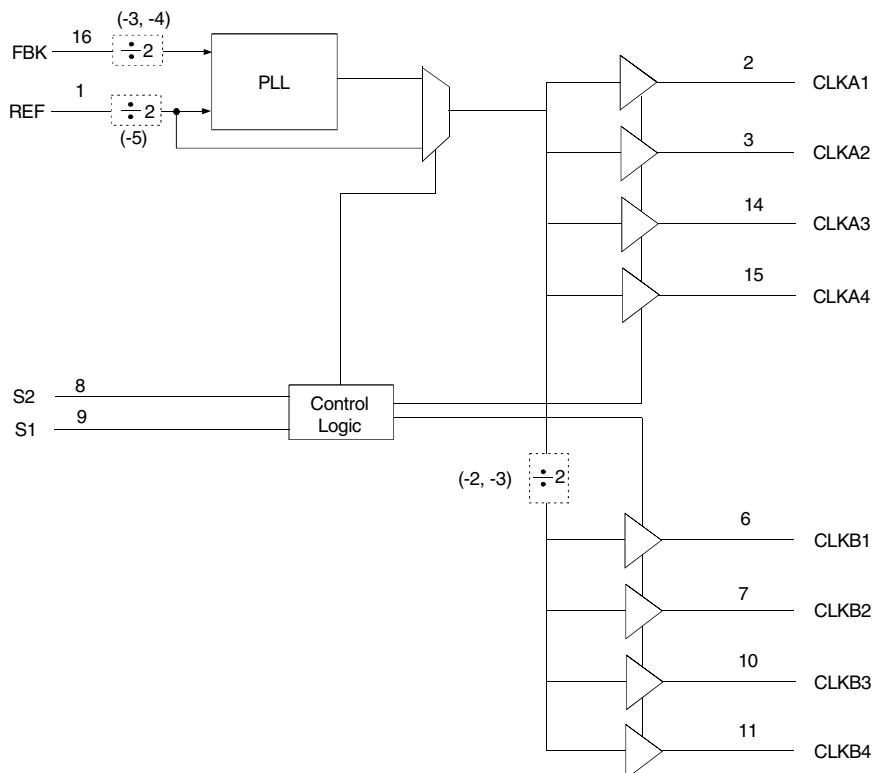


FEATURES:

- Phase-Lock Loop Clock Distribution for Applications ranging from 10MHz to 133MHz operating frequency
- Distributes one clock input to two banks of four outputs
- Separate output enable for each output bank
- External feedback (FBK) pin is used to synchronize the outputs to the clock input
- Output Skew <200 ps
- Low jitter <200 ps cycle-to-cycle
- 1x, 2x, 4x output options (see table):
 - IDT23S08-1 1x
 - IDT23S08-2 1x, 2x
 - IDT23S08-3 2x, 4x
 - IDT23S08-4 2x
 - IDT23S08-1H, -2H, and -5H for High Drive
- No external RC network required
- Operates at 3.3V VDD
- Spread spectrum compatible
- Available in SOIC and TSSOP packages

DESCRIPTION:

The IDT23S08 is a high-speed phase-lock loop (PLL) clock multiplier. It is designed to address high-speed clock distribution and multiplication applications. The zero delay is achieved by aligning the phase between the incoming clock and the output clock, operable within the range of 10 to 133MHz.

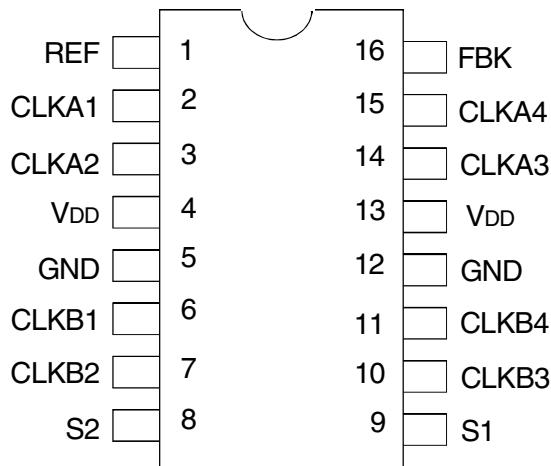

The IDT23S08 has two banks of four outputs each that are controlled via two select addresses. By proper selection of input addresses, both banks can be put in tri-state mode. In test mode, the PLL is turned off, and the input clock directly drives the outputs for system testing purposes. In the absence of an input clock, the IDT23S08 enters power down. In this mode, the device will draw less than 12 μ A for Commercial Temperature range and less than 25 μ A for Industrial temperature range, and the outputs are tri-stated.

