Function                                              | Page     |   | Group-<br>ing          | Mnemonic | Function                                                     | Page     |
|-----------------|----------|-------------------------------------------------------|----------|---|------------------------|----------|--------------------------------------------------------------|----------|
|                 | TAW4     | (A) ← (W4)                                            | 114, 132 |   |                        | T4HAB    | $(R4H7-R4H4) \leftarrow (B)$<br>$(R4H3-R4H0) \leftarrow (A)$ | 106, 134 |
|                 | TW4A     | (W4) ← (A)                                            | 123, 132 |   |                        |          | ( ,                                                          |          |
|                 | TA10/F   | (A) . (M/5)                                           | 444 404  |   |                        | TR1AB    | $(R17-R14) \leftarrow (B) (R13-R10) \leftarrow (A)$          | 121, 134 |
|                 | TAW5     | (A) ← (W5)                                            | 114, 134 |   |                        | TR3AB    | (R37–R34) ← (B) (R33–R30) ← (A)                              | 121, 134 |
|                 | TW5A     | (W5) ← (A)                                            | 123, 134 |   |                        | T4R4L    | (T47–T44) ← (R4L7–R4L4)                                      | 106, 136 |
|                 | TAW6     | (A) ← (W6)                                            | 115, 134 |   |                        |          | *                                                            |          |
|                 | TW6A     | (W6) ← (A)                                            | 124, 134 |   | Timer operation        | SNZT1    | V12 = 0: (T1F) = 1?<br>After skipping, (T1F) $\leftarrow$ 0  | 103, 136 |
|                 | TABPS    | (B) ← (TPS7–TPS4)                                     | 108, 134 |   | pera                   |          | V12 = 1: NOP                                                 |          |
|                 | IABPS    | $(A) \leftarrow (TPS3-TPS0)$                          | 106, 134 |   | ero                    | SNZT2    | V13 = 0: (T2F) = 1 ?                                         | 103, 136 |
|                 |          | (A) ← (1F33-1F30)                                     |          |   | <u> </u>               | ONZIZ    | After skipping, $(T2F) \leftarrow 0$                         | 100, 100 |
|                 | TPSAB    | (RPS7–RPS4) ← (B)                                     | 119, 134 |   |                        |          | V13 = 1: NOP                                                 |          |
|                 | 11 0/15  | $(TPS7-TPS4) \leftarrow (B)$                          | 110, 101 |   |                        |          |                                                              |          |
|                 |          | $(RPS3-RPS0) \leftarrow (A)$                          |          |   |                        | SNZT3    | V20 = 0: (T3F) = 1 ?                                         | 103, 136 |
|                 |          | $(TPS3-TPS0) \leftarrow (A)$                          |          |   |                        |          | After skipping, (T3F) ← 0                                    |          |
|                 |          | (1. 22 1. 23)                                         |          |   |                        |          | V20 = 1: NOP                                                 |          |
|                 | TAB1     | (B) ← (T17–T14)                                       | 107, 134 |   | 0                      |          |                                                              |          |
|                 |          | (A) ← (T13–T10)                                       |          | 1 |                        | SNZT4    | V21 = 0: (T4F) = 1 ?                                         | 103, 136 |
|                 |          |                                                       |          |   |                        |          | After skipping, (T4F) ← 0                                    |          |
| on              | T1AB     | (R17–R14) ← (B)                                       | 105, 134 |   |                        |          | V21 = 1: NOP                                                 |          |
| rati            |          | (T17–T14) ← (B)                                       |          |   |                        |          |                                                              |          |
| obe             |          | (R13–R10) ← (A)                                       |          |   |                        | IAP0     | (A) ← (P0)                                                   | 92, 136  |
| Timer operation |          | (T13–T10) ← (A)                                       |          |   |                        |          |                                                              |          |
| Ë               |          |                                                       |          |   |                        | OP0A     | (P0) ← (A)                                                   | 95, 136  |
|                 | TAB2     | (B) ← (T27–T24)                                       | 107, 134 |   |                        | IAD4     | (A) (D4)                                                     | 00.400   |
|                 |          | (A) ← (T23–T20)                                       |          |   |                        | IAP1     | (A) ← (P1)                                                   | 92, 136  |
|                 | T2AB     | (R27–R24) ← (B)                                       | 105, 134 |   |                        | OP1A     | (P1) ← (A)                                                   | 95, 136  |
|                 |          | $(T27-T24) \leftarrow (B)$ $(R23-R20) \leftarrow (A)$ |          |   |                        | IAP2     | (A2−A0) ← (P22−P20) (A3) ← 0                                 | 92, 136  |
|                 |          | $(T23\text{-}T20) \leftarrow (A)$                     |          |   | uo                     | OP2A     | $(P22-P20) \leftarrow (A2-A0)$                               | 95, 136  |
|                 | TAB3     | (B) ← (T37–T34)                                       | 107, 134 |   | erati                  |          |                                                              |          |
|                 | 17120    | $(A) \leftarrow (T33 - T30)$                          | 107, 104 |   | ut ope                 | IAP3     | (A) ← (P3)                                                   | 93, 136  |
|                 | T3AB     | (R37–R34) ← (B)                                       | 105, 134 |   | Input/Output operation | ОРЗА     | (P3) ← (A)                                                   | 96, 136  |
|                 |          | (T37–T34) ← (B)                                       |          |   | but                    |          |                                                              |          |
|                 |          | (R33–R30) ← (A)                                       |          |   | =                      | IAP4     | (A) ← (P4)                                                   | 93, 136  |
|                 |          | (T33−T30) ← (A)                                       |          |   |                        | OP4A     | (P4) ← (A)                                                   | 96, 136  |
|                 |          |                                                       |          |   |                        | 01 4/    |                                                              | 30, 100  |
|                 | TAB4     | (B) ← (T47–T44)<br>(A) ← (T43–T40)                    | 107, 134 |   |                        | IAP5     | (A) ← (P5)                                                   | 93, 136  |
|                 |          |                                                       |          |   |                        | OP5A     | (P5) ← (A)                                                   | 96, 136  |
|                 | T4AB     | $(R4L7-R4L4) \leftarrow (B)$                          | 106, 134 |   |                        | 3. 37.   | (· •/ · (· ·/                                                | 55, 100  |
|                 |          | (T47–T44) ← (B)                                       |          |   |                        | IAP6     | (A) ← (P6)                                                   | 93, 136  |
|                 |          | $(R4L3-R4L0) \leftarrow (A)$                          |          |   |                        |          | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                        | ,        |
|                 |          | (T43–T40) ← (A)                                       |          |   |                        | OP6A     | (P6) ← (A)                                                   | 96, 136  |

**INDEX LIST OF INSTRUCTION FUNCTION (continued)** 

| Group-<br>ing          | Mnemonic | Function                      | Page     | Group-<br>ing   | Mnemonic | Function                                               | Page     |
|------------------------|----------|-------------------------------|----------|-----------------|----------|--------------------------------------------------------|----------|
|                        | CLD      | (D) ← 1                       | 89, 136  |                 | TABAD    | In A/D conversion mode ,<br>(B) $\leftarrow$ (AD9–AD6) | 108, 140 |
|                        | RD       | $(D(Y)) \leftarrow 0$         | 98, 136  |                 |          | $(A) \leftarrow (AD5-AD2)$                             |          |
|                        |          | (Y) = 0  to  6                |          |                 |          | In comparator mode,                                    |          |
|                        | SD       | (D(Y)) ← 1                    | 100, 136 |                 |          | $(B) \leftarrow (AD7-AD4)$ $(A) \leftarrow (AD3-AD0)$  |          |
|                        |          | (Y) = 0  to  6                | 100, 100 |                 |          | (1) (120 7.20)                                         |          |
|                        |          |                               |          |                 | TALA     | (A3, A2) ← (AD1, AD0)                                  | 111, 140 |
|                        | SZD      | (D(Y)) = 0?<br>(Y) = 0  to  6 | 105, 136 |                 |          | $(A_1, A_0) \leftarrow 0$                              |          |
|                        |          | (1) = 0 10 6                  |          |                 | TADAB    | (AD7–AD4) ← (B)                                        | 109, 140 |
|                        | RCP      | (C) ← 0                       | 98, 136  |                 |          | $(AD_3-AD_0) \leftarrow (A)$                           |          |
|                        | 005      | (0)                           | 100, 136 |                 |          | (485)                                                  |          |
|                        | SCP      | (C) ← 1                       | 100, 100 | o u             | ADST     | (ADF) ← 0<br>A/D conversion starting                   | 87, 140  |
|                        | TAPU0    | (A) ← (PU0)                   | 111, 136 | erati           |          | 77 D conversion starting                               |          |
|                        |          |                               | 400 400  | A/D operation   | SNZAD    | V22 = 0: (ADF) = 1 ?                                   | 102, 140 |
| Ē                      | TPU0A    | (PU0) ← (A)                   | 120, 136 | ₹ (             |          | After skipping, (ADF) ← 0                              |          |
| ratio                  | TAPU1    | (A) ← (PU1)                   | 112, 136 |                 | <b>O</b> | V22 = 1: NOP                                           |          |
| obe                    |          | (-)                           |          | 0               | TAQ1     | (A) ← (Q1)                                             | 112, 140 |
| ıtbut                  | TPU1A    | $(PU1) \leftarrow (A)$        | 120, 136 | 5               |          | (0.1)                                                  |          |
| Input/Output operation | TAK0     | (A) ← (K0)                    | 110, 138 |                 | TQ1A     | (Q1) ← (A)                                             | 120, 140 |
| Inpu                   | IARO     | (A) (A)                       |          |                 | TAQ2     | (A) ← (Q2)                                             | 112, 140 |
|                        | TK0A     | $(K0) \leftarrow (A)$         | 118, 138 |                 |          |                                                        |          |
|                        | TA164    | (A) (ICA)                     | 110, 138 |                 | TQ2A     | (Q2) ← (A)                                             | 120, 140 |
|                        | TAK1     | (A) ← (K1)                    | 110, 100 |                 | TAQ3     | (A) ← (Q3)                                             | 112, 140 |
|                        | TK1A     | (K1) ← (A)                    | 118, 138 |                 | ,,,,,,   | (4.)                                                   | 112, 110 |
|                        |          | <b>O</b> .                    | 110, 138 |                 | TQ3A     | (Q3) ← (A)                                             | 121, 140 |
|                        | TAK2     | (A) ← (K2)                    | 110, 136 |                 | CMCK     | Ceramic resonator selected                             | 90, 138  |
|                        | TK2A     | (K2) ← (A)                    | 118, 138 |                 | CIVICK   | Ceramic resonator selected                             | 90, 136  |
|                        |          |                               |          |                 | CRCK     | RC oscillator selected                                 | 90, 138  |
|                        | TFR0A    | (FR0) ← (A)                   | 116, 138 | uc              | 0)(0)(   | 0                                                      | 00 400   |
|                        | TFR1A    | (FR1) ← (A)                   | 117, 138 | Clock operation | CYCK     | Quartz-crystal oscillator selected                     | 90, 138  |
|                        |          | (11(1) ( 7))                  |          | 00 ×            | TRGA     | $(RG_0) \leftarrow (A_0)$                              | 121, 138 |
|                        | TFR2A    | $(FR2) \leftarrow (A)$        | 117, 138 | Clock           |          |                                                        |          |
|                        | TEDOA    | (FD2) ( (A)                   | 117, 138 |                 | TAMR     | $(A) \leftarrow (MR)$                                  | 111, 138 |
|                        | TFR3A    | (FR3) ← (A)                   |          |                 | TMRA     | $(MR) \leftarrow (A)$                                  | 119, 138 |
|                        |          |                               |          |                 |          |                                                        | 1, 100   |
|                        |          |                               |          |                 |          |                                                        |          |
|                        |          |                               |          |                 |          |                                                        |          |
|                        |          |                               |          |                 |          |                                                        |          |
|                        |          |                               |          |                 |          |                                                        |          |
|                        |          |                               |          |                 |          |                                                        |          |
|                        |          |                               |          |                 |          |                                                        |          |



### **INDEX LIST OF INSTRUCTION FUNCTION (continued)**

| INDE            | X LIST O | F INSTRUCTION FUNCT                                     | ION (cor | ntinued) |
|-----------------|----------|---------------------------------------------------------|----------|----------|
| Group-<br>ing   | Mnemonic | Function                                                | Page     |          |
|                 | NOP      | (PC) ← (PC) + 1                                         | 95, 140  |          |
|                 | POF      | Transition to RAM back-up mode                          | 97, 140  |          |
|                 | EPOF     | POF instruction valid                                   | 92, 140  |          |
|                 | SNZP     | (P) = 1 ?                                               | 102, 140 |          |
|                 | DWDT     | Stop of watchdog timer function enabled                 | 91, 140  |          |
| Other operation | RBK      | p6 ← 0 when TABP p instruction is executed              | 98, 140  |          |
| Other           | SBK      | p6 ← 1 when TABP p instruction is executed              | 100, 140 |          |
|                 | WRST     | (WDF1) = 1 ?<br>After skipping, (WDF1) ← 0              | 124, 140 | (8)      |
|                 | SVDE     | at RAM back-up: Voltage drop detection cicuit valid     | 104, 140 | CO.      |
|                 | SRST     | System reset occurrence                                 | 104, 140 |          |
|                 | TABSI    | $(B) \leftarrow (SI7-SI4) \ \ (A) \leftarrow (SI3-SI0)$ | 109, 140 |          |
|                 | TSIAB    | $(SI7-SI4) \leftarrow (B) (SI3-SI0) \leftarrow (A)$     | 122, 140 |          |



# MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

| A n (Add n  | and accumulator)                                     |             |              |             |                                        |
|-------------|------------------------------------------------------|-------------|--------------|-------------|----------------------------------------|
| Instruction | D9 D0                                                | Number of   | Number of    | Flag CY     | Skip condition                         |
| code        | 0 0 0 1 1 0 n n n n 2 0 6 n                          | words       | cycles       |             |                                        |
|             | 10                                                   | 1           | 1            | _           | Overflow = 0                           |
| Operation:  | (A) ← (A) + n                                        | Grouping:   | Arithmetic   | operation   |                                        |
|             | n = 0  to  15                                        | Description | : Adds the   | alue n in   | the immediate field to                 |
|             |                                                      |             | -            |             | a result in register A.                |
|             |                                                      |             |              | -           | g CY remains unchanged.                |
|             |                                                      |             |              |             | ction when there is no                 |
|             |                                                      |             |              | -           | of operation.                          |
|             |                                                      |             |              |             | of operation.                          |
| ADST /A/D   | ) conversion CTort)                                  |             |              |             |                                        |
| Instruction | O conversion STart)  D9  D0                          | Number of   | Number of    | Flag CY     | Skip condition                         |
| code        | 1 0 1 0 0 1 1 1 1 2 9 F                              | words       | cycles       | 1 lag C1    | Skip condition                         |
|             |                                                      | 1           | 1            | -           | _                                      |
| Operation:  | (ADF) ← 0                                            | Grouping:   | A/D conve    | rsion opera | ation                                  |
|             | Q13 = 0: A/D conversion starting                     |             |              |             | onversion completion                   |
|             | Q13 = 1: Comparator operation starting               |             | -            |             | conversion at the A/D                  |
|             | (Q13 : bit 3 of A/D control register Q1)             |             |              |             | 3 = 0) or the compara-                 |
|             |                                                      |             |              |             | omparator mode (Q13                    |
|             |                                                      |             | = 1) is star | tea.        |                                        |
|             |                                                      |             |              |             |                                        |
| AM (Add a   | ccumulator and Memory)                               |             |              |             |                                        |
| Instruction | D9 D0                                                | Number of   | Number of    | Flag CY     | Skip condition                         |
| code        | 0 0 0 0 0 0 1 0 1 0 <sub>2</sub> 0 0 A <sub>16</sub> | words       | cycles       |             |                                        |
|             |                                                      | 1           | 1            | _           | <del>-</del>                           |
| Operation:  | $(A) \leftarrow (A) + (M(DP))$                       | Grouping:   | Arithmetic   |             |                                        |
|             | 0                                                    | Description |              |             | f M(DP) to register A.                 |
|             |                                                      |             |              |             | egister A. The contents ins unchanged. |
|             |                                                      |             | Of Carry IIa | g CT Tellia | ins unchanged.                         |
|             |                                                      |             |              |             |                                        |
|             |                                                      |             |              |             |                                        |
|             |                                                      |             |              |             |                                        |
| AMC (A      | dd accumulator, Memory and Carry)                    |             |              |             |                                        |
| Instruction | D9 D0                                                | Number of   | Number of    | Flag CY     | Skip condition                         |
| code        | 0 0 0 0 0 0 1 0 1 1 <sub>2</sub> 0 0 B <sub>16</sub> | words       | cycles       | 0/4         |                                        |
|             |                                                      | 1           | 1            | 0/1         | _                                      |
| Operation:  | $(A) \leftarrow (A) + (M(DP)) + (CY)$                | Grouping:   | Arithmetic   | operation   |                                        |
|             | $(CY) \leftarrow Carry$                              | Description | : Adds the   | contents of | M(DP) and carry flag                   |
|             |                                                      |             | _            |             | res the result in regis-               |
|             |                                                      |             | ter A and c  | arry flag C | Y.                                     |
|             |                                                      |             |              |             |                                        |
|             |                                                      |             |              |             |                                        |
|             |                                                      |             |              |             |                                        |
|             |                                                      |             |              |             |                                        |

| Code         0         0         0         0         1         1         0         0         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         2         2         2         1         8         1         1         1         1         1         1         1         1         2         2         2         2         2         1         8         3         3         3         4         1         1         1         1         2         2         2         2         2         2         2         2         3         3         3         3         3         3         4         3         4         3         4         3         4         3         4         3         4         3         4         4         3         4         4         4         4         4         4         4         4         4         4         4         4         4 <th>g CY Skip condition </th> | g CY Skip condition                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Operation: (A) ← (A) AND (M(DP))  Grouping: Arithmetic oper Description: Takes the AND tents of regist M(DP), and sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ation operation between the conter A and the contents of |
| Description: Takes the AND tents of regist M(DP), and sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | operation between the conter A and the contents of       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ċ.                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>▼</b>                                                 |
| Instruction D9 D0 Number of Number of Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          |
| code         0         1         1         a6         a5         a4         a3         a2         a1         a0         1         8         a         a         words         cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g CY Skip condition                                      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |
| Operation:   (PCL) ← a6 to a0     Grouping:   Branch operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                          |
| <b>Description:</b> Branch within a a in the identical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | page: Branches to address                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nch address within the page                              |
| including this in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |
| BL p, a (Branch Long to address a in page p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | g CY Skip condition                                      |
| 0 0 1 1 1 p4 p3 p2 p1 p0 2 0 +p p 16 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| 1 0 p5 a6 a5 a4 a3 a2 a1 a0 2 2 p a a 16 Grouping: Branch operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | page : Branches to address                               |
| (PCL) ← a6 to a0 a in page p.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                          |
| Note: p is 0 to 127 for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · M34584MD/ED.                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |
| BLA p (Branch Long to address (D) + (A) in page p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |
| Instruction D9 D0 Number of Number of Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g CY Skip condition                                      |
| 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                  |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -   -                                                    |
| 1 0 p5 p4 0 0 p3 p2 p1 p0 2 2 p p 16 Grouping: Branch operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on                                                       |
| (*, *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | page: Branches to address                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A3 A2 A1 A0)2 specified by                               |
| registers D and  Note: p is 0 to 127 for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A in page p.  M34584MD/ED.                               |
| Note: p 15 0 to 127 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MO POOTINID/LD.                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |





| D0 0 a6 a5 a4 a3 a2 a1 a0 2 1 a a 16 (SP) + 1 ) ← (PC) - 2 a6-a0                                                                               | Number of words  1  Grouping:  Description                                                           | Number of cycles                                                                                               | Flag CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (SP) + 1<br>) ← (PC)                                                                                                                           | 1 Grouping:                                                                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ) ← (PC)<br>- 2                                                                                                                                |                                                                                                      |                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| - 2                                                                                                                                            | Description                                                                                          | Subroutine                                                                                                     | call opera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                |                                                                                                      | : Call the s                                                                                                   | ubroutine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | in page 2 : Calls th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| a6-a0                                                                                                                                          |                                                                                                      | subroutine                                                                                                     | at address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s a in page 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                | Note:                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g from page 2 to an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                |                                                                                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | be called with the BN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                |                                                                                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                |                                                                                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                |                                                                                                      | maximum                                                                                                        | evel of Sub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | routine nesting is 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| and Mark Long to address a in page p)                                                                                                          |                                                                                                      |                                                                                                                | <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D0                                                                                                                                             | Number of                                                                                            | Number of                                                                                                      | Flag CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1   1   0   p4   p3   p2   p1   p0   2   0   C   p   16                                                                                        | words                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                | 2                                                                                                    | 2                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                | On a continue                                                                                        | Cultura utira a                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (CD) . 4                                                                                                                                       |                                                                                                      |                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                | Description                                                                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calls the subfoutille a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                | Note:                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 584MD/ED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                | 9                                                                                                    | •                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the stack because the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                |                                                                                                      | maximum l                                                                                                      | evel of sub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | routine nesting is 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                |                                                                                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                |                                                                                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| anch and Mark Long to address (D) + (A) i                                                                                                      | n page p)                                                                                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                |                                                                                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>D</b> 0                                                                                                                                     | Number of                                                                                            | Number of                                                                                                      | Flag CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 0 1 1 0 0 0 0 0 3 0                                                                                                                          | Number of words                                                                                      | Number of cycles                                                                                               | Flag CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                |                                                                                                      |                                                                                                                | Flag CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 0 1 1 0 0 0 0 0 3 0                                                                                                                          | words<br>2                                                                                           | cycles<br>2                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0 0 1 1 0 0 0 0 <sub>2</sub> 0 3 0 <sub>16</sub> p5 p4 0 0 p3 p2 p1 p0 <sub>2</sub> 2 p p <sub>16</sub>                                        | words 2 Grouping:                                                                                    | cycles 2 Subroutine                                                                                            | - call opera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -<br>Ition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0 0 1 1 0 0 0 0 <sub>2</sub> 0 3 0 <sub>16</sub><br>p5 p4 0 0 p3 p2 p1 p0 <sub>2</sub> 2 p p <sub>16</sub><br>(SP) + 1                         | words 2 Grouping:                                                                                    | cycles 2 Subroutine : Call the su                                                                              | call opera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tion Calls the subroutine a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                          | words 2 Grouping:                                                                                    | cycles 2 Subroutine Call the su address (D                                                                     | call opera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ution<br>Calls the subroutine a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0 0 1 1 0 0 0 0 2 0 3 0 16  p5 p4 0 0 p3 p2 p1 p0 2 2 p p 16  (SP) + 1 ) ← (PC)                                                                | words 2  Grouping: Description                                                                       | Subroutine  Call the su address (D fied by reg                                                                 | call opera<br>broutine :<br>R2 DR1 DI<br>isters D ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion Calls the subroutine a Ro A3 A2 A1 A0)2 speci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                          | words 2 Grouping:                                                                                    | Subroutine Call the su address (D fied by reg p is 0 to 12                                                     | call opera<br>broutine :<br>R2 DR1 DI<br>isters D an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion Calls the subroutine a Ro A3 A2 A1 A0)2 speci d A in page p. 584MD/ED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0 0 1 1 0 0 0 0 2 0 3 0 16  p5 p4 0 0 p3 p2 p1 p0 2 2 p p 16  (SP) + 1 ) ← (PC)                                                                | words 2  Grouping: Description                                                                       | Subroutine Call the su address (D fied by reg p is 0 to 12 Be careful                                          | call operators broutine: R2 DR1 Disters D and 17 for M345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion Calls the subroutine a Ro A3 A2 A1 A0)2 speci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0 0 1 1 0 0 0 0 2 0 3 0 16  p5 p4 0 0 p3 p2 p1 p0 2 2 p p 16  (SP) + 1 ) ← (PC)                                                                | words 2  Grouping: Description                                                                       | Subroutine Call the su address (D fied by reg p is 0 to 12 Be careful                                          | call operators broutine: R2 DR1 Disters D and 17 for M345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion Calls the subroutine a Ro A3 A2 A1 A0)2 speci d A in page p. 584MD/ED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0 0 1 1 0 0 0 0 2 0 3 0 16  p5 p4 0 0 p3 p2 p1 p0 2 2 p p 16  (SP) + 1 ) ← (PC)                                                                | words 2  Grouping: Description                                                                       | Subroutine Call the su address (D fied by reg p is 0 to 12 Be careful                                          | call operators broutine: R2 DR1 Disters D and 17 for M345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion Calls the subroutine a Ro A3 A2 A1 A0)2 speci d A in page p. 584MD/ED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0 0 1 1 0 0 0 0 2 0 3 0 16  p5 p4 0 0 p3 p2 p1 p0 2 2 p p 16  (SP) + 1 )  (CP) - p (DR2-DR0, A3-A0)                                            | words 2  Grouping: Description                                                                       | Subroutine Call the su address (D fied by reg p is 0 to 12 Be careful                                          | call operators broutine: R2 DR1 Disters D and 17 for M345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion Calls the subroutine a Ro A3 A2 A1 A0)2 speci d A in page p. 584MD/ED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0 0 1 1 0 0 0 0 2 0 3 0 16  p5 p4 0 0 p3 p2 p1 p0 2 2 p p 16  (SP) + 1 ) ← (PC) - p (DR2–DR0, A3–A0)                                           | words 2  Grouping: Description  Note:                                                                | Subroutine  Call the su address (D fied by reg p is 0 to 12 Be careful maximum l                               | call opera<br>broutine :<br>R2 DR1 DI<br>isters D ar<br>17 for M34!<br>not to over<br>evel of sub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lition  Calls the subroutine a Ro A3 A2 A1 A0)2 speci ad A in page p. 584MD/ED. the stack because the routine nesting is 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0 0 1 1 0 0 0 0 <sub>2</sub> 0 3 0 <sub>16</sub> p5 p4 0 0 p3 p2 p1 p0 <sub>2</sub> 2 p p <sub>16</sub> (SP) + 1 ) ← (PC) - p (DR2–DR0, A3–A0) | words 2  Grouping: Description  Note:                                                                | cycles  2  Subroutine : Call the su address (D fied by reg p is 0 to 12 Be careful maximum l                   | call opera<br>broutine :<br>R2 DR1 DI<br>isters D ar<br>17 for M34!<br>not to over<br>evel of sub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lition  Calls the subroutine a Ro A3 A2 A1 A0)2 speci ad A in page p. 584MD/ED. the stack because the routine nesting is 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0 0 1 1 0 0 0 0 2 0 3 0 16  p5 p4 0 0 p3 p2 p1 p0 2 2 p p 16  (SP) + 1 ) ← (PC) - p (DR2–DR0, A3–A0)                                           | words 2  Grouping: Description  Note:  Number of words 1                                             | cycles  2  Subroutine : Call the su address (D fied by reg p is 0 to 12 Be careful maximum l  Number of cycles | call opera<br>broutine :<br>R2 DR1 Di<br>isters D an<br>17 for M34!<br>not to over<br>evel of sub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cation  Calls the subroutine a R0 A3 A2 A1 A0)2 special A in page p. 584MD/ED. The stack because the routine nesting is 8.  Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0 0 1 1 0 0 0 0 2 0 3 0 16  p5 p4 0 0 p3 p2 p1 p0 2 2 p p 16  (SP) + 1 ) ← (PC) - p (DR2–DR0, A3–A0)                                           | words 2 Grouping: Description Note:  Number of words 1 Grouping:                                     | subroutine Call the su address (D fied by reg p is 0 to 12 Be careful maximum I  Number of cycles 1 Input/Outp | call operation call o | cation  Calls the subroutine a R0 A3 A2 A1 A0)2 special A in page p. 584MD/ED. The stack because the routine nesting is 8.  Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0 0 1 1 0 0 0 0 2 0 3 0 16  p5 p4 0 0 p3 p2 p1 p0 2 2 p p 16  (SP) + 1 ) ← (PC) - p (DR2–DR0, A3–A0)                                           | words 2 Grouping: Description Note:  Number of words 1 Grouping:                                     | cycles  2  Subroutine : Call the su address (D fied by reg p is 0 to 12 Be careful maximum l  Number of cycles | call operation call o | cation  Calls the subroutine a R0 A3 A2 A1 A0)2 special A in page p. 584MD/ED. The stack because the routine nesting is 8.  Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0 0 1 1 0 0 0 0 2 0 3 0 16  p5 p4 0 0 p3 p2 p1 p0 2 2 p p 16  (SP) + 1 ) ← (PC) - p (DR2–DR0, A3–A0)                                           | words 2 Grouping: Description Note:  Number of words 1 Grouping:                                     | subroutine Call the su address (D fied by reg p is 0 to 12 Be careful maximum I  Number of cycles 1 Input/Outp | call operation call o | cation  Calls the subroutine a R0 A3 A2 A1 A0)2 special A in page p. 584MD/ED. The stack because the routine nesting is 8.  Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0 0 1 1 0 0 0 0 2 0 3 0 16  p5 p4 0 0 p3 p2 p1 p0 2 2 p p 16  (SP) + 1 ) ← (PC) - p (DR2–DR0, A3–A0)                                           | words 2 Grouping: Description Note:  Number of words 1 Grouping:                                     | subroutine Call the su address (D fied by reg p is 0 to 12 Be careful maximum I  Number of cycles 1 Input/Outp | call operation call o | cation  Calls the subroutine a Ro A3 A2 A1 A0)2 special A in page p. 584MD/ED. The stack because the routine nesting is 8.  Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0 0 1 1 0 0 0 0 2 0 3 0 16  p5 p4 0 0 p3 p2 p1 p0 2 2 p p 16  (SP) + 1 ) ← (PC) - p (DR2–DR0, A3–A0)                                           | words 2 Grouping: Description Note:  Number of words 1 Grouping:                                     | subroutine Call the su address (D fied by reg p is 0 to 12 Be careful maximum I  Number of cycles 1 Input/Outp | call operation call o | calls the subroutine at Ro A3 A2 A1 A0)2 spected A in page p. 584MD/ED. It the stack because the routine nesting is 8.  Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 0 1 1 0 0 0 0 2 0 3 0 16  p5 p4 0 0 p3 p2 p1 p0 2 2 p p 16  (SP) + 1 ) ← (PC) - p (DR2–DR0, A3–A0)                                           | words 2 Grouping: Description Note:  Number of words 1 Grouping:                                     | subroutine Call the su address (D fied by reg p is 0 to 12 Be careful maximum I  Number of cycles 1 Input/Outp | call operation call o | calls the subroutine at Ro A3 A2 A1 A0)2 spected A in page p. 584MD/ED. It the stack because the routine nesting is 8.  Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| [ ())                                                                                                                                          | 1 1 0 p4 p3 p2 p1 p0 2 0 C p 16 p5 a6 a5 a4 a3 a2 a1 a0 2 2 p 1 a 16  (SP) + 1 1) ← (PC) - p - a6-a0 | Do                                                                                                             | instruction Be careful maximum loand Mark Long to address a in page p)  Do Do Do Do Do Perposition:  Number of words  Cycles  2  Couping:  Call the su address a in Description:  Call the su address a in Descriptio | instruction when it state Be careful not to over maximum level of substand Mark Long to address a in page p)  The post of the |

| CMA (Colv     | Iplement of Accumulator)                               |             |              |               |                           |
|---------------|--------------------------------------------------------|-------------|--------------|---------------|---------------------------|
| Instruction   | D9 D0                                                  | Number of   | Number of    | Flag CY       | Skip condition            |
| code          | 0 0 0 0 0 1 1 1 0 0 <sub>2</sub> 0 1 C <sub>16</sub>   | words       | cycles       |               |                           |
| -             |                                                        | 1           | 1            | _             | _                         |
| Operation:    | $(A) \leftarrow \overline{(A)}$                        | Grouping:   | Arithmetic   |               |                           |
|               |                                                        | Description |              |               | mplement for register     |
|               |                                                        |             | A's conten   | ts in regist  | er A.                     |
|               |                                                        |             |              |               |                           |
|               |                                                        |             |              | <u> </u>      |                           |
|               |                                                        |             |              |               |                           |
|               |                                                        |             |              |               |                           |
| CMCK (Cld     | ock select: ceraMic oscillation ClocK)                 |             |              |               |                           |
| Instruction   | D9 D0                                                  | Number of   | Number of    | Flag CY       | Skip condition            |
| code          |                                                        | words       | cycles       |               |                           |
|               | 16                                                     | 1           | 1            | _             | -                         |
| Operation:    | Ceramic oscillation circuit selected                   | Grouping:   | Clock cont   | rol operation |                           |
| орегиноп.     | Columno osomation oriodit solostoa                     | Description |              |               | oscillation circuit for   |
|               |                                                        |             | main clock   |               |                           |
|               |                                                        |             |              | ` ,           |                           |
|               |                                                        |             |              |               |                           |
|               |                                                        |             |              |               |                           |
|               |                                                        |             |              |               |                           |
|               |                                                        |             |              |               |                           |
| CRCK (Cld     | ock select: Rc oscillation ClocK)                      |             |              |               |                           |
| Instruction   | D9 D0                                                  | Number of   | Number of    | Flag CY       | Skip condition            |
| code          | 1 0 1 0 0 1 1 0 0 1 1 <sub>2</sub> 2 9 B <sub>16</sub> | words       | cycles       |               |                           |
|               |                                                        | 1           | 1            | _             | _                         |
| Operation:    | RC oscillation circuit selected                        | Grouping:   | Clock cont   | rol operation | on                        |
| -             | ·O·                                                    |             | : Selects th | e RC osci     | llation circuit for main  |
|               |                                                        |             | clock f(XIN  | ).            |                           |
|               |                                                        |             |              |               |                           |
|               | <b>(</b> )                                             |             |              |               |                           |
|               |                                                        |             |              |               |                           |
|               |                                                        |             |              |               |                           |
| CVCK (Clo     | ock select: crYstal oscillation ClocK)                 |             |              |               |                           |
| Instruction   | D9 D0                                                  | Number of   | Number of    | Flag CY       | Skip condition            |
| code          |                                                        | words       | cycles       | l lag O1      | Okip Condition            |
|               | 1 0 1 0 0 1 1 1 1 2 2 9 D <sub>16</sub>                | 1           | 1            | -             | -                         |
| On a notion : | Overto emistal application simplify agle at all        | 0           | 011          |               |                           |
| Operation:    | Quartz-crystal oscillation circuit selected            | Grouping:   | Clock cont   |               | ystal oscillation circuit |
|               |                                                        | Description | for main cl  |               | ystai oscillation circuit |
|               |                                                        |             |              |               |                           |
|               |                                                        |             |              |               |                           |
|               |                                                        |             |              |               |                           |
|               |                                                        |             |              |               |                           |
|               |                                                        |             |              |               |                           |
|               |                                                        |             |              |               |                           |



| DEV (DEc           | rement register Y)                      |                 |                  |              |                          |
|--------------------|-----------------------------------------|-----------------|------------------|--------------|--------------------------|
| Instruction        | D9 D0                                   | Number of       | Number of        | Flag CY      | Skip condition           |
| code               |                                         | words           | cycles           | l lag O I    | OKIP CONGILION           |
|                    | 0 0 0 0 0 1 0 1 1 1 1 2 0 1 7 16        | 1               | 1                | -            | (Y) = 15                 |
| Operation:         | (Y) ← (Y) − 1                           | Grouping:       | RAM addre        | esses        |                          |
|                    |                                         |                 | : Subtracts      | 1 from the   | contents of register Y.  |
|                    |                                         |                 |                  |              | action, when the con-    |
|                    |                                         |                 | tents of reg     | gister Y is  | 15, the next instruction |
|                    |                                         |                 | is skipped.      | When the     | contents of register Y   |
|                    |                                         |                 | is not 15, t     | he next ins  | struction is executed.   |
|                    |                                         |                 |                  | ·C           |                          |
|                    |                                         |                 |                  |              |                          |
| <b>DI</b> (Disable | e Interrupt)                            |                 |                  |              |                          |
| Instruction        | D9 D0                                   | Number of       | Number of        | Flag CY      | Skip condition           |
| code               | 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 4         | words           | cycles           |              |                          |
|                    |                                         | 1               | 1                | _            |                          |
| Operation:         | $(INTE) \leftarrow 0$                   | Grouping:       | Interrupt co     | ontrol oper  | ation                    |
|                    |                                         | Description     | : Clears (0)     | to interrupt | enable flag INTE, and    |
|                    |                                         |                 | disables th      |              |                          |
|                    |                                         | Note:           |                  |              | by executing the DI in-  |
|                    |                                         | 7               | struction at     | ter execut   | ing 1 machine cycle.     |
|                    |                                         |                 |                  |              |                          |
|                    |                                         |                 |                  |              |                          |
| DWDT (Dis          | sable WatchDog Timer)                   |                 |                  |              |                          |
| Instruction        | D9 D0                                   | Number of       | Number of        | Flag CY      | Skip condition           |
| code               | 1 0 1 0 0 1 1 1 0 0 2 9 C               | words           | cycles           | o l          | <u> </u>                 |
|                    | 2 2 16                                  | 1               | 1                | _            | _                        |
| Operation:         | Stop of watchdog timer function enabled | Grouping:       | Other oper       | ll<br>ation  |                          |
| oporumo            | ctop of waterland timer to the state of |                 |                  |              | timer function by the    |
|                    |                                         |                 |                  |              | after executing the      |
|                    |                                         |                 | DWDT inst        | ruction.     |                          |
|                    | , ( ) <sup>*</sup>                      |                 |                  |              |                          |
|                    |                                         |                 |                  |              |                          |
|                    |                                         |                 |                  |              |                          |
|                    |                                         |                 |                  |              |                          |
| El (Enable         |                                         |                 |                  |              |                          |
| Instruction        | D9 D0                                   | Number of words | Number of cycles | Flag CY      | Skip condition           |
| code               | 0 0 0 0 0 0 0 1 0 1 2 0 0 5             | 1               | 1                | _            |                          |
|                    |                                         | '               | ļ '              | _            | _                        |
| Operation:         | (INTE) ← 1                              | Grouping:       | Interrupt co     | ontrol oper  | ation                    |
|                    |                                         | Description     | : Sets (1) to    | interrupt    | enable flag INTE, and    |
|                    |                                         |                 | enables the      |              |                          |
|                    |                                         | Note:           |                  |              | by executing the EI in-  |
|                    |                                         |                 | struction at     | fter execut  | ing 1 machine cycle.     |
|                    |                                         |                 |                  |              |                          |
|                    |                                         |                 |                  |              |                          |
|                    |                                         |                 |                  |              |                          |

