

TEST REPORT

Test report no.: 1-3925/22-01-02

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>https://www.ctcadvanced.com</u> e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-03

Applicant

Dialog Semiconductor BVHet Zuiderkruis 535215 MV°s Hertogenbosch / NETHERLANDSPhone:-/-Contact:Laura Dimitropouloue-mail:Laura.Dimitropoulou@diasemi.com

Manufacturer

Dialog Semiconductor BV Het Zuiderkruis 53 5215 MV°s Hertogenbosch / NETHERLANDS

Test standard/s

ETSI EN 300 328 Wideband tran V2.2.2 2,4 GHz band;

Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz band; Harmonised Standard for access to radio spectrum

For further applied test standards please refer to section 3 of this test report.

Test Item				
Kind of test item:	Bluetooth LE SoC			
Model name:	DA1470x (DA14701, DA14705, DA14706, DA14708)			
Frequency:	2400 MHz to 2483.5 MHz			
Technology tested:	Bluetooth [®] LE			
Antenna:	Integrated antenna			
Power supply:	3.0 V DC by external power supply			
Temperature range:	-40°C to +85°C			

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Joerg Warken
Lab Manager
Radio Communications

Test performed:

Michael Dorongovski Lab Manager Radio Communications

Table of contents 1

1	Table of contents	2
2	General information	3
	2.1 Notes and disclaimer	
	2.2 Application details2.3 Test laboratories sub-contracted	
3	Test standard/s	3
4	Reporting statements of conformity – decision rule	4
5	Test environment	5
6	Test item	5
	6.1 General description	5
	6.2 Additional information	5
7	Description of the test setup	6
	7.1 Shielded fully anechoic chamber	7
	7.2 Conducted measurements Bluetooth system	
8	Summary of measurement results	9
9	Additional comments	10
10	EUT classification	11
11	Measurement results	12
	11.1 Antenna gain	12
	11.2 RF output power	
	11.3 Power spectral density	
	11.4 Occupied channel bandwidth	
	11.5 Transmitter unwanted emissions in the out-of-band domain	
	11.6 Transmitter unwanted emissions in the spurious domain11.7 Receiver spurious emissions	
	11.7 Receiver spurious emissions11.8 Receiver blocking	
12	Measurement uncertainty	29
13	Glossary	30
14	Document history	31
15	Accreditation Certificate – D-PL-12076-01-03	31

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2022-02-08
Date of receipt of test item:	2022-02-10
Start of test:*	2022-02-10
End of test:*	2022-02-16
Percen(c) precent during the test:	_/_

Person(s) present during the test:

*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

None

3 Test standard/s

Test standard	Date	Description
ETSI EN 300 328 V2.2.2	2019-07	Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz band; Harmonised Standard for access to radio spectrum

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 12, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

5 **Test environment**

Temperature	:	T _{nom} T _{max} T _{min}	 +22 °C during room temperature tests +85 °C during high temperature tests -40 °C during low temperature tests
Relative humidity content	:		55 %
Barometric pressure	:		not relevant for this kind of testing
Power supply	:	V _{nom} V _{max} V _{min}	3.0 V DC by external power supplyNo tests under extreme voltage conditions required.No tests under extreme voltage conditions required.

6 **Test item**

General description 6.1

Kind of test item	:	Bluetooth LE SoC
Model name:	:	DA1470x (DA14701, DA14705, DA14706, DA14708)
S/N serial number	:	2045 00019
Hardware status	:	500-06-В
Software status	:	SDK10.2.2.35
Firmware status	:	-/-
Frequency band	:	2400 MHz to 2483.5 MHz
Type of radio transmission		Other than FHSS
Use of frequency spectrum	:	
Type of modulation	:	GFSK
Number of channels		40 (1 Msps)
Number of channels	•	37 (2 Msps, only data channels without advertising channels)
Channel bandwidth (B)	:	1 MHz
Channel spacing	:	2 MHz
Receiver category	:	2
Antenna	:	Integrated antenna
Power supply	:	3.0 V DC by external power supply
Temperature range	:	-40°C to +85°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