The IDT23S08 is available in six unique configurations for both pre-scaling and multiplication of the Input REF Clock. (See available options table.)

The PLL is closed externally to provide more flexibility by allowing the user to control the delay between the input clock and the outputs.

The IDT23S08 is characterized for both Industrial and Commercial operation.

FUNCTIONAL BLOCK DIAGRAM



The IDT logo is a registered trademark of Integrated Device Technology, Inc.

COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES

MAY 2010

PIN CONFIGURATION

SOIC/ TSSOP
TOP VIEW

PIN DESCRIPTION

	Pin Number	Functional Description
REF ⁽¹⁾	1	Input Reference Clock, 5 Volt Tolerant Input
CLKA1 ⁽²⁾	2	Clock Output for Bank A
CLKA2 ⁽²⁾	3	Clock Output for Bank A
VDD	4	3.3V Supply
GND	5	Ground
CLKB1 ⁽²⁾	6	Clock Output for Bank B
CLKB2 ⁽²⁾	7	Clock Output for Bank B
S2 ⁽³⁾	8	Select Input, Bit 2
S1 ⁽³⁾	9	Select Input, Bit 1
CLKB3 ⁽²⁾	10	Clock Output for Bank B
CLKB4 ⁽²⁾	11	Clock Output for Bank B
GND	12	Ground
VDD	13	3.3V Supply
CLKA3 ⁽²⁾	14	Clock Output for Bank A
CLKA4 ⁽²⁾	15	Clock Output for Bank A
FBK	16	PLL Feedback Input

NOTES:

1. Weak pull down.
2. Weak pull down on all outputs.
3. Weak pull ups on these inputs.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Max.	Unit
VDD	Supply Voltage Range	-0.5 to +4.6	V
VI ⁽²⁾	Input Voltage Range (REF)	-0.5 to +5.5	V
VI	Input Voltage Range (except REF)	-0.5 to VDD+0.5	V
IIK (VI < 0)	Input Clamp Current	-50	mA
IO	Continuous Output Current (VO = 0 to VDD)	±50	mA
VDD or GND	Continuous Current	±100	mA
TA = 55°C (in still air) ⁽³⁾	Maximum Power Dissipation	0.7	W
TSTG	Storage Temperature Range	-65 to +150	°C
Operating Temperature	Commercial Temperature Range	0 to +70	°C
Operating Temperature	Industrial Temperature Range	-40 to +85	°C

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
3. The maximum package power dissipation is calculated using a junction temperature of 150 °C and a board trace length of 750 mils.

APPLICATIONS:

- SDRAM
- Telecom
- Datacom
- PC Motherboards/Workstations
- Critical Path Delay Designs

FUNCTION TABLE⁽¹⁾ SELECT INPUT DECODING

S2	S1	CLK A	CLK B	Output Source	PLL Shut Down
L	L	Tri-State	Tri-State	PLL	Y
L	H	Driven	Tri-State	PLL	N
H	L	Driven	Driven	REF	Y
H	H	Driven	Driven	PLL	N

NOTE:

1. H = HIGH Voltage Level
- L = LOW Voltage Level

AVAILABLE OPTIONS FOR IDT23S08

Device	Feedback From	Bank A Frequency	Bank B Frequency
IDT23S08-1	Bank A or Bank B	Reference	Reference
IDT23S08-1H	Bank A or Bank B	Reference	Reference
IDT23S08-2	Bank A	Reference	Reference/2
IDT23S08-2	Bank B	2 x Reference	Reference
IDT23S08-2H ⁽¹⁾	Bank A	Reference	Reference/2
IDT23S08-2H ⁽¹⁾	Bank B	2 x Reference	Reference
IDT23S08-3 ⁽¹⁾	Bank A	2 x Reference	Reference or Reference ⁽²⁾
IDT23S08-3 ⁽¹⁾	Bank B	4 x Reference	2 x Reference
IDT23S08-4	Bank A or Bank B	2 x Reference	2 x Reference
IDT23S08-5H	Bank A or Bank B	Reference/2	Reference/2

NOTES:

1. Contact factory for availability.
2. Output phase is indeterminant (0° or 180° from input clock).

SPREAD SPECTRUM COMPATIBLE

Many systems being designed now use a technology called Spread Spectrum Frequency Timing Generation. This product is designed not to filter off the Spread Spectrum feature of the reference input, assuming it exists. When a zero delay buffer is not designed to pass the Spread Spectrum feature through, the result is a significant amount of tracking skew, which may cause problems in systems requiring synchronization.