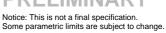
| Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OF /Fnahl          | la DOF               | - :     | 4        |       | (      |       |   |                  |   |   |      |                 |               |              |                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|---------|----------|-------|--------|-------|---|------------------|---|---|------|-----------------|---------------|--------------|------------------------|
| Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                  |                      | ins     | tructic  | ori)  |        |       |   |                  |   |   |      | Ni. wala a u af | Number of     | Flor CV      | Oldin annulition       |
| APO (Input Accumulator from port P0)   Instruction   Apo    |                    |                      |         |          |       | 4 6    |       | 1 | Ιſ               |   | _ | _    |                 |               | Flag C1      | Skip condition         |
| AP0 (Input Accumulator from port P0)   Instruction   Description:   Description:   Description:   Number of valid by executing the EPO   Secription:   Transfers the input of port   Secription:   Number of valid by executing the EPO   Secript   |                    | 0 0                  | 0       | 1 0      | 1     | 1   0  | )   1 | 1 | 2                | 0 | 5 | B16  | 1               | 1             | _            | -                      |
| Number of   Number of   Secription:   Number of   Nu  | eration: P         | POF inst             | tructio | on valic | I     |        |       |   |                  |   |   |      |                 |               |              |                        |
| IAPO (Input Accumulator from port P0)   Instruction   D9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                      |         |          |       |        |       |   |                  |   |   |      | Description     |               |              |                        |
| Dower   Dower   Dower   Dower   Dower   Number of voices   Flag CY   Second   Dower   |                    |                      |         |          |       |        |       |   |                  |   |   |      |                 | valid by ex   | ecuing the   | EPOF Instruction.      |
| Departion   Department   Dep   | <b>P0</b> (Input A | Accumi               | ulato   | or fron  | n poi | rt P0) |       |   |                  |   |   |      |                 |               | <b>O</b>     |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | truction [         | D9                   |         |          |       |        |       | 1 |                  | 2 | 6 | 0    |                 |               | Flag CY      | Skip condition         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                      |         |          |       |        |       |   | 12 L             |   |   | 16   | 1               | 1             | _            | -                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eration: (         | $(A) \leftarrow (P)$ | '0)     |          |       |        |       |   |                  |   |   |      |                 |               |              |                        |
| Instruction code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                      |         |          |       |        |       |   |                  |   |   | - 6  | Description     | : Transfers   | the input of | port P0 to register A. |
| Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                      | ulatc   | or fron  | n poi | rt P1) |       | _ |                  | 5 |   |      |                 |               |              |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                      |         |          |       |        |       |   | <b>/</b> [       |   |   |      |                 |               | Flag CY      | Skip condition         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | 1   0                | 0       | 1   1    | 0     | 0   0  | 0 0   |   | l <sub>2</sub> [ | 2 | 6 | 116  | 1               | -             | -            | -                      |
| IAP2 (Input Accumulator from port P2)  Instruction code $D_9$ $D_0$ $D_0$ Number of words $D_0$ | eration: (         | (A) ← (P             | '1)     |          |       |        |       |   |                  |   |   |      | Grouping:       | Input/Outp    | ut operatio  | n                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | <                    |         | 5        | ,     | 0-     |       |   |                  |   |   |      | Description     | : Transfers t | the input of | port P1 to register A. |
| code       1       0       0       1       1       0       0       1       0       0       1       0       0       1       0       0       1       0       0       1       0       0       1       0       0       0       1       0       0       0       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <th>· · ·</th> <th>ccumi</th> <th>ulato</th> <th>or from</th> <th>n po</th> <th>rt P2)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th><u> </u></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · ·              | ccumi                | ulato   | or from  | n po  | rt P2) |       |   |                  |   |   |      | 1               | <u> </u>      |              |                        |
| 1       0       0       1       0       0       1       0       2       2       6       2       16       1       1       -       -         Operation:       (A2–A0) ← (P22–P20)       Grouping: Input/Output operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                      |         |          |       |        | _     | T | ır               |   |   |      |                 |               | Flag CY      | Skip condition         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | le                 | 1 0                  | 0       | 1 1      | 0     | 0 (    | )   1 | 0 | 2                | 2 | 6 | 2 16 |                 | -             | _            | _                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eration: (         | (A2-A0)              | — (P    |          | ))    |        |       |   |                  |   |   |      | Grouping:       | Input/Outp    | ut operatio  | n                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                      |         |          | ,     |        |       |   |                  |   |   |      |                 |               |              |                        |

|                  |                              |                 | <u>-</u>         |              |                        |
|------------------|------------------------------|-----------------|------------------|--------------|------------------------|
|                  | t Accumulator from port P3)  |                 |                  |              |                        |
| Instruction code | D9 D0 1 1 0 0 0 1 1 2 6 3 46 | Number of words | Number of cycles | Flag CY      | Skip condition         |
|                  | 16                           | 1               | 1                | -            | -                      |
| Operation:       | (A) ← (P3)                   | Grouping:       | Input/Outp       | ut operatio  | n                      |
|                  |                              | Description     | : Transfers t    | the input of | port P3 to register A. |
|                  |                              |                 |                  | ď            | •                      |
| IAP4 (Inpu       | t Accumulator from port P4)  |                 |                  | <b>O</b> .   |                        |
| Instruction code | D9 D0 1 1 0 0 1 0 0 2 6 4 4  | Number of words | Number of cycles | Flag CY      | Skip condition         |
|                  | 16                           | 1               |                  | -            | -                      |
| Operation:       | $(A) \leftarrow (P4)$        | Grouping:       | Input/Outp       |              |                        |
|                  |                              | Description     | : Transfers t    | the input of | port P4 to register A. |
|                  |                              |                 |                  |              |                        |
|                  | 0                            |                 |                  |              |                        |
|                  |                              |                 |                  |              |                        |
|                  |                              |                 |                  |              |                        |
|                  |                              |                 |                  |              |                        |
| IAP5 (Inpu       | t Accumulator from port P5)  |                 |                  |              |                        |
| Instruction      | D9 D0                        | Number of       | Number of        | Flag CY      | Skip condition         |
| code             | 1 0 0 1 1 0 0 1 0 1 2 2 6 5  | words           | cycles           |              |                        |
|                  |                              | 1               | 1                | _            | -                      |
| Operation:       | (A) ← (P5)                   | Grouping:       | Input/Outp       |              |                        |
|                  | -0                           | Description     | : Transfers t    | the input of | port P5 to register A. |
|                  |                              |                 |                  |              |                        |
|                  |                              |                 |                  |              |                        |
|                  |                              |                 |                  |              |                        |
|                  |                              |                 |                  |              |                        |
| IAP6 (Inpu       | t Accumulator from port P6)  | 1               |                  |              |                        |
| Instruction      | D9 D0                        | Number of       | Number of        | Flag CY      | Skip condition         |
| code             | 1 0 0 1 1 0 0 1 1 0 2 6 6    | words           | cycles           |              | ·<br>                  |
|                  | 16                           | 1               | 1                | -            | -                      |
| Operation:       | (A) ← (P6)                   | Grouping:       | Input/Outp       | ut operatio  | n                      |
| -                |                              |                 |                  |              | port P6 to register A. |
|                  |                              |                 |                  |              |                        |
|                  |                              |                 |                  |              |                        |
|                  |                              |                 |                  |              |                        |
|                  |                              |                 |                  |              |                        |
|                  |                              |                 |                  |              |                        |
|                  |                              |                 |                  |              |                        |

| INY (INcrer      | ment red                                 | giste   | r Y)    |          |      |     |            |                |    |   |          |         |            |                          |                                                         |                                                        |                                                                                                                                                        |
|------------------|------------------------------------------|---------|---------|----------|------|-----|------------|----------------|----|---|----------|---------|------------|--------------------------|---------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instruction      | D9 0                                     | 0       | 0 0     | 1        |      | 0   | 1          | D <sub>0</sub> | 1  | 0 | 4        | 3       | 1          | Number of words          | Number of cycles                                        | Flag CY                                                | Skip condition                                                                                                                                         |
| 0000             | 0 0                                      | 10      |         | 1'       | 0    | o j | ı          | 1              | 2  | 0 | 1        | 3       | 16         | 1                        | 1                                                       | _                                                      | (Y) = 0                                                                                                                                                |
| Operation:       | (Y) ← (`                                 | Y) + ′  | 1       |          |      |     |            |                |    |   |          |         |            | Grouping:                | RAM addre                                               | esses                                                  |                                                                                                                                                        |
|                  | (,,, (                                   | .,.     |         |          |      |     |            |                |    |   |          |         |            |                          | : Adds 1 to t<br>sult of ad<br>register Y<br>skipped. W | he content<br>Idition, who<br>is 0, the<br>Ihen the co | s of register Y. As a re-<br>nen the contents of<br>a next instruction is<br>ontents of register Y is<br>tion is executed.                             |
| LA n (Load       | n in Ac                                  | cum     | ulator  | ١        |      |     |            |                |    |   |          |         |            |                          |                                                         |                                                        |                                                                                                                                                        |
| Instruction code | D9 0                                     | 0       | 1 1     |          | n    | n   | n          | D <sub>0</sub> | 1  | 0 | 7        | n       | 1          | Number of words          | Number of cycles                                        | Flag CY                                                | Skip condition                                                                                                                                         |
|                  | 0 0                                      | 10      | '   '   |          | ''   | ''  | 11         | 11             | 2  | U | <i>'</i> |         | 16         | 1                        | 1                                                       | -                                                      | Continuous description                                                                                                                                 |
| Operation:       | (A) ← r                                  | 1       |         |          |      |     |            |                |    |   |          |         |            | Grouping:                | Arithmetic                                              | operation                                              |                                                                                                                                                        |
|                  | n = 0 to                                 | o 15    |         |          |      |     |            |                |    |   |          | C       | 9          | <b>Description</b> :     | register A. When the I coded and struction              | LA instruct<br>executed<br>is execu                    | the immediate field to<br>ions are continuously<br>, only the first LA in-<br>ited and other LA<br>I continuously are                                  |
| LXY x, y (l      | _oad reg                                 | giste   | r X ar  | d Y      | with | x a | nd         | y)             | 1  | J |          |         |            | 1                        |                                                         |                                                        |                                                                                                                                                        |
| Instruction code | D9                                       | x3      | x2 x    | 1 x0     | уз   | y2  | <b>y</b> 1 | Do<br>yo       |    | 3 | х        | у       | 16         | Number of words          | Number of cycles                                        | Flag CY                                                | Skip condition                                                                                                                                         |
|                  |                                          | ·       |         |          |      |     |            |                | 12 |   |          |         | 110        | 1                        | 1                                                       | _                                                      | Continuous description                                                                                                                                 |
| Operation:       | $(X) \leftarrow X$<br>$(Y) \leftarrow Y$ |         |         |          | 7    | ,   |            |                |    |   |          |         |            | Grouping:                | RAM addr                                                |                                                        |                                                                                                                                                        |
|                  | (1)                                      |         |         | <b>/</b> |      |     |            |                |    |   |          |         |            | Description              | register X,<br>field to re-<br>tions are conly the fi   | and the vagister Y. Wontinuouslinst LXY instru         | the immediate field to<br>alue y in the immediate<br>/hen the LXY instruc-<br>y coded and executed<br>estruction is executed<br>actions coded continu- |
| LZ z (Load       | registe                                  | rZ۱     | vith z) |          |      |     |            |                |    |   |          |         |            |                          |                                                         |                                                        |                                                                                                                                                        |
| Instruction      | D9 0                                     | 0       | 1 0     | 0        | 1    | 0   | <b>Z</b> 1 | Do<br>zo       | 1  | 0 | 4        | 8<br>+z | ]          | Number of words          | Number of cycles                                        | Flag CY                                                | Skip condition                                                                                                                                         |
|                  |                                          | 1 -     |         | 1,       |      |     |            |                | 2  |   |          | +Z      | <b></b> 16 | 1                        | 1                                                       | _                                                      | _                                                                                                                                                      |
| Operation:       | (Z) ← z                                  | Z Z = ( | 0 to 3  |          |      |     |            |                |    |   |          |         |            | Grouping:<br>Description | RAM addro : Loads the register Z.                       |                                                        | the immediate field to                                                                                                                                 |

| NOP (No C        |           |       |               |          | •        |       |                |      |   |   |     |   | (00)11111       |                   |             |                         |
|------------------|-----------|-------|---------------|----------|----------|-------|----------------|------|---|---|-----|---|-----------------|-------------------|-------------|-------------------------|
| Instruction      | D9        | 11)   |               |          |          |       | D <sub>0</sub> |      |   |   |     |   | Number of       | Number of         | Flag CY     | Skip condition          |
| code             | 0 0       | 0     | 0 0           | 0        | 0 0      | 0     | 0              | 7    | 0 | 0 | 0   |   | words           | cycles            | ŭ           |                         |
|                  |           | 1 0 1 | 0   0         | 1 0 1    | 0   0    | ,   0 | 1 0            | J2 I | 0 | 0 |     | 6 | 1               | 1                 | _           | _                       |
| Operation:       | (PC) ←    | (PC)  | + 1           |          |          |       |                |      |   |   |     |   | Grouping:       | Other ope         | ration      |                         |
|                  | ( - )     | ( - / |               |          |          |       |                |      |   |   |     |   |                 |                   |             | 1 to program counter    |
|                  |           |       |               |          |          |       |                |      |   |   |     |   |                 | value, and        | others ren  | nain unchanged.         |
| OP0A (Out        | tnut nort | P0    | from A        | Accur    | mulat    | or)   |                |      |   |   |     |   |                 |                   | <b>→</b>    |                         |
| Instruction      | D9        |       | 1101117       | tocai    | Hulat    | 01)   | D <sub>0</sub> |      |   |   |     |   | Number of       | Number of         | Flag CY     | Skip condition          |
| code             | 1 0       | 0     | 0 1           | 0        | 0 0      | 0     | _              | 2    | 2 | 2 | 0   | 6 | words           | cycles            |             |                         |
|                  |           |       |               |          |          |       |                |      |   |   |     |   | 1               | 1                 | _           | _                       |
| Operation:       | (P0) ←    | (A)   |               |          |          |       |                |      |   |   |     |   | Grouping:       | Input/Outp        | ut operatio | n                       |
|                  |           |       |               |          |          |       |                |      |   |   |     | 7 | Description     | : Outputs the P0. | ne content  | s of register A to port |
| OP44 (Ov4        |           | - D4  | f., /         | <b>.</b> |          |       |                |      |   |   | G   |   |                 |                   |             |                         |
| OP1A (Out        |           | P1    | from <i>F</i> | Accur    | nulat    | or)   | Do             | 4    | 9 |   |     |   | Number of       | Number of         | Flog CV     | Clain ann dition        |
| Instruction code | D9        |       | 0 4           |          |          |       | D <sub>0</sub> | 7    |   |   | _   |   | Number of words | cycles            | Flag CY     | Skip condition          |
| oodo             | 1 0       | 0     | 0 1           | 0        | 0 0      | 0     | 1              | ]2   | 2 | 2 | 1 . | 6 | 1               | 1                 | _           | -                       |
| Operation:       | (P1) ←    | (A)   |               |          |          |       |                |      |   |   |     |   | Grouping:       | Input/Outp        | ut operatio | n                       |
|                  | <         |       |               | ,        | O        |       |                |      |   |   |     |   | Description     | : Outputs the P1. | ne content  | s of register A to port |
|                  |           | V     |               |          |          |       |                |      |   |   |     |   |                 |                   |             |                         |
| OP2A (Out        |           | P2    | from <i>F</i> | \ccur    | nulat    | or)   |                |      |   |   |     |   |                 | Ni                | FI. OX      |                         |
| Instruction code | D9        |       |               | <u> </u> | <u> </u> | 1     | D <sub>0</sub> | ]    | I | П |     |   | Number of words | Number of cycles  | Flag CY     | Skip condition          |
| code             | 1 0       | 0     | 0 1           | 0        | 0 0      | )   1 | 0              | ]2   | 2 | 2 | 2   | 6 | 1               | 1                 | _           | _                       |
| Operation:       | (P2) ←    | (A)   |               |          |          |       |                |      |   |   |     |   | Grouping:       | Input/Outp        | ut operatio | n                       |
| <b>-</b>         | ( = / \   | ( )   |               |          |          |       |                |      |   |   |     |   |                 |                   |             | s of register A to port |
|                  |           |       |               |          |          |       |                |      |   |   |     |   |                 |                   |             |                         |

| OP3A (Out        | tput port P3 from Accumulator)     | •                        |                         |             |                              |
|------------------|------------------------------------|--------------------------|-------------------------|-------------|------------------------------|
| Instruction      | D9 D0                              | Number of words          | Number of cycles        | Flag CY     | Skip condition               |
| Code             | 1 0 0 0 1 0 0 0 1 1 2 2 2 3 16     | 1                        | 1                       | -           | -                            |
| Operation:       | (P3) ← (A)                         | Grouping:<br>Description | Input/Outp : Outputs th | •           | n<br>s of register A to port |
|                  |                                    |                          |                         | Ċ           | •                            |
| OP4A (Out        | put port P4 from Accumulator)      |                          |                         | <b>S</b>    |                              |
| Instruction code | D9 D0 1 0 0 1 0 0 1 0 0 2 2 2 4 16 | Number of words          | Number of cycles        | Flag CY     | Skip condition               |
|                  |                                    | 1                        | 1                       | _           |                              |
| Operation:       | (P4) ← (A)                         | Grouping:                | Input/Outp              |             |                              |
|                  |                                    | Description              | P4.                     | ne contents | s of register A to port      |
|                  | ince                               |                          |                         |             |                              |
| OP5A (Out        | put port P5 from Accumulator)      |                          |                         |             |                              |
| Instruction code | D9 D0 1 0 0 1 0 1 0 2 2 5 46       | Number of words          | Number of cycles        | Flag CY     | Skip condition               |
|                  | 10                                 | 1                        | 1                       | _           |                              |
| Operation:       | (P5) ← (A)                         | Grouping:                | Input/Outp              |             |                              |
|                  | EOL O                              | Description              | : Outputs th<br>P5.     | e contents  | s of register A to port      |
|                  | put port P6 from Accumulator)      |                          |                         |             |                              |
| Instruction      | D9 D0                              | Number of words          | Number of cycles        | Flag CY     | Skip condition               |
| code             | 1 0 0 0 1 0 0 1 1 0 2 2 2 6 16     | 1                        | 1                       | _           | -                            |
| Operation:       | (P6) ← (A)                         | Grouping:<br>Description | Input/Outputs the P6.   |             | n<br>s of register A to port |
|                  |                                    |                          |                         |             |                              |


| OR (la sisal      | OD between consulator and manners                      |                                                                                    |                   |                                                                                                |                                                      |  |  |
|-------------------|--------------------------------------------------------|------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|
|                   | OR between accumulator and memory)                     | Ni. mala a n. a f                                                                  | Ni                | Flar CV                                                                                        | Oldin annulisian                                     |  |  |
| Instruction       | D9 D0                                                  | Number of words                                                                    | Number of cycles  | Flag CY                                                                                        | Skip condition                                       |  |  |
| code              | 0 0 0 0 0 1 1 0 0 1 2 0 1 9 16                         | 1                                                                                  | 1                 | _                                                                                              | _                                                    |  |  |
| Operation:        | $(A) \leftarrow (A) OR (M(DP))$                        | Grouping:                                                                          | Arithmetic        | operation                                                                                      |                                                      |  |  |
| <b>Sportation</b> | ('y' ('y') = (''(='))                                  |                                                                                    |                   |                                                                                                | ion between the con-                                 |  |  |
|                   |                                                        | tents of register A and the contents o M(DP), and stores the result in register A. |                   |                                                                                                |                                                      |  |  |
| POF (Powe         | er OFf)                                                |                                                                                    |                   | 9                                                                                              |                                                      |  |  |
| Instruction       | D9 D0                                                  | Number of                                                                          | Number of         | Flag CY                                                                                        | Skip condition                                       |  |  |
| code              | 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 2                      | words                                                                              | cycles            | 1 lag 01                                                                                       | ONP CONTAINON                                        |  |  |
|                   |                                                        | 1                                                                                  | 1                 | _                                                                                              | -                                                    |  |  |
| Operation:        | Transition to RAM back-up mode                         | Grouping:                                                                          | Other oper        | ation                                                                                          |                                                      |  |  |
|                   |                                                        | Description                                                                        |                   | -                                                                                              | RAM back-up state by                                 |  |  |
|                   |                                                        |                                                                                    | _                 |                                                                                                | struction after execut-                              |  |  |
|                   | 0                                                      | Note:                                                                              | ing the EP        |                                                                                                |                                                      |  |  |
|                   |                                                        | Note.                                                                              |                   | If the EPOF instruction is not executed before executing this instruction, this instruction is |                                                      |  |  |
|                   |                                                        |                                                                                    | _                 |                                                                                                | instruction.                                         |  |  |
| RAR (Rota         | ate Accumulator Right)                                 |                                                                                    |                   |                                                                                                |                                                      |  |  |
| Instruction       | D9 D0                                                  | Number of                                                                          | Number of         | Flag CY                                                                                        | Skip condition                                       |  |  |
| code              | 0 0 0 0 0 1 1 1 0 1 <sub>2</sub> 0 1 D <sub>16</sub>   | words<br>1                                                                         | cycles<br>1       | 0/1                                                                                            | _                                                    |  |  |
| Operation:        | →[CY]→[A3A2A1A0] <sub>1</sub>                          | Grouping:                                                                          | Arithmetic        | operation                                                                                      |                                                      |  |  |
|                   | 1                                                      |                                                                                    |                   |                                                                                                | ontents of register A in-                            |  |  |
|                   |                                                        |                                                                                    |                   |                                                                                                | of carry flag CY to the                              |  |  |
| <b>PD</b> :/Date  | A Dia                                                  |                                                                                    |                   |                                                                                                |                                                      |  |  |
| RB j (Rese        | ·                                                      | Ni 1                                                                               | Ni. and a control | Fla = OV                                                                                       | 01.5                                                 |  |  |
| Instruction code  | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Number of words                                                                    | Number of cycles  | Flag CY                                                                                        | Skip condition                                       |  |  |
|                   |                                                        | 1                                                                                  | 1                 | _                                                                                              | _                                                    |  |  |
| Operation:        | $(Mj(DP)) \leftarrow 0$                                | Grouping:                                                                          | Bit operati       | on                                                                                             |                                                      |  |  |
|                   | j = 0 to 3                                             | Description                                                                        | . ,               |                                                                                                | nts of bit j (bit specified<br>e immediate field) of |  |  |
|                   |                                                        |                                                                                    |                   |                                                                                                |                                                      |  |  |



| Instruction code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RBK (Rese   | et BanK flag)                                          |             |              |             |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------|-------------|--------------|-------------|------------------------|
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Instruction | <u> </u>                                               | Number of   |              | Flag CY     | Skip condition         |
| Poperation:   p6 ← 0 when TABP p instruction is executed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | code        | 0 0 0 1 0 0 0 0 0 0 0 0 4 0                            | words       | cycles       |             |                        |
| Description: Sets referring data area to pages 0 to 63 when the TABP p instruction is valid only for the TABP p instruction.    RC (Reset Carry flag)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 16                                                     | 1           | 1            | _           | _                      |
| When the TABP p instruction is executed. This instruction is valid only for the TABP p instruction.    RC (Reset Carry flag)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Operation:  | $p6 \leftarrow 0$ when TABP p instruction is executed. | Grouping:   | Other oper   | ration      |                        |
| RC   Reset Carry flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                        | Description | : Sets refer | ring data a | area to pages 0 to 63  |
| RC   Reset Carry flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                        |             |              |             |                        |
| RC   Reset Carry flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                        |             |              |             | id only for the TABP p |
| Instruction code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                                        |             | instruction  | <u> </u>    |                        |
| Instruction code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                                        |             |              |             |                        |
| Instruction code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                                        |             |              | 10          |                        |
| Instruction code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PC (Reset   | Carry flag)                                            |             |              |             |                        |
| Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | • •                                                    | Number of   | Number of    | Flag CY     | Skip condition         |
| Cycles             | code        |                                                        |             |              | 9           |                        |
| Description: Clears (0) to carry flag CY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                        | 1           | 1            | 0           | -                      |
| Description: Clears (0) to carry flag CY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Operation:  | (CV) / 0                                               | Grouping    | Arithmotic   | operation   |                        |
| RCP   (Reset Port C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Орегацоп.   | (01) (= 0                                              |             |              | -           | g CY.                  |
| Instruction code $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                        |             |              | ,           | 9                      |
| Instruction code $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                        |             |              |             |                        |
| Instruction code $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                        |             |              |             |                        |
| Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                                        |             |              |             |                        |
| Instruction code $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                        |             |              |             |                        |
| Instruction code $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                        |             |              |             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>`</u>    | ·                                                      |             |              |             |                        |
| Operation: (C) $\leftarrow$ 0  RD (Reset port D specified by register Y)  Instruction code $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                        |             |              | Flag CY     | Skip condition         |
| Operation: (C) $\leftarrow$ 0  Grouping: Input/Output operation  Description: Clears (0) to port C.  RD (Reset port D specified by register Y)  Instruction code  Description: Number of words cycles   Flag CY   Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | code        | 1 0 1 0 0 0 1 1 0 0 <sub>2</sub> 2 8 C <sub>16</sub>   |             |              |             |                        |
| RD (Reset port D specified by register Y)  Instruction code $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                                        | '           | '            | _           | _                      |
| RD (Reset port D specified by register Y)  Instruction code  Description: (D(Y)) $\leftarrow$ 0 However, $D_{2}$ Do  Number of Number of vorted by regular and the specified by register Y.  Number of vorted by Num | Operation:  | (C) ← 0                                                | Grouping:   | Input/Outp   | ut operatio | n                      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | •0•                                                    | Description | : Clears (0) | to port C.  |                        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                                        |             |              |             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                        |             |              |             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | <b>1 0 1</b>                                           |             |              |             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                        |             |              |             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                        |             |              |             |                        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RD (Reset   | port D specified by register Y)                        |             |              |             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Instruction |                                                        | Number of   | Number of    | Flag CY     | Skip condition         |
| Operation: $(D(Y)) \leftarrow 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | code        |                                                        |             |              |             |                        |
| However, Description: Clears (0) to a bit of port D specified by reg-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                        | 1           | 1            | _           | -                      |
| However, Description: Clears (0) to a bit of port D specified by reg-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Operation   | (D(Y))                                                 | Grouning    | Innut/Oute   | l l         | n                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | operation.  |                                                        |             |              |             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                        |             |              | F           | .,                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                        |             |              |             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                        |             |              |             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                        |             |              |             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                        |             |              |             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                        |             |              |             |                        |

| RT (ReTuri       | n from subroutine)                                                 |                 |                  |             |                                                     |
|------------------|--------------------------------------------------------------------|-----------------|------------------|-------------|-----------------------------------------------------|
| Instruction code | D9 D0 0 0 1 0 0 0 1 0 0 0 4 4 4 46                                 | Number of words | Number of cycles | Flag CY     | Skip condition                                      |
|                  | 16                                                                 | 1               | 2                | _           | _                                                   |
| Operation:       | $(PC) \leftarrow (SK(SP))$                                         | Grouping:       | Return ope       | eration     |                                                     |
|                  | $(SP) \leftarrow (SP) - 1$                                         |                 |                  | rom subr    | outine to the routine                               |
|                  |                                                                    |                 |                  | C           |                                                     |
| RTI (ReTui       | rn from Interrupt)                                                 |                 |                  |             |                                                     |
| Instruction code | D9 D0 0 0 1 0 0 0 1 1 0 0 0 4 6 46                                 | Number of words | Number of cycles | Flag CY     | Skip condition                                      |
|                  | 0 0 0 1 0 0 0 1 1 0 2 0 4 0 16                                     | 1               |                  | _           | -                                                   |
| Operation:       | $(PC) \leftarrow (SK(SP))$                                         | Grouping:       | Return ope       |             |                                                     |
|                  | $(SP) \leftarrow (SP) - 1$                                         | Description     |                  |             | upt service routine to                              |
|                  |                                                                    |                 | main routir      |             | ( data = a'ata = (V V Z)                            |
|                  | Q                                                                  |                 |                  |             | of data pointer (X, Y, Z), s, NOP mode status by    |
|                  |                                                                    |                 |                  |             | ption of the LA/LXY in-                             |
|                  |                                                                    |                 |                  |             | and register B to the                               |
|                  |                                                                    |                 | states just      | -           | -                                                   |
| RTS (ReTu        | urn from subroutine and Skip)                                      |                 |                  |             |                                                     |
| Instruction      | D9 Do                                                              | Number of       | Number of        | Flag CY     | Skip condition                                      |
| code             | 0 0 0 1 0 0 0 1 0 1 2 0 4 5                                        | words<br>1      | cycles<br>2      | _           | Skip at uncondition                                 |
| Operation:       | $(PC) \leftarrow (SK(SP))$                                         | Grouping:       | Return ope       | eration     |                                                     |
| Орегаціон.       | $(SP) \leftarrow (SP) - 1$                                         |                 |                  |             | outine to the routine                               |
|                  |                                                                    |                 | called the       | subroutine  | , and skips the next in-                            |
|                  | 20/                                                                |                 | struction a      | t unconditi | on.                                                 |
|                  |                                                                    |                 |                  |             |                                                     |
| SB j (Set E      |                                                                    | T               | I                | I           |                                                     |
| Instruction      | D9 D0                                                              | Number of words | Number of cycles | Flag CY     | Skip condition                                      |
| code             | 0 0 0 1 0 1 1 1 j j <sub>2</sub> 0 5 <sup>C</sup> <sub>+j 16</sub> | 1               | 1                | _           | _                                                   |
| Operation:       | $(Mj(DP)) \leftarrow 1$                                            | Grouping:       | Bit operation    | on          |                                                     |
|                  | j = 0 to 3                                                         |                 | : Sets (1) th    | e contents  | of bit j (bit specified by nediate field) of M(DP). |
|                  |                                                                    |                 |                  |             |                                                     |

|                                                                                                                                                                                                                                                                             | Skip condition                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| code       0       0       0       1       0       0       0       0       1       1       1       -         Operation:         P6 ← 1 when TABP p instruction is executed.         Grouping: Other operation         Description: Sets referring data a when the TABP p in | Skip condition                                                          |
| Operation: p6 ← 1 when TABP p instruction is executed.  Grouping: Other operation  Description: Sets referring data a when the TABP p in                                                                                                                                    |                                                                         |
| <b>Description:</b> Sets referring data a when the TABP p ir                                                                                                                                                                                                                | _                                                                       |
| when the TABP p ir                                                                                                                                                                                                                                                          |                                                                         |
| This instruction is va                                                                                                                                                                                                                                                      | rea to pages 64 to 127 estruction is executed. elid only for the TABP p |
| SC (Set Carry flag)                                                                                                                                                                                                                                                         |                                                                         |
| Instruction D9 D0 Number of Number of Flag CY                                                                                                                                                                                                                               | Skip condition                                                          |
| code         0 0 0 0 0 0 0 1 1 1 1 2         0 0 7 16         words         cycles                                                                                                                                                                                          | -                                                                       |
| Operation: $(CY) \leftarrow 1$ Grouping: Arithmetic operation                                                                                                                                                                                                               |                                                                         |
| Description: Sets (1) to carry flag                                                                                                                                                                                                                                         | CY.                                                                     |
| ince o                                                                                                                                                                                                                                                                      |                                                                         |
| SCP (Set Port C)                                                                                                                                                                                                                                                            |                                                                         |
| Instruction D9 D0 Number of Number of Flag CY                                                                                                                                                                                                                               | Skip condition                                                          |
| 1   0   1   0   0   0   1   1   0   1   2   2   8   D   16   1   1   -                                                                                                                                                                                                      | _                                                                       |
| Operation: (C) $\leftarrow$ 1 Grouping: Input/Output operation                                                                                                                                                                                                              | on                                                                      |
| Description: Sets (1) to port C.                                                                                                                                                                                                                                            |                                                                         |
| Description: Octo (1) to port O.                                                                                                                                                                                                                                            |                                                                         |
|                                                                                                                                                                                                                                                                             |                                                                         |
| SD (Set port D specified by register Y)                                                                                                                                                                                                                                     |                                                                         |
| SD (Set port D specified by register Y)  Instruction D9 D0 Number of Number of Flag CY  code 0 0 0 0 1 0 1 0 1 5                                                                                                                                                            | Skip condition                                                          |
| SD (Set port D specified by register Y) Instruction D9 D0 Number of Number of Flag CY                                                                                                                                                                                       | Skip condition                                                          |
| SD (Set port D specified by register Y)   Instruction code                                                                                                                                                                                                                  | -                                                                       |
| SD (Set port D specified by register Y)  Instruction code  D0  Number of words cycles  Number of cycles  1 1 1 -                                                                                                                                                            | _<br>_<br>on                                                            |



| SEA n            | (Skip Equal, Accumulator with immediate data n)                                                                                   |                                                                                                                                                                                                                                                                                                                         |                                         |                                                                      |                                                                                                                      |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Instruction      | D9 D0 0 0 0 1 0 0 1 0 1 0 2 5 46                                                                                                  | Number of words                                                                                                                                                                                                                                                                                                         | Number of cycles                        | Flag CY                                                              | Skip condition                                                                                                       |
|                  |                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                       | 2                                       | _                                                                    | (A) = n                                                                                                              |
|                  | 0 0 0 1 1 1 1 n n n n n <sub>2</sub> 0 7 n <sub>16</sub>                                                                          | Grouping:                                                                                                                                                                                                                                                                                                               | Compariso                               | n operatio                                                           | n                                                                                                                    |
| Operation:       | (A) = n ?<br>n = 0 to 15                                                                                                          | Description                                                                                                                                                                                                                                                                                                             | tents of reg<br>the immed<br>Executes t | gister A is<br>iate field.<br>he next ins                            | uction when the con-<br>equal to the value n in<br>struction when the con-<br>not equal to the value n               |
|                  |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                         | in the imme                             | ediate field                                                         | l.                                                                                                                   |
| SEAM (Ski        | p Equal, Accumulator with Memory)                                                                                                 |                                                                                                                                                                                                                                                                                                                         |                                         | <b>O</b>                                                             |                                                                                                                      |
| Instruction code | D9 D0 0 0 0 1 0 0 1 1 0 0 2 6 40                                                                                                  | Number of words                                                                                                                                                                                                                                                                                                         | Number of cycles                        | Flag CY                                                              | Skip condition                                                                                                       |
|                  |                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                       | 1                                       | _                                                                    | (A) = (M(DP))                                                                                                        |
| Operation:       | (A) = (M(DP)) ?                                                                                                                   | Grouping:                                                                                                                                                                                                                                                                                                               | Compariso                               |                                                                      |                                                                                                                      |
|                  |                                                                                                                                   | Description                                                                                                                                                                                                                                                                                                             | •                                       |                                                                      | uction when the con-<br>equal to the contents of                                                                     |
|                  |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                         | Executes t                              | egister A                                                            | struction when the con-<br>is not equal to the                                                                       |
| SNZ0 (Skir       | o if Non Zero condition of external 0 interrupt reques                                                                            | t flag)                                                                                                                                                                                                                                                                                                                 |                                         |                                                                      |                                                                                                                      |
| Instruction      | D9 D0                                                                                                                             | Number of                                                                                                                                                                                                                                                                                                               | Number of                               | Flag CY                                                              | Skip condition                                                                                                       |
| code             | 0 0 0 1 1 1 0 0 0 2 0 3 8 16                                                                                                      | words<br>1                                                                                                                                                                                                                                                                                                              | cycles<br>1                             | _                                                                    | V10 = 0: (EXF0) = 1                                                                                                  |
| Operation:       | V10 = 0: (EXF0) = 1 ?                                                                                                             | Grouping:                                                                                                                                                                                                                                                                                                               | Interrupt o                             | peration                                                             |                                                                                                                      |
|                  | After skipping, (EXF0) ← 0 V10 = 1: SNZ0 = NOP (V10 : bit 0 of the interrupt control register V1)                                 |                                                                                                                                                                                                                                                                                                                         | when externis "1." Afterniag. When      | rnal 0 inter<br>r skipping,<br>n the EXF<br>struction.<br>= 1 : This | os the next instruction rupt request flag EXF0 clears (0) to the EXF0 0 flag is "0," executes instruction is equiva- |
| SNZ1 (Skip       | o if Non Zero condition of external 1 interrupt reques                                                                            | t flag)                                                                                                                                                                                                                                                                                                                 |                                         |                                                                      |                                                                                                                      |
| Instruction code | D9 D0 0 0 1 1 1 0 0 1 0 3 9 40                                                                                                    | Number of words                                                                                                                                                                                                                                                                                                         | Number of cycles                        | Flag CY                                                              | Skip condition                                                                                                       |
|                  | 16                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                       | 1                                       | _                                                                    | V11 = 0: (EXF1) = 1                                                                                                  |
| Operation:       | V11 = 0: (EXF1) = 1? After skipping, (EXF1) $\leftarrow$ 0 V11 = 1: SNZ1 = NOP (V11 : bit 1 of the interrupt control register V1) | Grouping: Interrupt operation  Description: When V11 = 0 : Skips the next instruction when external 1 interrupt request flag EXF1 is "1." After skipping, clears (0) to the EXF1 flag. When the EXF1 flag is "0," executes the next instruction.  When V11 = 1 : This instruction is equivalent to the NOP instruction. |                                         |                                                                      |                                                                                                                      |





