The Core Difference in Your Design
RX600 Microcontrollers
The RX architecture is future oriented and feature rich. It’s driven by a Renesas technology roadmap that focuses on the global environment and anticipates the enormous gains in sophistication that microcontroller-based products are expected to achieve in the next 10 to 20 years. Thus, the RX family of microcontrollers (MCUs) delivers superior performance in terms of core processing performance, code efficiency, and power consumption. An extensive portfolio of on-chip mixed-signal peripherals is available, and fast 90 nm Flash memory is embedded. That Flash unleashes full CPU performance, feeding instructions to the 32-bit RX CPU with no delays – no waits, no stalls – maintaining the MCU’s peak performance of 165 DMIPS. Memory acceleration isn’t required, and the result is just pure, predictable performance.

Performance without Sacrifice

Today designers are confronted with many critical design and implementation issues. RX MCUs are designed to solve these issues and help them create new innovative end-products faster and more easily than in the past.
RX MCUs leverage Renesas’ mature 90 nm embedded Flash process, which is currently the fastest in the industry with a 10 ns maximum read access time and is designed for optimized power consumption all the way up to full 100 MHz operation.

Design solutions in the RX600 series are scalable. Over 200 products are available now offering Flash memory from 32 KB to 2 MB and packages with 48 to 177 pins.

The companion low-voltage RX200 series are available since Spring, 2011. These more economical MCUs operate down to lower voltages (as low as 1.62 V), consume less power, and come in smaller packages and memory sizes.

The RX111 provides the entry level 32-bit performance devices in small packages with USB and lowest power consumption not only in active, but also in RTC mode.

The RX100, RX200 and RX600 share the same CPU core and integrate many of the same peripherals for easy migration between the three series.

RX MCUs come with comprehensive system development support, including a vast range of easy-to-use boards, tools, software, middleware, and RTOSs from Renesas and third-party suppliers, comprising a rich ecosystem of products for accelerating progress in design cycles and shrinking time to market.

Superior Architecture

- RX CPU Core with FPU and DSP: 165 DMIPS at 100 MHz
- Enhanced Harvard architecture and 5-stage pipeline
- More than six internal busses
- Multiple Direct Memory Access control
- Rapid interrupt response

Fast Flash

- Industry’s only 90 nm 100 MHz embedded Flash
- CPU receives instructions with no delays
- Mature and reliable silicon process

Power Efficiency

- 500 µA/MHz, with all peripherals active
- 1.4 µA RTC Deep Standby (RX631/63N)
- 1 mW per DMIPS
- Extends battery life in portable applications

Code Efficiency

- Up to 28% code size savings compared to popular 32-bit RISC MCUs on the market
- Variable-length CISC instructions
- FPU, DSP and bit manipulation instructions

Footnotes:
1: Source: Renesas internal testing
Advanced Design and Integration

RX600 Key Benefits

The RX Core marries the speed of a RISC architecture with the flexibility and code efficiency of a CISC architecture. The CPU interacts with the Flash and SRAM through an enhanced Harvard design. The RX Core leverages the industry’s fastest Flash memory, delivering 1.65 DMIPS/MHz and 3.12 CoreMark/MHz without wait states.

Tightly coupled to the RX Core are the FPU, MAC, and RMPA (Repeat Multiply Accumulate), which are efficiently driven by DSP and floating point instructions to meet the growing demand of DSC (Digital Signal Controller) type applications.

Simultaneous Data Transfers

The RX Core uses a large number of parallel busses to handle simultaneous movement of data between the CPU core, Flash, SRAM, and peripherals. Six different peripheral busses enable a flexible distribution of slow and fast peripherals for optimized throughput. An external bus with an independent DMA can move data directly from one external device to another external device, such as a graphic frame buffer to a TFT-LCD panel.
Performance

The RX Core delivers 1.65 DMIPS per MHz, achieving 165 DMIPS when running at 100 MHz.