ZERO DELAY AND SKEW CONTROL

To close the feedback loop of the IDT23S08, the FBK pin can be driven from any of the eight available output pins. The output driving the FBK pin will be driving a total load of 7pF plus any additional load that it drives. The relative loading of this output (with respect to the remaining outputs) can adjust the input-output delay.

For applications requiring zero input-output delay, all outputs including the one providing feedback should be equally loaded. Ensure the outputs are loaded equally, for zero output-output skew.

OPERATING CONDITIONS- COMMERCIAL

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
V _{DD}	Supply Voltage		3	3.6	V
T _A	Operating Temperature (Ambient Temperature)		0	70	°C
C _L	Load Capacitance below 100MHz		—	30	pF
	Load Capacitance from 100MHz to 133MHz		—	15	pF
C _{IN}	Input Capacitance ⁽¹⁾		—	7	pF

NOTE:

1. Applies to both REF and FBK.

DC ELECTRICAL CHARACTERISTICS - COMMERCIAL

Symbol	Parameter	Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
V _{IL}	Input LOW Voltage Level		—	—	0.8	V
V _{IH}	Input HIGH Voltage Level		2	—	—	V
I _{IL}	Input LOW Current	V _{IN} = 0V	—	—	50	μA
I _{IH}	Input HIGH Current	V _{IN} = V _{DD}	—	—	100	μA
V _{OL}	Output LOW Voltage	I _{OL} = 8mA (-1, -2, -3, -4) I _{OL} = 12mA (-1H, -2H, -5H)	—	—	0.4	V
V _{OH}	Output HIGH Voltage	I _{OH} = -8mA (-1, -2, -3, -4) I _{OH} = -12mA (-1H, -2H, -5H)	2.4	—	—	V
I _{DD_PD}	Power Down Current	REF = 0MHz (S ₂ = S ₁ = H)	—	—	12	μA
I _{DD}	Supply Current	Unloaded Outputs Select Inputs at V _{DD} or GND	100MHz CLKA (-1, -2, -3, -4)	—	—	45
			100MHz CLKA (-1H, -2H, -5H)	—	—	70
			66MHz CLKA (-1, -2, -3, -4)	—	—	32
			66MHz CLKA (-1H, -2H, -5H)	—	—	50
			33MHz CLKA (-1, -2, -3, -4)	—	—	18
			33MHz CLKA (-1H, -2H, -5H)	—	—	30

SWITCHING CHARACTERISTICS - COMMERCIAL

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
t_1	Output Frequency	30pF Load, all devices	10	—	100	MHz
t_1	Output Frequency	20pF Load, -1H, -2H, -5H Devices ⁽¹⁾	10	—	133.3	MHz
t_1	Output Frequency	15pF Load, -1, -2, -3, -4 devices	10	—	133.3	MHz
	Duty Cycle = $t_2 \div t_1$ (-1, -2, -3, -4, -1H, -2H, -5H)	Measured at 1.4V, F _{OUT} = 66.66MHz 30pF Load	40	50	60	%
	Duty Cycle = $t_2 \div t_1$ (-1, -2, -3, -4, -1H, -2H, -5H)	Measured at 1.4V, F _{OUT} = 50MHz 15pF Load	45	50	55	%
t_3	Rise Time (-1, -2, -3, -4)	Measured between 0.8V and 2V, 30pF Load	—	—	2.2	ns
t_3	Rise Time (-1, -2, -3, -4)	Measured between 0.8V and 2V, 15pF Load	—	—	1.5	ns
t_3	Rise Time (-1H, -2H, -5H)	Measured between 0.8V and 2V, 30pF Load	—	—	1.5	ns
t_4	Fall Time (-1, -2, -3, -4)	Measured between 0.8V and 2V, 30pF Load	—	—	2.2	ns
t_4	Fall Time (-1, -2, -3, -4)	Measured between 0.8V and 2V, 15pF Load	—	—	1.5	ns
t_4	Fall Time (-1H, -5H)	Measured between 0.8V and 2V, 30pF Load	—	—	1.25	ns
t_5	Output to Output Skew on same Bank (-1, -2, -3, -4)	All outputs equally loaded	—	—	200	ps
	Output to Output Skew (-1H, -2H, -5H)	All outputs equally loaded	—	—	200	ps
	Output Bank A to Output Bank B (-1, -4, -2H, -5H)	All outputs equally loaded	—	—	200	ps
	Output Bank A to Output Bank B Skew (-2, -3)	All outputs equally loaded	—	—	400	ps
t_6	Delay, REF Rising Edge to FBK Rising Edge	Measured at V _{DD} /2	—	0	±250	ps
t_7	Device to Device Skew	Measured at V _{DD} /2 on the FBK pins of devices	—	0	700	ps
t_8	Output Slew Rate	Measured between 0.8V and 2V on -1H, -2H, -5H device using Test Circuit 2	1	—	—	V/ns
t_9	Cycle to Cycle Jitter (-1, -1H, -4, -5H)	Measured at 66.67 MHz, loaded outputs, 15pF Load	—	—	200	ps
		Measured at 66.67 MHz, loaded outputs, 30pF Load	—	—	200	
		Measured at 133.3 MHz, loaded outputs, 15pF Load	—	—	100	
t_{10}	Cycle to Cycle Jitter (-2, -2H, -3)	Measured at 66.67 MHz, loaded outputs, 30pF Load	—	—	400	ps
		Measured at 66.67 MHz, loaded outputs, 15pF Load	—	—	400	
t_{LOCK}	PLL Lock Time	Stable Power Supply, valid clocks presented on REF and FBK pins	—	—	1	ms