| SNZAD (S         | kip if Non Zero condition of A/D conversion completi     | on flag)                                                                                                                                      |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Instruction      |                                                          | Number of                                                                                                                                     | Number of        | Flag CY     | Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| code             | 1 0 1 0 0 0 1 1 1 1 2 2 8 7                              | words                                                                                                                                         | cycles           |             | \\(\alpha_{\text{o}} \\ \alpha_{\text{o}} \\ \alpha |  |
|                  |                                                          | 1                                                                                                                                             | 1                | _           | V22 = 0: (ADF) = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Operation:       | V22 = 0: (ADF) = 1 ?                                     | Grouping:                                                                                                                                     | A/D conve        | rsion oper  | ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                  | After skipping, (ADF) $\leftarrow$ 0                     | <b>Description:</b> When V22 = 0 : Skips the next instruction                                                                                 |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                  | V22 = 1: SNZAD = NOP                                     |                                                                                                                                               | when A/D         | conversio   | n completion flag ADF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                  | (V22 : bit 2 of the interrupt control register V2)       |                                                                                                                                               | is "1." Afte     | r skipping  | , clears (0) to the ADF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                  |                                                          |                                                                                                                                               | flag. When       | the ADF f   | lag is "0," executes the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                  |                                                          |                                                                                                                                               | next instru      | ction.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                  |                                                          |                                                                                                                                               |                  |             | instruction is equiva-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                  |                                                          | lent to the NOP instruction.                                                                                                                  |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| SNZIO (Ski       | p if Non Zero condition of external 0 Interrupt input    |                                                                                                                                               |                  | 9           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Instruction code | D9 D0                                                    | Number of words                                                                                                                               | Number of cycles | Flag CY     | Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| coue             | 0 0 0 0 1 1 1 1 0 1 0 <sub>2</sub> 0 3 A <sub>16</sub>   | 1                                                                                                                                             | 1                | _           | I12 = 0 : (INT0) = "L"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Oneretien        | 140 O. (INITO) #1 " 2                                    | Grouping:                                                                                                                                     | Interrupt or     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Operation:       | I12 = 0 : (INT0) = "L" ?<br>I12 = 1 : (INT0) = "H" ?     | Description                                                                                                                                   |                  |             | s the next instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                  | (I12 : bit 2 of the interrupt control register I1)       |                                                                                                                                               |                  |             | T0 pin is "L." Executes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                  | (112 : bit 2 of the interrupt control register 11)       |                                                                                                                                               |                  |             | when the level of INT0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                  |                                                          |                                                                                                                                               | pin is "H."      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                  |                                                          |                                                                                                                                               | When I12         | = 1 : Skip  | s the next instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                  |                                                          | when the level of INT0 pin is "H." Executes                                                                                                   |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                  |                                                          | the next instruction when the level of INT                                                                                                    |                  |             | when the level of INT0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| CN7I4 (CL)       | in it Nam Zone condition of enternal 4 laterwest in such | -:->                                                                                                                                          | pin is "L."      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Instruction      | p if Non Zero condition of external 1 Interrupt input    | Number of                                                                                                                                     | Number of        | Flag CY     | Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| code             | D9 D0                                                    | words                                                                                                                                         | cycles           | Flag C1     | Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| code             | 0 0 0 0 1 1 1 1 0 1 1 <sub>2</sub> 0 3 B <sub>16</sub>   | 1                                                                                                                                             | 1                | -           | I22 = 0 : (INT1) = "L"<br>I22 = 1 : (INT1) = "H"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Operation:       | I22 = 0 : (INT1) = "L" ?                                 | Grouping:                                                                                                                                     | Interrupt or     | peration    | 1122 = 1 : (11411) = 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| •                | I22 = 1 : (INT1) = "H" ?                                 | <b>Description:</b> When I22 = 0 : Skips the next instruction when the level of INT1 pin is "L." Executes                                     |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                  | (I22 : bit 2 of the interrupt control register I2)       |                                                                                                                                               |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                  |                                                          |                                                                                                                                               |                  | struction v | when the level of INT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                  | . ( ) Y                                                  |                                                                                                                                               | pin is "H."      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                  |                                                          | When I22 = 1 : Skips the next instruction when the level of INT1 pin is "H." Executes the next instruction when the level of INT1 pin is "L." |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                  |                                                          |                                                                                                                                               |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                  |                                                          |                                                                                                                                               |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| SNZP (Skip       | p if Non Zero condition of Power down flag)              | 1                                                                                                                                             | <u> </u>         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Instruction      | D9 D0                                                    | Number of words                                                                                                                               | Number of cycles | Flag CY     | Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| coue             | 0 0 0 0 0 0 0 1 0 2 0 1 1 2                              | 1                                                                                                                                             | 1                | _           | (P) = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Operation:       | (P) = 1 ?                                                | Grouping:                                                                                                                                     | Other oper       | ation       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| operation.       | (1) - 1:                                                 | Description                                                                                                                                   |                  |             | ction when the P flag is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                  |                                                          | 200011011                                                                                                                                     | "1".             | .c.k moud   | such mion thor may to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                  |                                                          |                                                                                                                                               |                  | pina. the   | P flag remains un-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                  |                                                          |                                                                                                                                               | changed.         | , , 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                  | Executes the next instruction when the P                 |                                                                                                                                               |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                  |                                                          |                                                                                                                                               | flag is "0."     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                  |                                                          |                                                                                                                                               |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                  |                                                          |                                                                                                                                               |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |





| SNZT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Skip if Non Zero condition of Timer 1 interrupt re | equest flag)                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instruction code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D9 D0 1 0 0 0 0 0 0 0 2 8 0 40                      | Number of words                                                                 | Number of cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flag CY                                                                                                                       | Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                  | 1                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                             | V12 = 0: (T1F) = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Operation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V12 = 0: (T1F) = 1 ?                                | Grouping:                                                                       | Timer oper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ation                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | After skipping, $(T1F) \leftarrow 0$                |                                                                                 | : When V12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 0 : Skip                                                                                                                    | os the next instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V12 = 1: SNZT1 = NOP                                |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               | pt request flag T1F is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (V12 = bit 2 of interrupt control register V1)      |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               | clears (0) to the T1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • • •                                               |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               | ag is "0," executes the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                 | next instru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                 | When V12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 1 : This                                                                                                                    | instruction is equiva-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | lent to the NOP instruction.                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SNZT2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Skip if Non Zero condition of Timer 2 interrupt re | equest flag)                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>O</b> .                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Instruction code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D9 D0 1 0 0 0 0 0 1 2 8 1 40                        | Number of words                                                                 | Number of cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flag CY                                                                                                                       | Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                  | 1                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                             | V13 = 0: (T2F) = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Operation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V13 = 0: (T2F) = 1 ?                                | Grouping:                                                                       | Timer oper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ation                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | After skipping, $(T2F) \leftarrow 0$                | Description                                                                     | : When V13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 0 : Skip                                                                                                                    | os the next instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V13 = 1: SNZT2 = NOP                                |                                                                                 | when time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r 2 interru                                                                                                                   | pt request flag T2F is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (V13 = bit 3 of interrupt control register V1)      |                                                                                 | "1." After                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | skipping,                                                                                                                     | clears (0) to the T2F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | 9                                                                               | flag. When                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the T2F fl                                                                                                                    | ag is "0," executes the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                 | next instru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ction.                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               | instruction is equiva-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                 | lent to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NOP instru                                                                                                                    | uction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SNZT3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Skip if Non Zero condition of Timer 3 interrupt re | auget flag)                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 011213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     | guest nag,                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D9 D0                                               | , , , , , , , , , , , , , , , , , , , ,                                         | Number of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flag CY                                                                                                                       | Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D9 D0 2 8 2                                         | Number of words                                                                 | Number of cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flag CY                                                                                                                       | Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D9 D0                                               | Number of                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flag CY                                                                                                                       | Skip condition $V20 = 0: (T3F) = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D9 D0 2 8 2                                         | Number of words                                                                 | cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Instruction code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D9                                                  | Number of words  1  Grouping:                                                   | cycles  1  Timer oper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -<br>ation                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Instruction code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D9                                                  | Number of words  1  Grouping:                                                   | cycles  1  Timer oper : When V20 when time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ation<br>= 0 : Skip<br>r 3 interru                                                                                            | V20 = 0: (T3F) = 1  os the next instruction pt request flag T3F is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Instruction code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D9                                                  | Number of words  1  Grouping:                                                   | cycles  1  Timer oper : When V20 when time "1." After                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ation<br>= 0 : Skip<br>r 3 interru<br>skipping,                                                                               | V20 = 0: (T3F) = 1  os the next instruction pt request flag T3F is clears (0) to the T3F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Instruction code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D9                                                  | Number of words  1  Grouping:                                                   | cycles  1  Timer oper : When V20 when time "1." After : flag. When                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ation = 0 : Skip r 3 interru skipping, the T3F fl                                                                             | V20 = 0: (T3F) = 1  os the next instruction pt request flag T3F is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Instruction code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D9                                                  | Number of words  1  Grouping:                                                   | Timer oper When V20 when time "1." After stag. When next instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ation = 0 : Skip r 3 interru skipping, the T3F fl                                                                             | V20 = 0: (T3F) = 1  os the next instruction pt request flag T3F is clears (0) to the T3F ag is "0," executes the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Instruction code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D9                                                  | Number of words  1  Grouping:                                                   | timer oper When V20 when time "1." After flag. When next instruct When V20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ation = 0 : Skip r 3 interru skipping, the T3F fl ction. = 1 : This                                                           | V20 = 0: (T3F) = 1  os the next instruction pt request flag T3F is clears (0) to the T3F ag is "0," executes the sinstruction is equiva-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Instruction code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D9                                                  | Number of words  1  Grouping:                                                   | Timer oper When V20 when time "1." After stag. When next instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ation = 0 : Skip r 3 interru skipping, the T3F fl ction. = 1 : This                                                           | V20 = 0: (T3F) = 1  os the next instruction pt request flag T3F is clears (0) to the T3F ag is "0," executes the sinstruction is equiva-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Instruction code Operation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D9                                                  | Number of words  1  Grouping: Description                                       | timer oper When V20 when time "1." After flag. When next instruct When V20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ation = 0 : Skip r 3 interru skipping, the T3F fl ction. = 1 : This                                                           | V20 = 0: (T3F) = 1  os the next instruction pt request flag T3F is clears (0) to the T3F ag is "0," executes the sinstruction is equiva-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Instruction code Operation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D9                                                  | Number of words  1  Grouping: Description                                       | cycles  1  Timer oper : When V20 when time "1." After : flag. When next instru When V20 lent to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ation = 0 : Skip r 3 interru skipping, the T3F fl ction. = 1 : This                                                           | V20 = 0: (T3F) = 1  os the next instruction pt request flag T3F is clears (0) to the T3F ag is "0," executes the sinstruction is equiva-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Operation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D9                                                  | Number of words  1  Grouping: Description                                       | cycles  1  Timer oper : When V20 when time "1." After : flag. When next instruct When V20 lent to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ation = 0 : Skip r 3 interru skipping, the T3F fl ction. = 1 : This                                                           | V20 = 0: (T3F) = 1  os the next instruction pt request flag T3F is clears (0) to the T3F lag is "0," executes the sinstruction is equivaluction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Operation:  SNZT4 (Sk Instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D9 D0 $1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ $    | Number of words  1  Grouping: Description  flag)  Number of                     | cycles  1  Timer oper : When V20 when time "1." After : flag. When next instru When V20 lent to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ation = 0 : Skip r 3 interru skipping, the T3F fl ction. = 1 : This                                                           | V20 = 0: (T3F) = 1  os the next instruction pt request flag T3F is clears (0) to the T3F lag is "0," executes the sinstruction is equivaluction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Operation:  SNZT4 (Sk Instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D9                                                  | Number of words  1  Grouping: Description  flag)  Number of words               | cycles  1  Timer oper : When V20 when time "1." After if lag. When next instruction when V20 lent to the  Number of cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ation = 0 : Skip r 3 interru skipping, the T3F fletion. = 1 : This NOP instru Flag CY                                         | V20 = 0: (T3F) = 1  os the next instruction pt request flag T3F is clears (0) to the T3F lag is "0," executes the instruction is equivalent.  Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Operation:  SNZT4 (Statement of the statement of the stat | D9                                                  | Number of words  1  Grouping: Description  flag)  Number of words  1            | cycles  1  Timer oper : When V20 when time "1." After if lag. When next instruction when V20 lent to the lent to t | ation = 0 : Skip r 3 interru skipping, the T3F fletion. = 1 : This NOP instru Flag CY                                         | V20 = 0: (T3F) = 1  os the next instruction pt request flag T3F is clears (0) to the T3F lag is "0," executes the instruction is equivalent.  Skip condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Operation:  SNZT4 (Statement of the statement of the stat | D9                                                  | Number of words  1  Grouping: Description  flag)  Number of words  1  Grouping: | cycles  1  Timer oper : When V20 when time "1." After : flag. When next instruct When V20 lent to the  Number of cycles  1  Timer oper : When V21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ation = 0 : Skip r 3 interruskipping, the T3F fletion. = 1 : This NOP instru  Flag CY  - ration = 0 : Skip                    | V20 = 0: (T3F) = 1  The state next instruction provided the state of t |
| Operation:  SNZT4 (Statement of the statement of the stat | D9                                                  | Number of words  1  Grouping: Description  flag)  Number of words  1  Grouping: | cycles  1  Timer oper : When V20 when time "1." After : flag. When next instruct When V20 lent to the  Number of cycles  1  Timer oper when V21 when time "1." After                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ation = 0 : Skip r 3 interruskipping, the T3F fletion. = 1 : This NOP instru  Flag CY  ration = 0 : Skip r 4 interruskipping, | V20 = 0: (T3F) = 1  Dos the next instruction pt request flag T3F is clears (0) to the T3F ag is "0," executes the sinstruction is equivalent on.  Skip condition  V21 = 0: (T4F) = 1  Dos the next instruction upt request flag T4F is clears (0) to the T4F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Operation:  SNZT4 (Statement of the statement of the stat | D9                                                  | Number of words  1  Grouping: Description  flag)  Number of words  1  Grouping: | cycles  1  Timer oper : When V20 when time "1." After : flag. When next instruct When V20 lent to the  Number of cycles  1  Timer oper when V21 when time "1." After                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ation = 0 : Skip r 3 interruskipping, the T3F fletion. = 1 : This NOP instru  Flag CY  ration = 0 : Skip r 4 interruskipping, | V20 = 0: (T3F) = 1  Os the next instruction pt request flag T3F is clears (0) to the T3F ag is "0," executes the sinstruction is equivalent on.  Skip condition  V21 = 0: (T4F) = 1  Os the next instruction upt request flag T4F is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Operation:  SNZT4 (Statement of the statement of the stat | D9                                                  | Number of words  1  Grouping: Description  flag)  Number of words  1  Grouping: | cycles  1  Timer oper : When V20 when time "1." After : flag. When next instruct When V20 lent to the  Number of cycles  1  Timer oper :: When V21 when time "1." After flag. When next instruct flag. When next instruct flag. When next instruct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ation  = 0 : Skip r 3 interru skipping, the T3F fletion. = 1 : This NOP instru  Flag CY                                       | V20 = 0: (T3F) = 1  So the next instruction pt request flag T3F is clears (0) to the T3F ag is "0," executes the sinstruction is equivalection.  Skip condition  V21 = 0: (T4F) = 1  Pos the next instruction apt request flag T4F is clears (0) to the T4F lag is "0," executes the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Operation:  SNZT4 (Statement of the statement of the stat | D9                                                  | Number of words  1  Grouping: Description  flag)  Number of words  1  Grouping: | Timer oper When V20 when time "1." After iflag. When next instruct When V20 lent to the  Number of cycles  1  Timer oper When V21 when time "1." After flag. When next instruct when time "1." After flag. When Number of cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ation  = 0 : Skir r 3 interruskipping, the T3F fletion. = 1 : This NOP instru  Flag CY                                        | v20 = 0: (T3F) = 1  so the next instruction pt request flag T3F is clears (0) to the T3F ag is "0," executes the sinstruction is equivalection.  Skip condition  v21 = 0: (T4F) = 1  so the next instruction apt request flag T4F is clears (0) to the T4F lag is "0," executes the sinstruction is equiva-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Operation:  SNZT4 (Statement of the statement of the stat | D9                                                  | Number of words  1  Grouping: Description  flag)  Number of words  1  Grouping: | cycles  1  Timer oper : When V20 when time "1." After : flag. When next instruct When V20 lent to the  Number of cycles  1  Timer oper :: When V21 when time "1." After flag. When next instruct flag. When next instruct flag. When next instruct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ation  = 0 : Skir r 3 interruskipping, the T3F fletion. = 1 : This NOP instru  Flag CY                                        | v20 = 0: (T3F) = 1  so the next instruction pt request flag T3F is clears (0) to the T3F ag is "0," executes the sinstruction is equivalection.  Skip condition  v21 = 0: (T4F) = 1  so the next instruction apt request flag T4F is clears (0) to the T4F lag is "0," executes the sinstruction is equiva-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



| OILO I LOVE      | stem ReSeT)                                                |                                                                                                                                                                                                   |                         |           |                               |  |
|------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|-------------------------------|--|
| Instruction      | D9 D0                                                      | Number of                                                                                                                                                                                         | Number of               | Flag CY   | Skip condition                |  |
| code             | 0 0 0 0 0 0 0 0 1 1 2                                      | words<br>1                                                                                                                                                                                        | cycles<br>1             | _         |                               |  |
|                  |                                                            |                                                                                                                                                                                                   |                         |           |                               |  |
| Operation:       | System reset occurrence                                    | Grouping:                                                                                                                                                                                         | Other oper : System res |           |                               |  |
|                  |                                                            |                                                                                                                                                                                                   |                         | , Č       | <b>C</b>                      |  |
| SVDE (Set        | : Voltage Detector Enable flag)                            |                                                                                                                                                                                                   |                         |           |                               |  |
| Instruction      | D9 D0                                                      | Number of words                                                                                                                                                                                   | Number of               | Flag CY   | Skip condition                |  |
| code             | 1 0 1 0 0 1 0 0 1 1 2 2 9 3 16                             | 1                                                                                                                                                                                                 | cycles<br>1             | _         | _                             |  |
| Operation:       | At RAM back-up: Voltage drop detection circuit is valid.   | Grouping                                                                                                                                                                                          | Other oper              | otion     |                               |  |
| Орегацоп.        | At IVAIN back-up. Voltage drop detection circuit is valid. | Grouping: Other operation  Description: Validates the voltage drop detection circui                                                                                                               |                         |           |                               |  |
|                  | _0                                                         | 0                                                                                                                                                                                                 |                         | _         | de when VDCE pin is           |  |
|                  | inc                                                        |                                                                                                                                                                                                   |                         |           |                               |  |
|                  | o if Zero, Bit)                                            | I                                                                                                                                                                                                 | I                       | I         |                               |  |
| Instruction code | D9                                                         | Number of words                                                                                                                                                                                   | Number of cycles        | Flag CY   | Skip condition                |  |
|                  |                                                            | 1                                                                                                                                                                                                 | 1                       | _         | (Mj(DP)) = 0<br>j = 0 to 3    |  |
| Operation:       | (Mj(DP)) = 0 ?                                             | Grouping: Bit operation                                                                                                                                                                           |                         |           |                               |  |
|                  | j = 0 to 3                                                 | <b>Description:</b> Skips the next instruction when the con-                                                                                                                                      |                         |           |                               |  |
|                  |                                                            |                                                                                                                                                                                                   |                         |           | cified by the value j ir      |  |
|                  |                                                            | the immediate field) of M(DP) is "0."  Executes the next instruction when the contents of bit j of M(DP) is "1."                                                                                  |                         |           |                               |  |
|                  |                                                            |                                                                                                                                                                                                   |                         |           |                               |  |
| 070 (01)         | ***                                                        |                                                                                                                                                                                                   |                         |           |                               |  |
| Instruction      | if Zero, Carry flag) D9 D0                                 | Number of                                                                                                                                                                                         | Number of               | Flag CY   | Skip condition                |  |
| code             |                                                            | words                                                                                                                                                                                             | cycles                  | l lay C1  | OKIP CONTRIBUTI               |  |
|                  | 0 0 0 0 1 0 1 1 1 1 1 2                                    | 1                                                                                                                                                                                                 | 1                       | _         | (CY) = 0                      |  |
| Operation:       | (CY) = 0 ?                                                 | Grouping:                                                                                                                                                                                         | Arithmetic              | operation |                               |  |
|                  |                                                            | Description: Skips the next instruction when the tents of carry flag CY is "0."  After skipping, the CY flag remain changed.  Executes the next instruction when the tents of the CY flag is "1." |                         |           | is "0."<br>CY flag remains un |  |

| SZD (Skip        | if Zero, port D specified by register Y)             |                                                                                      |                                                          |             |                          |  |
|------------------|------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------|-------------|--------------------------|--|
| Instruction      | D9 D0                                                | Number of                                                                            | Number of                                                | Flag CY     | Skip condition           |  |
| code             | 0 0 0 0 1 0 0 1 0 0 2 0 2 4                          | words                                                                                | cycles                                                   |             |                          |  |
|                  |                                                      | 2                                                                                    | 2                                                        | _           | (D(Y)) = 0               |  |
|                  | 0 0 0 0 1 0 1 0 1 1 <sub>2</sub> 0 2 B <sub>16</sub> |                                                                                      |                                                          |             | (Y) = 0  to  6           |  |
| Operation:       | (D(Y)) = 0 ?                                         | Grouping:                                                                            | Input/Outp                                               |             |                          |  |
| oporation.       | (Y) = 0  to  6                                       | Description                                                                          |                                                          |             | ction when a bit of po   |  |
|                  |                                                      | D specified by register Y is "0." Execunext instruction when the bit is "1."         |                                                          |             |                          |  |
|                  |                                                      | next instruction when the bit is 1.                                                  |                                                          |             |                          |  |
|                  |                                                      |                                                                                      |                                                          |             |                          |  |
|                  |                                                      | .0                                                                                   |                                                          |             |                          |  |
| TAAD /Taa        | refer data to time and an director D4 frame A second |                                                                                      | istan D)                                                 |             |                          |  |
|                  | nsfer data to timer 1 and register R1 from Accumula  |                                                                                      |                                                          | Flan CV     | Olein ann dition         |  |
| Instruction code | D9 D0                                                | Number of words                                                                      | Number of cycles                                         | Flag CY     | Skip condition           |  |
| code             | 1 0 0 0 1 1 0 0 0 0 <sub>2</sub> 2 3 0 <sub>16</sub> | 1                                                                                    |                                                          | _           | _                        |  |
|                  |                                                      |                                                                                      |                                                          |             |                          |  |
| Operation:       | $(T17-T14) \leftarrow (B)$                           | Grouping: Timer operation                                                            |                                                          |             |                          |  |
|                  | $(R17-R14) \leftarrow (B)$                           | <b>Description:</b> Transfers the contents of register B to                          |                                                          |             |                          |  |
|                  | $(T13-T10) \leftarrow (A)$                           | high-order 4 bits of timer 1 and timer                                               |                                                          |             |                          |  |
|                  | (R13–R10) ← (A)                                      | load register R1. Transfers the contents register A to the low-order 4 bits of times |                                                          |             |                          |  |
|                  | C.                                                   | and timer 1 reload register R1.                                                      |                                                          |             |                          |  |
|                  |                                                      |                                                                                      |                                                          |             | 9                        |  |
|                  |                                                      |                                                                                      |                                                          |             |                          |  |
| T2AB (Tra        | nsfer data to timer 2 and register R2 from Accumula  | tor and reg                                                                          | ister B)                                                 |             |                          |  |
| Instruction      | D9 D0                                                | Number of                                                                            | Number of                                                | Flag CY     | Skip condition           |  |
| code             | 1 0 0 0 1 1 0 0 0 1 2 3 1                            | words                                                                                | cycles                                                   |             | '                        |  |
|                  | 16                                                   | 1                                                                                    | 1                                                        | _           | _                        |  |
| Operation:       | (T27−T24) ← (B)                                      | Grouping: Timer operation                                                            |                                                          |             |                          |  |
| орегиноп.        | $(R27-R24) \leftarrow (B)$                           | <b>Description:</b> Transfers the contents of register B                             |                                                          |             | nts of register B to the |  |
|                  | $(T23-T20) \leftarrow (A)$                           | high-order 4 bits of timer 2 and                                                     |                                                          |             | imer 2 and timer 2 re-   |  |
|                  | $(R23-R20) \leftarrow (A)$                           | load register R2. Transfers the conte                                                |                                                          |             |                          |  |
|                  | . ( ) Y                                              | register A to the low-order 4 bits of t and timer 2 reload register R2.              |                                                          |             |                          |  |
|                  |                                                      |                                                                                      | and timer 2                                              | z reioad re | gister R2.               |  |
|                  |                                                      |                                                                                      |                                                          |             |                          |  |
|                  |                                                      |                                                                                      |                                                          |             |                          |  |
| T3AB (Trai       | nsfer data to timer 3 and register R3 from Accumula  | tor and reg                                                                          |                                                          |             |                          |  |
| Instruction      | D9 D0                                                | Number of                                                                            | Number of                                                | Flag CY     | Skip condition           |  |
| code             | 1 0 0 0 1 1 0 0 1 0 2 2 3 2 16                       | words<br>1                                                                           | cycles<br>1                                              | _           |                          |  |
|                  |                                                      | l I                                                                                  | 1                                                        | _           | <del>-</del>             |  |
| Operation:       | (T37–T34) ← (B)                                      | Grouping:                                                                            | Timer oper                                               | ration      |                          |  |
|                  | (R37–R34) ← (B)                                      | Description                                                                          | Description: Transfers the contents of register B to the |             |                          |  |
|                  | (T33–T30) ← (A)                                      |                                                                                      | -                                                        |             | imer 3 and timer 3 re    |  |
|                  | $(R33-R30) \leftarrow (A)$                           | load register R3. Transfers the cor                                                  |                                                          |             |                          |  |
|                  |                                                      | register A to the low-order 4 bits of and timer 3 reload register R3.                |                                                          |             |                          |  |
|                  |                                                      |                                                                                      |                                                          |             | gister R3.               |  |
|                  |                                                      |                                                                                      |                                                          |             |                          |  |
|                  |                                                      |                                                                                      |                                                          |             |                          |  |

| T4AB (Trai  | nsfer data to timer 4 and register R4L from Accumul | ator and re                                                      | gister B)                                               |           |                         |  |  |
|-------------|-----------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------|-----------|-------------------------|--|--|
| Instruction | D9 D0                                               | Number of                                                        | Number of                                               | Flag CY   | Skip condition          |  |  |
| code        | 1 0 0 0 1 1 0 0 1 1 2 2 3 3 16                      | words                                                            | cycles                                                  |           |                         |  |  |
|             | 2 2 3 3 16                                          | 1                                                                | 1                                                       | _         | _                       |  |  |
| Operation:  | (T47−T44) ← (B)                                     | Grouping:                                                        | Timer oper                                              | ation     |                         |  |  |
| орогинот:   | $(R4L7-R4L4) \leftarrow (B)$                        |                                                                  |                                                         |           | ts of register B to the |  |  |
|             | $(T43-T40) \leftarrow (A)$                          | high-order 4 bits of timer 4 and timer 4                         |                                                         |           |                         |  |  |
|             | $(R4L3-R4L0) \leftarrow (A)$                        | load register R4L. Transfers the co                              |                                                         |           |                         |  |  |
|             | (N4L3-N4L0) ← (A)                                   | register A to the low-order 4 bits                               |                                                         |           |                         |  |  |
|             |                                                     |                                                                  | and timer 4                                             |           |                         |  |  |
|             |                                                     |                                                                  | and amor                                                | 110104410 | giotor re in.           |  |  |
|             |                                                     |                                                                  |                                                         |           |                         |  |  |
|             |                                                     |                                                                  | -                                                       |           |                         |  |  |
|             | ansfer data to register R4H from Accumulator and re |                                                                  |                                                         |           |                         |  |  |
| Instruction | D9 D0                                               | Number of words                                                  | Number of                                               | Flag CY   | Skip condition          |  |  |
| code        | 1 0 0 0 1 1 0 1 1 1 2 2 3 7 16                      |                                                                  | cycles                                                  |           |                         |  |  |
|             |                                                     | 1                                                                | 1                                                       | _         | _                       |  |  |
| Operation:  | (R4H7–R4H4) ← (B)                                   | Grouping:                                                        | Timer operation                                         |           |                         |  |  |
| ороганот.   | $(R4H3-R4H0) \leftarrow (A)$                        |                                                                  | escription: Transfers the contents of register B to the |           |                         |  |  |
|             | (Killo Killo) ( (K)                                 | high-order 4 bits of timer 4 and time                            |                                                         |           | •                       |  |  |
|             |                                                     |                                                                  | -                                                       |           | ansfers the contents of |  |  |
|             |                                                     |                                                                  | _                                                       |           | order 4 bits of timer 4 |  |  |
|             |                                                     | and timer 4 reload register R4H.                                 |                                                         |           |                         |  |  |
|             |                                                     |                                                                  |                                                         |           | <b>5</b>                |  |  |
|             |                                                     |                                                                  |                                                         |           |                         |  |  |
| T4R4L (Tra  | ansfer data to timer 4 from register R4L)           |                                                                  |                                                         |           |                         |  |  |
| Instruction | D9 D0                                               | Number of                                                        | Number of                                               | Flag CY   | Skip condition          |  |  |
| code        | 1 0 1 0 0 1 0 1 1 1 1 2 2 9 7 16                    | words                                                            | cycles                                                  |           |                         |  |  |
|             |                                                     | 1                                                                | 1                                                       | _         | _                       |  |  |
| Operation:  | (T47–T44) ← (R4L7–R4L4)                             | Grouping: Timer operation                                        |                                                         |           |                         |  |  |
|             | $(T43-T40) \leftarrow (R4L3-R4L0)$                  | Description: Transfers the contents of reload reg                |                                                         |           | nts of reload register  |  |  |
|             |                                                     | R4L to timer 4.                                                  |                                                         |           |                         |  |  |
|             |                                                     |                                                                  |                                                         |           |                         |  |  |
|             |                                                     |                                                                  |                                                         |           |                         |  |  |
|             |                                                     |                                                                  |                                                         |           |                         |  |  |
|             |                                                     |                                                                  |                                                         |           |                         |  |  |
|             |                                                     |                                                                  |                                                         |           |                         |  |  |
| TAB (Trans  | sfer data to Accumulator from register B)           |                                                                  |                                                         |           |                         |  |  |
| Instruction | D9 D0                                               | Number of                                                        | Number of                                               | Flag CY   | Skip condition          |  |  |
| code        | 0 0 0 0 0 1 1 1 1 0 0 0 1 E                         | words                                                            | cycles                                                  |           | ·                       |  |  |
|             | 16                                                  | 1                                                                | 1                                                       | _         | _                       |  |  |
|             |                                                     |                                                                  |                                                         |           |                         |  |  |
| Operation:  | $(A) \leftarrow (B)$                                | Grouping:                                                        | Register to                                             | _         |                         |  |  |
|             |                                                     | <b>Description:</b> Transfers the contents of register B to reg- |                                                         |           |                         |  |  |
|             |                                                     |                                                                  | ister A.                                                |           |                         |  |  |
|             |                                                     |                                                                  |                                                         |           |                         |  |  |
|             |                                                     |                                                                  |                                                         |           |                         |  |  |
|             |                                                     |                                                                  |                                                         |           |                         |  |  |
|             |                                                     |                                                                  |                                                         |           |                         |  |  |
|             |                                                     |                                                                  |                                                         |           |                         |  |  |
|             |                                                     | 1                                                                |                                                         |           |                         |  |  |

| TAB1 (Trai  | nsfer data to Accumulator and register B from timer      | 1)              |                  |             |                         |
|-------------|----------------------------------------------------------|-----------------|------------------|-------------|-------------------------|
| Instruction | D9 D0                                                    | Number of       | Number of        | Flag CY     | Skip condition          |
| code        | 1 0 0 1 1 1 0 0 0 0 2 2 7 0                              | words           | cycles           |             |                         |
|             |                                                          | 1               | 1                | _           | -                       |
| Operation:  | (B) ← (T17–T14)                                          | Grouping:       | Timer ope        | ration      |                         |
| •           | $(A) \leftarrow (T13-T10)$                               |                 |                  |             | der 4 bits (T17-T14) of |
|             |                                                          |                 | timer 1 to       | _           |                         |
|             |                                                          |                 | Transfers        | the low-ord | der 4 bits (T13-T10) of |
|             |                                                          |                 | timer 1 to       | register A. |                         |
|             |                                                          |                 |                  | ^           |                         |
|             |                                                          |                 |                  | ·O          |                         |
|             |                                                          | -,              |                  |             |                         |
|             | nsfer data to Accumulator and register B from timer      |                 |                  | - OV        |                         |
| Instruction | D9 D0                                                    | Number of words | Number of cycles | Flag CY     | Skip condition          |
| code        | 1 0 0 1 1 1 0 0 0 1 2 2 7 1 16                           | 1               | 1                | _           | _                       |
|             |                                                          |                 |                  | _           |                         |
| Operation:  | $(B) \leftarrow (T27\text{-}T24)$                        | Grouping:       | Timer ope        |             |                         |
|             | $(A) \leftarrow (T23 - T20)$                             | Description     |                  | •           | der 4 bits (T27-T24) of |
|             |                                                          |                 | timer 2 to       | -           |                         |
|             | $\sigma$                                                 |                 | timer 2 to       |             | der 4 bits (T23-T20) of |
|             |                                                          |                 | timer 2 to       | egister A.  |                         |
|             |                                                          |                 |                  |             |                         |
|             |                                                          |                 |                  |             |                         |
| TAB3 (Trai  | nsfer data to Accumulator and register B from timer      | 3)              |                  |             |                         |
| Instruction | D9 D0                                                    | Number of       | Number of        | Flag CY     | Skip condition          |
| code        | 1 0 0 1 1 1 0 0 1 0 2 7 2                                | words           | cycles           |             | ·                       |
|             | 16                                                       | 1               | 1                | _           | -                       |
| Operation:  | (B) ← (T37–T34)                                          | Grouping:       | Timer ope        | rotion      |                         |
| Operation.  | $(A) \leftarrow (137-134)$<br>$(A) \leftarrow (T33-T30)$ |                 |                  |             | der 4 bits (T37–T34) of |
|             | (**)                                                     | 2000            | timer 3 to       | -           | ac a (10 10.) c.        |
|             |                                                          |                 |                  | -           | der 4 bits (T33-T30) of |
|             | . ( ) Y                                                  |                 | timer 3 to       | register A. |                         |
|             |                                                          |                 |                  |             |                         |
|             |                                                          |                 |                  |             |                         |
|             |                                                          |                 |                  |             |                         |
| TAB4 (Tran  | nsfer data to Accumulator and register B from timer      | <del> </del>    |                  |             |                         |
| Instruction | D9 D0                                                    | Number of       | Number of        | Flag CY     | Skip condition          |
| code        | 1 0 0 1 1 1 0 0 1 1 2 2 7 3 16                           | words           | cycles           |             |                         |
|             |                                                          | 1               | 1                | _           | _                       |
| Operation:  | (B) ← (T47–T44)                                          | Grouping:       | Timer ope        | ation       |                         |
|             | $(A) \leftarrow (T43 – T40)$                             | Description     | : Transfers      | he high-or  | der 4 bits (T47-T44) of |
|             |                                                          |                 | timer 4 to       | egister B.  |                         |
|             |                                                          |                 |                  |             | der 4 bits (T43-T40) of |
|             |                                                          |                 | timer 4 to       | register A. |                         |
|             |                                                          |                 |                  |             |                         |
|             |                                                          |                 |                  |             |                         |
|             |                                                          |                 |                  |             |                         |