1-3925/22-01-01_AnnexA 1-3925/22-01-01_AnnexC

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

CTC | advanced

7.1 Shielded fully anechoic chamber

Measurement distance: tri-log antenna and horn antenna 3 meter

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

OP [dBm] = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 μW)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A, B	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vlKI!	09.12.2020	08.12.2023
2	А, В	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A, B	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vIKI!	12.03.2021	11.03.2023
4	А, В	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	В	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
6	A, B	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	09.12.2021	08.12.2022
7	A, B	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vIKI!	14.01.2020	30.01.2022
8	A, B	High Pass Filter	VHF-3500+	Mini Circuits	-/-	400000193	ne	-/-	-/-
9	A, B	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
10	A, B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
11	A, B	NEXIO EMV-Software	BAT EMC V3.21.0.27	EMCO	-/-	300004682	ne	-/-	-/-
12	A, B	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-

CTC I advanced

member of RWTÜV group

7.2 Conducted measurements Bluetooth system

OP = AV + CA (OP-output power; AV-analyzer value; CA-loss signal path)

<u>Example calculation:</u> OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A, B, C	Hygro-Thermometer	-/-, 5-45°C, 20- 100%rF	Thies Clima	-/-	400000109	ev	13.08.2020	12.08.2022
2	A, B, C	Power supply	NGSM 32/10	Rohde & Schwarz	3939	400000192	vlKI!	11.12.2019	10.12.2022
3	A, B, C	USB/GPIB interface	82357B	Agilent Technologies	MY52103346	300004390	ne	-/-	-/-
4	A, B, C	PC Laboratory	Exone	Fröhlich + Walter	S2642279-03 / 10	300004179	ne	-/-	-/-
5	А	Signal analyzer	FSV30	Rohde&Schwarz	1321.3008K30/ 103809	300005359	vlKI!	08.12.2020	07.12.2022
6	A, B, C	Tester Software RadioStar (C.BER2 for BT Conformance)	Version 1.0.0.X	CTC advanced GmbH	0001	400001380	ne	-/-	-/-
7	В	Power Sensor	L2061XA	Keysight	MY58000020	300005803	k	14.12.2021	13.12.2022
8	A, B, C	Wideband Radio Communication Tester	CMW270	Rohde & Schwarz	102550	300006253	k	17.09.2021	16.09.2023
9	С	Signal Generator	SMB100A	Rohde & Schwarz	180587	300005462	vlKI!	22.10.2020	21.10.2023
10	В	Temperature Test Chamber	VT 4002	Heraeus Voetsch	585660468200 10	300003019	ev	08.05.2020	07.05.2022

CTC I advanced

8 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

CTC I advanced

TC identifier	Description			verdict			date	1	Remark
RF-Testing	ETSI EN 300 328 V2.2.2 (2019-07)			See tabl	e	20	22-03	8-01	-/-
Test specification clause	Test case	temperature conditions	power source voltages	Mode	с	NC	NA	NP	Remark
		Nominal	Nominal	1 Msps 2 Msps	\boxtimes				
4.3.2.2 5.4.2	RF output power	Low	Nominal	1 Msps 2 Msps	\boxtimes				-/-
J.4.Z		High	Nominal	1 Msps 2 Msps	\boxtimes				
4.3.2.3 5.4.2	Power spectral density	Nominal	Nominal	1 Msps 2 Msps	\boxtimes				-/-
4.3.2.4, 4.3.2.5 5.4.3	Duty cycle, Tx-sequence, Tx-gap, medium utilization	Nominal	Nominal	-/-					-/-
5.4.4	Accumulated transmit time, freq. occupation and hopping sequence	Nominal	Nominal	-/-					-/-
5.4.5	Hopping frequency separation	Nominal	Nominal	-/-			\boxtimes		-/-
4.3.2.6 5.4.6	Adaptivity	Nominal	Nominal	-/-			\boxtimes		-/-
4.3.2.7 5.4.7	Occupied channel bandwidth	Nominal	Nominal	1 Msps 2 Msps	\boxtimes				-/-
4.3.2.8 5.4.8	Transmitter unwanted emissions in the out-of- band domain	Nominal	Nominal	1 Msps 2 Msps	\boxtimes				-/-
4.3.2.9 5.4.9	Transmitter unwanted emissions in the spurious domain (cond. + rad.)	Nominal	Nominal	1 Msps 2 Msps	\boxtimes				-/-
4.3.2.10 5.4.10	Receiver spurious emissions (cond. + rad.)	Nominal	Nominal	1 Msps	\boxtimes				-/-
4.3.2.11 5.4.11	Receiver blocking	Nominal	Nominal	1 Msps 2 Msps	\boxtimes				-/-
4.3.2.12	Geo-location	Nominal	Nominal	-/-			\boxtimes		-/-
C Compli	ant		NC N	ot compliar	nt				