NOTE:

1. IDT23S08-5H has maximum input frequency of 133.33 MHz and maximum output of 66.67MHz.

OPERATING CONDITIONS- INDUSTRIAL

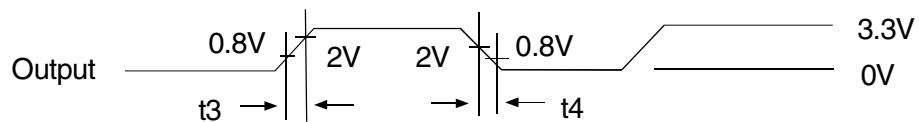
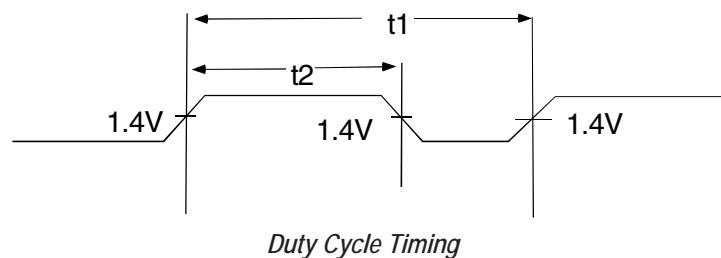
Symbol	Parameter	Test Conditions	Min.	Max.	Unit
V _{DD}	Supply Voltage		3	3.6	V
T _A	Operating Temperature (Ambient Temperature)		-40	+85	°C
C _L	Load Capacitance below 100MHz		—	30	pF
	Load Capacitance from 100MHz to 133MHz		—	15	pF
C _{IN}	Input Capacitance ⁽¹⁾		—	7	pF

NOTE:

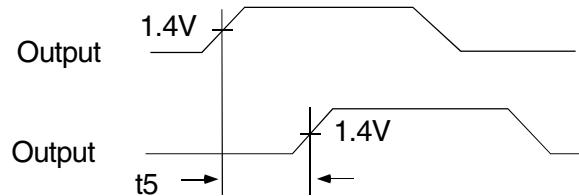
1. Applies to both REF and FBK.

DC ELECTRICAL CHARACTERISTICS - INDUSTRIAL

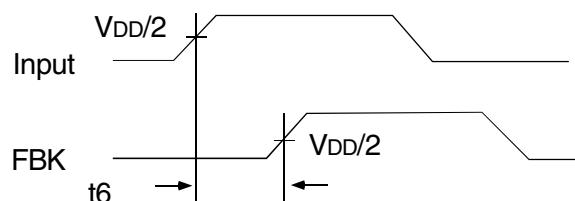
Symbol	Parameter	Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
V _{IL}	Input LOW Voltage Level		—	—	0.8	V
V _{IH}	Input HIGH Voltage Level		2	—	—	V
I _{IL}	Input LOW Current	V _{IN} = 0V	—	—	50	µA
I _{IH}	Input HIGH Current	V _{IN} = V _{DD}	—	—	100	µA
V _{OL}	Output LOW Voltage	I _{OL} = 8mA (-1, -2, -3, -4) I _{OL} = 12mA (-1H, -2H, -5H)	—	—	0.4	V
V _{OH}	Output HIGH Voltage	I _{OH} = -8mA (-1, -2, -3, -4) I _{OH} = -12mA (-1H, -2H, -5H)	2.4	—	—	V
I _{DD_PD}	Power Down Current	REF = 0MHz (S ₂ = S ₁ = H)	—	—	25	µA
I _{DD}	Supply Current	Unloaded Outputs Select Inputs at V _{DD} or GND	100MHz CLKA (-1, -2, -3, -4)	—	—	45
			100MHz CLKA (-1H, -2H, -5H)	—	—	70
			66MHz CLKA (-1, -2, -3, -4)	—	—	32
			66MHz CLKA (-1H, -2H, -5H)	—	—	50
			33MHz CLKA (-1, -2, -3, -4)	—	—	18
			33MHz CLKA (-1H, -2H, -5H)	—	—	30