> RX600 continues to perform very well in the CoreMark/MHz benchmarks with the results being continually improved with new compiler releases. At the time of printing, the IAR Systems EWRX delivers the best RX600 benchmarks, however please contact Renesas for updated performance figures.

Dhrystone MIPS per MHz

with no wait-state memory access

<table>
<thead>
<tr>
<th></th>
<th>RX600</th>
<th>Cortex™-M4</th>
<th>Cortex™-M3</th>
<th>ARM9</th>
<th>ARM7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.25</td>
<td>1.1</td>
<td>0.95</td>
<td>1.50</td>
<td>1.25</td>
</tr>
</tbody>
</table>

> Dhrystone 2.1 numbers for ARM processors taken from www.arm.com

Efficient Interrupt Handling

There are flexible options to achieve minimum latency for various scenarios:

> Normal interrupt responds in as few as seven CPU clock cycles from the event until the firmware serves the interrupt.*

> Fast interrupt mode can be assigned dynamically to any interrupt source, responding in just five CPU clocks, using dedicated registers to save and restore the CPU state.

> All interrupt service routines can be shortened by dedicating up to four RX CPU general registers for use only by interrupts, eliminating the need to push and pop the registers to and from the stack.

*Interrupt priority judgement cycles not included.

Substantial Code Size Reduction

The RX CISC CPU architecture has inherent advantages over RISC CPUs in terms of code size, with RX’s variable length instructions ranging from 8 bits to 64 bits, allowing the compiler to select just the right instruction to do the job.

> Many RISC MCUs have only two instruction lengths, 16 bits and 32 bits, so the compiler must make compromises.

> RX CPU supports 10 addressing modes, which optimize manipulation and movement of data.

> Compiled RX code has been measured as much as 28% smaller than the same code compiled on a popular RISC MCU.

Superior FPU Implementation

The RX FPU implementation allows direct access to general registers, resulting in faster execution and smaller code size.

> RX eliminates the overhead of load/store operations

> Results in higher performance and smaller code size

Industry’s only 100 MHz On-chip Flash

The RX Core delivers 1.65 DMIPS per MHz, achieving 165 DMIPS when running at 100 MHz.

> RX600 continues to perform very well in the CoreMark/MHz benchmarks with the results being continually improved with new compiler releases. At the time of printing, the IAR Systems EWRX delivers the best RX600 benchmarks, however please contact Renesas for updated performance figures.

Dhrystone MIPS per MHz

with no wait-state memory access

<table>
<thead>
<tr>
<th></th>
<th>RX600</th>
<th>Cortex™-M4</th>
<th>Cortex™-M3</th>
<th>ARM9</th>
<th>ARM7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.25</td>
<td>1.1</td>
<td>0.95</td>
<td>1.50</td>
<td>1.25</td>
</tr>
</tbody>
</table>

> Dhrystone 2.1 numbers for ARM processors taken from www.arm.com

Efficient Interrupt Handling

There are flexible options to achieve minimum latency for various scenarios:

> Normal interrupt responds in as few as seven CPU clock cycles from the event until the firmware serves the interrupt.*

> Fast interrupt mode can be assigned dynamically to any interrupt source, responding in just five CPU clocks, using dedicated registers to save and restore the CPU state.

> All interrupt service routines can be shortened by dedicating up to four RX CPU general registers for use only by interrupts, eliminating the need to push and pop the registers to and from the stack.

*Interrupt priority judgement cycles not included.

Substantial Code Size Reduction

The RX CISC CPU architecture has inherent advantages over RISC CPUs in terms of code size, with RX’s variable length instructions ranging from 8 bits to 64 bits, allowing the compiler to select just the right instruction to do the job.

> Many RISC MCUs have only two instruction lengths, 16 bits and 32 bits, so the compiler must make compromises.

> RX CPU supports 10 addressing modes, which optimize manipulation and movement of data.

> Compiled RX code has been measured as much as 28% smaller than the same code compiled on a popular RISC MCU.