0 00	ompliant	NC	Not compliant
NA No	lot applicable	NP	Not performed

© CTC advanced GmbH

9 Additional comments

The Bluetooth® word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by CTC advanced GmbH is under license.

Reference documents:	Bluetooth [®] Core Specification 5.1		
	1-3925_22-01-02_Annex_MR_A1.pdf		

Special test descriptions: None

Configuration descriptions:

Bluetooth Low Energy			
Longest Supported payload (37 – 255 Byte) Tx: 255, RX: 255			
LE 1M PHY supported	Yes		
LE 2M PHY supported	Yes		
Stable Modulation Index supported (SMI)	No		
LE Coded PHY supported (S=2)	No		
LE Coded PHY supported (S=8)	No		

Test mode:		 Bluetooth direct test mode enabled (EUT is controlled via CBT/CMW) Special software is used. EUT is transmitting pseudo random data by itself
EUT selection:		Only one device available
		Devices selected by the customer
	\boxtimes	Devices selected by the laboratory (Randomly)

10 EUT classification

Type of equipment:	stand alone equipment plug in radio equipment combined equipment
Modulation types:	Wide band modulation (none hopping – e.g. DSSS, OFDM) Frequency hopping spread spectrum (FHSS)
Adaptive equipment:	Yes, LBT-based Yes, non-LBT-based Yes (but can be disabled) No
Antennas and transmission operating modes:	 Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used) Operating mode 2 (multiple antennas, no beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
	 Operating mode 3 (multiple antennas, with beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

11 Measurement results

11.1 Antenna gain

<u>Limits:</u>

No restriction!

Results:

	Low channel	Mid channel	High channel
	(2402 MHz)	(2440 MHz)	(2480 MHz)
Gain [dBi] Declared	2.5		

11.2 RF output power

Measurement parameters			
	1-3925_22-01-02_Annex_MR_A1.pdf		
External result file	Chapter EN300328 RF Output Power and PSD +		
	Chapter EN 300328 RF Output Power		
Test setup	See sub clause 7.2 - B		
Measurement uncertainty	See sub clause 12		

Performed: I Conducted

□ Radiated (only if no conducted sample is provided)

<u>Limits:</u>

For adaptive equipment	20 dBm
For non-adaptive equipment	Declared by the supplier and shall not exceed 20 dBm

Results: 1 Msps

Test conditions		Maximum burst power in 10 measured bursts [dBm] E.I.R.P.			
		low channel	mid channel	high channel	
T _{nom} V _{nom}		7.7	7.3	7.7	
T _{min} V _{nom}		9.8	9.0	7.7	
T _{max} V _{nom}		7.9	7.8	7.2	

P = max cond. burst power (A) + antenna gain (G) + beamforming gain (Y)

Results: 2 Msps

Test conditions		Maximum burst power in 10 measured bursts [dBm] E.I.R.P.		
		low channel	mid channel	high channel
T _{nom}	T _{nom} V _{nom}		7.3	7.8
T _{min}	V _{nom}	9.8	9.0	7.8
T _{max}	V _{nom}	7.9	7.7	7.2

P = max cond. burst power (A) + antenna gain (G) + beamforming gain (Y)

With:

Beamforming gain (Y) = 0 (SISO)

11.3 Power spectral density

⊠ Conducted

Description:

The power spectral density is the mean equivalent isotropically radiated power (E.I.R.P.) density during a transmission burst.