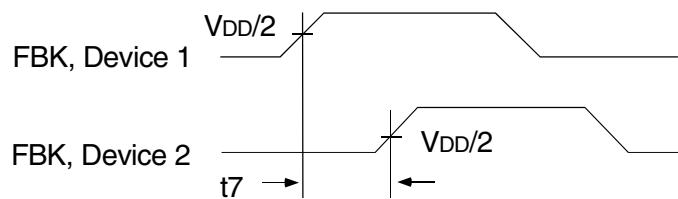


SWITCHING CHARACTERISTICS - INDUSTRIAL

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
t_1	Output Frequency	30pF Load, all devices	10	—	100	MHz
t_1	Output Frequency	20pF Load, -1H, -2H, -5H Devices ⁽¹⁾	10	—	133.3	MHz
t_1	Output Frequency	15pF Load, -1, -2, -3, -4 devices	10	—	133.3	MHz
	Duty Cycle = $t_2 \div t_1$ (-1, -2, -3, -4, -1H, -2H, -5H)	Measured at 1.4V, FOUT = 66.66MHz 30pF Load	40	50	60	%
	Duty Cycle = $t_2 \div t_1$ (-1, -2, -3, -4, -1H, -2H, -5H)	Measured at 1.4V, FOUT = 50MHz 15pF Load	45	50	55	%
t_3	Rise Time (-1, -2, -3, -4)	Measured between 0.8V and 2V, 30pF Load	—	—	2.2	ns
t_3	Rise Time (-1, -2, -3, -4)	Measured between 0.8V and 2V, 15pF Load	—	—	1.5	ns
t_3	Rise Time (-1H, -2H, -5H)	Measured between 0.8V and 2V, 30pF Load	—	—	1.5	ns
t_4	Fall Time (-1, -2, -3, -4)	Measured between 0.8V and 2V, 30pF Load	—	—	2.2	ns
t_4	Fall Time (-1, -2, -3, -4)	Measured between 0.8V and 2V, 15pF Load	—	—	1.5	ns
t_4	Fall Time (-1H, -5H)	Measured between 0.8V and 2V, 30pF Load	—	—	1.25	ns
t_5	Output to Output Skew on same Bank (-1, -2, -3, -4)	All outputs equally loaded	—	—	200	ps
	Output to Output Skew (-1H, -2H, -5H)	All outputs equally loaded	—	—	200	ps
	Output Bank A to Output Bank B (-1, -4, -2H, -5H)	All outputs equally loaded	—	—	200	ps
	Output Bank A to Output Bank B Skew (-2, -3)	All outputs equally loaded	—	—	400	ps
t_6	Delay, REF Rising Edge to FBK Rising Edge	Measured at VDD/2	—	0	± 250	ps
t_7	Device to Device Skew	Measured at VDD/2 on the FBK pins of devices	—	0	700	ps
t_8	Output Slew Rate	Measured between 0.8V and 2V on -1H, -2H, -5H device using Test Circuit 2	1	—	—	V/ns
t_9	Cycle to Cycle Jitter (-1, -1H, -4, -5H)	Measured at 66.67 MHz, loaded outputs, 15pF Load	—	—	200	ps
		Measured at 66.67 MHz, loaded outputs, 30pF Load	—	—	200	
		Measured at 133.3 MHz, loaded outputs, 15pF Load	—	—	100	
t_{10}	Cycle to Cycle Jitter (-2, -2H, -3)	Measured at 66.67 MHz, loaded outputs, 30pF Load	—	—	400	ps
		Measured at 66.67 MHz, loaded outputs, 15pF Load	—	—	400	
t_{LOCK}	PLL Lock Time	Stable Power Supply, valid clocks presented on REF and FBK pins	—	—	1	ms