| TABAD (Tr        | ansfer               | data    | to Acc             | cumu   | ılator                                  | and    | reaist         | ter B | from                 | reai   | ster AD)                              |                  |               |                                                   |
|------------------|----------------------|---------|--------------------|--------|-----------------------------------------|--------|----------------|-------|----------------------|--------|---------------------------------------|------------------|---------------|---------------------------------------------------|
| Instruction      | D9                   |         |                    |        |                                         |        | D0             |       |                      | - 3    | Number of                             | Number of        | Flag CY       | Skip condition                                    |
| code             | 1 0                  | 0       | 1 1                | 1      | 1 (                                     | 0 0    | 1 .            | 2     | 7 9                  | 9      | words                                 | cycles           |               |                                                   |
|                  | . , ,                | 1,0     |                    |        |                                         | 9   0  | <u> </u>       |       |                      | 16     | 1                                     | 1                | _             | -                                                 |
| Operation:       | In A/D o             | onver   | sion mod           | de (Q1 | 3 = 0).                                 |        |                |       |                      |        | Grouping:                             | A/D conve        | rsion opera   | ation                                             |
| оролино          | (B) ← (              |         |                    | (      | · • • • • • • • • • • • • • • • • • • • |        |                |       |                      |        | Description                           | In the A/D       | conversion    | mode (Q13 = $0$ ), trans-                         |
|                  | (A) ← (              | AD5-    | AD2)               |        |                                         |        |                |       |                      |        |                                       | fers the h       | igh-order     | 4 bits (AD9-AD6) of                               |
|                  | In com               | oarato  | or mode            | (Q13   | = 1),                                   |        |                |       |                      |        |                                       | register AD      | to registe    | er B, and the middle-or-                          |
|                  | (B) ← (              | AD7-    | AD4)               |        |                                         |        |                |       |                      |        |                                       |                  |               | D <sub>2</sub> ) of register AD to                |
|                  | (A) ← (              | AD3-    | ADo)               |        |                                         |        |                |       |                      |        |                                       | -                |               | parator mode (Q13 = 1),                           |
|                  | (Q13:I               | oit 3 c | of A/D co          | ontrol | regist                                  | er Q1) |                |       |                      |        |                                       |                  |               | order 4 bits (AD7-AD4)                            |
|                  | ,                    |         |                    |        |                                         | ·      |                |       |                      |        |                                       | -                |               | ter B, and the low-order                          |
| TARE /Tro        |                      | .44     | . ^                |        | .4                                      |        |                | - D 4 |                      | i - t  |                                       | 4 bits (AD3      | -AD0) of re   | egister AD to register A.                         |
| TABE (Trai       | D9                   | ala II  | Accu               | muia   | ator a                                  | ind re | giste<br>Do    | ГОП   | OIII I               | egisi  | Number of                             | Number of        | Flag CY       | Skip condition                                    |
| code             |                      | Τ.      |                    |        |                                         |        |                |       |                      | $\Box$ | words                                 | cycles           | l lag O I     | Skip condition                                    |
| code             | 0 0                  | 0       | 0 1                | 0      | 1 (                                     | 0   1  | 0 2            | 0     | 2 /                  | 16     | 1_4                                   |                  | _             | _                                                 |
|                  |                      |         |                    |        |                                         |        |                |       |                      |        |                                       |                  |               |                                                   |
| Operation:       | (B) ← (              | E7-E    | 4)                 |        |                                         |        |                |       |                      |        | Grouping:                             | Register to      | register ti   | ransfer                                           |
|                  | $(A) \leftarrow ($   | Ез-Е    | 0)                 |        |                                         |        |                |       |                      |        | Description                           | : Transfers      | the high-c    | order 4 bits (E7-E4) of                           |
|                  |                      |         |                    |        |                                         |        |                |       |                      |        |                                       | register E       | to register   | B, and low-order 4 bits                           |
|                  |                      |         |                    |        |                                         |        |                |       |                      |        |                                       | of register      | E to regist   | er A.                                             |
|                  |                      |         |                    |        |                                         |        |                |       |                      | · K    | 7                                     |                  |               |                                                   |
|                  |                      |         |                    |        |                                         |        |                |       | _(                   |        |                                       |                  |               |                                                   |
|                  |                      |         |                    |        |                                         |        |                | 4     |                      |        |                                       |                  |               |                                                   |
|                  |                      |         |                    |        |                                         |        |                |       |                      |        |                                       |                  |               |                                                   |
| TABP p (T        | ransfer              | data    | to Ac              | cum    | ulato                                   | r and  | regis          | ter E | from                 | n Pro  | gram mem                              | ory in page      | p)            |                                                   |
| Instruction      | D9                   |         |                    |        |                                         |        | D <sub>0</sub> |       |                      |        | Number of                             | Number of        | Flag CY       | Skip condition                                    |
| code             | 0 0                  | 1       | 0 ps               | 5 p4   | рз                                      | p2 p1  | p0 2           | 0     | 8<br>+p F            | p 16   | words                                 | cycles           |               |                                                   |
|                  |                      |         |                    |        | .0                                      |        | 2              |       | 'P                   | 116    | 1                                     | 3                | _             | -                                                 |
| Operation:       | (SP) ←               | (SP)    | + 1                |        | ~*                                      | Note   | : p is         | s 0 t | 0 127                | 7 for  | Grouping:                             | Arithmetic       | operation     |                                                   |
| <b>Operation</b> | (SK(SF               |         |                    | - (    |                                         |        |                |       | D/ED.                |        |                                       |                  | •             | to register D, bits 7 to 4                        |
|                  | (PCH)                | — p     |                    |        |                                         |        |                |       | instru               |        |                                       |                  |               | s 3 to 0 to register A                            |
|                  |                      |         | R2-DR0,            | A3-A   | <b>\</b> 0)                             |        |                |       | d, be ca<br>er the s |        |                                       |                  |               | the ROM pattern in ad-<br>A3 A2 A1 A0)2 specified |
|                  | (DR <sub>2</sub> ) ( |         | (PON               | M/DC)  | ۱۵ ۵                                    |        | beca           | use   | 1 stag               | ge of  |                                       | by registers     | A and D ir    | n page p.                                         |
|                  |                      |         | ← (ROM<br>(PC))7-4 |        | <i>)</i> 9, o                           |        | stack          | regis | ter is u             | ısed.  |                                       | , ,              |               | be referred as follows;                           |
|                  |                      |         | (PC))3-            |        |                                         |        |                |       |                      |        |                                       | after the RE     |               | on: 64 to 127<br>on: 0 to 63                      |
|                  | (PC) ←               |         |                    |        |                                         |        |                |       |                      |        |                                       | after syste      | m is relea    | ased from reset or re-                            |
|                  | (SP) ←               |         |                    |        |                                         |        |                |       |                      |        |                                       | turned from      | RAM back      | c-up: 0 to 63.                                    |
| TABPS (Tr        |                      | data    | to Acc             | umu    | ılator                                  | and    |                | er B  | from                 | Pres   | · · · · · · · · · · · · · · · · · · · |                  | 1             |                                                   |
| Instruction      | D9                   |         |                    |        |                                         |        | D <sub>0</sub> | _     |                      | _      | Number of words                       | Number of cycles | Flag CY       | Skip condition                                    |
| code             | 1 0                  | 0       | 1 1                | 1      | 0                                       | 1 0    | 1 2            | 2     | 7   5                | 5   16 |                                       | ,                |               |                                                   |
|                  |                      |         |                    |        |                                         |        |                |       |                      |        | 1                                     | 1                | _             | _                                                 |
| Operation:       | (B) ← (              | TPS7    | _TPS4)             |        |                                         |        |                |       |                      |        | Grouping:                             | Timer ope        | ration        |                                                   |
| орегиноп.        | (B) ← (              |         |                    |        |                                         |        |                |       |                      |        |                                       |                  |               | order 4 bits (TPS7-                               |
|                  | (,,, (               | 0       | 11 00)             |        |                                         |        |                |       |                      |        | 2 cccp                                | TPS4) of         | prescale      | r to register B, and                              |
|                  |                      |         |                    |        |                                         |        |                |       |                      |        |                                       | transfers t      | he low-ord    | er 4 bits (TPS3-TPS0)                             |
|                  |                      |         |                    |        |                                         |        |                |       |                      |        |                                       | of prescale      | er to registe | er A.                                             |
|                  |                      |         |                    |        |                                         |        |                |       |                      |        |                                       |                  |               |                                                   |
|                  |                      |         |                    |        |                                         |        |                |       |                      |        |                                       |                  |               |                                                   |
|                  |                      |         |                    |        |                                         |        |                |       |                      |        |                                       |                  |               |                                                   |
|                  |                      |         |                    |        |                                         |        |                |       |                      |        |                                       |                  |               |                                                   |

| TABSI (Tra  | ansfer data to Accumulator and register B from regis  | ter SI)     |                |              |                                           |
|-------------|-------------------------------------------------------|-------------|----------------|--------------|-------------------------------------------|
| Instruction | D9 D0                                                 | Number of   | Number of      | Flag CY      | Skip condition                            |
| code        | 1 0 0 1 1 1 1 0 0 0 2 2 7 8 16                        | words       | cycles         |              |                                           |
|             |                                                       | 1           | 1              | -            | _                                         |
| Operation:  | (B) ← (SI7–SI4)                                       | Grouping:   | Other ope      | ration       |                                           |
| - por uno   | $(A) \leftarrow (S13-S10)$                            |             |                |              | rder 4 bits (SI7-SI4) of                  |
|             |                                                       |             | register SI    | to registe   | er B, and transfers the                   |
|             |                                                       |             |                | 4 DITS (513  | S-SI0) of register SI to                  |
|             |                                                       |             | register A.    | *            |                                           |
|             |                                                       |             |                |              |                                           |
|             |                                                       |             |                |              |                                           |
| TAD (Trans  | sfer data to Accumulator from register D)             |             |                |              |                                           |
| Instruction | D9 D0                                                 | Number of   | Number of      | Flag CY      | Skip condition                            |
| code        | 0 0 0 1 0 1 0 0 0 1 2 0 5 1                           | words       | cycles         |              | •                                         |
|             |                                                       | 1           |                | _            | <del>-</del>                              |
| Operation:  | $(A2-A0) \leftarrow (DR2-DR0)$                        | Grouping:   | Register to    | register ti  | ransfer                                   |
|             | (A3) ← 0                                              | Description | : Transfers    | the conter   | nts of register D to the                  |
|             |                                                       |             |                |              | A <sub>0</sub> ) of register A.           |
|             | $\sigma$                                              | Note:       |                |              | on is executed, "0" is                    |
|             |                                                       |             | stored to th   | ne bit 3 (A: | 3) of register A.                         |
|             |                                                       |             |                |              |                                           |
|             |                                                       |             |                |              |                                           |
| TADAD /T    | ranafar data to register AD from Accumulator from re  | giotor P\   |                |              |                                           |
| Instruction | ransfer data to register AD from Accumulator from re  | Number of   | Number of      | Flag CY      | Skip condition                            |
| code        |                                                       | words       | cycles         | l lag 0 i    | OKIP CONDITION                            |
| 5545        | 1 0 0 0 1 1 1 0 0 1 2 2 3 9 16                        | 1           | 1              | -            | -                                         |
| 0           | (AD- AD-) (D)                                         | Grouping:   | A/D conve      | rsion opera  | ation                                     |
| Operation:  | $(AD7-AD4) \leftarrow (B)$ $(AD3-AD0) \leftarrow (A)$ | Description | : In the A/D o | conversion   | mode ( $Q13 = 0$ ), this in-              |
|             | $(AD3-AD0) \leftarrow (A)$                            |             |                |              | to the NOP instruction.                   |
|             |                                                       |             |                | •            | node (Q13 = 1), transof register B to the |
|             |                                                       |             |                |              | 7-AD4) of comparator                      |
|             |                                                       |             | -              |              | ntents of register A to                   |
|             |                                                       |             | the low-ord    | ,            | AD3-AD0) of compara-                      |
|             |                                                       |             |                |              | ontrol register Q1)                       |
| TAI1 (Trans | sfer data to Accumulator from register I1)            | •           |                |              | ,                                         |
| Instruction | D9 D0                                                 | Number of   | Number of      | Flag CY      | Skip condition                            |
| code        | 1 0 0 1 0 1 0 1 1 2 2 5 3                             | words       | cycles         |              |                                           |
|             |                                                       | 1           | 1              | _            | -                                         |
| Operation:  | (A) ← (I1)                                            | Grouping:   | Interrupt of   | peration     |                                           |
|             |                                                       |             | : Transfers    | the conter   | nts of interrupt control                  |
|             |                                                       |             | register I1    | to register  | A.                                        |
|             |                                                       |             |                |              |                                           |
|             |                                                       |             |                |              |                                           |
|             |                                                       |             |                |              |                                           |
|             |                                                       |             |                |              |                                           |
|             |                                                       |             |                |              |                                           |

|                  | sfer data t           | O ACCUIT  | iuiatoi  | Irom     | reg  | ster           | 12)          |          |           |                                                                                                                       |                            | <del>,</del> |                                    |  |  |
|------------------|-----------------------|-----------|----------|----------|------|----------------|--------------|----------|-----------|-----------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|------------------------------------|--|--|
| Instruction code | D9                    |           |          |          |      | D <sub>0</sub> |              |          | 7         | Number of words                                                                                                       | Number of cycles           | Flag CY      | Skip condition                     |  |  |
| code             | 1 0 0                 | )   1   0 | 1 0      | 0   1    | 0    | 0 2            | 2            | 5 4      | 16        | 1                                                                                                                     | 1                          | _            | _                                  |  |  |
| Operation:       | (A) ← (I2)            |           |          |          |      |                |              |          |           | Grouping:                                                                                                             | Interrupt o                | peration     |                                    |  |  |
| - por unioni     | ( , , , ( , _ )       |           |          |          |      |                |              |          |           |                                                                                                                       |                            |              | ts of interrupt contro             |  |  |
|                  |                       |           |          |          |      |                |              |          |           |                                                                                                                       | register I2                |              |                                    |  |  |
|                  |                       |           |          |          |      |                |              |          |           |                                                                                                                       |                            | 10           | <u> </u>                           |  |  |
| TAK0 (Trai       | nsfer data            | to Accu   | mulato   | or fror  | n re | gistei         | · K0         | )        |           | 1                                                                                                                     |                            |              |                                    |  |  |
| Instruction code | D9                    | ) 1 0     | 1 (      | 0 1      |      | D <sub>0</sub> | 2            | 5 6      | 16        | Number of words                                                                                                       | Number of cycles           | Flag CY      | Skip condition                     |  |  |
|                  |                       |           |          |          |      |                |              |          |           | 1                                                                                                                     | 1                          | _            | _                                  |  |  |
| Operation:       | $(A) \leftarrow (K0)$ | )         |          |          |      |                |              |          |           | Grouping:                                                                                                             | Input/Outp                 |              |                                    |  |  |
|                  |                       |           |          |          |      |                |              |          |           | Description                                                                                                           | : Transfers control reg    |              | nts of key-on wakeu<br>register A. |  |  |
|                  |                       |           |          |          |      |                |              |          | .C        |                                                                                                                       |                            |              |                                    |  |  |
|                  |                       |           |          |          |      |                |              |          |           |                                                                                                                       |                            |              |                                    |  |  |
| TAK1 (Trai       | nsfer data            | to Accu   | mulato   | or fror  | n re | gistei         | · K1         | )        |           |                                                                                                                       |                            |              |                                    |  |  |
| Instruction code | D9                    |           |          | 1 0      |      | D <sub>0</sub> |              | <u> </u> |           | Number of words                                                                                                       | Number of cycles           | Flag CY      | Skip condition                     |  |  |
| couc             | 1 0 0                 | )   1   0 | 1 1 1    | 1 0      | 0    | 1 2            | 2            | 5 9      | 16        | 1                                                                                                                     | 1                          | _            | -                                  |  |  |
| Operation:       | (A) ← (K1             | )         |          |          | •    |                |              |          |           | Grouping:                                                                                                             | Input/Outp                 |              |                                    |  |  |
|                  | <                     | O         | <b>/</b> | <b>J</b> |      |                |              |          |           | Description                                                                                                           | : Transfers<br>control reg |              | nts of key-on wakeu<br>register A. |  |  |
| TAK2 (Trai       | nsfer data            | to Accu   | mulato   | or fror  | n re | gistei         | r <b>K</b> 2 | )        |           |                                                                                                                       |                            |              |                                    |  |  |
| Instruction code | D9                    | ) 1 0     | 1 1      | 1 0      |      | D <sub>0</sub> | 2            | 5 A      |           | Number of words                                                                                                       | Number of cycles           | Flag CY      | Skip condition                     |  |  |
|                  |                       |           | '   '    | .   •    | •    | 2              |              | 0   1    | <u>16</u> | 1                                                                                                                     | 1                          | _            | _                                  |  |  |
| Operation:       | $(A) \leftarrow (K2$  | )         |          |          |      |                |              |          |           | Grouping:                                                                                                             | Input/Outp                 | ut operatio  | n                                  |  |  |
|                  |                       |           |          |          |      |                |              |          |           | Grouping: Input/Output operation  Description: Transfers the contents of key-on wa control register K2 to register A. |                            |              |                                    |  |  |
|                  |                       |           |          |          |      |                |              |          |           |                                                                                                                       |                            |              |                                    |  |  |

| TALA (Tra                         | nsfer data to Accumulator from register LA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Instruction                       | D9 D0 1 0 0 1 0 0 1 0 2 4 9 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number of words                              | Number of cycles                                           | Flag CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Skip condition                                                                                               |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                            | 1                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                            |
| TAM j (Tra<br>Instruction<br>code | $(A3, A2) \leftarrow (AD1, AD0)$ $(A1, A0) \leftarrow 0$ $(A1, A0) \leftarrow 0$ $(A2) \leftarrow (A2) \leftarrow 0$ $(A3) \leftarrow (A2) \leftarrow (A2) \leftarrow 0$ $(A2) \leftarrow (A3) \leftarrow (A3) \leftarrow (A4) \leftarrow ($ | Grouping: Description Note:  Number of words | A/D conve : Transfers t register AE of register After this | rsion operation | er 2 bits (AD1, AD0) or h-order 2 bits (A3, A2) in is executed, "0" is der 2 bits (A1, A0) or Skip condition |
|                                   | $(X) \leftarrow (X)EXOR(j)$<br>j = 0  to  15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              | : After trans<br>register A<br>performed                   | ferring the<br>, an exclu<br>between re<br>mediate fie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | contents of M(DP) to<br>sive OR operation is<br>egister X and the value<br>eld, and stores the re-           |
| TAMR                              | (Transfer data to Accumulator from register MR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |
| Instruction code                  | D9 D0 1 0 1 0 0 1 0 <sub>2</sub> 2 5 2 <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Number of words                              | Number of cycles                                           | Flag CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Skip condition                                                                                               |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |
| Operation:                        | (A) ← (MR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Grouping: Description                        | Clock open<br>Transfers<br>ister MR to                     | the conten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ts of clock control reg.                                                                                     |
| TAPU0 (T                          | ransfer data to Accumulator from register PU0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | '                                            |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |
| Instruction                       | D9 Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Number of words                              | Number of cycles                                           | Flag CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Skip condition                                                                                               |
| code                              | 1 0 0 1 0 1 0 1 1 1 1 2 2 5 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | 1                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                            |
| Operation:                        | (A) ← (PU0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Grouping:<br>Description                     | : Transfers                                                | but operation<br>the conte<br>J0 to regist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nts of pull-up contro                                                                                        |

| TA DUI /Tr  | reporter data to Accumulator from register DLIA      |                 |                  |              |                         |
|-------------|------------------------------------------------------|-----------------|------------------|--------------|-------------------------|
|             | ansfer data to Accumulator from register PU1)        | Niverbay of     | Number of        | Flor CV      | Oldin annulition        |
| Instruction | D9 D0                                                | Number of words | Number of cycles | Flag CY      | Skip condition          |
| code        | 1 0 0 1 0 1 1 1 1 0 <sub>2</sub> 2 5 E <sub>16</sub> | 1               | 1                | _            |                         |
| Operation:  | (A) ← (PU1)                                          | Grouping:       | Innut/Outn       | ut operatio  |                         |
| Operation.  |                                                      |                 | Input/Outp       |              | nts of pull-up control  |
|             |                                                      | Description     | register PL      |              |                         |
|             |                                                      |                 | rogiotor r c     | or to rogiot | 0171.                   |
|             |                                                      |                 |                  |              |                         |
|             |                                                      |                 |                  | ×            |                         |
|             |                                                      |                 |                  | C.           |                         |
|             |                                                      |                 |                  |              |                         |
| TAQ1 (Tra   | nsfer data to Accumulator from register Q1)          |                 |                  |              |                         |
| Instruction | D9 D0                                                | Number of       | Number of        | Flag CY      | Skip condition          |
| code        | 1 0 0 1 0 0 0 1 0 0 2 4 4                            | words           | cycles           |              |                         |
|             | 16                                                   | 11              | 1                | _            | _                       |
| 0           | (A) (O4)                                             |                 |                  | <u> </u>     |                         |
| Operation:  | $(A) \leftarrow (Q1)$                                | Grouping:       | A/D conve        |              |                         |
|             |                                                      | Description     |                  |              | s of A/D control regis- |
|             |                                                      |                 | ter Q1 to re     | egister A.   |                         |
|             | 0                                                    | 4               |                  |              |                         |
|             |                                                      |                 |                  |              |                         |
|             |                                                      |                 |                  |              |                         |
|             |                                                      |                 |                  |              |                         |
| TAO2 (Tra   | nsfer data to Accumulator from register Q2)          |                 |                  |              |                         |
| Instruction | D9 D0                                                | Number of       | Number of        | Flag CY      | Skip condition          |
| code        |                                                      | words           | cycles           | l lag C1     | Skip condition          |
| code        | 1 0 0 1 0 0 0 1 0 1 2 2 4 5                          | 1               | 1                |              |                         |
|             |                                                      |                 | ·                |              |                         |
| Operation:  | $(A) \leftarrow (Q2)$                                | Grouping:       | A/D conve        | rsion opera  | ition                   |
|             | · O*                                                 | Description     | : Transfers      | the content  | s of A/D control regis- |
|             |                                                      |                 | ter Q2 to re     | egister A.   |                         |
|             |                                                      |                 |                  |              |                         |
|             | <b>()</b>                                            |                 |                  |              |                         |
|             |                                                      |                 |                  |              |                         |
|             |                                                      |                 |                  |              |                         |
|             |                                                      |                 |                  |              |                         |
|             | nsfer data to Accumulator from register Q3)          | T., .           |                  |              |                         |
| Instruction | D9 D0                                                | Number of words | Number of cycles | Flag CY      | Skip condition          |
| code        | 1 0 0 1 0 0 0 1 1 0 0 1 1 1 0 2 2 4 6 16             |                 | -                |              |                         |
|             |                                                      | 1               | 1                | _            | _                       |
| Operation:  | (A) ← (Q3)                                           | Grouping:       | A/D conve        | reion opers  | ation                   |
| - F         | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )              | Description     |                  |              | s of A/D control regis- |
|             |                                                      | 2000            | ter Q3 to re     |              |                         |
|             |                                                      |                 |                  | J - 12: 7 11 |                         |
|             |                                                      |                 |                  |              |                         |
|             |                                                      |                 |                  |              |                         |
|             |                                                      |                 |                  |              |                         |
|             |                                                      |                 |                  |              |                         |
|             |                                                      |                 |                  |              |                         |

|                  | ·                                                        | •               |                  |              |                          |
|------------------|----------------------------------------------------------|-----------------|------------------|--------------|--------------------------|
| TASP (Tra        | nsfer data to Accumulator from Stack Pointer)            |                 |                  |              |                          |
| Instruction code | D9 D0 0 0 1 0 1 0 0 0 0 0 5 0 46                         | Number of words | Number of cycles | Flag CY      | Skip condition           |
|                  | 0 0 0 1 0 1 0 0 0 0 2                                    | 1               | 1                | -            | -                        |
| Operation:       | $(A2-A0) \leftarrow (SP2-SP0)$                           | Grouping:       | Register to      | register tr  | ansfer                   |
| -                | $(A3) \leftarrow 0$                                      |                 | _                |              | s of stack pointer (SP)  |
|                  |                                                          |                 |                  |              | s (A2–A0) of register A. |
|                  |                                                          | Note:           |                  |              | n is executed, "0" is    |
|                  |                                                          |                 |                  |              | s) of register A.        |
|                  |                                                          |                 |                  |              |                          |
|                  |                                                          |                 |                  | C            |                          |
|                  |                                                          |                 |                  |              |                          |
| TAV1 (Tran       | nsfer data to Accumulator from register V1)              | 1               |                  |              |                          |
| Instruction      | D9 D0                                                    | Number of       | Number of        | Flag CY      | Skip condition           |
| code             | 0 0 0 1 0 1 0 1 0 0 2 0 5 4                              | words           | cycles           | J J          | <u> </u>                 |
|                  | 10                                                       | 1               | 1                | _            | _                        |
| Operation:       | (A) ← (V1)                                               | Grouping:       | Interrupt o      | peration     |                          |
| -                |                                                          |                 |                  |              | nts of interrupt control |
|                  |                                                          |                 | register V1      | to registe   | r A.                     |
|                  |                                                          |                 |                  |              |                          |
|                  |                                                          |                 |                  |              |                          |
|                  |                                                          |                 |                  |              |                          |
|                  |                                                          |                 |                  |              |                          |
|                  |                                                          |                 |                  |              |                          |
| TAV2 (Tran       | nsfer data to Accumulator from register V2)              |                 |                  |              |                          |
| Instruction      | D9 D0                                                    | Number of       | Number of        | Flag CY      | Skip condition           |
| code             | 0 0 0 1 0 1 0 1 0 1 2 0 5 5                              | words           | cycles           |              |                          |
|                  | 10                                                       | 1               | 1                | _            | _                        |
| Operation:       | (A) ← (V2)                                               | Grouping:       | Interrupt o      | -            |                          |
|                  | 0                                                        | Description     |                  |              | nts of interrupt control |
|                  |                                                          |                 | register V2      | 2 to registe | r A.                     |
|                  |                                                          |                 |                  |              |                          |
|                  |                                                          |                 |                  |              |                          |
|                  |                                                          |                 |                  |              |                          |
|                  |                                                          |                 |                  |              |                          |
| TAW1 (Tra        | nsfer data to Accumulator from register W1)              |                 |                  |              |                          |
| Instruction      | D9 D0                                                    | Number of       | Number of        | Flag CY      | Skip condition           |
| code             |                                                          | words           | cycles           | l lag 01     | Okip Condition           |
| oouc             | 1 0 0 1 0 0 1 0 1 0 1 1 <sub>2</sub> 2 4 B <sub>16</sub> | 1               | 1                | _            |                          |
| Operation:       | (A) . (MA)                                               |                 | _                |              |                          |
| Operation:       | (A) ← (W1)                                               | Grouping:       | Timer oper       |              | ts of timer control reg- |
|                  |                                                          | Description     |                  |              | =                        |
|                  |                                                          |                 | ister W1 to      | registel A   | •                        |
|                  |                                                          |                 |                  |              |                          |
|                  |                                                          |                 |                  |              |                          |
|                  |                                                          |                 |                  |              |                          |
|                  |                                                          |                 |                  |              |                          |
|                  |                                                          | 1               |                  |              |                          |

|                                      | nsfer data t                     | <u> </u>   |            | om rogio       | ei vv   | <u>-,                                      </u> |                 |                   | 1                                 |                       |                        |
|--------------------------------------|----------------------------------|------------|------------|----------------|---------|-------------------------------------------------|-----------------|-------------------|-----------------------------------|-----------------------|------------------------|
| Instruction                          | D9                               |            |            | D <sub>0</sub> |         |                                                 | _               | Number of words   | Number of cycles                  | Flag CY               | Skip condition         |
| code                                 | 1 0 0                            | 1 0        | 0 1 1      | 0 0            | 2 2     | 4 C                                             | 16              | 1                 | 1                                 | _                     | _                      |
| Operation:                           | (A) ← (W2)                       |            |            |                |         |                                                 |                 | Grouping:         | Timer oper                        | ation                 |                        |
| operation.                           | $(\mathcal{H}) \leftarrow (VVZ)$ |            |            |                |         |                                                 |                 |                   |                                   |                       | ts of timer control re |
|                                      |                                  |            |            |                |         |                                                 |                 |                   | ister W2 to                       |                       |                        |
| TANA/2 /Tro                          |                                  |            |            |                | \ \ / / | <u> </u>                                        |                 |                   |                                   | 7                     |                        |
|                                      | nsfer data t                     | o Accun    | nulator fr |                | er vv   | 3)                                              |                 |                   |                                   |                       |                        |
| Instruction code                     | D9 1 0 0                         | 1 0        | 0 1 1      | D <sub>0</sub> | 2       | 4 0                                             | ) 16            | Number of words   | Number of cycles                  | Flag CY               | Skip condition         |
|                                      |                                  |            |            |                |         |                                                 | 16              | 1                 | 1                                 | -                     |                        |
| Operation:                           | $(A) \leftarrow (W3)$            |            |            |                |         |                                                 |                 | Grouping:         | Timer oper                        | ation                 |                        |
|                                      |                                  |            |            |                |         |                                                 |                 | Description       | : Transfers                       | the content           | s of timer control re  |
|                                      |                                  |            |            |                |         |                                                 | .0              | 0                 | ister W3 to                       | register A            |                        |
|                                      |                                  |            |            |                |         | 0,                                              | )               |                   |                                   |                       |                        |
|                                      | nsfer data to                    | o Accun    | nulator fr |                | er W    | 4)                                              |                 | <b>.</b>          |                                   | E 01/                 | 01: 1:::               |
| Instruction code                     | D9 1 0 0                         | 1 0        | 0 1 1      | 1 0            | 2       | 4 E                                             |                 | Number of words   | Number of cycles                  | Flag CY               | Skip condition         |
|                                      |                                  | 1 0        | 0 1 1      |                | 2 🔼     | 4   5                                           | 16              | 1                 | 1                                 | -                     | -                      |
| Operation:                           | (A) ← (W4)                       |            |            |                |         |                                                 |                 | Grouping:         | Timer oper                        | ation                 |                        |
|                                      |                                  |            | /          |                |         |                                                 |                 | Description       | : Transfers t<br>ister W4 to      |                       | s of timer control re  |
|                                      |                                  | <b>O</b> ` |            |                |         |                                                 |                 |                   |                                   |                       |                        |
| TAW5 (Tra                            | ansfer data t                    | o Accur    | nulator f  | rom regis      | ter W   | /5)                                             |                 |                   |                                   |                       |                        |
| Instruction                          | D9                               |            |            | D <sub>0</sub> |         |                                                 |                 | Number of words   | Number of cycles                  | Flag CY               | Skip condition         |
| Instruction                          |                                  |            |            |                | ter W   |                                                 | F <sub>16</sub> |                   | Number of cycles                  | Flag CY               | Skip condition         |
| Instruction<br>code                  | D9 1 0 0                         | 1 0        |            | D <sub>0</sub> |         |                                                 | F_16            | words<br>1        | cycles<br>1                       | _                     | ·                      |
| TAW5 (Trainstruction code Operation: | D9                               | 1 0        |            | D <sub>0</sub> |         |                                                 | F 16            | words             | cycles  1  Timer ope n: Transfers | -<br>eration          | ts of timer control r  |
| Instruction<br>code                  | D9 1 0 0                         | 1 0        |            | D <sub>0</sub> |         |                                                 | F <sub>16</sub> | words 1 Grouping: | cycles  1  Timer ope n: Transfers | eration<br>the conter | ts of timer control    |

| Instruction code     | ansfer data to Accumulator from register W6)           |                                                               |                                                          |                                                     |                                  |  |
|----------------------|--------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------|--|
| oouc                 | D9 D0                                                  | Number of words                                               | Number of cycles                                         | Flag CY                                             | Skip condition                   |  |
|                      | 1 0 0 1 0 1 0 0 0 0 0 2 2 5 0 16                       | 1                                                             | 1                                                        | _                                                   | -                                |  |
| Operation:           | (A) ← (W6)                                             | Grouping:                                                     | Timer ope                                                |                                                     |                                  |  |
|                      |                                                        | Description                                                   | i: Transfers                                             |                                                     | ts of timer control reç          |  |
|                      |                                                        |                                                               |                                                          | \C                                                  | <b>\</b>                         |  |
| TAX (Tran            | sfer data to Accumulator from register X)              |                                                               |                                                          | <b>V</b>                                            |                                  |  |
| Instruction code     | D9 D0                                                  | Number of words                                               | Number of cycles                                         | Flag CY                                             | Skip condition                   |  |
|                      | 0 0 0 1 0 1 0 0 1 0 2 0 3 2 16                         | 1                                                             | 1                                                        | _                                                   | -                                |  |
| Operation:           | $(A) \leftarrow (X)$                                   | Grouping:                                                     | Register to                                              |                                                     |                                  |  |
|                      |                                                        | Description                                                   | r: Transfers ister A.                                    | the conten                                          | ts of register X to reg          |  |
|                      |                                                        |                                                               | 13101 7.                                                 |                                                     |                                  |  |
|                      |                                                        |                                                               |                                                          |                                                     |                                  |  |
|                      |                                                        |                                                               |                                                          |                                                     |                                  |  |
|                      |                                                        |                                                               |                                                          |                                                     |                                  |  |
| TAY (Trans           | sfer data to Accumulator from register Y)              |                                                               |                                                          |                                                     |                                  |  |
| Instruction code     | D9 D0 0 0 0 1 1 1 1 1 2 0 1 F 16                       | Number of words                                               | Number of cycles                                         | Flag CY                                             | Skip condition                   |  |
|                      |                                                        | 1                                                             | 1                                                        | _                                                   | _                                |  |
| Operation:           | $(A) \leftarrow (Y)$                                   | Grouping:                                                     | Register to                                              |                                                     |                                  |  |
|                      | 0                                                      | <b>Description:</b> Transfers the contents of register ter A. |                                                          |                                                     |                                  |  |
|                      | 60/                                                    |                                                               | ter A.                                                   |                                                     |                                  |  |
|                      | sfer data to Accumulator from register Z)              |                                                               |                                                          |                                                     |                                  |  |
| TAZ (Trans           | sici data to Accumulator from register 2)              |                                                               |                                                          |                                                     |                                  |  |
| TAZ (Transition code | D9 D0                                                  | Number of words                                               | Number of cycles                                         | Flag CY                                             | Skip condition                   |  |
| Instruction          |                                                        |                                                               |                                                          | Flag CY                                             | Skip condition                   |  |
| Instruction code     | D9 D0                                                  | words                                                         | cycles                                                   | _                                                   | -                                |  |
| Instruction          | D9                                                     | words<br>1                                                    | cycles  1  Register to Transfers                         | register tr                                         | ansfer<br>ts of register Z to th |  |
| Instruction code     | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words  1  Grouping: Description                               | cycles  1  Register to: Transfers low-order 2            | register trathe contents bits (A1, A                | ansfer ts of register Z to th    |  |
| Instruction code     | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words 1 Grouping:                                             | cycles  1  Register to: Transfers low-order 2 After this | o register trathe content 2 bits (A1, A instruction | ansfer<br>ts of register Z to th |  |

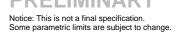
| TBA (Trans       | sfer dat | a to   | regist | ≙r R     | from     | Δοοι         | ıımı   | ılato       | r)          |      |                 | •               |                  |               |                                                                        |
|------------------|----------|--------|--------|----------|----------|--------------|--------|-------------|-------------|------|-----------------|-----------------|------------------|---------------|------------------------------------------------------------------------|
| Instruction      | D9       | a to   | regist | CI D     | 110111   | Acci         | D      |             | ,ı <i>)</i> |      |                 | Number of       | Number of        | Flag CY       | Skip condition                                                         |
| code             | 0 0      | 0      | 0 0    | 0        | 1        | 1 1          |        | $\neg$      | 0           | 0    | E 16            | words           | cycles           | l lag c l     | C.u.p co.r.u.u.c.r                                                     |
|                  | 0 0      |        |        | ,   0    | ' '      | <u>.   .</u> |        | <b>_</b> _2 |             |      | 16              | 1               | 1                | -             | -                                                                      |
| Operation:       | (B) ←    | (A)    |        |          |          |              |        |             |             |      |                 | Grouping:       | Register to      | register tr   | ansfer                                                                 |
| ороганот.        | (2) (    | (* 1)  |        |          |          |              |        |             |             |      |                 |                 |                  |               | s of register A to regis-                                              |
|                  |          |        |        |          |          |              |        |             |             |      |                 |                 | ter B.           |               |                                                                        |
|                  |          |        |        |          |          |              |        |             |             |      |                 |                 |                  | (0)           | <b>\</b>                                                               |
| TDA (Trans       |          | a to   | regist | er D     | from     | Acc          | umu    | ılatc       | or)         |      |                 |                 |                  |               |                                                                        |
| Instruction code | D9 0     | 0      | 0 1    | 0        | 1        | 0 0          | D<br>1 | $\neg$      | 0           | 2    | 9 16            | Number of words | Number of cycles | Flag CY       | Skip condition                                                         |
|                  |          |        |        |          |          |              |        |             |             |      | 16              | 1               | 1                | _             | -                                                                      |
| Operation:       | (DR2-l   | OR0) ∢ | ← (A2– | A0)      |          |              |        |             |             |      |                 | Grouping:       | Register to      |               |                                                                        |
|                  |          |        |        |          |          |              |        |             |             |      |                 | Description     |                  |               | nts of the low-order 3<br>er A to register D.                          |
|                  |          |        |        |          | <u> </u> |              |        |             |             |      | <u>.</u>        |                 |                  |               |                                                                        |
| TEAB (Tra        |          | ata t  | o regi | ster     | E fro    | m Ac         |        | _           | itor        | and  | regis           |                 |                  | I             |                                                                        |
| Instruction code | D9 0     | 0      | 0 (    | ) 1      | 1        | 0 1          | 1 C    |             | 0           | 1    | A <sub>16</sub> | Number of words | Number of cycles | Flag CY       | Skip condition                                                         |
|                  |          |        | ! !    | <u>'</u> | 4        |              | •      |             |             |      |                 | 1               | 1                | _             | _                                                                      |
| Operation:       | (E7–E    |        |        |          |          |              |        |             |             |      |                 | Grouping:       |                  | o register t  |                                                                        |
|                  | (E3–E    | )) ← ( | A)     |          | U        |              |        |             |             |      |                 | Description     |                  |               | nts of register B to the                                               |
|                  |          |        |        |          |          |              |        |             |             |      |                 |                 | -                | •             | <ul><li>–E4) of register E, and<br/>ter A to the low-order 4</li></ul> |
|                  |          |        |        |          |          |              |        |             |             |      |                 |                 |                  | (a) of regist |                                                                        |
| TFR0A (Tr        | ansfer   | data   | to rec | ister    | FRO      | fron         | n Ac   | cun         | nula        | tor) |                 |                 |                  |               |                                                                        |
| Instruction      | D9       |        | 8      | ,        |          |              | D      |             |             |      |                 | Number of       | Number of        | Flag CY       | Skip condition                                                         |
| code             | 1 0      | 0      | 0 1    | 0        | 1        | 0 0          |        |             | 2           | 2    | 8 16            | words           | cycles           |               |                                                                        |
|                  | 1 0      |        |        | 0        | '        | 0   0        | ,   0  | 2           |             |      | 16              | 1               | 1                | -             | -                                                                      |
| Operation:       | (FR0) ·  | — (A)  |        |          |          |              |        |             |             |      |                 | Grouping:       | Input/Outp       | ut operatio   | n                                                                      |
|                  |          |        |        |          |          |              |        |             |             |      |                 | Description     |                  |               | nts of register A to the control register FR0.                         |
|                  |          |        |        |          |          |              |        |             |             |      |                 |                 |                  |               |                                                                        |
|                  |          |        |        |          |          |              |        |             |             |      |                 |                 |                  |               |                                                                        |