Measurement parameters			
External result file	1-3925_22-01-02_Annex_MR_A1.pdf		
	Chapter EN300328 RF Output Power and PSD		
Test setup	See sub clause 7.2 - A		
Measurement uncertainty	See sub clause 12		

Performed:

□ Radiated (only if no conducted sample is provided)

<u>Limits:</u>

Under normal test conditions only	-20 dBW / 1 MHz
(including antenna gain)	10 dBm / 1 MHz

Results: 1 Msps

ID	Measurement	Unit	Low channel	Mid channel	High channel
	PSD max corrected (3+4)	dBm/1MHz E.I.R.P.	7.6	7.2	7.6

Results: 2 Msps

ID	Measurement Unit		Low channel	Mid channel	High channel
	PSD max corrected (3+4)	dBm/1MHz E.I.R.P.	6.4	6.0	6.6

11.4 Occupied channel bandwidth

Measurement:

The occupied channel bandwidth is the bandwidth that contains 99 % of the power of the signal.

Measurement parameters				
External result file	1-3925_22-01-02_Annex_MR_A1.pdf			
	Chapter EN300328 Occupied Channel Bandwidth			
Test setup	See sub clause 7.2 - A			
Measurement uncertainty	See sub clause 12			

□ Radiated (only if no conducted sample is provided)

Limits:

The occupied channel bandwidth shall fall completely within the band.

For non-adaptive systems using wide band modulations other than FHSS and with e.i.r.p greater than 10 dBm, the occupied channel bandwidth shall be less than 20 MHz.

Results:

99% bandwidth [kHz]					
Low channel High channel					
1 Msps	1059	1065			
2 Msps	2137	2132			

11.5 Transmitter unwanted emissions in the out-of-band domain

Description:

Transmitter unwanted emissions in the out-of-band domain are emissions when the equipment is in transmit mode, on frequencies immediately outside the necessary bandwidth which results from the modulation process, but excluding spurious.

Measurement parameters				
	1-3925_22-01-02_Annex_MR_A1.pdf			
External result file	Chapter EN300328 TX Unwanted Emissions In The			
	OOB Domain			
Test setup	See sub clause 7.2 - A			
Measurement uncertainty	See sub clause 12			

Performed:

Conducted

□ Radiated (only if no conducted sample is provided)

Limits:

The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask. NOTE: Within the 2400 MHz to 2483.5 MHz band, the Out-of-band emissions are fulfilled by compliance with the Occupied Channel Bandwidth requirement in clause 4.3.2.6. Spurious Domain Out Of Band Domain (OOB) Allocated Band Out Of Band Domain (OOB) Spurious Domain Α В С 2 400 MHz - 2BW 2 400 MHz - BW 2 400 MHz 2 483.5 MHz 2 483.5 MHz + BW 2 483.5 MHz + 2BW A: -10 dBm/MHz B: -20 dBm/MHz BW = Occupied Channel Bandwidth [MHz] or 1 MHz whichever is greater C: Spurioius Domain limits

<u>Results</u>

Unwanted emissions [dBm] (including antenna gain)				
1 Msps, channel BW see plots				
2400 MHz - 2BW to 2400 MHz - BW	compliant			
Limit:< -20dBm/MHz				
2400 MHz - BW to 2400 MHz	compliant			
Limit:< -10dBm/MHz				
2483.5 MHz to 2483.5 MHz + BW Limit:< -10dBm/MHz	compliant			
2483.5 MHz + BW to 2483.5 MHz + 2BW Limit:< -20dBm/MHz	compliant			

Unwanted emissions [dBm] (including antenna gain)					
2 Msps, channel BW see plots					
2400 MHz - 2BW to 2400 MHz - BW					
Limit:< -20dBm/MHz	compliant				
2400 MHz - BW to 2400 MHz					
Limit:< -10dBm/MHz	compliant				
2483.5 MHz to 2483.5 MHz + BW					
Limit:< -10dBm/MHz	compliant				
2483.5 MHz + BW to 2483.5 MHz + 2BW					
Limit:< -20dBm/MHz	compliant				

11.6 Transmitter unwanted emissions in the spurious domain

Description:

Transmitter unwanted emissions in the spurious domain are emissions outside the allocated band and outside the out-of-band domain when the equipment is in transmit mode.