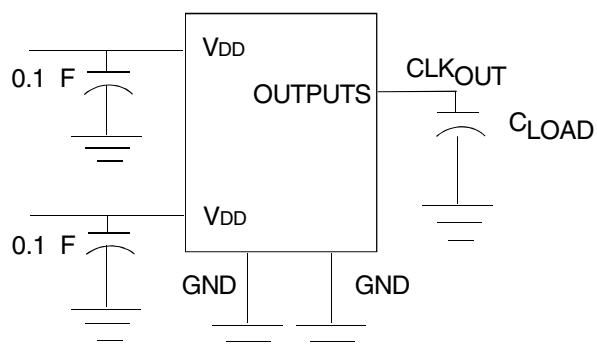

NOTE:

1. IDT23S08-5H has maximum input frequency of 133.33 MHz and maximum output of 66.67MHz.

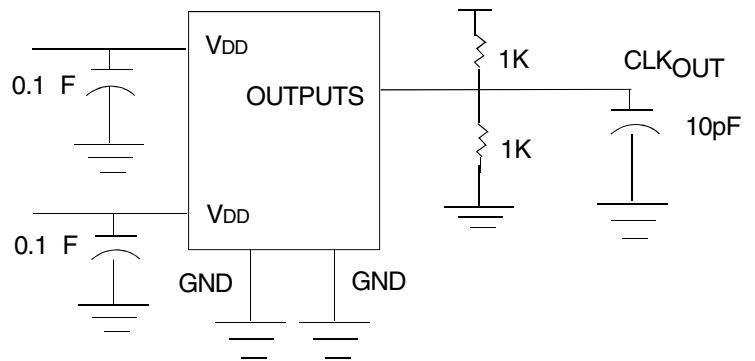

SWITCHING WAVEFORMS


All Outputs Rise/Fall Time

Output to Output Skew


Input to Output Propagation Delay

Device to Device Skew


TEST CIRCUITS

TEST CIRCUIT 1

Test Circuit for all Parameters Except t8

TEST CIRCUIT 2

Test Circuit for t8, Output Slew Rate On -1H, -2H, and -5H Device

ORDERING INFORMATION

Device Type	Package	Process		
			Blank	Commercial (0°C to +70°C) Industrial (-40°C to +85°C)
			DCG	SOIC - Green
			PG	Thin Shrink Small Outline Package
		23S08-1		
		23S08-2		Zero Delay Clock Buffer with Standard Drive,
		23S08-3		Spread Spectrum Compatible
		23S08-4		
		23S08-1H		Zero Delay Clock Buffer with High Drive,
		23S08-2H		Spread Spectrum Compatible
		23S08-5H		

Part / Order Number	Shipping Packaging	Package	Temperature
23S08-1DCG	Tubes	16-pin SOIC	0° to +70° C
23S08-1DCG8	Tape and Reel	16-pin SOIC	0° to +70° C
23S08-1DCGI	Tubes	16-pin SOIC	-40° to +85°C
23S08-1DCGI8	Tape and Reel	16-pin SOIC	-40° to +85°C
23S08-1HDCG	Tubes	16-pin SOIC	0° to +70° C
23S08-1HDCG8	Tape and Reel	16-pin SOIC	0° to +70° C
23S08-1HDCGI	Tubes	16-pin SOIC	-40° to +85°C
23S08-1HDCGI8	Tape and Reel	16-pin SOIC	-40° to +85°C
23S08-2DCG	Tubes	16-pin SOIC	0° to +70° C
23S08-2DCG8	Tape and Reel	16-pin SOIC	0° to +70° C
23S08-2DCGI	Tubes	16-pin SOIC	-40° to +85°C
23S08-2DCGI8	Tape and Reel	16-pin SOIC	-40° to +85°C
23S08-2HDCG	Tubes	16-pin SOIC	0° to +70° C
23S08-2HDCG8	Tape and Reel	16-pin SOIC	0° to +70° C
23S08-3DCG	Tubes	16-pin SOIC	0° to +70° C
23S08-3DCG8	Tape and Reel	16-pin SOIC	0° to +70° C
23S08-4DCGI	Tubes	16-pin SOIC	-40° to +85°C
23S08-4DCGI8	Tape and Reel	16-pin SOIC	-40° to +85°C
23S08-5HDCG	Tubes	16-pin SOIC	0° to +70° C
23S08-5HDCG8	Tape and Reel	16-pin SOIC	0° to +70° C

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.