| TFR1A (Tr        | ansfer data to register FR1 from Accumulator)   |                                                                 |                  |             |                                  |  |  |  |  |
|------------------|-------------------------------------------------|-----------------------------------------------------------------|------------------|-------------|----------------------------------|--|--|--|--|
| Instruction      | D9 D0                                           | Number of                                                       | Number of        | Flag CY     | Skip condition                   |  |  |  |  |
| code             | 1 0 0 0 1 0 1 0 1 2 2 2 9 16                    | words                                                           | cycles           |             |                                  |  |  |  |  |
|                  |                                                 | 1                                                               | 1                | _           | _                                |  |  |  |  |
| Operation:       | (FR1) ← (A)                                     | Grouping:                                                       | Input/Outp       | ut operatio | n                                |  |  |  |  |
| •                |                                                 |                                                                 |                  |             | its of register A to the         |  |  |  |  |
|                  |                                                 |                                                                 | port output      | structure   | control register FR1.            |  |  |  |  |
|                  | ( ) ( ) ( ) ( )                                 |                                                                 | -                |             |                                  |  |  |  |  |
|                  | ansfer data to register FR2 from Accumulator)   |                                                                 |                  |             |                                  |  |  |  |  |
| Instruction code | D9 D0 1 0 1 0 1 0 1 0 2 2 2 A 16                | Number of words                                                 | Number of cycles | Flag CY     | Skip condition                   |  |  |  |  |
|                  |                                                 | 1                                                               | 1                | _           |                                  |  |  |  |  |
| Operation:       | $(FR2) \leftarrow (A)$                          | Grouping:                                                       | Input/Outp       | ut operatio | n                                |  |  |  |  |
|                  |                                                 | Description                                                     | : Transfers      | the conten  | ts of register A to the          |  |  |  |  |
|                  | ince                                            |                                                                 |                  |             |                                  |  |  |  |  |
|                  | ansfer data to register FR3 from Accumulator)   |                                                                 |                  |             |                                  |  |  |  |  |
| Instruction code | D9 D0 1 0 1 0 1 1 2 2 2 B 16                    | Number of words                                                 | Number of cycles | Flag CY     | Skip condition                   |  |  |  |  |
|                  |                                                 | 1                                                               | 1                | _           | _                                |  |  |  |  |
| Operation:       | $(FR3) \leftarrow (A)$                          | Grouping:                                                       | Input/Outp       | ut operatio | ne contents of register A to the |  |  |  |  |
|                  | *O*                                             | <b>Description:</b> Transfers the contents of register A to the |                  |             |                                  |  |  |  |  |
|                  | 601                                             |                                                                 | port output      | structure   | control register FR3.            |  |  |  |  |
| TI1A             | (Transfer data to register I1 from Accumulator) |                                                                 |                  |             |                                  |  |  |  |  |
| Instruction code | D9 D0                                           | Number of words                                                 | Number of cycles | Flag CY     | Skip condition                   |  |  |  |  |
| code             | 1 0 0 0 0 1 0 1 1 1 1 2 2 1 7 16                | 1                                                               | 1                | _           | -                                |  |  |  |  |
| Operation:       | $(I1) \leftarrow (A)$                           | Grouping:                                                       | Interrupt o      | peration    |                                  |  |  |  |  |
|                  |                                                 |                                                                 |                  | he content  | s of register A to inter<br>1.   |  |  |  |  |
|                  |                                                 |                                                                 |                  |             |                                  |  |  |  |  |

| TI2A        | (Transfer data to register I2 from Accumulator)      |             |              |             |                           |
|-------------|------------------------------------------------------|-------------|--------------|-------------|---------------------------|
| Instruction | D9 D0                                                | Number of   | Number of    | Flag CY     | Skip condition            |
| code        | 1 0 0 0 1 1 0 0 0 2 1 8                              | words       | cycles       | 1.49 0.     | Omp containon             |
|             | 16                                                   | 1           | 1            | _           | -                         |
| Operation:  | $(12) \leftarrow (A)$                                | Grouping:   | Interrupt of | peration    |                           |
|             | (-) . (-)                                            |             |              |             | s of register A to inter- |
|             |                                                      |             | rupt contro  |             | -                         |
|             |                                                      |             |              | ,C          | <b>.</b>                  |
| TK0A        | (Transfer data to register K0 from Accumulator)      |             |              | V           |                           |
| Instruction | D9 D0                                                | Number of   | Number of    | Flag CY     | Skip condition            |
| code        | 1 0 0 0 0 1 1 0 1 1 <sub>2</sub> 2 1 B <sub>16</sub> | words       | cycles       |             |                           |
|             |                                                      | 1           | 1            | _           | -                         |
| Operation:  | $(K0) \leftarrow (A)$                                | Grouping:   | Input/Outp   | ut operatio | n                         |
| -           |                                                      | Description | : Transfers  | the conten  | ts of register A to key-  |
|             |                                                      |             | on wakeup    | control re  | gister K0.                |
|             | <i>O</i>                                             |             |              |             |                           |
|             |                                                      |             |              |             |                           |
|             |                                                      |             |              |             |                           |
|             |                                                      |             |              |             |                           |
| TK1A        | (Transfer data to register K1 from Accumulator)      |             |              |             |                           |
| Instruction | D9 D0                                                | Number of   | Number of    | Flag CY     | Skip condition            |
| code        | 1 0 0 0 0 1 0 1 0 0 2 2 1 4                          | words       | cycles       |             |                           |
|             |                                                      | 1           | 1            | _           | _                         |
| Operation:  | (K1) ← (A)                                           | Grouping:   | Input/Outp   | ut operatio | n                         |
|             | ·O·                                                  | Description | : Transfers  | the conten  | ts of register A to key-  |
|             |                                                      |             | on wakeup    | control re  | gister K1.                |
|             |                                                      |             |              |             |                           |
|             |                                                      |             |              |             |                           |
|             |                                                      |             |              |             |                           |
|             |                                                      |             |              |             |                           |
| TK2A        | (Transfer data to register K2 from Accumulator)      | •           |              |             |                           |
| Instruction | D9 D0                                                | Number of   | Number of    | Flag CY     | Skip condition            |
| code        | 1 0 0 0 0 1 0 1 0 1 2 2 1 5                          | words       | cycles       |             |                           |
|             |                                                      | 1           | 1            | _           | _                         |
| Operation:  | (K2) ← (A)                                           | Grouping:   | Input/Outp   | ut operatio | n                         |
| •           |                                                      | Description | : Transfers  | the conten  | ts of register A to key-  |
|             |                                                      |             | on wakeup    | control re  | gister K2.                |
|             |                                                      |             |              |             |                           |
|             |                                                      |             |              |             |                           |
|             |                                                      |             |              |             |                           |
|             |                                                      |             |              |             |                           |
|             |                                                      | <u> </u>    |              |             |                           |



| TMA j (Tra  | ansfer data to Memory from Accumulator)                      |             |               |              |                                                   |
|-------------|--------------------------------------------------------------|-------------|---------------|--------------|---------------------------------------------------|
| Instruction | D9 D0                                                        | Number of   | Number of     | Flag CY      | Skip condition                                    |
| code        | 1 0 1 0 1 1 j j j <sub>2</sub> 2 B j <sub>16</sub>           | words       | cycles        |              |                                                   |
|             |                                                              | 1           | 1             | -            | _                                                 |
| Operation:  | $(M(DP)) \leftarrow (A)$                                     | Grouping:   | RAM to reg    | gister trans | sfer                                              |
|             | $(X) \leftarrow (X) \in X$                                   |             |               |              | contents of register A                            |
|             | j = 0 to 15                                                  | 2000        |               | -            | e OR operation is per-                            |
|             | ,                                                            |             |               |              | ister X and the value j                           |
|             |                                                              |             |               | _            | d, and stores the result                          |
|             |                                                              |             | in register   |              | ,                                                 |
|             |                                                              |             | J             | C.           |                                                   |
|             |                                                              |             |               |              |                                                   |
| TMDA /Tr    | ansfer data to register MR from Accumulator)                 |             |               |              |                                                   |
| Instruction |                                                              | Number of   | Number of     | Flag CY      | Skip condition                                    |
| code        |                                                              | words       | cycles        | riag C1      | Skip condition                                    |
|             | 16                                                           | 1           | 1             | -            | _                                                 |
| Operation:  | $(MR) \leftarrow (A)$                                        | Grouping:   | Other oper    | ration       |                                                   |
|             | ()                                                           |             |               |              | ts of register A to clock                         |
|             |                                                              |             | control reg   |              | 9                                                 |
|             |                                                              |             | _             |              |                                                   |
|             |                                                              |             |               |              |                                                   |
|             |                                                              |             |               |              |                                                   |
|             |                                                              |             |               |              |                                                   |
|             |                                                              |             |               |              |                                                   |
| TPAA        | (Transfer data to register PA from Accumulator)              |             |               |              |                                                   |
| Instruction | D9 Do                                                        | Number of   | Number of     | Flag CY      | Skip condition                                    |
| code        | 1 0 1 0 1 0 1 0 1 0 <sub>2</sub> 2 A A <sub>16</sub>         | words       | cycles        |              |                                                   |
|             | 2                                                            | 1           | 1             | _            | _                                                 |
| Operation:  | (PA0) ← (A0)                                                 | Grouping:   | Timer oper    | ration       | <u> </u>                                          |
|             | ·O·                                                          | Description | : Transfers t | the content  | ts of lowermost bit (A <sub>0</sub> )             |
|             |                                                              |             | register A t  | to timer co  | ntrol register PA.                                |
|             |                                                              |             |               |              |                                                   |
|             | <b>()</b>                                                    |             |               |              |                                                   |
|             |                                                              |             |               |              |                                                   |
|             |                                                              |             |               |              |                                                   |
|             |                                                              |             |               |              |                                                   |
| TPSAB (T    | ransfer data to Pre-Scaler from Accumulator and reg          | jister B)   |               |              |                                                   |
| Instruction | D9 D0                                                        | Number of   | Number of     | Flag CY      | Skip condition                                    |
| code        | 1 0 0 0 1 1 0 1 0 1 2 2 3 5                                  | words       | cycles        |              |                                                   |
|             |                                                              | 1           | 1             | _            | _                                                 |
| Operation:  | $(RPS7-RPS4) \leftarrow (B)$                                 | Grouping:   | Timer oper    | ration       |                                                   |
|             | $(TPS7-TPS4) \leftarrow (B)$                                 | Description |               |              | nts of register B to the                          |
|             | $(RPS3-RPS0) \leftarrow (A)$<br>$(TPS3-TPS0) \leftarrow (A)$ |             | high-order    | 4 bits of p  | rescaler and prescaler                            |
|             | (11 33 11 30) ( 7)                                           |             |               |              | and transfers the con-<br>the low-order 4 bits of |
|             |                                                              |             |               |              | caler reload register                             |
|             |                                                              |             | RPS.          | -            | -                                                 |
|             |                                                              |             |               |              |                                                   |
|             |                                                              |             |               |              |                                                   |
|             |                                                              |             |               |              |                                                   |


| (        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          | $\mathbf{U}$                                                                                                                                                                                              | นเอเษเ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | יטרי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) from                                                                                                                                                                                                                                                                                                                                                                                                                                 | ı Acc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | umu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | llator)         |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                  |                                                         |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| D9       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | Number of words                                                           | Number of cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Flag CY                                                                                                                                                                                                          | Skip condition                                          |
| 1 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0   1                                                                    | 0                                                                                                                                                                                                         | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D <sub>16</sub> | 1                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                | -                                                       |
| (PU0) «  | – (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | Grouping:<br>Description                                                  | : Transfers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the conten                                                                                                                                                                                                       | ts of register A to pull-                               |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70                                                                                                                                                                                                               |                                                         |
| (Trai    | nsfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | data                                                                     | to re                                                                                                                                                                                                     | giste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r PU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l from<br>Do                                                                                                                                                                                                                                                                                                                                                                                                                           | ) Acc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | umu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ılator)         |                                                                           | Number of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flag CY                                                                                                                                                                                                          | Skip condition                                          |
| 1 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 1                                                                      | 0                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E 16            | words                                                                     | cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                | _                                                       |
| (PU1) «  | - (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | Grouping:                                                                 | Input/Outp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | out operation                                                                                                                                                                                                    | n                                                       |
| ( - /    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0              |                                                                           | : Transfers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the conten                                                                                                                                                                                                       | ts of register A to pull-                               |
| nsfer da | ita to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | regis                                                                    | ter C                                                                                                                                                                                                     | 1 fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m Ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cumu<br>Do                                                                                                                                                                                                                                                                                                                                                                                                                             | ılato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | Number of                                                                 | Number of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flag CY                                                                                                                                                                                                          | Skip condition                                          |
| 1 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 0                                                                      | 0                                                                                                                                                                                                         | 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 16            | 1                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                | _                                                       |
| (Q1) ←   | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )                                                                        | <b>V</b>                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | Grouping:<br>Description                                                  | : Transfers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the conten                                                                                                                                                                                                       |                                                         |
|          | ita to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | regis                                                                    | ter C                                                                                                                                                                                                     | 2 fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m Ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                        | ılato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                                                                           | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                         |
| D9       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0                                                                      |                                                                                                                                                                                                           | 0 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5               | Number of words                                                           | Number of cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Flag CY                                                                                                                                                                                                          | Skip condition                                          |
| 1 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0   0                                                                    | 0                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16              | 1                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                | -                                                       |
| (Q2) ←   | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | Grouping:<br>Description                                                  | : Transfers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the conten                                                                                                                                                                                                       |                                                         |
|          | (Train D9 1 0 0 (PU1) ← (PU1) ← (Q1) | $(PU0) \leftarrow (A)$ $(Transfer D9                                   $ | $(PU0) \leftarrow (A)$ $(PU0) \leftarrow (A)$ $(PU1) \leftarrow (A)$ $(PU1) \leftarrow (A)$ $(Q1) \leftarrow (A)$ | $(PU0) \leftarrow (A)$ $(Transfer data to represent the policy of $ | $ (PU0) \leftarrow (A)  $ $ (PU0) \leftarrow (A)  $ $ (PU1) \leftarrow (A)  $ $ (PU1) \leftarrow (A)  $ $ (PU1) \leftarrow (A)  $ $ (Q1) \leftarrow (A)  $ | $(PU0) \leftarrow (A)$ $(PU0) \leftarrow (A)$ $(PU1) \leftarrow (A)$ $(PU1) \leftarrow (A)$ $(PU1) \leftarrow (A)$ $(Q1) \leftarrow (A)$ | $(PU0) \leftarrow (A)$ $(PU0) \leftarrow (A)$ $(PU1) \leftarrow (A)$ $(PU1) \leftarrow (A)$ $(PU1) \leftarrow (A)$ $(Q1) \leftarrow (A)$ | $(PU0) \leftarrow (A)$ $(PU0) \leftarrow (A)$ $(PU1) \leftarrow (A)$ $(PU1) \leftarrow (A)$ $(PU1) \leftarrow (A)$ $(PU1) \leftarrow (A)$ $(Q1) \leftarrow (A)$ |                 | $ (\text{PU0}) \leftarrow (\text{A})                                    $ | $(PU0) \leftarrow (A) \\ \hline (PU0) \leftarrow (A) \\ \hline (Transfer data to register PU1 from Accumulator) \\ \hline D0 & D0 & Number of words \\ \hline 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ \hline (PU1) \leftarrow (A) \\ \hline (PU1) \leftarrow (A) \\ \hline (Q1) \leftarrow (A) \\ \hline (Q1) \leftarrow (A) \\ \hline (Q2) \leftarrow (A) \\ \hline (Q2) \leftarrow (A) \\ \hline (Q2) \leftarrow (A) \\ \hline (Q3) \leftarrow (A) \\ \hline (Q4) \leftarrow (A) \\ \hline (Q6) \leftarrow (A) \\ \hline (Q7) \leftarrow (A) \\ \hline (Q7) \leftarrow (Q7) \leftarrow$ | (PU0) ← (A)  (Transfer data to register PU1 from Accumulator)  Description: Transfers up control  (Transfer data to register PU1 from Accumulator)  Description: Transfers up control  Number of words cycles  1 | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ |

| TO3A (Tra   | nsfer data to register Q3 from Accumulator)          |                       | <b>,</b>         |               |                           |
|-------------|------------------------------------------------------|-----------------------|------------------|---------------|---------------------------|
| Instruction | D9 D0                                                | Number of             | Number of        | Flag CY       | Skip condition            |
| code        | 1 0 0 0 0 0 0 1 1 0 2 0 6                            | words                 | cycles           | l lag O1      | OKIP CONDITION            |
|             | 16                                                   | 1                     | 1                | -             |                           |
| Operation:  | (Q3) ← (A)                                           | Grouping:             | A/D conve        | rsion opera   | ation                     |
|             |                                                      | 1                     |                  |               | ts of register A to A/D   |
|             |                                                      |                       | control reg      |               | o .                       |
|             |                                                      |                       |                  | ,C            | •                         |
| TR1AB (Tr   | ransfer data to register R1 from Accumulator and reg | gister B)             |                  | O'            |                           |
| Instruction | D9 D0                                                | Number of             | Number of        | Flag CY       | Skip condition            |
| code        | 1 0 0 0 1 1 1 1 1 1 0 2 3 F                          | words                 | cycles           |               |                           |
|             | 16                                                   | 1                     | 1                | _             | -                         |
| 0           | (D4- D4-) (D)                                        | 0                     | T                |               |                           |
| Operation:  | (R17–R14) ← (B)<br>(R13–R10) ← (A)                   | Grouping: Description | Timer oper       |               | its of register B to the  |
|             | $(K13-K10) \leftarrow (A)$                           | Description           |                  |               | 7–R14) of reload regis-   |
|             |                                                      |                       | -                | •             | ents of register A to the |
|             | - (                                                  | 9                     |                  |               | -R10) of reload regis-    |
|             |                                                      |                       | ter R1.          |               | ,                         |
|             |                                                      |                       |                  |               |                           |
|             |                                                      |                       |                  |               |                           |
| TR3AB (Tr   | ransfer data to register R3 from Accumulator and reg | gister B)             |                  |               |                           |
| Instruction | D9 D0                                                | Number of             | Number of        | Flag CY       | Skip condition            |
| code        | 1 0 0 0 1 1 1 0 1 1 <sub>2</sub> 2 3 B <sub>16</sub> | words                 | cycles           |               |                           |
|             |                                                      | 1                     | 1                | _             | -                         |
| Operation:  | (R37–R34) ← (B)                                      | Grouping:             | Timer oper       | ration        |                           |
|             | (R33–R30) ← (A)                                      | Description           |                  |               | ts of register B to the   |
|             |                                                      |                       | high-order       | 4 bits (R3    | 7-R34) of reload regis-   |
|             |                                                      |                       | ter R3, and      | d the conte   | nts of register A to the  |
|             | <b>()</b>                                            |                       |                  | 4 bits (R33   | -R30) of reload regis-    |
|             |                                                      |                       | ter R3.          |               |                           |
|             |                                                      |                       |                  |               |                           |
| TDCA /Tro   | unafor data to register DC from Accompulator         |                       |                  |               |                           |
|             | ansfer data to register RG from Accumulator)         | Niconalisasis         | Number           | Flor OV       | Older and Prince          |
| Instruction | D9 D0                                                | Number of words       | Number of cycles | Flag CY       | Skip condition            |
| code        | 1 0 0 0 0 0 1 0 0 1 2 2 0 9 16                       | 1                     | 1                | _             |                           |
|             |                                                      | '                     | '                |               |                           |
| Operation:  | $(RG_0) \leftarrow (A_0)$                            | Grouping:             | Clock cont       | rol operation | on                        |
|             |                                                      | Description           | : Transfers t    | he content    | s of register A to regis- |
|             |                                                      |                       | ter RG.          |               |                           |
|             |                                                      |                       |                  |               |                           |
|             |                                                      |                       |                  |               |                           |
|             |                                                      |                       |                  |               |                           |
|             |                                                      |                       |                  |               |                           |
|             |                                                      |                       |                  |               |                           |

| TCIAD (Tro   | enefor data to register CI from Assumulator and regis | otor D)         |                  |          |                            |
|--------------|-------------------------------------------------------|-----------------|------------------|----------|----------------------------|
|              | ansfer data to register SI from Accumulator and regis |                 | Number of        | Floor CV | Chin andition              |
| Instruction  | D9 D0                                                 | Number of words | Number of cycles | Flag CY  | Skip condition             |
| code         | 1 0 0 0 1 1 1 1 0 0 0 0 2 2 3 8 16                    | 1               | 1                | _        | _                          |
| Operation:   | (SI7–SI4) ← (B)                                       | Grouping:       | Other oper       | ation    |                            |
| Operation.   | $(S17-S14) \leftarrow (B)$ $(S13-S10) \leftarrow (A)$ |                 |                  |          | ts of register B to the    |
|              | (SI3-SI0) (- (A)                                      | Description     |                  |          | 7–SI4) of register SI,     |
|              |                                                       |                 |                  |          | ntents of register A to    |
|              |                                                       |                 |                  |          | SI3-SI0) of register SI.   |
|              |                                                       |                 |                  |          | ,g                         |
|              |                                                       |                 |                  | C        |                            |
|              |                                                       |                 |                  |          |                            |
| TV1A (Trai   | nsfer data to register V1 from Accumulator)           | 1               |                  |          |                            |
| Instruction  | D9 D0                                                 | Number of       | Number of        | Flag CY  | Skip condition             |
| code         | 0 0 0 0 1 1 1 1 1 1 1 0 0 3 F                         | words           | cycles           |          | ·<br>                      |
|              |                                                       | 1               | 1                | _        | _                          |
| Oneretien    | (14) - (1)                                            | Grouping:       | Interrupt o      | noration |                            |
| Operation:   | $(V1) \leftarrow (A)$                                 |                 |                  |          | ts of register A to inter- |
|              |                                                       | Doodripadi      | rupt contro      |          | -                          |
|              |                                                       |                 | •                | J        |                            |
|              | - (                                                   | 9               |                  |          |                            |
|              |                                                       |                 |                  |          |                            |
|              |                                                       |                 |                  |          |                            |
|              |                                                       |                 |                  |          |                            |
| TV2A (Trai   | nsfer data to register V2 from Accumulator)           | •               |                  |          |                            |
| Instruction  | D9 D0                                                 | Number of       | Number of        | Flag CY  | Skip condition             |
| code         | 0 0 0 0 1 1 1 1 1 0 <sub>2</sub> 0 3 E <sub>16</sub>  | words           | cycles           |          |                            |
|              |                                                       | 1               | 1                | _        | -                          |
| Operation:   | (V2) ← (A)                                            | Grouping:       | Interrupt o      | neration |                            |
| o por accom- | (*2) ( *1)                                            | Description     |                  | •        | s of register A to inter-  |
|              |                                                       |                 | rupt contro      |          | •                          |
|              |                                                       |                 |                  |          |                            |
|              | . ( ) Y                                               |                 |                  |          |                            |
|              |                                                       |                 |                  |          |                            |
|              |                                                       |                 |                  |          |                            |
|              |                                                       |                 |                  |          |                            |
|              | insfer data to register W1 from Accumulator)          |                 | 1                | , ,      |                            |
| Instruction  | D9 D0                                                 | Number of words | Number of cycles | Flag CY  | Skip condition             |
| code         | 1 0 0 0 0 0 1 1 1 0 <sub>2</sub> 2 0 E <sub>16</sub>  |                 | -                |          |                            |
|              |                                                       | 1               | 1                | _        | _                          |
| Operation:   | (W1) ← (A)                                            | Grouping:       | Timer oper       | ation    |                            |
| •            |                                                       |                 |                  |          | ts of register A to timer  |
|              |                                                       |                 | control reg      |          |                            |
|              |                                                       |                 |                  |          |                            |
|              |                                                       |                 |                  |          |                            |
|              |                                                       |                 |                  |          |                            |
|              |                                                       |                 |                  |          |                            |
|              |                                                       |                 |                  |          |                            |

|                  | ,                                            |                 |                              |             |                          |
|------------------|----------------------------------------------|-----------------|------------------------------|-------------|--------------------------|
|                  | insfer data to register W2 from Accumulator) | 1               | I                            |             |                          |
| Instruction code | D9 D0 1 0 0 0 0 1 1 1 1 2 2 0 F              | Number of words | Number of cycles             | Flag CY     | Skip condition           |
|                  | 16                                           | 1               | 1                            | _           | _                        |
| Operation:       | $(W2) \leftarrow (A)$                        | Grouping:       | Timer oper                   | ration      |                          |
|                  |                                              | Description     | : Transfers t<br>control reg |             | ts of register A to time |
|                  |                                              |                 |                              | C           | •                        |
| TW3A (Tra        | ansfer data to register W3 from Accumulator) |                 |                              | <b>O</b> .  |                          |
| Instruction code | D9 D0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0    | Number of words | Number of cycles             | Flag CY     | Skip condition           |
|                  |                                              | 1               | 1                            | _           |                          |
| Operation:       | $(W3) \leftarrow (A)$                        | Grouping:       | Timer ope                    |             |                          |
|                  | 0                                            | Description     | control reg                  |             | ts of register A to time |
|                  |                                              |                 |                              |             |                          |
| TW4A (Tra        | ansfer data to register W4 from Accumulator) |                 |                              |             |                          |
| Instruction code | D9 D0 1 0 0 0 1 2 2 1 1 1 <sub>16</sub>      | Number of words | Number of cycles             | Flag CY     | Skip condition           |
|                  | 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1      | 1               | 1                            | _           | _                        |
| Operation:       | (W4) ← (A)                                   | Grouping:       | Timer ope                    |             |                          |
|                  |                                              | Description     | control reg                  |             | ts of register A to time |
|                  |                                              |                 |                              |             |                          |
|                  | nsfer data to register W5 from Accumulator)  |                 |                              |             |                          |
| Instruction      | D9 D0                                        | Number of words | Number of cycles             | Flag CY     | Skip condition           |
| code             | 1 0 0 0 0 1 0 0 1 0 2 2 1 2 1 2 16           | 1               | 1                            | _           | _                        |
| Operation:       | (W5) ← (A)                                   | Grouping:       | Timer oper                   | ration      |                          |
|                  |                                              | Description     |                              | the content | ts of register A to time |
|                  |                                              |                 |                              |             |                          |
|                  |                                              |                 |                              |             |                          |

|                  | Instructions (INDEX BY ALPHABET)                       | . (             |                  |              |                           |
|------------------|--------------------------------------------------------|-----------------|------------------|--------------|---------------------------|
| Instruction      | D9 D0                                                  | Number of       | Number of        | Flag CY      | Skip condition            |
| code             | 1 0 0 0 0 1 0 0 1 1 2 2 1 3                            | words           | cycles           |              | <u> </u>                  |
|                  | 1 0 0 0 0 1 0 0 1 1 2 2 1 3 16                         | 1               | 1                | _            | _                         |
| Operation:       | (W6) ← (A)                                             | Grouping:       | Timer oper       | ration       |                           |
|                  | (****)                                                 | Description     |                  |              | ts of register A to timer |
|                  |                                                        |                 | control reg      |              | Ü                         |
|                  |                                                        |                 |                  | C            | •                         |
| TYA (Trans       | sfer data to register Y from Accumulator)              |                 |                  |              |                           |
| Instruction code | D9 D0                                                  | Number of words | Number of cycles | Flag CY      | Skip condition            |
| code             | 0 0 0 0 0 0 1 1 1 0 0 <sub>2</sub> 0 0 C <sub>16</sub> | 1               | 1                | -            | -                         |
| Operation:       | $(Y) \leftarrow (A)$                                   | Grouping:       | Register to      | register ti  | ansfer                    |
|                  |                                                        | Description     |                  |              | s of register A to regis- |
|                  |                                                        |                 | ter Y.           |              |                           |
|                  |                                                        |                 |                  |              |                           |
|                  |                                                        |                 |                  |              |                           |
|                  |                                                        |                 |                  |              |                           |
|                  |                                                        |                 |                  |              |                           |
| WRST (Wa         | atchdog timer ReSeT)                                   |                 |                  |              |                           |
| Instruction      | D9 D0                                                  | Number of       | Number of        | Flag CY      | Skip condition            |
| code             | 1 0 1 0 1 0 0 0 0 0 <sub>2</sub> 2 A 0 <sub>16</sub>   | words<br>1      | cycles<br>1      | _            | (WDF1) = 1                |
| Operation:       | (WDF1) = 1 ?                                           | Grouping:       | Other oper       | ration       |                           |
| Operation.       | After skipping, (WDF1) ← 0                             | Description     |                  |              | uction when watchdog      |
|                  | . mo. oupping, (12.1.)                                 | 2000            |                  |              | ." After skipping, clears |
|                  |                                                        |                 | _                |              | . When the WDF1 flag      |
|                  | . ( ) Y                                                |                 | is "0," exe      | cutes the    | next instruction. Also    |
|                  |                                                        |                 |                  |              | imer function when ex-    |
|                  |                                                        |                 | _                |              | nstruction immediately    |
|                  |                                                        |                 | after the D      | WD1 instr    | uction.                   |
| XAM j (eX        | change Accumulator and Memory data)                    |                 |                  |              |                           |
| Instruction      | D9 D0                                                  | Number of       | Number of        | Flag CY      | Skip condition            |
| code             | 1 0 1 1 0 1 j j j j <sub>2</sub> 2 D j <sub>16</sub>   | words           | cycles           |              |                           |
|                  |                                                        | 1               | 1                | _            | _                         |
| Operation:       | $(A) \longleftrightarrow (M(DP))$                      | Grouping:       | RAM to reg       | gister trans | sfer                      |
| -                | $(X) \leftarrow (X) EXOR(j)$                           | Description     |                  |              | e contents of M(DP)       |
|                  | j = 0 to 15                                            |                 |                  |              | egister A, an exclusive   |
|                  |                                                        |                 |                  |              | ormed between regis-      |
|                  |                                                        |                 |                  | -            | in the immediate field,   |
|                  |                                                        |                 | and stores       | the result   | in register X.            |
|                  |                                                        |                 |                  |              |                           |
|                  |                                                        |                 |                  |              |                           |



| XAMD j (e        | Xchange Accumula                                                                                                                                     | ator and Mer  | mory da              | ata a | nd De   | crer | nent registe             | er Y and sk                                                                                                    | (ip)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                 |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|-------|---------|------|--------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instruction      | 1 0 1 1 1 1 i i i 2 F i                                                                                                                              |               |                      |       |         |      | Number of words          | Number of cycles                                                                                               | Flag CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Skip condition                                                                                                                                                                                                                  |
|                  |                                                                                                                                                      | '   J   J   . | J   J   <sub>2</sub> |       |         | 16   | 1                        | 1                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Y) = 15                                                                                                                                                                                                                        |
| Operation:       | $(A) \longleftrightarrow (M(DP))$<br>$(X) \longleftrightarrow (X)EXOR(j)$<br>j = 0  to  15                                                           |               |                      |       |         |      | Grouping:<br>Description | with the co                                                                                                    | nanging the<br>entents of r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ifer e contents of M(DP) egister A, an exclusive ormed between regis-                                                                                                                                                           |
|                  | $J = 0 \text{ to 15}$ $(Y) \leftarrow (Y) - 1$                                                                                                       |               |                      |       |         |      |                          | ter X and t<br>and stores<br>Subtracts<br>As a resul<br>tents of reg<br>is skipped.                            | he value j<br>the result<br>1 from the<br>It of subtra<br>gister Y is<br>When the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in the immediate field, in register X. contents of register Y. action, when the contents, the next instruction contents of register Y struction is executed.                                                                    |
| XAMI j (eX       | Change Accumula                                                                                                                                      | tor and Mem   | nory dat             | ta ar | nd Incr | eme  | ent register             | Y and skip                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                               |
| Instruction code | D9 1 1 1 1                                                                                                                                           | 0   i   i     | D <sub>0</sub>       | 2     | E i     |      | Number of words          | Number of cycles                                                                                               | Flag CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Skip condition                                                                                                                                                                                                                  |
|                  |                                                                                                                                                      | 1             | , , , , 2            |       | - ,     | 16   | 1                        |                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Y) = 0                                                                                                                                                                                                                         |
| Operation:       | $ \begin{aligned} &(A) \longleftrightarrow (M(DP)) \\ &(X) \leftarrow (X)EXOR(j) \\ &j = 0 \text{ to } 15 \\ &(Y) \leftarrow (Y) + 1 \end{aligned} $ |               |                      |       | 0       | 9    | Grouping: Description    | with the co<br>OR operat<br>ter X and t<br>and stores<br>Adds 1 to t<br>sult of ac<br>register Y<br>skipped. w | nanging the partents of retion is perfithe value juthe result the content dition, was to be content to the cont | efer the contents of M(DP) egister A, an exclusive ormed between regising the immediate field, in register X. It is of register Y. As a rehen the contents of enext instruction is contents of register Y is otton is executed. |

#### **MACHINE INSTRUCTIONS (INDEX BY TYPES)**

| \                             |          | INDEX BY TYPES)  Instruction code |    |    |    |    |            |                |     |    |                |   |              |             | <u></u>            | of               |                                                                                                                                                    |  |
|-------------------------------|----------|-----------------------------------|----|----|----|----|------------|----------------|-----|----|----------------|---|--------------|-------------|--------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter                     | Mnemonic |                                   |    |    |    |    | ısıru      | Clion          | Cou |    |                |   |              |             | Number of<br>words |                  | Function                                                                                                                                           |  |
| Type of instructions          |          | D9                                | D8 | D7 | D6 | D5 | D4         | D <sub>3</sub> | D2  | D1 | D <sub>0</sub> |   | ade<br>otati | cimal<br>on | Nun                | Number<br>cycles |                                                                                                                                                    |  |
|                               | ТАВ      | 0                                 | 0  | 0  | 0  | 0  | 1          | 1              | 1   | 1  | 0              | 0 | 1            | Е           | 1                  | 1                | (A) ← (B)                                                                                                                                          |  |
|                               | ТВА      | 0                                 | 0  | 0  | 0  | 0  | 0          | 1              | 1   | 1  | 0              | 0 | 0            | Е           | 1                  | 1                | (B) ← (A)                                                                                                                                          |  |
|                               | TAY      | 0                                 | 0  | 0  | 0  | 0  | 1          | 1              | 1   | 1  | 1              | 0 | 1            | F           | 1                  | 1                | $(A) \leftarrow (Y)$                                                                                                                               |  |
| _                             | TYA      | 0                                 | 0  | 0  | 0  | 0  | 0          | 1              | 1   | 0  | 0              | 0 | 0            | С           | 1                  | 1                | $(Y) \leftarrow (A)$                                                                                                                               |  |
| transfe                       | TEAB     | 0                                 | 0  | 0  | 0  | 0  | 1          | 1              | 0   | 1  | 0              | 0 | 1            | Α           | 1                  | 1                | (E7–E4) ← (B)<br>(E3–E0) ← (A)                                                                                                                     |  |
| Register to register transfer | TABE     | 0                                 | 0  | 0  | 0  | 1  | 0          | 1              | 0   | 1  | 0              | 0 | 2            | Α           | 1                  | 1                | (B) ← (E7–E4)<br>(A) ← (E3–E0)                                                                                                                     |  |
| ar to r                       | TDA      | 0                                 | 0  | 0  | 0  | 1  | 0          | 1              | 0   | 0  | 1              | 0 | 2            | 9           | 1                  | 1                | (DR2−DR0) ← (A2−A0)                                                                                                                                |  |
| Registe                       | TAD      | 0                                 | 0  | 0  | 1  | 0  | 1          | 0              | 0   | 0  | 1              | 0 | 5            | 1           | 1                  |                  | $ \begin{array}{l} (A2\text{-}A0) \leftarrow (DR2\text{-}DR0) \\ (A3) \leftarrow 0 \end{array} $                                                   |  |
|                               | TAZ      | 0                                 | 0  | 0  | 1  | 0  | 1          | 0              | 0   | 1  | 1              | 0 | 5            | 3           | 1                  | 1                | $(A_1, A_0) \leftarrow (Z_1, Z_0)$<br>$(A_3, A_2) \leftarrow 0$                                                                                    |  |
|                               | TAX      | 0                                 | 0  | 0  | 1  | 0  | 1          | 0              | 0   | 1  | 0              | 0 | 5            | 2           | 1                  | 1                | $(A) \leftarrow (X)$                                                                                                                               |  |
|                               | TASP     | 0                                 | 0  | 0  | 1  | 0  | 1          | 0              | 0   | 0  | 0              | 0 | 5            | 0           | 1                  | 1                | $ \begin{array}{l} (A2\text{-}A0) \leftarrow (SP2\text{-}SP0) \\ (A3) \leftarrow 0 \end{array} $                                                   |  |
|                               | LXY x, y | 1                                 | 1  | Х3 | X2 | X1 | <b>X</b> 0 | уз             | у2  | у1 | y0             | 3 | Х            | у           | 1                  | 1                | $(X) \leftarrow x \ x = 0 \text{ to } 15$<br>$(Y) \leftarrow y \ y = 0 \text{ to } 15$                                                             |  |
| esses                         | LZ z     | 0                                 | 0  | 0  | 1  | 0  | 0          | 1              | 0   | Z1 | <b>Z</b> 0     | 0 | 4            | 8<br>+z     | 1                  | 1                | $(Z) \leftarrow z z = 0 \text{ to } 3$                                                                                                             |  |
| RAM addresses                 | INY      | 0                                 | 0  | 0  | 0  | 0  | 1          | 0              | 0   | 1  | 1              | 0 | 1            | 3           | 1                  | 1                | $(Y) \leftarrow (Y) + 1$                                                                                                                           |  |
|                               | DEY      | 0                                 | 0  | 0  | 0  | 0  | 1          | 0              | 1   | 1  | 1              | 0 | 1            | 7           | 1                  | 1                | $(Y) \leftarrow (Y) - 1$                                                                                                                           |  |
|                               | TAM j    | 1                                 | 0  | 1  | 1  | 0  | 0          |                |     | ;  |                | 2 | С            |             | 1                  | 1                | $(A) \leftarrow (M(DP))$                                                                                                                           |  |
|                               | TAW J    |                                   | U  |    | '  | 0  | 0          | J              | j   | J  | j              | 2 | C            | J           | '                  | '                | $(X) \leftarrow (M(DF))$ $(X) \leftarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$                                                                        |  |
|                               | XAM j    | 1                                 | 0  | 1  | 1  | 0  | 1          | j              | j   | j  | j              | 2 | D            | j           | 1                  | 1                | $ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array} $                           |  |
| ister transf                  | XAMD j   | 1                                 | 0  | 1  | 1  | 1  | 1          | j              | j   | j  | j              | 2 | F            | j           | 1                  | 1                | $ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array} $ |  |
| RAM to register transfer      | XAMI j   | 1                                 | 0  | 1  | 1  | 1  | 0          | j              | j   | j  | j              | 2 | Е            | j           | 1                  | 1                | $(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$ $(Y) \leftarrow (Y) + 1$                                   |  |
|                               | TMA j    | 1                                 | 0  | 1  | 0  | 1  | 1          | j              | j   | j  | j              | 2 | В            | j           | 1                  | 1                | $(M(DP)) \leftarrow (A)$<br>$(X) \leftarrow (X)EXOR(j)$<br>j = 0  to  15                                                                           |  |
|                               |          |                                   |    |    |    |    |            |                |     |    |                |   |              |             |                    |                  |                                                                                                                                                    |  |

| Skip condition            | Carry flag CY | Datailed description                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _                         | -             | Transfers the contents of register B to register A.                                                                                                                                                                                                                                                                                                                                                                                          |
| -                         | -             | Transfers the contents of register A to register B.                                                                                                                                                                                                                                                                                                                                                                                          |
| -                         | _             | Transfers the contents of register Y to register A.                                                                                                                                                                                                                                                                                                                                                                                          |
| _                         | _             | Transfers the contents of register A to register Y.                                                                                                                                                                                                                                                                                                                                                                                          |
| -                         | -             | Transfers the contents of register B to the high-order 4 bits (E7–E4) of register E, and the contents of register A to the low-order 4 bits (E3–E0) of register E.                                                                                                                                                                                                                                                                           |
| _                         | -             | Transfers the high-order 4 bits (E7–E4) of register E to register B, and low-order 4 bits (E3–E0) of register E to register A.                                                                                                                                                                                                                                                                                                               |
| _                         | _             | Transfers the contents of the low-order 3 bits (A2-A0) of register A to register D.                                                                                                                                                                                                                                                                                                                                                          |
| -                         | -             | Transfers the contents of register D to the low-order 3 bits (A2–A0) of register A.                                                                                                                                                                                                                                                                                                                                                          |
| -                         | -             | Transfers the contents of register Z to the low-order 2 bits (A1, A0) of register A.                                                                                                                                                                                                                                                                                                                                                         |
| _                         | _             | Transfers the contents of register X to register A.                                                                                                                                                                                                                                                                                                                                                                                          |
| _                         | -             | Transfers the contents of stack pointer (SP) to the low-order 3 bits (A2–A0) of register A.                                                                                                                                                                                                                                                                                                                                                  |
| Continuous<br>description | _             | Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.                                                                                                                                                           |
| -                         | -             | Loads the value z in the immediate field to register Z.                                                                                                                                                                                                                                                                                                                                                                                      |
| (Y) = 0                   | -             | Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.                                                                                                                                                                                                                            |
| (Y) = 15                  | -             | Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.                                                                                                                                                                                                                |
|                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| _                         |               | After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.                                                                                                                                                                                                                                               |
| -                         | _             | After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.                                                                                                                                                                                                                               |
| (Y) = 15                  | _             | After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed. |
| (Y) = 0                   | _             | After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.             |
| -                         | _             | After transferring the contents of register A to M(DP), an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.                                                                                                                                                                                                                                               |
|                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                              |