Pre-scan:

Measurement parameters (radiated)				
Detector	Peak			
Sweep time	5ms/MHz			
Resolution bandwidth	Below 1 GHz: 100 kHz / above 1MHz			
Video bandwidth	Below 1 GHz: 300 kHz / above 3MHz			
Detector	Peak			
Test setup	See sub clause 7.1 - B			
Measurement uncertainty	See sub clause 12			
Measurement para	meters (conducted)			
External result file	1-3925_22-01-02_Annex_MR_A1.pdf			
	EN300328 Unwanted Emissions in spurious domain			
Test setup	See sub clause 7.2 - A			
Measurement uncertainty	See sub clause 12			

Any emissions identified during the sweeps in the pre-scan and that fall within the 6 dB range below the applicable limit, shall be individually measured using the procedure "retest".

Retest:

Measurement parameters (radiated)				
Detector RMS				
Measurement mode Time domain power				
Sweep time	30 ms			
Resolution bandwidth	Below 1 GHz: 100 kHz / above 1MHz			
Video bandwidth	Below 1 GHz: 300 kHz / above 3MHz			
Span	Zero span			
Trace mode	Single sweep			
Test setup	See sub clause 7.1 - B			
Measurement uncertainty	See sub clause 12			
Measu	urement parameters (conducted)			
External result file	1-3925_22-01-02_Annex_MR_A1.pdf			
	EN300328 Unwanted Emissions in spurious domain			
Test setup	See sub clause 7.2 - A			
Measurement uncertainty See sub clause 12				

Performed: ⊠ Conducted ⊠ Radiated

Limits:

	Max. spurious level					
	47 MHz to 74 MHz					
State	87.5 MHz to 118 MHz	Other frequencies	All frequencies			
	174 MHz to 230 MHz	≤ 1000 MHz	> 1000 MHz			
	470 MHz to 694 MHz					
Operating	4.0 nW (-54 dBm)	250 nW (-36 dBm)	1.00 μW (-30 dBm)			
Receiver / Idle	2.0 nW (-57 dBm)	2.0 nW (-57 dBm)	20.0 nW (-47 dBm)			

Results: conducted, 1 Msps

Low channel			High channel		
f [MHz]	Detector Peak/RMS	Level [dBm]	f [MHz]	Detector Peak/RMS	Level [dBm]
See log file			See log file		

Results: conducted, 2 Msps

Low channel			High channel		
f [MHz]	Detector Peak/RMS	Level [dBm]	f [MHz]	Detector Peak/RMS	Level [dBm]
See log file			See log file		

Results: radiated, 1 Msps

Low channel			High channel		
f [MHz]	Detector Peak/RMS	Level [dBm]	f [MHz]	Detector Peak/RMS	Level [dBm]
All detected peaks are more than 6 dB below the limit		All detected peaks are more than 6 dB below the limit			

Results: radiated, 2 Msps

Low channel			High channel		
f [MHz]	Detector Peak/RMS			Level [dBm]	
All detected peaks are more than 6 dB below the limit		All detected peaks are more than 6 dB below the limit			

Test report no.: 1-3925/22-01-02

Plots: Radiated

Plot 1: 30 MHz to 12.75 GHz, Low channel, 1 Msps

The carrier signal is notched with a 2.4 GHz band rejection filter.

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 3: 30 MHz to 12.75 GHz, Low channel, 2 Msps

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 4: 30 MHz to 12.75 GHz, High channel, 2 Msps

The carrier signal is notched with a 2.4 GHz band rejection filter.

CTC I advanced

Description:

Receiver/idle unwanted emissions in the spurious domain are emissions outside the allocated band and outside the out-of-band domain when the equipment is in receiver/idle mode.

Pre-scan:

Measurement parameters (radiated)		
Detector	Peak	
Sweep time	5ms/MHz	
Resolution bandwidth	Below 1 GHz: 100 kHz / above 1MHz	
Video bandwidth	Below 1 GHz: 300 kHz / above 3MHz	
Detector	Peak	
Test setup	See sub clause 7.1 - A	
Measurement uncertainty	See sub clause 12	
Measurement parameters (conducted)		
	1-3925_22-01-02_Annex_MR_A1.pdf	
External result file	EN300328 Unwanted Emissions in spurious domain	
	RX	
Test setup	See sub clause 7.2 - A	
Measurement uncertainty	See sub clause 12	

Any emissions identified during the sweeps in the pre-scan and that fall within the 6 dB range below the applicable limit, shall be individually measured using the procedure "retest".