#### **MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)**

| Parameter             |              |    | Instruction code |    |    |            |    |        |        |        |                | - / | •       | of      | jc .            |                  |                                                                                                                                                                                                                                                                                                                                              |  |  |
|-----------------------|--------------|----|------------------|----|----|------------|----|--------|--------|--------|----------------|-----|---------|---------|-----------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                       | Mnemonic     |    |                  |    |    |            |    |        |        |        |                | Hex | ade     | cimal   | Number of words | Number of cycles | Function                                                                                                                                                                                                                                                                                                                                     |  |  |
| Type of \instructions |              | D9 | D8               | D7 | D6 | D5         | D4 | Dз     | D2     | D1     | D <sub>0</sub> |     | otati   |         | 5 ><br>Z        | ž                |                                                                                                                                                                                                                                                                                                                                              |  |  |
|                       | LA n         | 0  | 0                | 0  | 1  | 1          | 1  | n      | n      | n      | n              | 0   | 7       | n       | 1               |                  | $ \begin{array}{l} (A) \leftarrow n \\ n = 0 \text{ to } 15 \end{array} $                                                                                                                                                                                                                                                                    |  |  |
|                       | ТАВР р       | 0  | 0                | 1  | 0  | <b>p</b> 5 | p4 | рз     | p2     | p1     | p0             | 0   | 8<br>+p |         | 1               | 3                | $ \begin{array}{l} (SP) \leftarrow (SP) + 1 \\ (SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p \ (Note) \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC))9, 8 \\ (B) \leftarrow (ROM(PC))7-4 \\ (A) \leftarrow (ROM(PC))3-0 \\ (SK(SP)) \leftarrow (PC) \\ (SP) \leftarrow (SP) - 1 \end{array} $ |  |  |
|                       | AM           | 0  | 0                | 0  | 0  | 0          | 0  | 1      | 0      | 1      | 0              | 0   | 0       | Α       | 1               | 1                | $(A) \leftarrow (A) + (M(DP))$                                                                                                                                                                                                                                                                                                               |  |  |
| peration              | AMC          | 0  | 0                | 0  | 0  | 0          | 0  | 1      | 0      | 1      | 1              | 0   | 0       | В       | 1               | 1                | $(A) \leftarrow (A) + (M(DP)) + (CY)$<br>$(CY) \leftarrow Carry$                                                                                                                                                                                                                                                                             |  |  |
| Arithmetic operation  | A n          | 0  | 0                | 0  | 1  | 1          | 0  | n      | n      | n      | n              | 0   | 6       | n       | 1               |                  | $(A) \leftarrow (A) + n$<br>n = 0 to 15                                                                                                                                                                                                                                                                                                      |  |  |
|                       | AND          | 0  | 0                | 0  | 0  | 0          | 1  | 1      | 0      | 0      | 0              | 0   | 1       | 8       | 1               | 1                | $(A) \leftarrow (A) \text{ AND } (M(DP))$                                                                                                                                                                                                                                                                                                    |  |  |
|                       | OR           | 0  | 0                | 0  | 0  | 0          | 1  | 1      | 0      | 0      | 1              | 0   | 1       | 9       | 1               | 1                | $(A) \leftarrow (A) \ OR \ (M(DP))$                                                                                                                                                                                                                                                                                                          |  |  |
|                       | sc           | 0  | 0                | 0  | 0  | 0          | 0  | 0      | 1      | 1      | 1              | 0   | 0       | 7       | 1               | 1                | (CY) ← 1                                                                                                                                                                                                                                                                                                                                     |  |  |
|                       | RC           | 0  | 0                | 0  | 0  | 0          | 0  | 0      | 1      | 1      | 0              | 0   | 0       | 6       | 1               | 1                | (CY) ← 0                                                                                                                                                                                                                                                                                                                                     |  |  |
|                       | szc          | 0  | 0                | 0  | 0  | 1          | 0  | 1      | 1      | 1      | 1              | 0   | 2       | F       | 1               | 1                | (CY) = 0 ?                                                                                                                                                                                                                                                                                                                                   |  |  |
|                       | СМА          | 0  | 0                | 0  | 0  | 0          | 1  | 1      | 1      | 0      | 0              | 0   | 1       | С       | 1               | 1                | $(A) \leftarrow (\overline{A})$                                                                                                                                                                                                                                                                                                              |  |  |
|                       | RAR          | 0  | 0                | 0  | 0  | 0          | 1  | 1      | 1      | 0      | 1              | 0   | 1       | D       | 1               | 1                | CY A3A2A1A0                                                                                                                                                                                                                                                                                                                                  |  |  |
| _                     | SB j         | 0  | 0                | 0  | 1  | 0          | 1  | 1      | 1      | j      | j              | 0   | 5       | C<br>+j | 1               | 1                | (Mj(DP)) ← 1<br>j = 0 to 3                                                                                                                                                                                                                                                                                                                   |  |  |
| Bit operation         | RB j         | 0  | 0                | 0  | 1  | 0          | 0  | 1      | 1      | j      | j              | 0   | 4       | C<br>+j | 1               | 1                | (Mj(DP)) ← 0<br>j = 0 to 3                                                                                                                                                                                                                                                                                                                   |  |  |
| Bit op                | SZB j        | 0  | 0                | 0  | 0  | 1          | 0  | 0      | 0      | j      | j              | 0   | 2       | •       | 1               | 1                | (Mj(DP)) = 0 ?<br>j = 0 to 3                                                                                                                                                                                                                                                                                                                 |  |  |
|                       | SEAM         | 0  | 0                | 0  | 0  | 1          | 0  | 0      | 1      | 1      | 0              | 0   | 2       | 6       | 1               | 1                | (A) = (M(DP)) ?                                                                                                                                                                                                                                                                                                                              |  |  |
| Comparison operation  | SEA n        | 0  | 0                | 0  | 0  | 1          | 0  | 0<br>n | 1<br>n | 0<br>n | 1<br>n         |     | 2       |         | 2               |                  | (A) = n ?<br>n = 0 to 15                                                                                                                                                                                                                                                                                                                     |  |  |
|                       | 2 t- 407 t M |    | 1110/            |    |    |            |    |        |        |        |                |     |         |         |                 |                  |                                                                                                                                                                                                                                                                                                                                              |  |  |

Note: p is 0 to 127 for M34584MD/ED.



| Skip condition               | Carry flag CY | Datailed description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Continuous<br>description    | -             | Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.                                                                                                                                                                                                                                                                                                           |
| -                            | _             | Transfers bits 9 and 8 to register D, bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in ad-dress (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used. The pages which can be referred as follows; after the SBK instruction: 64 to 127 after the RBK instruction: 0 to 63 after system is released from reset or returned from RAM back-up: 0 to 63. |
| -                            | _             | Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.                                                                                                                                                                                                                                                                                                                                                                                                         |
| -                            | 0/1           | Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Overflow = 0                 | _             | Adds the value n in the immediate field to register A, and stores a result in register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.                                                                                                                                                                                                                        |
| -                            | _             | Takes the AND operation between the contents of register A and the contents of M(DP), and stores the result in register A.                                                                                                                                                                                                                                                                                                                                                                                                          |
| -                            | _             | Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A.                                                                                                                                                                                                                                                                                                                                                                                                           |
| -                            | 1             | Sets (1) to carry flag CY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| _                            | 0             | Clears (0) to carry flag CY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (CY) = 0                     | _             | Skips the next instruction when the contents of carry flag CY is "0."                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _                            | -             | Stores the one's complement for register A's contents in register A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                            | 0/1           | Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -                            | -             | Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -                            | -             | Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (Mj(DP)) = 0<br>j = 0  to  3 | _             | Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0." Executes the next instruction when the contents of bit j of M(DP) is "1."                                                                                                                                                                                                                                                                                                                              |
| (A) = (M(DP))                | -             | Skips the next instruction when the contents of register A is equal to the contents of M(DP). Executes the next instruction when the contents of register A is not equal to the contents of M(DP).                                                                                                                                                                                                                                                                                                                                  |
| (A) = n                      | _             | Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field.                                                                                                                                                                                                                                                                                                        |
|                              |               | , ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



#### **MACHINE INSTRUCTIONS (continued)**

|                      | INL ING         |    |    |            |            |            |            |            |            | -,         |                |   |        |                 |             |                  | I                                                                         |
|----------------------|-----------------|----|----|------------|------------|------------|------------|------------|------------|------------|----------------|---|--------|-----------------|-------------|------------------|---------------------------------------------------------------------------|
| Parameter            |                 |    |    |            |            | In         | stru       | ction      | cod        | e          |                |   |        |                 | er of<br>ds | er of<br>es      | F.v. stice                                                                |
| Type of instructions | Mnemonic        | D9 | D8 | D7         | D6         | D5         | D4         | Dз         | D2         | D1         | D <sub>0</sub> |   |        | ecimal<br>ition | Number o    | Number of cycles | Function                                                                  |
|                      | Ва              | 0  | 1  | 1          | <b>a</b> 6 | <b>a</b> 5 | <b>a</b> 4 | <b>a</b> 3 | a2         | a1         | <b>a</b> 0     | 1 | 8+     | a<br>a          | 1           | 1                | (PCL) ← a6–a0                                                             |
| ation                | BL p, a         | 0  | 0  | 1          | 1          | 1          | p4         | рз         | p2         | <b>p</b> 1 | po             | 0 | E<br>+ | p<br>p          | 2           |                  | (PCH) ← p (Note)<br>(PCL) ← a6–a0                                         |
| Branch operation     |                 | 1  | 0  | p5         | <b>a</b> 6 | <b>a</b> 5 | <b>a</b> 4 | <b>a</b> 3 | a2         | a1         | <b>a</b> 0     | 2 | р<br>+ | a<br>a          |             |                  | X                                                                         |
| Bran                 | BLA p           | 0  | 0  | 0          | 0          | 0          | 1          | 0          | 0          | 0          | 0              | 0 | 1      | 0               | 2           | 2                | (PCH) ← p (Note)<br>(PCL) ← (DR2–DR0, A3–A0)                              |
|                      |                 | 1  | 0  | p5         | p4         | 0          | 0          | рз         | p2         | p1         | po             | 2 | р      | p               |             |                  |                                                                           |
|                      | ВМ а            | 0  | 1  | 0          | <b>a</b> 6 | <b>a</b> 5 | a4         | <b>a</b> 3 | <b>a</b> 2 | <b>a</b> 1 | <b>a</b> 0     | 1 | а      | а               | 1           |                  | (SP) ← (SP) + 1<br>(SK(SP)) ← (PC)<br>(PCH) ← 2<br>(PCL) ← a6–a0          |
| Subroutine operation | BML p, a        | 0  | 0  | 1          | 1          | 0          | p4         | рз         | p2         | <b>p</b> 1 | <b>p</b> 0     | 0 | C<br>+ | ; р<br>р        | 2           |                  | (SP) ← (SP) + 1<br>(SK(SP)) ← (PC)<br>(PCH) ← p (Note)                    |
| outine (             |                 | 1  | 0  | <b>p</b> 5 | a6         | <b>a</b> 5 | <b>a</b> 4 | <b>a</b> 3 | a2         | a1         | <b>a</b> 0     | 2 | р<br>+ | a<br>a          |             |                  | (PCL) ← a6–a0                                                             |
| Subr                 | BMLA p          | 0  | 0  | 0          | 0          | 1          | 1          | 0          | 0          | 0          | 0              | 0 | 3      | 0               | 2           | 2                | (SP) ← (SP) + 1<br>(SK(SP)) ← (PC)                                        |
|                      |                 | 1  | 0  | p5         | p4         | 0          | 0          | рз         | p2         | p1         | ро             | 2 | р      | p               |             |                  | $(PCH) \leftarrow p \text{ (Note)}$<br>$(PCL) \leftarrow (DR2-DR0,A3-A0)$ |
|                      | RTI             | 0  | 0  | 0          | 1          | 0          | 0          | 0          | 1          | 1          | 0              | 0 | 4      | 6               | 1           |                  | (PC) ← (SK(SP))<br>(SP) ← (SP) – 1                                        |
| Return operation     | RT              | 0  | 0  | 0          | 1          | 0          | 0          | 0          | 1          | 0          | 0              | 0 | 4      | 4               | 1           | 2                | (PC) ← (SK(SP))<br>(SP) ← (SP) – 1                                        |
| Retur                | RTS             | 0  | 0  | 0          | 1          | 0          | 0          | 0          | 1          | 0          | 1              | 0 | 4      | 5               | 1           |                  | (PC) ← (SK(SP))<br>(SP) ← (SP) − 1                                        |
|                      | ) to 127 for M3 |    |    |            |            |            |            |            |            |            |                | • |        |                 | -           | -                |                                                                           |

Note: p is 0 to 127 for M34584MD/ED.



| Skip condition      | Carry flag CY | Datailed description                                                                                                                                                                                                                                                   |
|---------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                   | _             | Branch within a page : Branches to address a in the identical page.                                                                                                                                                                                                    |
| _                   | -             | Branch out of a page : Branches to address a in page p.                                                                                                                                                                                                                |
| -                   | _             | Branch out of a page: Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.                                                                                                                                                         |
| _                   | -             | Call the subroutine in page 2 : Calls the subroutine at address a in page 2.                                                                                                                                                                                           |
| -                   | _             | Call the subroutine : Calls the subroutine at address a in page p.                                                                                                                                                                                                     |
| -                   | _             | Call the subroutine: Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.                                                                                                                                              |
| -                   | -             | Returns from interrupt service routine to main routine. Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous description of the LA/LXY instruction, register A and register B to the states just before interrupt. |
| -                   | _             | Returns from subroutine to the routine called the subroutine.                                                                                                                                                                                                          |
| Skip at uncondition | -(            | Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.                                                                                                                                                           |
|                     | _             |                                                                                                                                                                                                                                                                        |



| MACI                 | INE INS  |    |    |    | 143 | (11 | 10   | _^    | וט  |    | 1 -            | _3) | "            | -011        |                 |                  | 1                                                                                     |
|----------------------|----------|----|----|----|-----|-----|------|-------|-----|----|----------------|-----|--------------|-------------|-----------------|------------------|---------------------------------------------------------------------------------------|
| Parameter            |          |    |    |    |     | In  | stru | ction | cod | e  |                |     |              |             | per of<br>rds   | er of<br>les     | Function                                                                              |
| Type of instructions | Mnemonic | D9 | D8 | D7 | D6  | D5  | D4   | Dз    | D2  | D1 | D <sub>0</sub> |     | ade<br>otati | cimal<br>on | Number<br>words | Number of cycles | T unction                                                                             |
|                      | DI       | 0  | 0  | 0  | 0   | 0   | 0    | 0     | 1   | 0  | 0              | 0   | 0            | 4           | 1               | 1                | $(INTE) \leftarrow 0$                                                                 |
|                      | EI       | 0  | 0  | 0  | 0   | 0   | 0    | 0     | 1   | 0  | 1              | 0   | 0            | 5           | 1               | 1                | (INTE) ← 1                                                                            |
|                      | SNZ0     | 0  | 0  | 0  | 0   | 1   | 1    | 1     | 0   | 0  | 0              | 0   | 3            | 8           | 1               | 1                | V10 = 0: (EXF0) = 1 ?<br>After skipping, (EXF0) $\leftarrow$ 0<br>V10 = 1: SNZ0 = NOP |
|                      | SNZ1     | 0  | 0  | 0  | 0   | 1   | 1    | 1     | 0   | 0  | 1              | 0   | 3            | 9           | 1               | 1                | V11 = 0: (EXF1) = 1 ?<br>After skipping, (EXF1) ← 0<br>V11 = 1: SNZ1 = NOP            |
|                      | SNZI0    | 0  | 0  | 0  | 0   | 1   | 1    | 1     | 0   | 1  | 0              | 0   | 3            | Α           | 1               | 1                | l12 = 1 : (INT0) = "H" ?                                                              |
| tion                 |          |    |    |    |     |     |      |       |     |    |                |     |              |             |                 |                  | l12 = 0 : (INT0) = "L" ?                                                              |
| t opera              | SNZI1    | 0  | 0  | 0  | 0   | 1   | 1    | 1     | 0   | 1  | 1              | 0   | 3            | В           | 1               | 1                | l22 = 1 : (INT1) = "H" ?                                                              |
| Interrupt operation  |          |    |    |    |     |     |      |       |     |    |                |     |              | 0           |                 |                  | I22 = 0 : (INT1) = "L" ?                                                              |
|                      | TAV1     | 0  | 0  | 0  | 1   | 0   | 1    | 0     | 1   | 0  | 0              | 0   | 5            | 4           | 1               | 1                | (A) ← (V1)                                                                            |
|                      | TV1A     | 0  | 0  | 0  | 0   | 1   | 1    | 1     | 1   | 1  | 1              | 0   | 3            | F           | 1               | 1                | (V1) ← (A)                                                                            |
|                      | TAV2     | 0  | 0  | 0  | 1   | 0   | 1    | 0     | 1   | 0  | 1              | 0   | 5            | 5           | 1               | 1                | (A) ← (V2)                                                                            |
|                      | TV2A     | 0  | 0  | 0  | 0   | 1   | 1    | 1     | 1   | 1  | 0              | 0   | 3            | Е           | 1               | 1                | (V2) ← (A)                                                                            |
|                      | TAI1     | 1  | 0  | 0  | 1   | 0   | 1    | 0     | 0   | 1  | 1              | 2   | 5            | 3           | 1               | 1                | $(A) \leftarrow (I1)$                                                                 |
|                      | TI1A     | 1  | 0  | 0  | 0   | 0   | 1    | 0     | 1   | 1  | 1              | 2   | 1            | 7           | 1               | 1                | (I1) ← (A)                                                                            |
|                      | TAI2     | 1  | 0  | 0  | 1   | 0   | 1    | 0     | 1   | 0  | 0              | 2   | 5            | 4           | 1               | 1                | $(A) \leftarrow (I2)$                                                                 |
|                      | TI2A     | 1  | 0  | 0  | 0   | 0   | 1    | 1     | 0   | 0  | 0              | 2   | 1            | 8           | 1               | 1                | (I2) ← (A)                                                                            |
|                      | TPAA     | 1  | 0  | 1  | 0   | 1   | 0    | 1     | 0   | 1  | 0              | 2   | Α            | Α           | 1               | 1                | (PA0) ← (A0)                                                                          |
|                      | TAW1     | 1  | 0  | 0  | 1   | 0   | 0    | 1     | 0   | 1  | 1              | 2   | 4            | В           | 1               | 1                | (A) ← (W1)                                                                            |
|                      | TW1A     | 1  | 0  | 0  | 0   | 0   | 0    | 1     | 1   | 1  | 0              | 2   | 0            | Ε           | 1               | 1                | (W1) ← (A)                                                                            |
|                      | TAW2     | 1  | 0  | 0  | 1   | 0   | 0    | 1     | 1   | 0  | 0              | 2   | 4            | С           | 1               | 1                | (A) ← (W2)                                                                            |
| ے                    | TW2A     | 1  | 0  | 0  | 0   | 0   | 0    | 1     | 1   | 1  | 1              | 2   | 0            | F           | 1               | 1                | (W2) ← (A)                                                                            |
| eratic               | TAW3     | 1  | 0  | 0  | 1   | 0   | 0    | 1     | 1   | 0  | 1              | 2   | 4            | D           | 1               | 1                | (A) ← (W3)                                                                            |
| Timer operation      | TW3A     | 1  | 0  | 0  | 0   | 0   | 1    | 0     | 0   | 0  | 0              | 2   | 1            | 0           | 1               | 1                | (W3) ← (A)                                                                            |
| Time                 | TAW4     | 1  | 0  | 0  | 1   | 0   | 0    | 1     | 1   | 1  | 0              | 2   | 4            | Е           | 1               | 1                | $(A) \leftarrow (W4)$                                                                 |
|                      | TW4A     | 1  | 0  | 0  | 0   | 0   | 1    | 0     | 0   | 0  | 1              | 2   | 1            | 1           | 1               | 1                | (W4) ← (A)                                                                            |
|                      |          |    |    |    |     |     |      |       |     |    |                |     |              |             |                 |                  |                                                                                       |
|                      |          |    |    |    |     |     |      |       |     |    |                |     |              |             |                 |                  |                                                                                       |
|                      |          |    |    |    |     |     |      |       |     |    |                |     |              |             |                 |                  |                                                                                       |
|                      | l        |    |    |    |     |     |      |       |     |    |                |     |              |             | I               |                  | I .                                                                                   |

| Skip condition                   | Carry flag CY | Datailed description                                                                                                                                                                                                                                                                                                      |
|----------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _                                | _             | Clears (0) to interrupt enable flag INTE, and disables the interrupt.                                                                                                                                                                                                                                                     |
| _                                | _             | Sets (1) to interrupt enable flag INTE, and enables the interrupt.                                                                                                                                                                                                                                                        |
| V10 = 0: (EXF0) = 1              | -             | When V10 = 0 : Skips the next instruction when external 0 interrupt request flag EXF0 is "1." After skipping, clears (0) to the EXF0 flag. When the EXF0 flag is "0," executes the next instruction.  When V10 = 1 : This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control register V1) |
| V11 = 0: (EXF1) = 1              | -             | When V11 = 0 : Skips the next instruction when external 1 interrupt request flag EXF1 is "1." After skipping, clears (0) to the EXF1 flag. When the EXF1 flag is "0," executes the next instruction.  When V11 = 1 : This instruction is equivalent to the NOP instruction. (V11: bit 1 of interrupt control register V1) |
| (INT0) = "H"<br>However, I12 = 1 | -             | When I12 = 1: Skips the next instruction when the level of INT0 pin is "H." (I12: bit 2 of interrupt control register I1)                                                                                                                                                                                                 |
| (INT0) = "L"<br>However, I12 = 0 | _             | When I12 = 0 : Skips the next instruction when the level of INT0 pin is "L."                                                                                                                                                                                                                                              |
| (INT1) = "H"<br>However, I22 = 1 | -             | When I22 = 1 : Skips the next instruction when the level of INT1 pin is "H." (I22: bit 2 of interrupt control register I2)                                                                                                                                                                                                |
| (INT1) = "L"<br>However, I22 = 0 | -             | When I22 = 0 : Skips the next instruction when the level of INT1 pin is "L."                                                                                                                                                                                                                                              |
| _                                | _             | Transfers the contents of interrupt control register V1 to register A.                                                                                                                                                                                                                                                    |
| _                                | _             | Transfers the contents of register A to interrupt control register V1.                                                                                                                                                                                                                                                    |
| _                                | _             | Transfers the contents of interrupt control register V2 to register A.                                                                                                                                                                                                                                                    |
| _                                | _             | Transfers the contents of register A to interrupt control register V2.                                                                                                                                                                                                                                                    |
| _                                | _             | Transfers the contents of interrupt control register I1 to register A.                                                                                                                                                                                                                                                    |
| _                                | _             | Transfers the contents of register A to interrupt control register I1.                                                                                                                                                                                                                                                    |
| _                                | _             | Transfers the contents of interrupt control register I2 to register A.                                                                                                                                                                                                                                                    |
| -                                | -             | Transfers the contents of register A to interrupt control register I2.                                                                                                                                                                                                                                                    |
| -                                | -             | Transfers the contents of register A to timer control register PA.                                                                                                                                                                                                                                                        |
| -                                | -/            | Transfers the contents of timer control register W1 to register A.                                                                                                                                                                                                                                                        |
| _                                | _             | Transfers the contents of register A to timer control register W1.                                                                                                                                                                                                                                                        |
| _                                | _             | Transfers the contents of timer control register W2 to register A.                                                                                                                                                                                                                                                        |
| _                                | _             | Transfers the contents of register A to timer control register W2.                                                                                                                                                                                                                                                        |
| _                                | _             | Transfers the contents of timer control register W3 to register A.                                                                                                                                                                                                                                                        |
| _                                | _             | Transfers the contents of register A to timer control register W3.                                                                                                                                                                                                                                                        |
| _                                | _             | Transfers the contents of timer control register W4 to register A.                                                                                                                                                                                                                                                        |
| _                                | -             | Transfers the contents of register A to timer control register W4.                                                                                                                                                                                                                                                        |
|                                  |               |                                                                                                                                                                                                                                                                                                                           |
|                                  |               |                                                                                                                                                                                                                                                                                                                           |
|                                  |               |                                                                                                                                                                                                                                                                                                                           |
| L                                |               |                                                                                                                                                                                                                                                                                                                           |



| Parameter            |          |    |    |    |    | In | stru | ction | cod | e  |                |   |              |             | r of<br>s       | r of             |                                                                                                                                                                                   |
|----------------------|----------|----|----|----|----|----|------|-------|-----|----|----------------|---|--------------|-------------|-----------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type of instructions | Mnemonic | D9 | D8 | D7 | D6 | D5 | D4   | Dз    | D2  | D1 | D <sub>0</sub> |   | ade<br>otati | cimal<br>on | Number of words | Number of cycles | Function                                                                                                                                                                          |
|                      | TAW5     | 1  | 0  | 0  | 1  | 0  | 0    | 1     | 1   | 1  | 1              | 2 | 4            | F           | 1               | 1                | (A) ← (W5)                                                                                                                                                                        |
|                      | TW5A     | 1  | 0  | 0  | 0  | 0  | 1    | 0     | 0   | 1  | 0              | 2 | 1            | 2           | 1               | 1                | (W5) ← (A)                                                                                                                                                                        |
|                      | TAW6     | 1  | 0  | 0  | 1  | 0  | 1    | 0     | 0   | 0  | 0              | 2 | 5            | 0           | 1               | 1                | (A) ← (W6)                                                                                                                                                                        |
|                      | TW6A     | 1  | 0  | 0  | 0  | 0  | 1    | 0     | 0   | 1  | 1              | 2 | 1            | 3           | 1               | 1                | (W6) ← (A)                                                                                                                                                                        |
|                      | TABPS    | 1  | 0  | 0  | 1  | 1  | 1    | 0     | 1   | 0  | 1              | 2 | 7            | 5           | 1               | 1                | $ \begin{array}{l} (B) \leftarrow (TPS7\text{-}TPS4) \\ (A) \leftarrow (TPS3\text{-}TPS0) \end{array} $                                                                           |
|                      | TPSAB    | 1  | 0  | 0  | 0  | 1  | 1    | 0     | 1   | 0  | 1              | 2 | 3            | 5           | 1               | 1                | $ \begin{array}{l} (RPS7\text{-}RPS4) \leftarrow (B) \\ (TPS7\text{-}TPS4) \leftarrow (B) \\ (RPS3\text{-}RPS0) \leftarrow (A) \\ (TPS3\text{-}TPS0) \leftarrow (A) \end{array} $ |
|                      | TAB1     | 1  | 0  | 0  | 1  | 1  | 1    | 0     | 0   | 0  | 0              | 2 | 7            | 0           | 1               | 1                | (B) ← (T17–T14)<br>(A) ← (T13–T10)                                                                                                                                                |
|                      | T1AB     | 1  | 0  | 0  | 0  | 1  | 1    | 0     | 0   | 0  | 0              | 2 | 3            | 0           | ð               | 1                | $(R17-R14) \leftarrow (B)$<br>$(T17-T14) \leftarrow (B)$<br>$(R13-R10) \leftarrow (A)$<br>$(T13-T10) \leftarrow (A)$                                                              |
|                      | TAB2     | 1  | 0  | 0  | 1  | 1  | 1    | 0     | 0   | 0  | 1              | 2 | 7            | 1           | 1               | 1                | (B) $\leftarrow$ (T27–T24)<br>(A) $\leftarrow$ (T23–T20)                                                                                                                          |
| eration              | T2AB     | 1  | 0  | 0  | 0  | 1  | 1    | 0     | 0   | 0  | 1              | 2 | 3            | 1           | 1               | 1                | $(R27-R24) \leftarrow (B)$<br>$(T27-T24) \leftarrow (B)$<br>$(R23-R20) \leftarrow (A)$<br>$(T23-T20) \leftarrow (A)$                                                              |
| Timer operation      | TAB3     | 1  | 0  | 0  | 1  | 1  | 1    | 0     | 0   | 1  | 0              | 2 | 7            | 2           | 1               | 1                | (B) ← (T37–T34)<br>(A) ← (T33–T30)                                                                                                                                                |
| <b>-</b>             | ТЗАВ     | 1  | 0  | 0  | 0  | 2  | 1    | 0     | 0   | 1  | 0              | 2 | 3            | 2           | 1               | 1                | $(R37-R34) \leftarrow (B)$<br>$(T37-T34) \leftarrow (B)$<br>$(R33-R30) \leftarrow (A)$<br>$(T33-T30) \leftarrow (A)$                                                              |
|                      | TAB4     | 1  | 0  | 0  | 1  | 1  | 1    | 0     | 0   | 1  | 1              | 2 | 7            | 3           | 1               | 1                | (B) ← (T47–T44)<br>(A) ← (T43–T40)                                                                                                                                                |
|                      | Т4АВ     | 1  | 0  | 0  | 0  | 1  | 1    | 0     | 0   | 1  | 1              | 2 | 3            | 3           | 1               | 1                | $(R4L7-R4L4) \leftarrow (B)$<br>$(T47-T44) \leftarrow (B)$<br>$(R4L3-R4L0) \leftarrow (A)$<br>$(T43-T40) \leftarrow (A)$                                                          |
|                      | Т4НАВ    | 1  | 0  | 0  | 0  | 1  | 1    | 0     | 1   | 1  | 1              | 2 | 3            | 7           | 1               | 1                | $(R4H7-R4H4) \leftarrow (B)$<br>$(R4H3-R4H0) \leftarrow (A)$                                                                                                                      |
|                      | TR1AB    | 1  | 0  | 0  | 0  | 1  | 1    | 1     | 1   | 1  | 1              | 2 | 3            | F           | 1               | 1                | $(R17-R14) \leftarrow (B)$<br>$(R13-R10) \leftarrow (A)$                                                                                                                          |
|                      | TR3AB    | 1  | 0  | 0  | 0  | 1  | 1    | 1     | 0   | 1  | 1              | 2 | 3            | В           | 1               | 1                | (R37–R34) ← (B)<br>(R33–R30) ← (A)                                                                                                                                                |
|                      | T4R4L    | 1  | 0  | 1  | 0  | 0  | 1    | 0     | 1   | 1  | 1              | 2 | 9            | 7           | 1               | 1                | (T47–T40) ← (R4L7–R4L0)                                                                                                                                                           |
|                      |          |    |    |    |    |    |      |       |     |    |                |   |              |             |                 |                  |                                                                                                                                                                                   |
|                      |          |    |    |    |    |    |      |       |     |    |                |   |              |             |                 |                  |                                                                                                                                                                                   |

|                |               | _                                                                                                                                                                                                                              |
|----------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Skip condition | Carry flag CY | Datailed description                                                                                                                                                                                                           |
| _              | _             | Transfers the contents of timer control register W5 to register A.                                                                                                                                                             |
| _              | _             | Transfers the contents of register A to timer control register W5.                                                                                                                                                             |
| _              | _             | Transfers the contents of timer control register W6 to register A.                                                                                                                                                             |
| _              | _             | Transfers the contents of register A to timer control register W6.                                                                                                                                                             |
| _              | _             | Transfers the high-order 4 bits of prescaler to register B, and transfers the low-order 4 bits of prescaler to register A.                                                                                                     |
| -              | _             | Transfers the contents of register B to the high-order 4 bits of prescaler and prescaler reload register RPS, and transfers the contents of register A to the low-order 4 bits of prescaler and prescaler reload register RPS. |
| _              | _             | Transfers the high-order 4 bits of timer 1 to register B, and transfers the low-order 4 bits of timer 1 to register A.                                                                                                         |
| -              | _             | Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1.           |
| -              | _             | Transfers the high-order 4 bits of timer 2 to register B, and transfers the low-order 4 bits of timer 2 to register A.                                                                                                         |
| _              | _             | Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload register R2, and transfers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2.           |
| _              | _             | Transfers the high-order 4 bits of timer 3 to register B, and transfers the low-order 4 bits of timer 3 to register A.                                                                                                         |
| -              | _             | Transfers the contents of register B to the high-order 4 bits of timer 3 and timer 3 reload register R3, and transfers the contents of register A to the low-order 4 bits of timer 3 and timer 3 reload register R3.           |
| -              | 1             | Transfers the high-order 4 bits of timer 4 to register B, and transfers the low-order 4 bits of timer 4 to register A.                                                                                                         |
| - <            | -             | Transfers the contents of register B to the high-order 4 bits of timer 4 and timer 4 reload register R4L, and transfers the contents of register A to the low-order 4 bits of timer 4 and timer 4 reload register R4L.         |
| -              | _             | Transfers the contents of register B to the high-order 4 bits of timer 4 reload register R4H, and transfers the contents of register A to the low-order 4 bits of timer 4 reload register R4H.                                 |
| -              | _             | Transfers the contents of register B to the high-order 4 bits of timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 reload register R1.                                   |
| _              | _             | Transfers the contents of register B to the high-order 4 bits of timer 3 reload register R3, and transfers the contents of register A to the low-order 4 bits of timer 3 reload register R3.                                   |
| -              | _             | Transfers the contents of timer 4 reload register R4L to timer 4.                                                                                                                                                              |
|                |               |                                                                                                                                                                                                                                |
|                |               |                                                                                                                                                                                                                                |