Retest:

Measurement parameters (radiated)		
Detector	RMS	
Measurement mode	Time domain power	
Sweep time	30 ms	
Resolution bandwidth	Below 1 GHz: 100 kHz / above 1MHz	
Video bandwidth	Below 1 GHz: 300 kHz / above 3MHz	
Span	Zero span	
Trace mode	Single sweep	
Test setup	See sub clause 7.1 - A	
Measurement uncertainty	See sub clause 12	
Measurement para	meters (conducted)	
	1-3925_22-01-02_Annex_MR_A1.pdf	
External result file	EN300328 Unwanted Emissions in spurious domain	
	RX	
Test setup	See sub clause 7.2 - A	
Measurement uncertainty	See sub clause 12	

CTC I advanced

Performed: ⊠ Conducted ⊠ Radiated

Limits:

		Max. spurious level	
State	47 MHz to 87,5 MHz to 174 MHz to 470 MHz to 470 MHz to 470 MHz to	Other frequencies ≤ 1000 MHz	All frequencies > 1000 MHz
Operating	4.0 nW (-54 dBm)	250 nW (-36 dBm)	1.00 μW (-30 dBm)
Receiver/idle	2.0 nW (-57 dBm)	2.0 nW (-57 dBm)	20.0 nW (-47 dBm)

Results: conducted, 1 Msps

Low channel			High channel		
f [MHz]	Detector Peak/RMS	Level [dBm]			Level [dBm]
All detected peaks are more than 6 dB below the limit		All detected peaks are more than 6 dB below the limit			

Results: radiated, 1 Msps

Low channel		High channel			
fDetectorLevelfDetector[MHz]Peak/RMS[dBm][MHz]Peak/RMS		Level [dBm]			
All detected peaks are more than 6 dB below the limit		All detected peaks are more than 6 dB below the limit			

Test report no.: 1-3925/22-01-02

Plots: Radiated

Plot 2: Receiver, 30 MHz to 12.75 GHz, High channel, 1 Msps

11.8 Receiver blocking

Description:

Receiver blocking is a measure of the ability of the equipment to receive a wanted signal on its operating channel without exceeding a given degradation due to the presence of an unwanted input signal (blocking signal) at frequencies other than those of the operating band and spurious responses.

Measurement parameters		
External result file	1-3925_22-01-02_Annex_MR_A1.pdf	
External result file	Chapter EN300328 RX Receiver Blocking	
Test setup	See sub clause 7.2 – C	
Measurement uncertainty	See sub clause 12	

□ Radiated

Table 1: Receiver blocking parameters for receiver category 1 equipment:

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log10(OCBW)) or -68 dBm whichever is less (see note 2)	2 380 2 504		
(-139 dBm + 10 × log10(OCBW)) or -74 dBm whichever is less (see note 3)	2 300 2 330 2 360 2 524 2 584 2 674	-34	CW
NOTE 1:	OCBW is in Hz.		
NOTE 2:	In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.		
NOTE 3:	In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 20 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.		
NOTE 4:	The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.		

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
(-139 dBm + 10 × log10(OCBW) + 10 dB) or (-74 dBm + 10 dB) whichever is less (see note 2)	2 380 2 504 2 300 2 584	-34	CW
NOTE 1:	OCBW is in Hz.		
NOTE 2:	In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.		
NOTE 3:	The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.		

Table 2: Receiver blocking parameters for receiver category 2 equipment:

Table 3: Receiver blocking parameters for receiver category 3 equipment:

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
(-139 dBm + 10 × log10(OCBW) + 20 dB) or (-74 dBm + 20 dB) whichever is less (see note 2)	2 380 2 504 2 300 2 584	-34	CW
NOTE 1:	OCBW is in Hz.		
NOTE 2:	In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.		
NOTE 3:	The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.		

Limits:

	Channel	
	Low channel	High channel
Performance Criteria	10% PER or FER	

* For equipment that does not support a PER or a FER test to be performed, the minimum performance criterion shall be no loss of the wireless transmission function needed for the intended use of the equipment.