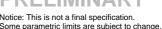


| Parameter              |          |    |    |    |    | Ir | stru | ction | cod | e  |                |   |   |       | er of              | er of<br>les     | Function                                                                      |
|------------------------|----------|----|----|----|----|----|------|-------|-----|----|----------------|---|---|-------|--------------------|------------------|-------------------------------------------------------------------------------|
| Type of instructions   | Mnemonic | D9 | D8 | D7 | D6 | D5 | D4   | Дз    | D2  | D1 | D <sub>0</sub> |   |   | cimal | Number of<br>words | Number of cycles | Fulction                                                                      |
|                        | SNZT1    | 1  | 0  | 1  | 0  | 0  | 0    | 0     | 0   | 0  | 0              | 2 | 8 | 0     | 1                  | 1                | V12 = 0: (T1F) = 1 ? After skipping, (T1F) $\leftarrow$ 0<br>V12 = 0: NOP     |
| eration                | SNZT2    | 1  | 0  | 1  | 0  | 0  | 0    | 0     | 0   | 0  | 1              | 2 | 8 | 1     | 1                  | 1                | V13 = 0: (T2F) = 1 ? After skipping, (T2F) ← 0<br>V13 = 0: NOP                |
| Timer operation        | SNZT3    | 1  | 0  | 1  | 0  | 0  | 0    | 0     | 0   | 1  | 0              | 2 | 8 | 2     | 1                  | 1                | V20 = 0: (T3F) = 1 ? After skipping, (T3F) ← 0 $V20 = 0$ : NOP                |
|                        | SNZT4    | 1  | 0  | 1  | 0  | 0  | 0    | 0     | 0   | 1  | 1              | 2 | 8 | 3     | 1                  | 1                | $V21 = 0$ : (T4F) = 1 ? After skipping, (T4F) $\leftarrow$ 0 $V21 = 0$ : NOP  |
|                        | IAP0     | 1  | 0  | 0  | 1  | 1  | 0    | 0     | 0   | 0  | 0              | 2 | 6 | 0     | 1                  | 1                | (A) ← (P0)                                                                    |
|                        | OP0A     | 1  | 0  | 0  | 0  | 1  | 0    | 0     | 0   | 0  | 0              | 2 | 2 | 0     | 1                  | 1                | (P0) ← (A)                                                                    |
|                        | IAP1     | 1  | 0  | 0  | 1  | 1  | 0    | 0     | 0   | 0  | 1              | 2 | 6 | 1     | 1                  | 1                | (A) ← (P1)                                                                    |
|                        | OP1A     | 1  | 0  | 0  | 0  | 1  | 0    | 0     | 0   | 0  | 1              | 2 | 2 | 1     | 1                  | 1                | (P1) ← (A)                                                                    |
|                        | IAP2     | 1  | 0  | 0  | 1  | 1  | 0    | 0     | 0   | 1  | 0              | 2 | 6 | 2     | 1                  | 1                | (A2−A0) ← (P22−P20) (A3) ← 0                                                  |
|                        | OP2A     | 1  | 0  | 0  | 0  | 1  | 0    | 0     | 0   | 1  | 0              | 2 | 2 | 2     | 1                  | 1                | (P22−P20) ← (A2−A0)                                                           |
|                        | IAP3     | 1  | 0  | 0  | 1  | 1  | 0    | 0     | 0   | 1  | 1              | 2 | 6 | 3     | 1                  | 1                | (A) ← (P3)                                                                    |
|                        | ОРЗА     | 1  | 0  | 0  | 0  | 1  | 0    | 0     | 0   | 1  | 1              | 2 | 2 | 3     | 1                  | 1                | (P3) ← (A)                                                                    |
|                        | IAP4     | 1  | 0  | 0  | 1  | 1  | 0    | 0     | 1   | 0  | 0              | 2 | 6 | 4     | 1                  | 1                | (A) ← (P4)                                                                    |
|                        | OP4A     | 1  | 0  | 0  | 0  | 1  | 0    | 0     | 1   | 0  | 0              | 2 | 2 | 4     | 1                  | 1                | (P4) ← (A)                                                                    |
|                        | IAP5     | 1  | 0  | 0  | 1  | 1  | 0    | 0     | 1   | 0  | 1              | 2 | 6 | 5     | 1                  | 1                | (A) ← (P5)                                                                    |
| ation                  | OP5A     | 1  | 0  | 0  | 0  | 1  | 0    | 0     | 1   | 0  | 1              | 2 | 2 | 5     | 1                  | 1                | (P5) ← (A)                                                                    |
| Input/Output operation | IAP6     | 1  | 0  | 0  | 1  | 1  | 0    | 0     | 1   | 1  | 0              | 2 | 6 | 6     | 1                  | 1                | (A) ← (P6)                                                                    |
| rtbut                  | OP6A     | 1  | 0  | 0  | 0  | 1  | 0    | 0     | 1   | 1  | 0              | 2 | 2 | 6     | 1                  | 1                | (P6) ← (A)                                                                    |
| out/O                  | CLD      | 0  | 0  | 0  | 0  | 0  | 1    | 0     | 0   | 0  | 1              | 0 | 1 | 1     | 1                  | 1                | (D) ← 1                                                                       |
| du <sub>l</sub>        | RD       | 0  | 0  | 0  | 0  | 0  | 1    | 0     | 1   | 0  | 0              | 0 | 1 | 4     | 1                  | 1                | $ \begin{array}{l} (D(Y)) \leftarrow 0 \\ (Y) = 0 \text{ to } 6 \end{array} $ |
|                        | SD       | 0  | 0  | 0  | 0  | 0  | 1    | 0     | 1   | 0  | 1              | 0 | 1 | 5     | 1                  | 1                | $(D(Y)) \leftarrow 1$<br>(Y) = 0 to 6                                         |
|                        | SZD      | 0  | 0  | 0  | 0  | 1  | 0    | 0     | 1   | 0  | 0              | 0 | 2 | 4     | 1                  | 1                | (D(Y)) = 0?                                                                   |
|                        |          | 0  | 0  | 0  | 0  | 1  | 0    | 1     | 0   | 1  | 1              | 0 | 2 | В     | 1                  | 1                | (Y) = 0  to  6                                                                |
|                        | RCP      | 1  | 0  | 1  | 0  | 0  | 0    | 1     | 1   | 0  | 0              | 2 | 8 | С     | 1                  | 1                | C ← 0                                                                         |
|                        | SCP      | 1  | 0  | 1  | 0  | 0  | 0    | 1     | 1   | 0  | 1              | 2 | 8 | D     | 1                  | 1                | C ← 1                                                                         |
|                        | TAPU0    | 1  | 0  | 0  | 1  | 0  | 1    | 0     | 1   | 1  | 1              | 2 | 5 | 7     | 1                  | 1                | (A) ← (PU0)                                                                   |
|                        | TPU0A    | 1  | 0  | 0  | 0  | 1  | 0    | 1     | 1   | 0  | 1              | 2 | 2 | D     | 1                  | 1                | (PU0) ← (A)                                                                   |
|                        | TAPU1    | 1  | 0  | 0  | 1  | 0  | 1    | 1     | 1   | 1  | 0              | 2 | 5 | Е     | 1                  | 1                | (A) ← (PU1)                                                                   |
|                        | TPU1A    | 1  | 0  | 0  | 0  | 1  | 0    | 1     | 1   | 1  | 0              | 2 | 2 | E     | 1                  | 1                | (PU1) ← (A)                                                                   |

|                                   | <b>-</b>      |                                                                                                                                                                                               |
|-----------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Skip condition                    | Carry flag CY | Datailed description                                                                                                                                                                          |
| V12 = 0: (T1F) = 1                | _             | Skips the next instruction when the contents of bit 2 (V12) of interrupt control register V1 is "0" and the contents of T1F flag is "1." After skipping, clears (0) to T1F flag.              |
| V13 = 0: (T2F) =1                 | _             | Skips the next instruction when the contents of bit 3 (V13) of interrupt control register V1 is "0" and the contents of T2F flag is "1." After skipping, clears (0) to T2F flag.              |
| V20 = 0: (T3F) = 1                | _             | Skips the next instruction when the contents of bit 0 (V2 <sub>0</sub> ) of interrupt control register V2 is "0" and the contents of T3F flag is "1." After skipping, clears (0) to T3F flag. |
| V21 = 0: (T4F) =1                 | _             | Skips the next instruction when the contents of bit 1 (V21) of interrupt control register V2 is "0" and the contents of T4F flag is "1." After skipping, clears (0) to T4F flag.              |
| _                                 | _             | Transfers the input of port P0 to register A.                                                                                                                                                 |
| _                                 | _             | Outputs the contents of register A to port P0.                                                                                                                                                |
| _                                 | _             | Transfers the input of port P1 to register A.                                                                                                                                                 |
| _                                 | _             | Outputs the contents of register A to port P1.                                                                                                                                                |
| _                                 | _             | Transfers the input of port P2 to register A.                                                                                                                                                 |
| _                                 | _             | Outputs the contents of register A to port P2.                                                                                                                                                |
| _                                 | _             | Transfers the input of port P3 to register A.                                                                                                                                                 |
| _                                 | _             | Outputs the contents of register A to port P3.                                                                                                                                                |
| _                                 | _             | Transfers the input of port P4 to register A.                                                                                                                                                 |
| _                                 | _             | Outputs the contents of register A to port P4.                                                                                                                                                |
| _                                 | _             | Transfers the input of port P5 to register A.                                                                                                                                                 |
| _                                 | _             | Outputs the contents of register A to port P5.                                                                                                                                                |
| -                                 | _             | Transfers the input of port P6 to register A.                                                                                                                                                 |
| -                                 | _             | Outputs the contents of register A to port P6.                                                                                                                                                |
| -                                 | (             | Sets (1) to all port D.                                                                                                                                                                       |
| -                                 | -             | Clears (0) to a bit of port D specified by register Y.                                                                                                                                        |
| -                                 | _             | Sets (1) to a bit of port D specified by register Y.                                                                                                                                          |
| (D(Y)) = 0<br>However, (Y)=0 to 6 | _             | Skips the next instruction when a bit of port D specified by register Y is "0." Executes the next instruction when a bit of port D specified by register Y is "1."                            |
| _                                 | _             | Clears (0) to port C.                                                                                                                                                                         |
| _                                 | _             | Sets (1) to port C.                                                                                                                                                                           |
| _                                 | _             | Transfers the contents of pull-up control register PU0 to register A.                                                                                                                         |
| _                                 | _             | Transfers the contents of register A to pull-up control register PU0.                                                                                                                         |
| _                                 | _             | Transfers the contents of pull-up control register PU1 to register A.                                                                                                                         |
| _                                 | _             | Transfers the contents of register A to pull-up control register PU1.                                                                                                                         |
|                                   | <u> </u>      |                                                                                                                                                                                               |



| MACH                   | INE INS  | ΓR | JCT |    | NS       | (11 | ND   | EX    | BY  | ′ T | YPI            | ES) | (0           | on | tinu            | ed)              |                                    |
|------------------------|----------|----|-----|----|----------|-----|------|-------|-----|-----|----------------|-----|--------------|----|-----------------|------------------|------------------------------------|
| Parameter              |          |    |     |    |          | In  | stru | ction | cod | е   |                |     |              |    | er of<br>ds     | er of<br>es      | <u>-</u>                           |
| Type of instructions   | Mnemonic | D9 | D8  | D7 | D6       | D5  | D4   | Dз    | D2  | D1  | D <sub>0</sub> | Hex | ade<br>otati |    | Number of words | Number of cycles | Function                           |
|                        | TAK0     | 1  | 0   | 0  | 1        | 0   | 1    | 0     | 1   | 1   | 0              | 2   | 5            | 6  | 1               | 1                | (A) ← (K0)                         |
|                        | TK0A     | 1  | 0   | 0  | 0        | 0   | 1    | 1     | 0   | 1   | 1              | 2   | 1            | В  | 1               | 1                | (K0) ← (A)                         |
|                        | TAK1     | 1  | 0   | 0  | 1        | 0   | 1    | 1     | 0   | 0   | 1              | 2   | 5            | 9  | 1               | 1                | (A) ← (K1)                         |
| ratior                 | TK1A     | 1  | 0   | 0  | 0        | 0   | 1    | 0     | 1   | 0   | 0              | 2   | 1            | 4  | 1               | 1                | (K1) ← (A)                         |
| Input/Output operation | TAK2     | 1  | 0   | 0  | 1        | 0   | 1    | 1     | 0   | 1   | 0              | 2   | 5            | Α  | 1               | 1                | (A) ← (K2)                         |
| utbu                   | TK2A     | 1  | 0   | 0  | 0        | 0   | 1    | 0     | 1   | 0   | 1              | 2   | 1            | 5  | 1               | 1                | (K2) ← (A)                         |
| put/C                  | TFR0A    | 1  | 0   | 0  | 0        | 1   | 0    | 1     | 0   | 0   | 0              | 2   | 2            | 8  | 1               | 1                | (FR0) ← (A)                        |
| =                      | TFR1A    | 1  | 0   | 0  | 0        | 1   | 0    | 1     | 0   | 0   | 1              | 2   | 2            | 9  | 1               | 1                | (FR1) ← (A)                        |
|                        | TFR2A    | 1  | 0   | 0  | 0        | 1   | 0    | 1     | 0   | 1   | 0              | 2   | 2            | Α  | 1               | 1                | (FR2) ← (A)                        |
|                        | TFR3A    | 1  | 0   | 0  | 0        | 1   | 0    | 1     | 0   | 1   | 1              | 2   | 2            | В  | 1               | 1                | (FR3) ← (A)                        |
|                        | СМСК     | 1  | 0   | 1  | 0        | 0   | 1    | 1     | 0   | 1   | 0              | 2   | 9            | Α  | 1               | 1                | Ceramic resonator selected         |
| <br>  E                | CRCK     | 1  | 0   | 1  | 0        | 0   | 1    | 1     | 0   | 1   | 1              | 2   | 9            | В  | 1               | 1                | RC oscillator selected             |
| eratic                 | СҮСК     | 1  | 0   | 1  | 0        | 0   | 1    | 1     | 1   | 0   | 1              | 2   | 9            | D  | 1               | 1                | Quartz-crystal oscillator selected |
| Clock operation        | TRGA     | 1  | 0   | 0  | 0        | 0   | 0    | 1     | 0   | 0   | 1              | 2   | 0            | 9  | 1               | 1                | $(RG_0) \leftarrow (A_0)$          |
| S                      | TAMR     | 1  | 0   | 0  | 1        | 0   | 1    | 0     | 0   | 1   | 0              | 2   | 5            | 2  | 1               | 1                | $(A) \leftarrow (MR)$              |
|                        | TMRA     | 1  | 0   | 0  | 0        | 0   | 1    | 0     | 1   | 1   | 0              | 2   | 1            | 6  | 1               | 1                | $(MR) \leftarrow (A)$              |
|                        |          |    |     | 5  | <b>\</b> | ?   |      |       |     |     |                |     |              |    |                 |                  |                                    |


| Skip condition | Carry flag CY | Datailed description                                                              |
|----------------|---------------|-----------------------------------------------------------------------------------|
| _              | _             | Transfers the contents of key-on wakeup control register K0 to register A.        |
| _              | _             | Transfers the contents of register A to key-on wakeup control register K0.        |
| _              | -             | Transfers the contents of key-on wakeup control register K1 to register A.        |
| _              | -             | Transfers the contents of register A to key-on wakeup control register K1.        |
| _              | -             | Transfers the contents of key-on wakeup control register K2 to register A.        |
| _              | -             | Transfers the contents of register A to key-on wakeup control register K2.        |
| _              | -             | Transferts the contents of register A to port output format control register FR0. |
| _              | -             | Transferts the contents of register A to port output format control register FR1. |
| _              | -             | Transferts the contents of register A to port output format control register FR2. |
| _              | -             | Transferts the contents of register A to port output format control register FR3. |
| _              | _             | Selects the ceramic resonator for main clock f(XIN).                              |
| _              | -             | Selects the RC oscillation circuit for main clock f(XIN).                         |
| _              | -             | Selects the quartz-crystal oscillation circuit for main clock f(XIN).             |
| _              | -             | Transfers the contents of clock control regiser RG to register A.                 |
| _              | -             | Transfers the contents of clock control regiser MR to register A.                 |
| -              | _             | Transfers the contents of register A to clock control register MR.                |
|                |               |                                                                                   |



| Parameter                |          |    |    |    |    | Ir | stru | ction | cod | е  |                |   |              |             | er of           | er of            |                                                                                                                  |
|--------------------------|----------|----|----|----|----|----|------|-------|-----|----|----------------|---|--------------|-------------|-----------------|------------------|------------------------------------------------------------------------------------------------------------------|
| Type of instructions     | Mnemonic | D9 | D8 | D7 | D6 | D5 | D4   | Dз    | D2  | D1 | D <sub>0</sub> |   | ade<br>otati | cimal<br>on | Number of words | Number of cycles | Function                                                                                                         |
|                          | TABAD    | 1  | 0  | 0  | 1  | 1  | 1    | 1     | 0   | 0  | 1              | 2 | 7            | 9           | 1               | 1                | Q13 = 0:<br>(B) \( (AD9-AD6) \)<br>(A) \( (AD5-AD2) \)<br>Q13 = 1:<br>(B) \( (AD7-AD4) \)<br>(A) \( (AD3-AD0) \) |
|                          | TALA     | 1  | 0  | 0  | 1  | 0  | 0    | 1     | 0   | 0  | 1              | 2 | 4            | 9           | 1               | 1                | $(A3, A2) \leftarrow (AD1, AD0)$<br>$(A1, A0) \leftarrow 0$                                                      |
| ation                    | TADAB    | 1  | 0  | 0  | 0  | 1  | 1    | 1     | 0   | 0  | 1              | 2 | 3            | 9           | 1               | 1                | $ \begin{array}{l} (AD7\text{-}AD4) \leftarrow (B) \\ (AD3\text{-}AD0) \leftarrow (A) \end{array} $              |
| on oper                  | ADST     | 1  | 0  | 1  | 0  | 0  | 1    | 1     | 1   | 1  | 1              | 2 | 9            | F           | 1               | 1                | (ADF) ← 0<br>A/D conversion starting                                                                             |
| A/D conversion operation | SNZAD    | 1  | 0  | 1  | 0  | 0  | 0    | 0     | 1   | 1  | 1              | 2 | 8            | 7           | 1               | 1                | V22 = 0: (ADF) = 1 ?<br>After skipping, (ADF) $\leftarrow$ 0 V22 = 1: NOP                                        |
| ∢                        | TAQ1     | 1  | 0  | 0  | 1  | 0  | 0    | 0     | 1   | 0  | 0              | 2 | 4            | 4           | 1               | 1                | (A) ← (Q1)                                                                                                       |
|                          | TQ1A     | 1  | 0  | 0  | 0  | 0  | 0    | 0     | 1   | 0  | 0              | 2 | 0            | 4           | 1               | 1                | (Q1) ← (A)                                                                                                       |
|                          | TAQ2     | 1  | 0  | 0  | 1  | 0  | 0    | 0     | 1   | 0  | 1              | 2 | 4            | 5           | 1               | 1                | (A) ← (Q2)                                                                                                       |
|                          | TQ2A     | 1  | 0  | 0  | 0  | 0  | 0    | 0     | 1   | 0  | 1              | 2 | 0            | 5           | 1               | 1                | (Q2) ← (A)                                                                                                       |
|                          | TAQ3     | 1  | 0  | 0  | 1  | 0  | 0    | 0     | 1   | 1  | 0              | 2 | 4            | 6           | 1               | 1                | (A) ← (Q3)                                                                                                       |
|                          | TQ3A     | 1  | 0  | 0  | 0  | 0  | 0    | 0     | 1   | 1  | 0              | 2 | 0            | 6           | 1               | 1                | (Q3) ← (A)                                                                                                       |
|                          | NOP      | 0  | 0  | 0  | 0  | 0  | 0    | 0     | 0   | 0  | 0              | 0 | 0            | 0           | 1               | 1                | (PC) ← (PC) + 1                                                                                                  |
|                          | POF      | 0  | 0  | 0  | 0  | 0  | 0    | 0     | 0   | 1  | 0              | 0 | 0            | 2           | 1               | 1                | Transition to RAM back-up mode                                                                                   |
|                          | EPOF     | 0  | 0  | 0  | 1  | 0  | 1    | 1     | 0   | 1  | 1              | 0 | 5            | В           | 1               | 1                | POF instruction valid                                                                                            |
|                          | SNZP     | 0  | 0  | 0  | 0  | 0  | 0    | 0     | 0   | 1  | 1              | 0 | 0            | 3           | 1               | 1                | (P) = 1 ?                                                                                                        |
| ion                      | WRST     | 1  | 0  | 1  | 0  | 1  | 0    | 0     | 0   | 0  | 0              | 2 | Α            | 0           | 1               | 1                | (WDF1) = 1 ?<br>After skipping, (WDF1) ← 0                                                                       |
| oerat                    | DWDT     | 1  | 0  | 1  | 0  | 0  | 1    | 1     | 1   | 0  | 0              | 2 | 9            | С           | 1               | 1                | Stop of watchdog timer function enabled                                                                          |
| Other operation          | SRST     | 0  | 0  | 0  | 0  | 0  | 0    | 0     | 0   | 0  | 1              | 0 | 0            | 1           | 1               | 1                | System reset occurrence                                                                                          |
| ₹                        | SVDE     | 1  | 0  | 1  | 0  | 0  | 1    | 0     | 0   | 1  | 1              | 2 | 9            | 3           | 1               | 1                | At RAM back-up: voltage drop detection circuit valid.                                                            |
|                          | RBK      | 0  | 0  | 0  | 1  | 0  | 0    | 0     | 0   | 0  | 0              | 0 | 4            | 0           | 1               | 1                | $p6 \leftarrow 0$ when TABP p instruction is executed                                                            |
|                          | SBK      | 0  | 0  | 0  | 1  | 0  | 0    | 0     | 0   | 0  | 1              | 0 | 4            | 1           | 1               | 1                | $p6 \leftarrow 1$ when TABP p instruction is executed                                                            |
|                          | TABSI    | 1  | 0  | 0  | 1  | 1  | 1    | 1     | 0   | 0  | 0              | 2 | 7            | 8           | 1               | 1                | (B) ← (S17–S14)<br>(A) ← (S13–S10)                                                                               |
|                          | TSIAB    | 1  | 0  | 0  | 0  | 1  | 1    | 1     | 0   | 0  | 0              | 2 | 3            | 8           | 1               | 1                | $ (SI7-SI4) \leftarrow (B)  (SI3-SI0) \leftarrow (A) $                                                           |
|                          |          |    |    |    |    |    |      |       |     |    |                |   |              |             |                 |                  |                                                                                                                  |

| Skip condition     | Carry flag CY | Datailed description                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                  | -             | In the A/D conversion mode (Q13 = 0), transfers the high-order 4 bits (AD9–AD6) of register AD to register B, and the middle-order 4 bits (AD5–AD2) of register AD to register A.  In the comparator mode (Q13 = 1), transfers the middle-order 4 bits (AD7–AD4) of register AD to register B, and the low-order 4 bits (AD3–AD0) of register AD to register A. (Q13: bit 3 of A/D control register Q1) |
| -                  | -             | Transfers the low-order 2 bits (AD1, AD0) of register AD to the high-order 2 bits (AD3, AD2) of register A.                                                                                                                                                                                                                                                                                             |
| -                  | -             | In the comparator mode (Q13 = 1), transfers the contents of register B to the high-order 4 bits (AD7–AD4) of comparator register, and the contents of register A to the low-order 4 bits (AD3–AD0) of comparator register. (Q13 = bit 3 of A/D control register Q1)                                                                                                                                     |
| _                  | -             | Clears (0) to A/D conversion completion flag ADF, and the A/D conversion at the A/D conversion mode (Q13 = 0) or the comparator operation at the comparator mode (Q13 = 1) is started.  (Q13 = bit 3 of A/D control register Q1)                                                                                                                                                                        |
| V22 = 0: (ADF) = 1 | -             | When V22 = 0 : Skips the next instruction when A/D conversion completion flag ADF is "1." After skipping, clears (0) to the ADF flag. When the ADF flag is "0," executes the next instruction. (V22: bit 2 of interrupt control register V2)                                                                                                                                                            |
| _                  | _             | Transfers the contents of A/D control register Q1 to register A.                                                                                                                                                                                                                                                                                                                                        |
| _                  | _             | Transfers the contents of register A to A/D control register Q1.                                                                                                                                                                                                                                                                                                                                        |
| _                  | _             | Transfers the contents of A/D control register Q2 to register A.                                                                                                                                                                                                                                                                                                                                        |
| _                  | _             | Transfers the contents of register A to A/D control register Q2.                                                                                                                                                                                                                                                                                                                                        |
| _                  | _             | Transfers the contents of A/D control register Q3 to register A.                                                                                                                                                                                                                                                                                                                                        |
| _                  | _             | Transfers the contents of register A to A/D control register Q3.                                                                                                                                                                                                                                                                                                                                        |
| -                  | _             | No operation; Adds 1 to program counter value, and others remain unchanged.                                                                                                                                                                                                                                                                                                                             |
| -                  | -             | Puts the system in RAM back-up state by executing the POF instruction after executing the EPOF instruction.                                                                                                                                                                                                                                                                                             |
| _                  | _             | Makes the immediate after POF instruction valid by executing the EPOF instruction.                                                                                                                                                                                                                                                                                                                      |
| (P) = 1            |               | Skips the next instruction when the P flag is "1".  After skipping, the P flag remains unchanged.                                                                                                                                                                                                                                                                                                       |
| (WDF1) = 1         | -             | Skips the next instruction when watchdog timer flag WDF1 is "1." After skipping, clears (0) to the WDF1 flag. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction.                                                                                                                                                                       |
| _                  | _             | Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction.                                                                                                                                                                                                                                                                                                         |
| -                  | _             | System reset occurs.                                                                                                                                                                                                                                                                                                                                                                                    |
| _                  | _             | The voltage drop detection circuit is valid at RAM back-up mode when VDCE pin is "H".                                                                                                                                                                                                                                                                                                                   |
| _                  | -             | Sets referring data area to pages 0 to 63 when the TABP p instruction is executed. This instruction is valid only for the TABP p instruction.                                                                                                                                                                                                                                                           |
| _                  | -             | Sets referring data area to pages 64 to 127 when the TABP p instruction is executed. This instruction is valid only for the TABP p instruction.                                                                                                                                                                                                                                                         |
| _                  | -             | Transfers the high-order 4 bits (SI7–SI4) of register SI to register B, and transfers the low-order 4 bits (SI3–SI0) of register SI to register A.                                                                                                                                                                                                                                                      |
| -                  | _             | Transfers the contents of register B to the high-order 4 bits (SI7–SI4) of register SI, and transfers the contents of register A to the low-order 4 bits (SI3–SI0) of register SI.                                                                                                                                                                                                                      |





#### **INSTRUCTION CODE TABLE**

| INST  | 700   | HOIN   | COL    | <u> </u> | ABLE   |         |         |         |          |            |            |            |            |        |        |        |        |    |        |
|-------|-------|--------|--------|----------|--------|---------|---------|---------|----------|------------|------------|------------|------------|--------|--------|--------|--------|----|--------|
| 7     | D9-D4 | 000000 | 000001 | 000010   | 000011 | 000100  | 000101  | 000110  | 000111   | 001000     | 001001     | 001010     | 001011     | 001100 | 001101 | 001110 | 001111 |    | 011000 |
| D3-D0 | Hex.  | 00     | 01     | 02       | 03     | 04      | 05      | 06      | 07       | 08         | 09         | 0A         | 0B         | 0C     | 0D     | 0E     | 0F     |    | 18–1F  |
| 0000  | 0     | NOP    | BLA    | SZB<br>0 | BMLA   | RBK     | TASP    | A<br>0  | LA<br>0  | TABP<br>0  | TABP<br>16 | TABP<br>32 | TABP<br>48 | BML    | BML    | BL     | BL     | ВМ | В      |
| 0001  | 1     | SRST   | CLD    | SZB<br>1 | -      | SBK     | TAD     | A<br>1  | LA<br>1  | TABP<br>1  | TABP<br>17 | TABP<br>33 | TABP<br>49 | BML    | BML    | BL     | BL     | ВМ | В      |
| 0010  | 2     | POF    | 1      | SZB<br>2 | -      | _       | TAX     | A<br>2  | LA<br>2  | TABP<br>2  | TABP<br>18 | TABP<br>34 | TABP<br>50 | BML    | BML    | BL     | BL     | ВМ | В      |
| 0011  | 3     | SNZP   | INY    | SZB<br>3 | _      | _       | TAZ     | A<br>3  | LA<br>3  | TABP<br>3  | TABP<br>19 | TABP<br>35 | TABP<br>51 | BML    | BML    | BL     | BL     | вм | В      |
| 0100  | 4     | DI     | RD     | SZD      | _      | RT      | TAV1    | A<br>4  | LA<br>4  | TABP<br>4  | TABP<br>20 | TABP<br>36 | TABP<br>52 | BML    | BML    | BL     | BL     | вм | В      |
| 0101  | 5     | EI     | SD     | SEAn     | _      | RTS     | TAV2    | A<br>5  | LA<br>5  | TABP<br>5  | TABP<br>21 | TABP<br>37 | TABP<br>53 | BML    | BML    | BL     | BL     | вм | В      |
| 0110  | 6     | RC     | -      | SEAM     | _      | RTI     | -       | A<br>6  | LA<br>6  | TABP<br>6  | TABP<br>22 | TABP<br>38 | TABP<br>54 | BML    | BML    | BL     | BL     | ВМ | В      |
| 0111  | 7     | sc     | DEY    | _        | _      | _       | -       | A<br>7  | LA<br>7  | TABP<br>7  | TABP<br>23 | TABP<br>39 | TABP<br>55 | BML    | BML    | BL     | BL     | вм | В      |
| 1000  | 8     | -      | AND    | _        | SNZ0   | LZ<br>0 | -       | A<br>8  | LA<br>8  | TABP<br>8  | TABP<br>24 | TABP<br>40 | TABP<br>56 | BML    | BML    | BL     | BL     | вм | В      |
| 1001  | 9     | -      | OR     | TDA      | SNZ1   | LZ<br>1 | -       | A<br>9  | LA<br>9  | TABP<br>9  | TABP<br>25 | TABP<br>41 | TABP<br>57 | BML    | BML    | BL     | BL     | вм | В      |
| 1010  | Α     | AM     | TEAB   | TABE     | SNZI0  | LZ<br>2 | -       | A<br>10 | LA<br>10 | TABP<br>10 | TABP<br>26 | TABP<br>42 | TABP<br>58 | BML    | BML    | BL     | BL     | вм | В      |
| 1011  | В     | AMC    | -      | _        | SNZI1  | LZ<br>3 | EPOF    | A<br>11 | LA<br>11 | TABP<br>11 | TABP<br>27 | TABP<br>43 | TABP<br>59 | BML    | BML    | BL     | BL     | вм | В      |
| 1100  | С     | TYA    | СМА    | -        | _      | RB<br>0 | SB<br>0 | A<br>12 | LA<br>12 | TABP<br>12 | TABP<br>28 | TABP<br>44 | TABP<br>60 | BML    | BML    | BL     | BL     | вм | В      |
| 1101  | D     | -      | RAR    | _        | _      | RB<br>1 | SB<br>1 | A<br>13 | LA<br>13 | TABP<br>13 | TABP<br>29 | TABP<br>45 | TABP<br>61 | BML    | BML    | BL     | BL     | вм | В      |
| 1110  | Е     | ТВА    | TAB    | _        | TV2A   | RB<br>2 | SB<br>2 | A<br>14 | LA<br>14 | TABP<br>14 | TABP<br>30 | TABP<br>46 | TABP<br>62 | BML    | BML    | BL     | BL     | вм | В      |
| 1111  | F     | -      | TAY    | SZC      | TV1A   | RB<br>3 | SB<br>3 | A<br>15 | LA<br>15 | TABP<br>15 | TABP<br>31 | TABP<br>47 | TABP<br>63 | BML    | BML    | BL     | BL     | вм | В      |

The above table shows the relationship between machine language codes and machine language instructions. D3-D0 show the low-order 4 bits of the machine language code, and D9-D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "- " .

The codes for the second word of a two-word instruction are described below.

|      | The second word |      |      |
|------|-----------------|------|------|
| BL   | 1p              | paaa | aaaa |
| BML  | 1р              | paaa | aaaa |
| BLA  | 1p              | pp00 | pppp |
| BMLA | 1р              | pp00 | pppp |
| SEA  | 00              | 0111 | nnnn |
| SZD  | 00              | 0010 | 1011 |

- A page referred by the TABP instruction can be switched by the SBK and RBK instructions.
- The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 127. (Ex. TABP  $0 \rightarrow TABP 64$ )
- The pages which can be referred by the TABP instruction after the RBK instruction is executed are 0 to 63.
- When the SBK instruction is not used, the pages which can be referred by the TABP instruction are 0 to 63.



#### **INSTRUCTION CODE TABLE (continued)**

| 1121  | RUC              | HON    | COL    |        | BLE    | (con   | tinue  | ea)    |          |        |        |            |           |           |           |            |            |        |
|-------|------------------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|------------|-----------|-----------|-----------|------------|------------|--------|
| ]/    | D9-D4            | 100000 | 100001 | 100010 | 100011 | 100100 | 100101 | 100110 | 100111   | 101000 | 101001 | 101010     | 101011    | 101100    | 101101    | 101110     | 101111     | 110000 |
| D3-D0 | Hex.<br>notation | 20     | 21     | 22     | 23     | 24     | 25     | 26     | 27       | 28     | 29     | 2A         | 2B        | 2C        | 2D        | 2E         | 2F         | 30–3F  |
| 0000  | 0                | _      | TW3A   | OP0A   | T1AB   | _      | TAW6   | IAP0   | TAB1     | SNZT1  | _      | WRST       | TMA<br>0  | TAM<br>0  | XAM<br>0  | XAMI<br>0  | XAMD<br>0  | LXY    |
| 0001  | 1                | ı      | TW4A   | OP1A   | T2AB   | ı      | ı      | IAP1   | TAB2     | SNZT2  | ı      | _          | TMA<br>1  | TAM<br>1  | XAM<br>1  | XAMI<br>1  | XAMD<br>1  | LXY    |
| 0010  | 2                | _      | TW5A   | OP2A   | ТЗАВ   | _      | TAMR   | IAP2   | ТАВЗ     | SNZT3  | _      | _          | TMA<br>2  | TAM<br>2  | XAM<br>2  | XAMI<br>2  | XAMD<br>2  | LXY    |
| 0011  | 3                | _      | TW6A   | ОРЗА   | T4AB   | -      | TAI1   | IAP3   | TAB4     | SNZT4  | SVDE   | -          | TMA<br>3  | TAM<br>3  | XAM<br>3  | XAMI<br>3  | XAMD<br>3  | LXY    |
| 0100  | 4                | TQ1A   | TK1A   | OP4A   | _      | TAQ1   | TAI2   | IAP4   | _        | _      | _      | -          | TMA<br>4  | TAM<br>4  | XAM<br>4  | XAMI<br>4  | XAMD<br>4  | LXY    |
| 0101  | 5                | TQ2A   | TK2A   | OP5A   | TPSAB  | TAQ2   | _      | IAP5   | TABPS    | _      | _      | -          | TMA<br>5  | TAM<br>5  | XAM<br>5  | XAMI<br>5  | XAMD<br>5  | LXY    |
| 0110  | 6                | TQ3A   | TMRA   | OP6A   | -      | TAQ3   | TAK0   | IAP6   | _        | _      | _      | -          | TMA<br>6  | TAM<br>6  | XAM<br>6  | XAMI<br>6  | XAMD<br>6  | LXY    |
| 0111  | 7                | _      | TI1A   | _      | T4HAB  | -      | TAPU0  | -      | _        | SNZAD  | T4R4L  | <b>(-)</b> | TMA<br>7  | TAM<br>7  | XAM<br>7  | XAMI<br>7  | XAMD<br>7  | LXY    |
| 1000  | 8                | ı      | TI2A   | TFR0A  | TSIAB  | ĺ      | ı      | Í      | TABSI    | _      |        | _          | TMA<br>8  | TAM<br>8  | XAM<br>8  | XAMI<br>8  | XAMD<br>8  | LXY    |
| 1001  | 9                | TRGA   |        | TFR1A  | TADAB  | TALA   | TAK1   | -      | TABAD    | -0     |        | _          | TMA<br>9  | TAM<br>9  | XAM<br>9  | XAMI<br>9  | XAMD<br>9  | LXY    |
| 1010  | Α                | _      | -      | TFR2A  | -      | -      | TAK2   | 1      | -        |        | СМСК   | TPAA       | TMA<br>10 | TAM<br>10 | XAM<br>10 | XAMI<br>10 | XAMD<br>10 | LXY    |
| 1011  | В                | _      | TK0A   | TFR3A  | TR3AB  | TAW1   | -      | -      | 1        | _      | CRCK   | -          | TMA<br>11 | TAM<br>11 | XAM<br>11 | XAMI<br>11 | XAMD<br>11 | LXY    |
| 1100  | С                | _      | _      | _      | _      | TAW2   | -      |        | <u>_</u> | RCP    | DWDT   | _          | TMA<br>12 | TAM<br>12 | XAM<br>12 | XAMI<br>12 | XAMD<br>12 | LXY    |
| 1101  | D                | _      | _      | TPU0A  | _      | TAW3   | 6      | -      | _        | SCP    | СҮСК   | _          | TMA<br>13 | TAM<br>13 | XAM<br>13 | XAMI<br>13 | XAMD<br>13 | LXY    |
| 1110  | Е                | TW1A   | _      | TPU1A  | _      | TAW4   | TAPU1  | _      | _        | _      | _      | _          | TMA<br>14 | TAM<br>14 | XAM<br>14 | XAMI<br>14 | XAMD<br>14 | LXY    |
| 1111  | F                | TW2A   | -      | -      | TR1AB  | TAW5   | _      | _      | _        | _      | ADST   | _          | TMA<br>15 | TAM<br>15 | XAM<br>15 | XAMI<br>15 | XAMD<br>15 | LXY    |

The above table shows the relationship between machine language codes and machine language instructions. D<sub>3</sub>-D<sub>0</sub> show the low-order 4 bits of the machine language code, and D<sub>9</sub>-D<sub>4</sub> show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "-".

The codes for the second word of a two-word instruction are described below.

|      | The | The second word |      |  |  |  |  |  |  |
|------|-----|-----------------|------|--|--|--|--|--|--|
| BL   | 1p  | paaa            | aaaa |  |  |  |  |  |  |
| BML  | 1p  | paaa            | aaaa |  |  |  |  |  |  |
| BLA  | 1р  | pp00            | pppp |  |  |  |  |  |  |
| BMLA | 1p  | pp00            | pppp |  |  |  |  |  |  |
| SEA  | 00  | 0111            | nnnn |  |  |  |  |  |  |
| SZD  | 00  | 0010            | 1011 |  |  |  |  |  |  |





#### **ABSOLUTE MAXIMUM RATINGS**

| Symbol     | Parameter                                           | Conditions                          | Ratings         | Uni |
|------------|-----------------------------------------------------|-------------------------------------|-----------------|-----|
| /DD        | Supply voltage                                      |                                     | -0.3 to 6.5     | V   |
| <b>'</b> I | Input voltage                                       |                                     | -0.3 to VDD+0.3 | V   |
|            | P0, P1, P2, P3, P4, P5, P6, D0-D6, RESET, XIN, VDCE |                                     |                 |     |
|            | Input voltage CNTR0, CNTR1, INT0, INT1              |                                     | -0.3 to VDD+0.3 | V   |
| l          | Input voltage AIN0, AIN1                            |                                     | -0.3 to VDD+0.3 | V   |
| 0          | Output voltage                                      | Output transistors in cut-off state | -0.3 to VDD+0.3 | V   |
|            | P0, P1, P2, P3, P4, P5, P6, D0–D6, RESET, C         |                                     |                 |     |
| 0          | Output voltage CNTR0, CNTR1                         | Output transistors in cut-off state | -0.3 to VDD+0.3 | V   |
| 0          | Output voltage Xout                                 |                                     | -0.3 to VDD+0.3 | V   |
| d          | Power dissipation                                   | Ta = 25 °C 42P2R-A                  | 300             | m\  |
| opr        | Operating temperature range                         |                                     | -20 to 85       | °C  |
| stg        | Storage temperature range                           |                                     | -40 to 125      | °(  |
|            |                                                     | 60,                                 |                 |     |
|            | noun                                                | ed.                                 |                 |     |
|            |                                                     |                                     |                 |     |



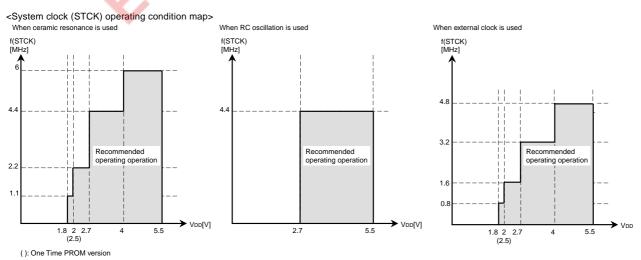
## Notice: This is not a final specification.

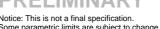
#### **RECOMMENDED OPERATING CONDITIONS 1**

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

| Symbol       | Parameter                                | Condition                  | ons                 |         | Limits   |                 | Unit   |
|--------------|------------------------------------------|----------------------------|---------------------|---------|----------|-----------------|--------|
|              |                                          |                            | 1                   | Min.    | Тур.     | Max.            |        |
| Vdd          | Supply voltage                           | Mask ROM version           | f(STCK) ≤ 6 MHz     | 4.0     |          | 5.5             | V      |
|              | (when ceramic resonator/on-chip          |                            | f(STCK) ≤ 4.4 MHz   | 2.7     |          | 5.5             |        |
|              | oscillator is used)                      |                            | f(STCK) ≤ 2.2 MHz   | 2.0     |          | 5.5             |        |
|              |                                          |                            | f(STCK) ≤ 1.1 MHz   | 1.8     |          | 5.5             | _      |
|              |                                          | One Time PROM version      |                     | 4.0     |          | 5.5             |        |
|              |                                          |                            | f(STCK) ≤ 4.4 MHz   | 2.7     | <b>L</b> | 5.5             |        |
|              |                                          |                            | f(STCK) ≤ 2.2 MHz   | 2.5     |          | 5.5             |        |
| VDD          | Supply voltage                           | f(STCK) ≤ 4.4 MHz          |                     | 2.7     |          | 5.5             | V      |
|              | (when RC oscillation is used)            |                            |                     |         |          |                 |        |
| VDD          | Supply voltage                           | Mask ROM version           | f(XIN) ≤ 50 kHz     | 2.0     |          | 5.5             | V      |
|              | (when quartz-crystal oscillator is used) | One Time PROM version      | , ,                 | 2.5     |          | 5.5             |        |
| VRAM         | RAM back-up voltage                      | Mask ROM version           | at RAM back-up mode | 1.6     |          |                 | V      |
|              |                                          | One Time PROM version      | at RAM back-up mode | 2.0     |          |                 |        |
| Vss          | Supply voltage                           |                            |                     |         | 0        |                 | V      |
| ViH          | "H" level input voltage                  | P0, P1, P2, P3, P4, P5, P6 | 6, D0–D6, VDCE, XIN | 0.8VDD  |          | VDD             | V      |
| VIH          | "H" level input voltage                  | RESET                      |                     | 0.85VDD |          | VDD             | V      |
| VIH          | "H" level input voltage                  | CNTR0, CNTR1, INT0, IN     | T1                  | 0.85VDD |          | VDD             | V      |
| VIL          | "L" level input voltage                  | P0, P1, P2, P3, P4, P5, P6 | 6, Do-D6, VDCE, XIN | 0       |          | 0.2Vdd          | V      |
| VIL          | "L" level input voltage                  | RESET                      |                     | 0       |          | 0.3VDD          | V      |
| VIL          | "L" level input voltage                  | CNTR0, CNTR1, INT0, IN     | T1                  | 0       |          | 0.15VDD         | V      |
| Iон(peak)    | "H" level peak output current            | P0, P1, P5, D0-D6          | VDD = 5 V           |         |          | -20             | mA     |
|              |                                          | CNTR0                      | VDD = 3 V           |         |          | -10             | 1      |
| Iон(peak)    | "H" level peak output current            | C, CNTR1                   | VDD = 5 V           |         |          | -30             | mA     |
| " /          |                                          |                            | VDD = 3 V           |         |          | -15             | 1      |
| Iон(avg)     | "H" level average output current         | P0, P1, P5, D0-D6          | VDD = 5 V           |         |          | -10             | mA     |
| , ,,         | (Note)                                   | CNTR0                      | VDD = 3 V           |         |          | <b>-</b> 5      | 1      |
| Iон(avg)     | "H" level average output current         | C, CNTR1                   | VDD = 5 V           |         |          | -20             | mA     |
| ` ",         | (Note)                                   |                            | VDD = 3 V           |         |          | -10             | 1      |
| loL(peak)    | "L" level peak output current            | P0, P1, P2, P4, P5, P6     | VDD = 5 V           |         |          | 24              | mA     |
| " /          |                                          |                            | VDD = 3 V           |         |          | 12              | 1      |
| IoL(peak)    | "L" level peak output current            | P3, RESET                  | VDD = 5 V           |         |          | 10              | mA     |
| - (1 /       |                                          |                            | VDD = 3 V           |         |          | 4               | 1      |
| loL(peak)    | "L" level peak output current            | D0-D6, C                   | VDD = 5 V           |         |          | 24              | mA     |
| - (1 /       |                                          | CNTR0, CNTR1               | VDD = 3 V           |         |          | 12              | 1      |
| loL(avg)     | "L" level average output current         | P0, P1, P2, P4, P5, P6     | VDD = 5 V           |         |          | 12              | mA     |
| 10=(5:19)    | (Note)                                   | ,,,,,                      | VDD = 3 V           |         |          | 6               | 1      |
| loL(avg)     | "L" level average output current         | P3, RESET                  | VDD = 5 V           |         |          | 5               | mA     |
| .02(0.9)     | (Note)                                   | . 5, 1.2521                | VDD = 3 V           |         |          | 2               | 1      |
| loL(avg)     | "L" level average output current         | D0-D6, C                   | VDD = 5 V           |         |          | 15              | mA     |
| . = ( ~ • 9) | (Note)                                   | CNTR0, CNTR1               | VDD = 3 V           |         |          | 7               | 1      |
| ΣIOH(avg)    | "H" level total average current          | P5, D0-D6, C, CNTR0, CN    |                     |         |          | -60             | mA     |
| 21011(avg)   | 11 lovoi total average current           | P0, P1                     | TIIXI               |         |          | <del>-</del> 60 | †,     |
| ΣloL(avg)    | "L" level total average current          | P2, P5, D0–D6, RESET, CN   | ITRO CNTP1          |         |          | 80              | mA     |
| 210L(avy)    | L lovel total average current            | P0. P1. P3. P4. P6         | VIIVO, CIVITAT      |         |          | 80              | - '''' |

Note: The average output current is the average value during 100 ms.





**RECOMMENDED OPERATING CONDITIONS 2** 

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

| Symbol | Parameter                           |                    | Conditions          |                       |      | Limits |      | Uni  |
|--------|-------------------------------------|--------------------|---------------------|-----------------------|------|--------|------|------|
| Cymbol | 1 drameter                          |                    |                     |                       | Min. | Тур.   | Max. | 0111 |
| f(XIN) | Oscillation frequency               | Mask ROM           | Through mode        | VDD = 4.0  to  5.5  V |      |        | 6.0  | MH   |
|        | (with a ceramic resonator)          | version            |                     | VDD = 2.7  to  5.5  V |      |        | 4.4  |      |
|        |                                     |                    |                     | VDD = 2.0  to  5.5  V |      |        | 2.2  |      |
|        |                                     |                    |                     | VDD = 1.8  to  5.5  V |      |        | 1.1  |      |
|        |                                     |                    | Frequency/2 mode    | VDD = 2.7  to  5.5  V |      |        | 6.0  |      |
|        |                                     |                    |                     | VDD = 2.0  to  5.5  V | A-6  |        | 4.4  |      |
|        |                                     |                    |                     | VDD = 1.8 to 5.5 V    | - 3  | 2      | 2.2  |      |
|        |                                     |                    | Frequency/4, 8 mode | VDD = 2.0  to  5.5  V | C    |        | 6.0  |      |
|        |                                     |                    |                     | VDD = 1.8 to 5.5 V    |      |        | 4.4  |      |
|        |                                     | One Time PROM      | Through mode        | VDD = 4.0  to  5.5  V | J.   |        | 6.0  |      |
|        |                                     | version            |                     | VDD = 2.7  to  5.5  V |      |        | 4.4  |      |
|        |                                     |                    |                     | VDD = 2.5  to  5.5  V |      |        | 2.2  |      |
|        |                                     |                    | Frequency/2 mode    | VDD = 2.7  to  5.5  V |      |        | 6.0  |      |
|        |                                     |                    |                     | VDD = 2.5  to  5.5  V |      |        | 4.4  |      |
|        |                                     |                    | Frequency/4, 8 mode | VDD = 2.5  to  5.5  V |      |        | 6.0  |      |
| f(XIN) | Oscillation frequency               | VDD = 2.7 to 5.5 V |                     |                       |      |        | 4.4  | MHz  |
|        | (at RC oscillation) (Note)          |                    |                     |                       |      |        |      |      |
| f(XIN) | Oscillation frequency               | Mask ROM           | Through mode        | VDD = 4.0  to  5.5  V |      |        | 4.8  | MHz  |
|        | (with a ceramic resonator selected, | version            | ~0                  | VDD = 2.7  to  5.5  V |      |        | 3.2  |      |
|        | external clock input)               |                    |                     | VDD = 2.0 to 5.5 V    |      |        | 1.6  |      |
|        |                                     | 4                  |                     | VDD = 1.8 to 5.5 V    |      |        | 0.8  |      |
|        |                                     |                    | Frequency/2 mode    | VDD = 2.7  to  5.5  V |      |        | 4.8  |      |
|        |                                     |                    |                     | VDD = 2.0  to  5.5  V |      |        | 3.2  |      |
|        |                                     |                    |                     | VDD = 1.8  to  5.5  V |      |        | 1.6  |      |
|        |                                     |                    | Frequency/4, 8 mode | VDD = 2.0  to  5.5  V |      |        | 4.8  |      |
|        |                                     |                    |                     | VDD = 1.8  to  5.5  V |      |        | 3.2  |      |
|        | <b>4</b>                            | One Time PROM      | Through mode        | VDD = 4.0  to  5.5  V |      |        | 4.8  |      |
|        |                                     | version            |                     | VDD = 2.7  to  5.5  V |      |        | 3.2  |      |
|        | -0-                                 |                    |                     | VDD = 2.5 to 5.5 V    |      |        | 1.6  |      |
|        |                                     |                    | Frequency/2 mode    | VDD = 2.7  to  5.5  V | ·    | ·      | 4.8  |      |
|        |                                     |                    |                     | VDD = 2.5 to 5.5 V    |      |        | 3.2  |      |
|        |                                     |                    | Frequency/4, 8 mode | VDD = 2.5 to 5.5 V    |      |        | 4.8  | 1    |

Note: The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.





#### **RECOMMENDED OPERATING CONDITIONS 3**

(Mask ROM version:  $Ta = -20 \, ^{\circ}\text{C}$  to 85  $^{\circ}\text{C}$ , VDD = 1.8 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

| Symbol   | Parameter                          | Condition             | ns                                  |           | Limits |           | Unit |
|----------|------------------------------------|-----------------------|-------------------------------------|-----------|--------|-----------|------|
|          | Parameter                          |                       |                                     | Min.      | Тур.   | Max.      |      |
| f(XIN)   | Oscillation frequency              | Mask ROM version      | VDD = 2.0  to  5.5  V               |           |        | 50        | kHz  |
|          | (with a quartz-crystal oscillator) | One Time PROM version | VDD = 2.0 to 5.5 V                  |           |        | 50        |      |
| f(CNTR)  | Timer external input frequency     | CNTR0, CNTR1          |                                     |           |        | f(STCK)/6 | Hz   |
| tw(CNTR) | Timer external input period        | CNTR0, CNTR1          |                                     | 3/f(STCK) |        |           | s    |
|          | ("H" and "L" pulse width)          |                       |                                     |           |        |           |      |
| TPON     | Power-on reset circuit             | Mask ROM version      | $VDD = 0 \rightarrow 1.8 \text{ V}$ |           |        | 100       | μs   |
|          | valid supply voltage rising time   | One Time PROM version | $VDD = 0 \rightarrow 2.5 V$         |           |        | 100       |      |
|          |                                    | inounced              | Rio                                 |           |        |           |      |



## Some parametric limits are subject to change.

#### **ELECTRICAL CHARACTERISTICS 1**

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

| Symbol    | Parameter                             | Test c                 | onditions      |      | Limits |      | Unit |
|-----------|---------------------------------------|------------------------|----------------|------|--------|------|------|
| Cymbol    |                                       | 1031 0                 | Onditions      | Min. | Тур.   | Max. |      |
| √он       | "H" level output voltage              | VDD = 5 V              | IOH = -10  mA  | 3    |        |      | V    |
|           | P0, P1, P5, D0-D6, CNTR0              |                        | IOH = -3  mA   | 4.1  |        |      |      |
|           |                                       | VDD = 3 V              | Iон = −5 mA    | 2.1  |        |      |      |
|           |                                       |                        | IOH = -1  mA   | 2.4  |        |      |      |
| Vон       | "H" level output voltage              | VDD = 5 V              | Iон = −20 mA   | 3    |        |      | V    |
|           | C, CNTR1                              |                        | Iон = −6 mA    | 4.1  |        |      |      |
|           |                                       | VDD = 3 V              | IOH = -10  mA  | 2.1  |        |      |      |
|           |                                       |                        | Iон = −3 mA    | 2.4  |        |      |      |
| Vol       | "L" level output voltage              | VDD = 5 V              | IOL = 12 mA    |      |        | 2    | V    |
|           | P0, P1, P2, P4, P5, P6                |                        | IOL = 4 mA     | V    |        | 0.9  |      |
|           |                                       | VDD = 3 V              | IOL = 6 mA     |      |        | 0.9  |      |
|           |                                       |                        | IOL = 2 mA     |      |        | 0.6  |      |
| Vol       | "L" level output voltage              | VDD = 5 V              | IOL = 5 mA     |      |        | 2    | V    |
|           | P3, RESET                             | VDD = 3 V              | IOL = 1 mA     |      |        | 0.9  |      |
|           |                                       |                        | IOL = 2 mA     |      |        | 0.9  |      |
| Vol       | "L" level output voltage              | VDD = 5 V              | IOL = 15 mA    |      |        | 2    | V    |
|           | D0-D6, C, CNTR0, CNTR1                |                        | IOL = 5 mA     |      |        | 0.9  |      |
|           |                                       | VDD = 3 V              | IOL = 9 mA     |      |        | 1.4  |      |
|           |                                       | _()                    | IOL = 3 mA     |      |        | 0.9  |      |
| Iн        | "H" level input current               | VI = VDD               |                |      |        | 2    | μΑ   |
|           | P0, P1, P2, P3, P4, P5, P6,           | Port P6 selected       |                |      |        |      |      |
|           | D0-D6, VDCE, RESET,                   |                        |                |      |        |      |      |
|           | CNTR0, CNTR1,                         |                        |                |      |        |      |      |
|           | INTO, INT1                            |                        |                |      |        |      |      |
| lil       | "L" level input current               | VI = 0 V               |                |      |        | -2   | μΑ   |
|           | P0, P1, P2, P3, P4, P5, P6,           | P0, P1 No pull-up      |                |      |        |      |      |
|           | D0-D6, VDCE,                          | Port P6 selected       |                |      |        |      |      |
|           | CNTR0, CNTR1,                         |                        |                |      |        |      |      |
|           | INTO, INT1                            |                        |                |      |        |      |      |
| Rpu       | Pull-up resistor value                | VI = 0 V               | VDD = 5 V      | 30   | 60     | 125  | kΩ   |
|           | P0, P1, RESET                         |                        | VDD = 3 V      | 50   | 120    | 250  |      |
| VT+ – VT– | Hysteresis                            | VDD = 5 V              | I              |      | 0.2    |      | V    |
|           | CNTR0, CNTR1, INT0, INT1              | VDD = 3 V              |                |      | 0.2    |      |      |
| VT+ - VT- | Hysteresis RESET                      | VDD = 5 V              |                |      | 1      |      | V    |
|           |                                       | VDD = 3 V              |                |      | 0.4    |      |      |
| f(RING)   | On-chip oscillator clock frequency    | VDD = 5 V              |                | 200  | 500    | 700  | kHz  |
| - /       |                                       | VDD = 3 V              |                | 100  | 250    | 400  | 1    |
|           |                                       | Mask ROM version       | VDD = 1.8 V    | 30   | 120    | 200  | -    |
| Δf(XIN)   | Frequency error                       | VDD = 5 V ± 10 %, Ta = |                | 1    |        | ±17  | %    |
| (· ·····) | (with RC oscillation,                 |                        | - <del>-</del> |      |        |      | "    |
|           | error of external R, C not included ) | VDD = 3 V ± 10 %, Ta = | = 25 °C        |      |        | ±17  | %    |
|           | (Note)                                | 122 2 12 10 70, 14 -   | •              |      |        | ' '  | / /  |

Note: When RC oscillation is used, use the external 30 or 33 pF capacitor (C).

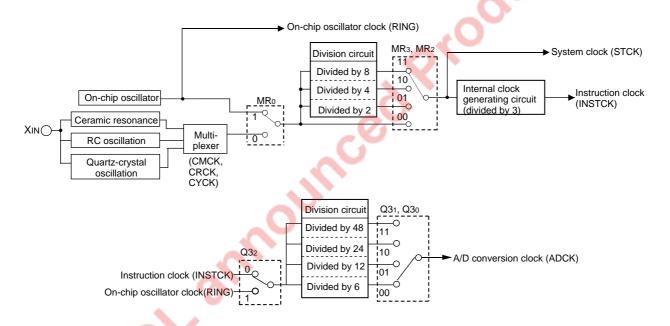




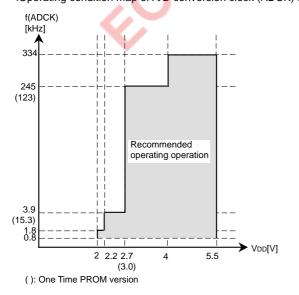
#### **ELECTRICAL CHARACTERISTICS 2**

(Mask ROM version:  $Ta = -20 \, ^{\circ}\text{C}$  to 85  $^{\circ}\text{C}$ , VDD = 1.8 to 5.5 V, unless otherwise noted) (One Time PROM version:  $Ta = -20 \, ^{\circ}\text{C}$  to 85  $^{\circ}\text{C}$ , VDD = 2.5 to 5.5 V, unless otherwise noted)

| Symbol |                | Parameter                    | Toot or         | onditions           |      | Limits |      | Unit  |
|--------|----------------|------------------------------|-----------------|---------------------|------|--------|------|-------|
| Symbol |                |                              | Test CC         | multions            | Min. | Тур.   | Max. | Offic |
| IDD    | Supply current | at active mode               | VDD = 5 V       | f(STCK) = f(XIN)/8  |      | 1.4    | 2.8  | mA    |
|        |                | (with a ceramic resonator,   | f(XIN) = 6 MHz  | f(STCK) = f(XIN)/4  |      | 1.6    | 3.2  |       |
|        |                | on-chip oscillator stop)     |                 | f(STCK) = f(XIN)/2  |      | 2.0    | 4.0  |       |
|        |                |                              |                 | f(STCK) = f(XIN)    |      | 2.8    | 5.6  |       |
|        |                |                              | VDD = 5 V       | f(STCK) = f(XIN)/8  |      | 1.1    | 2.2  | mA    |
|        |                |                              | f(XIN) = 4 MHz  | f(STCK) = f(XIN)/4  |      | 1.2    | 2.4  |       |
|        |                |                              |                 | f(STCK) = f(XIN)/2  |      | 1.5    | 3.0  |       |
|        |                |                              |                 | f(STCK) = f(XIN)    | 6    | 2.0    | 4.0  |       |
|        |                |                              | VDD = 3 V       | f(STCK) = f(XIN)/8  |      | 0.4    | 0.8  | mA    |
|        |                |                              | f(XIN) = 4 MHz  | f(STCK) = f(XIN)/4  | J.   | 0.5    | 1.0  |       |
|        |                |                              |                 | f(STCK) = f(XIN)/2  |      | 0.6    | 1.2  |       |
|        |                |                              |                 | f(STCK) = f(XIN)    |      | 0.8    | 1.6  |       |
|        |                | at active mode               | VDD = 5 V       | f(STCK) = f(XIN)/8  |      | 55     | 110  | μΑ    |
|        |                | (with a quartz-crystal       | f(XIN) = 32 kHz | f(STCK) = f(XIN)/4  |      | 60     | 120  |       |
|        |                | oscillator,                  |                 | f(STCK) = f(XIN)/2  |      | 65     | 130  |       |
|        |                | on-chip oscillator stop)     |                 | f(STCK) = f(XIN)    |      | 70     | 140  |       |
|        |                |                              | VDD = 3 V       | f(STCK) = f(XIN)/8  |      | 12     | 24   | μΑ    |
|        |                |                              | f(XIN) = 32 kHz | f(STCK) = f(XIN)/4  |      | 13     | 26   |       |
|        |                |                              | ~0              | f(STCK) = f(XIN)/2  |      | 14     | 28   |       |
|        |                |                              |                 | f(STCK) = f(XIN)    |      | 15     | 30   |       |
|        |                | at active mode               | VDD = 5 V       | f(STCK) = f(RING)/8 |      | 50     | 100  | μΑ    |
|        |                | (with an on-chip oscillator, |                 | f(STCK) = f(RING)/4 |      | 70     | 140  |       |
|        |                | f(XIN) stop)                 |                 | f(STCK) = f(RING)/2 |      | 100    | 200  |       |
|        |                |                              |                 | f(STCK) = f(RING)   |      | 150    | 300  |       |
|        |                |                              | VDD = 3 V       | f(STCK) = f(RING)/8 |      | 10     | 20   | μΑ    |
|        |                |                              |                 | f(STCK) = f(RING)/4 |      | 15     | 30   |       |
|        |                |                              |                 | f(STCK) = f(RING)/2 |      | 20     | 40   |       |
|        |                |                              |                 | f(STCK) = f(RING)   |      | 35     | 70   |       |
|        |                | at RAM back-up mode          | Ta = 25 °C      |                     |      | 0.1    | 3    | μΑ    |
|        |                | (POF instruction execution)  | VDD = 5 V       |                     |      |        | 10   |       |
|        |                |                              | VDD = 3 V       |                     |      |        | 6    |       |




### A/D CONVERTER RECOMMENDED OPERATING CONDITIONS


(Comparator mode included, Ta = -20 °C to 85 °C, unless otherwise noted)

| Cumbal  | Parameter            | Conditi               | Conditions            |      |          |       | - Unit |
|---------|----------------------|-----------------------|-----------------------|------|----------|-------|--------|
| Symbol  | Parameter            | Conditi               | Min.                  | Тур. | Max.     | O'III |        |
| VDD     | Supply voltage       | Mask ROM version      |                       | 2.0  |          | 5.5   | V      |
|         |                      | One Time PROM version | One Time PROM version |      |          | 5.5   |        |
| VIA     | Analog input voltage |                       |                       | 0    |          | VDD   | V      |
| f(ADCK) | A/D conversion clock | Mask ROM version      | VDD = 4.0 to 5.5 V    | 0.8  |          | 334   | kHz    |
|         | frequency            |                       | VDD = 2.7 to 5.5 V    | 0.8  |          | 245   |        |
|         | (Note)               |                       | VDD = 2.2 to 5.5 V    | 0.8  |          | 3.9   |        |
|         |                      |                       | VDD = 2.0 to 5.5 V    | 0.8  | <b>A</b> | 1.8   |        |
|         |                      | One Time PROM version | VDD = 4.0 to 5.5 V    | 0.8  |          | 334   | 1      |
|         |                      |                       | VDD = 3.0 to 5.5 V    | 0.8  |          | 123   |        |

Note: Definition of A/D conversion clock (ADCK)



<Operating condition map of A/D conversion clock (ADCK) >

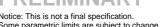


#### A/D CONVERTER CHARACTERISTICS

(Ta = -20 °C to 85 °C, unless otherwise noted)

| Symbol | Parameter                        | Toot oon                             | Test conditions                                 |        |      |        | - Uni |
|--------|----------------------------------|--------------------------------------|-------------------------------------------------|--------|------|--------|-------|
| Symbol | Farameter                        | Test con                             | lultions                                        | Min.   | Тур. | Max.   | 011   |
| _      | Resolution                       |                                      |                                                 |        |      | 10     | bits  |
| -      | Linearity error                  | $2.7 (3.0) V \le VDD \le 5.5 V (():$ | One Time PROM version)                          |        |      | ±2     | LSI   |
|        |                                  | Mask ROM version                     | $2.2 \text{ V} \leq \text{VDD} < 2.7 \text{ V}$ |        |      | ±4     | ]     |
| _      | Differential non-linearity error | 2.2 (3.0) V ≤ VDD ≤ 5.5 V (():       | One Time PROM version)                          |        |      | ±0.9   | LSI   |
| Vот    | Zero transition voltage          | Mask ROM version                     | VDD = 5.12 V                                    | 0      | 10   | 20     | m\    |
|        |                                  |                                      | VDD = 3.072 V                                   | 0      | 7.5  | 15     | 1     |
|        |                                  |                                      | VDD = 2.56 V                                    | 0      | 7.5  | 15     | 1     |
|        |                                  | One Time PROM version                | VDD = 5.12 V                                    | 0      | 15   | 30     | ]     |
|        |                                  |                                      | VDD = 3.072 V                                   | 3      | 13   | 23     | ]     |
| VFST   | Full-scale transition voltage    | Mask ROM version                     | VDD = 5.12 V                                    | 5105   | 5115 | 5125   | mV    |
|        |                                  |                                      | VDD = 3.072 V                                   | 3064.5 | 3072 | 3079.5 | 1     |
|        |                                  |                                      | VDD = 2.56 V                                    | 2552.5 | 2560 | 2567.5 | 1     |
|        |                                  | One Time PROM version                | VDD = 5.12 V                                    | 5100   | 5115 | 5130   | 7     |
|        |                                  |                                      | VDD = 3.072 V                                   | 3065   | 3075 | 3085   | ]     |
| _      | Absolute accuracy                | Mask ROM version                     |                                                 |        |      | ±8     | LSE   |
|        | (Quantization error excluded)    | 2.0 V ≤ VDD < 2.2 V                  |                                                 |        |      |        |       |
| IAdd   | A/D operating current            | VDD = 5 V                            |                                                 |        | 150  | 450    | μΑ    |
|        | (Note 1)                         | VDD = 3 V                            |                                                 |        | 75   | 225    |       |
| TCONV  | A/D conversion time              | f(XIN) = 6 MHz                       |                                                 |        |      | 31     | μs    |
|        |                                  | f(STCK) = f(XIN) (XIN through        | gh mode)                                        |        |      |        |       |
|        |                                  | ADCK=INSTCK/6                        |                                                 |        |      |        |       |
| _      | Comparator resolution            |                                      |                                                 |        |      | 8      | bits  |
| -      | Comparator error (Note 2)        | Mask ROM version                     | VDD = 5.12 V                                    |        |      | ±20    | m۷    |
|        |                                  |                                      | VDD = 3.072 V                                   |        |      | ±15    |       |
|        |                                  |                                      | VDD = 2.56 V                                    |        |      | ±15    | 7     |
|        |                                  | One Time PROM version                | VDD = 5.12 V                                    |        |      | ±30    |       |
|        |                                  |                                      | VDD = 3.072 V                                   |        |      | ±23    | ]     |
| _      | Comparator comparison time       | f(XIN) = 6 MHz                       |                                                 |        |      | 4      | μs    |
|        |                                  | f(STCK) = f(XIN) (XIN through        | gh mode)                                        |        |      |        |       |
|        |                                  | ADCK=INSTCK/6                        |                                                 |        |      |        |       |

Notes 1: When the A/D converter is used, IADD is added to IDD (supply current).


2: As for the error from the ideal value in the comparator mode, when the contents of the comparator register is n, the logic value of the comparison voltage V<sub>ref</sub> which is generated by the built-in DA converter can be obtained by the following formula.

Logic value of comparison voltage Vref

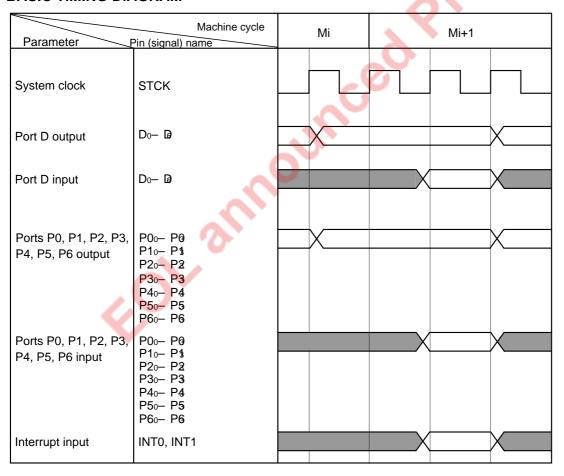
$$V_{ref} = \frac{V_{DD}}{256} \times n$$

n = Value of register AD (n = 0 to 255)





#### **VOLTAGE DROP DETECTION CIRCUIT CHARACTERISTICS**


(Ta = -20 °C to 85 °C, unless otherwise noted)

| Symbol  | Parameter                    | Test conditions                                           |      | Limits |      |        |  |
|---------|------------------------------|-----------------------------------------------------------|------|--------|------|--------|--|
| Symbol  | Falametei                    | rest conditions                                           | Min. | Тур.   | Max. | - Unit |  |
| VRST-   | Detection voltage            | Ta = 25 °C                                                | 1.4  | 1.5    | 1.6  | V      |  |
|         | (reset occurs) (Note 1)      |                                                           | 1.1  |        | 1.9  |        |  |
| VRST+   | Detection voltage            | Ta = 25 °C                                                | 1.5  | 1.6    | 1.7  | V      |  |
|         | (reset release) (Note 2)     |                                                           | 1.2  |        | 2.0  |        |  |
| VRST+ - | Detection voltage hysteresis |                                                           |      | 0.1    |      | V      |  |
| VRST-   |                              |                                                           |      |        |      |        |  |
| IRST    | Operation current (Note 3)   | VDD = 5 V                                                 |      | 50     | 100  | μΑ     |  |
|         |                              | VDD = 3 V                                                 |      | 30     | 60   | 1      |  |
| Trst    | Detection time               | $VDD \rightarrow (VRST - 0.1 \text{ V}) \text{ (Note 4)}$ |      | 0.2    | 1.2  | ms     |  |

Notes 1: The detected voltage (VRST-) is defined as the voltage when reset occurs when the supply voltage (VDD) is falling.

- 2: The detected voltage (VRST+) is defined as the voltage when reset is released when the supply voltage (VDD) is rising from reset occurs.
- 3: When the voltage drop detection circuit is used (VDCE pin = "H"), IRST is added to IDD (power current).
- 4: The detection time (TRST) is defined as the time until reset occurs when the supply voltage (VDD) is falling to [VRST- 0.1 V].

#### **BASIC TIMING DIAGRAM**





## Some parametric limits are subject to change

#### **BUILT-IN PROM VERSION**

In addition to the mask ROM versions, the 4584 Group has the One Time PROM versions whose PROMs can only be written to

The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to

Table 21 shows the product of built-in PROM version. Figure 69 shows the pin configurations of built-in PROM versions.

The One Time PROM version has pin-compatibility with the mask ROM version.

Table 21 Product of built-in PROM version

| Part number  | PROM size   | RAM size   | Package  | ROM type                         |
|--------------|-------------|------------|----------|----------------------------------|
| T dit Hamber | (X 10 bits) | (X 4 bits) | 1 dokage | real type                        |
| M34584EDFP   | 16384 words | 384 words  | 42P2R-A  | One Time PROM [shipped in blank] |

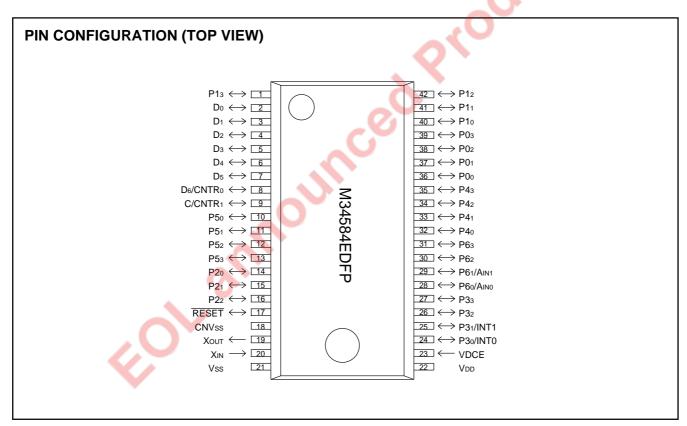



Fig. 69 Pin configuration of built-in PROM version

#### (1) PROM mode

The built-in PROM version has a PROM mode in addition to a normal operation mode. The PROM mode is used to write to and read from the built-in PROM.

In the PROM mode, the programming adapter can be used with a general-purpose PROM programmer to write to or read from the built-in PROM as if it were M5M27C256K.

Programming adapter is listed in Table 22. Contact addresses at the end of this data sheet for the appropriate PROM programmer.

· Writing and reading of built-in PROM

Programming voltage is 12.5 V. Write the program in the PROM of the built-in PROM version as shown in Figure 70.

#### (2) Notes on handling

- A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.
- ②For the One Time PROM version shipped in blank, Renesas Technology Corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 71 before using is recommended (Products shipped in blank: PROM contents is not written in factory when shipped).

# (3) Electric Characteristic Differences Between Mask ROM and One Time PROM Version MCU

There are differences in electric characteristics, operation margin, noise immunity, and noise radiation between Mask ROM and One Time PROM version MCUs due to the difference in the manufacturing processes.

When manufacturing an application system with the One time PROM version and then switching to use of the Mask ROM version, please perform sufficient evaluations for the commercial samples of the Mask ROM version.

**Table 22 Programming adapter** 

| Microcomputer | Name of Programming Adapter |
|---------------|-----------------------------|
| M34584EDFP    | PCA7441                     |

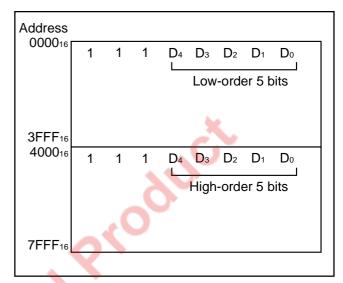



Fig. 70 PROM memory map

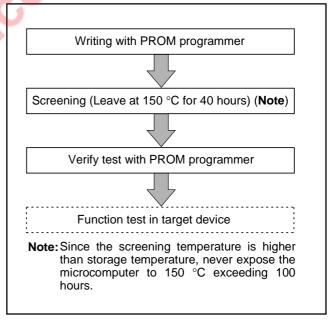
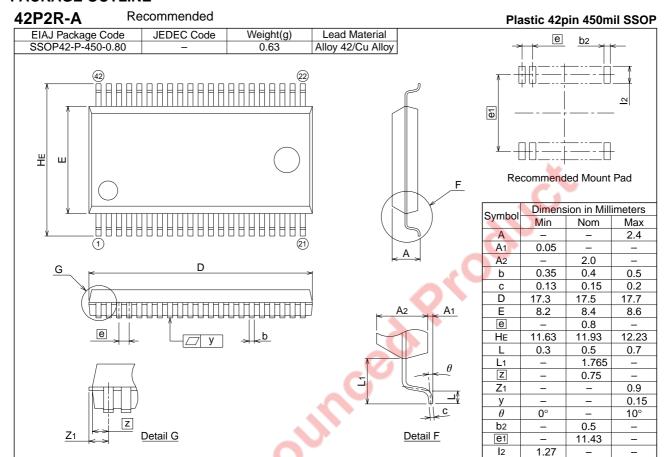




Fig. 71 Flow of writing and test of the product shipped in blank

#### **PACKAGE OUTLINE**



## **REVISION HISTORY**

## 4584 GROUP DATA SHEET

| Rev. | Date          | Description |                                                                                                                                                     |
|------|---------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|      |               | Page        | Summary                                                                                                                                             |
| 1.00 | Feb.18, 2003  |             | First edition issued                                                                                                                                |
|      | Apr. 15, 2003 |             | Some values of the following table are revised.  RECOMMENDED OPERATING CONDITIONS 1;  • Supply voltage (when quartz-crystal oscillator is used)     |
|      |               | 147         | <ul> <li>RAM back voltage</li> <li>RECOMMENDED OPERATING CONDITIONS 3;</li> <li>Oscillation frequency (with a quartz-crystal oscillator)</li> </ul> |
|      |               | 150         | A/D CONVERTER RECOMMENDED OPERATING CONDITIONS;  • Supply voltage                                                                                   |
|      |               | 151         | A/D conversion clock frequency     A/D CONVERTER CHARACTERISTCS;     Linearity error     Differential non-linearity error                           |
|      |               |             | Zero transition voltage     Full-scale transition voltage                                                                                           |
|      |               |             | Comparator error                                                                                                                                    |
| 2.01 | Sep. 18, 2003 |             | Port block diagram (7): Period measurement mode added.                                                                                              |
| l    |               | 26          | Fig.17: Period measurement mode added.                                                                                                              |
| 1    |               | 40          | (12) PWM output function (C/CNTR1, timer 3, timer 4) revised.                                                                                       |
| 1    |               | 41          | (14) Precautions: Timer 4 revised.                                                                                                                  |
| 1    |               | 54          | Fig.42: SRST instruction added .                                                                                                                    |
| 1    |               | 57          | Note on voltage drop detection circuit added.                                                                                                       |
| 1    |               | 58<br>67    | Table 16: Port level revised.                                                                                                                       |
| 1    |               | 67<br>71    | LIST OF PRECAUTIONS: Timer 4 revised.                                                                                                               |
| 2.00 | Aug 06, 2004  |             | LIST OF PRECAUTIONS: Note on voltage drop detection circuit added.  Words standardized: On-chip oscillator, A/D converter                           |
| 3.00 | Aug.06, 2004  | All pages 4 |                                                                                                                                                     |
| 1    |               | 5           | Power dissipation: "Ta=25°C" added.                                                                                                                 |
| 1    |               | 29          | Description of RESET pin revised.                                                                                                                   |
| 1    |               | 30          | Fig.20: Some description added. Fig.23: Some description added.                                                                                     |
| 1    |               | 34          | Fig.26 : Note 7 added.                                                                                                                              |
| 1    |               | 45          | Some description revised.                                                                                                                           |
| 1    |               | 46          | Fig.33 : "DI" instruction added.                                                                                                                    |
| 1    |               | 57          | Voltage drop detection circuit: Some description revised.                                                                                           |
| 1    |               | 69          | Fig.61: Some description revised.                                                                                                                   |
| 1    |               | 70          | Fig.64: Some description revised.                                                                                                                   |
| 1    |               | 72          | Note on Power Source Voltage added.                                                                                                                 |
|      |               | 73          | Note 2 : revised.                                                                                                                                   |
|      |               |             | Note 2 . Teviseu.                                                                                                                                   |

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system tha

- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

  7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

  Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

  8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.



#### **RENESAS SALES OFFICES**

http://www.renesas.com

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH

Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Ltd.

Renesas Technology Taiwan Co., FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Ltd.

Renesas Technology (Shanghai) Co., 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001