<u>Result:</u> Compliant (See log file for details)

12 Measurement uncertainty

Measurement uncertainty		
Occupied channel bandwidth	±5 %	
RF output power, conducted	±1.5 dB	
Power spectral density, conducted	±3 dB	
Unwanted emissions, conducted	±3 dB	
All emissions, radiated	±3 dB	
Temperature	±1 °C	
Humidity	±5 %	
DC and low frequency voltages	±3 %	
Time	±5 %	
Duty cycle	±5 %	

13 Glossary

DUT Device	ent under test under test	
	day taat	
	Unit under test	
	GNSS User Equipment	
	European Telecommunications Standards Institute	
	an Standard	
	Communications Commission	
	ny Identifier at FCC	
	Industry Canada	
	Product marketing name	
	Host marketing name	
	Hardware version identification number	
	re version identification number	
	magnetic Compatibility	
HW Hardwa		
SW Softwar		
	ry number	
S/N or SN Serial n		
C Complia		
NC Not con	•	
NA Not app		
NP Not per		
PP Positive		
QP Quasi p		
AVG Average		
	ng channel	
	ng channel bandwidth	
	ed bandwidth	
OOB Out of b		
	c frequency selection	
	l availability check	
	ncy period	
	cupancy period	
DC Duty cy		
	error rate	
CW Clean w		
	ted carrier	
	s local area network	
	ocal area network	
	Dynamic sequence spread spectrum	
	onal frequency division multiplexing	
FHSS Frequer	ncy hopping spread spectrum	
	Navigation Satellite System	
C/N₀ Carrier	to noise-density ratio, expressed in dB-Hz	

14 Document history

Version	Applied changes	Date of release
-/-	Initial release	2022-03-01

15 Accreditation Certificate – D-PL-12076-01-03

first page	last page
<image/> <image/> <image/> <section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Standort Berlin Spittelmarkt 10 10117 Berlin Standort Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main Standort Braunschweig Bundesallee 100 38116 Braunschweig 38116 Braunschweig Die auszugsweise Veröffentlichung der Akkreditierungsurkunde bedarf der vorherigen schriftlichen Zuttermung der Dautsche Akkreditierungsstelle Gribbi (DAKS), Ausgenommen davon ist die separate Weiterverberbung des Deschlates durch die umseltig genannte Konformilätsbewertungsstelle in unveränderter Forn.
Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 09.06.2020mit der Akkreditierungsnummer D-PL-12076-01. Sie besteht aus diesem Deckhatt, der Rückseite des Deckhatts und der folgenden Anlage mit insegenant 25 Seiten. Registrierungsnummer der Urkunde: D-PL-12076-01-03 wahren bei der Bescheiten der Bescheiten der Bescheiten der Bescheiten der Bescheiten der Frankfurt um Mein, 09:06.2020 Die Unkunde samt Urkundersambeg obt den Stand aum Zeitpunkt der Ausstähungskabum wieder. Die jeweih eistweike Stand der Beinngekertein der Akkreditioneng ist ein Decentenke akkreditarengstable GmbH (DAAK) au enterhamen. Auftrichtungs ist ein Decentenke akkreditaren Stand der Beinngekertein der Akkreditarengstable GmbH (DAAK) au enterhamen.	Es darf nicht der Anschein erweckt werden, dass ich die Akkreditierung auch auf Bereiche erstreckt, die über den durch die DAKk Stettigten Arkreditierungsbereich Insusgehen. Die Akkreditierung erfolgte gemäß des Gesetzes über die Akkreditierungsstelle (AkKStelleG) sowie der Verordnung (EG) Nr. 765/2008 des Europäischen Parlaments und des Rates über die Vorschrif- ten für die Akkreditierung und Marktüberwechung im Zusammehnam gimt der Vermarkfung von Produkten. Die DAKks ist Unterzeichnerin der Multilateralen Abkommen zur gegenseitigen Anerkennung der European co-operation for Accreditation (EA), des International Accreditation Forum (IAF) und der Interzeitnet nicht Luberatory Accreditation Operation (ILAC). Die Unterzeichner dieser Abkommen erkennen her Akkreditierungen gegenseitig an. Der aktuelle Stand der Mitigieschaft kann folgenden Webselten entnommen werden: IAC: www.european-accreditation.org IAC: www.iaE.org IAF: www.iaE.ng

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-03.pdf or https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-03_TK.pdf