Superior FPU Implementation

The RX FPU implementation allows direct access to general registers, resulting in faster execution and smaller code size.

> RX eliminates the overhead of load/store operations

> Results in higher performance and smaller code size

Industry’s only 100 MHz On-chip Flash

The RX Core delivers 1.65 DMIPS per MHz, achieving 165 DMIPS when running at 100 MHz.

> RX600 continues to perform very well in the CoreMark/MHz benchmarks with the results being continually improved with new compiler releases. At the time of printing, the IAR Systems EWRX delivers the best RX600 benchmarks, however please contact Renesas for updated performance figures.

Dhrystone MIPS per MHz

with no wait-state memory access

<table>
<thead>
<tr>
<th></th>
<th>RX600</th>
<th>Cortex™-M4</th>
<th>Cortex™-M3</th>
<th>ARM9</th>
<th>ARM7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.25</td>
<td>1.1</td>
<td>0.95</td>
<td>1.50</td>
<td>1.25</td>
</tr>
</tbody>
</table>

> Dhrystone 2.1 numbers for ARM processors taken from www.arm.com

Efficient Interrupt Handling

There are flexible options to achieve minimum latency for various scenarios:

> Normal interrupt responds in as few as seven CPU clock cycles from the event until the firmware serves the interrupt.*

> Fast interrupt mode can be assigned dynamically to any interrupt source, responding in just five CPU clocks, using dedicated registers to save and restore the CPU state.

> All interrupt service routines can be shortened by dedicating up to four RX CPU general registers for use only by interrupts, eliminating the need to push and pop the registers to and from the stack.

*Interrupt priority judgement cycles not included.

Substantial Code Size Reduction

The RX CISC CPU architecture has inherent advantages over RISC CPUs in terms of code size, with RX’s variable length instructions ranging from 8 bits to 64 bits, allowing the compiler to select just the right instruction to do the job.

> Many RISC MCUs have only two instruction lengths, 16 bits and 32 bits, so the compiler must make compromises.

> RX CPU supports 10 addressing modes, which optimize manipulation and movement of data.

> Compiled RX code has been measured as much as 28% smaller than the same code compiled on a popular RISC MCU.
Highly Effective Power Management

Strike an optimized balance of performance and power consumption with many low-power modes of operation enabled by these design techniques:

- Flexible system clocking and gating for each peripheral
- Selective power domain gating for unused sections of the device
- Low-power, high-voltage threshold transistors minimize leakage

Milliwatts per DMIPS*

![Graph showing power consumption comparison]

- Compared to a Cortex-M3 based MCU, an RX600 chip enables up to a 43% power reduction – consuming only 1 mW per DMIPS

EMC Advantages – Built-in to Eliminate Add-Ons

Outstanding EMC performance of RX600 MCUs reduces system-integration problems, lowers development costs, and shortens design cycles. BOM costs drop, too, because external components can be eliminated

- Strong electromagnetic immunity boosts system reliability
- Careful VCC and VSS layout
- Noise filters on input signals
- Advanced chip layout techniques

“Langer EMV and Renesas Electronics today announced that the RX600 microcontroller (MCU) family is the most robust MCU Langer EMV has ever tested against environmental noise”

Renesas press release, October 21, 2010

RX Family Performance/Power Consumption Comparison

The RX family now contains three series of 32-bit MCUs that are optimized for a vast range of application requirements. The RX100, RX200 and RX600 series are CPU and peripheral compatible and share the same software tools and ecosystem.

MCUs in the top-level RX600 series are ideal for systems that require high-performance, excellent connectivity, LCD drive and motor control capability. By contrast, devices in the RX200 and RX100 series are optimized for ultra-low-power, portable applications, safety functionality and integrated analog interfaces.

RX100
- The entry level RX100 series is the lowest cost product line in the RX Family. The RX111 group offers ultra-low-power operation, a fast wake-up time, USB connectivity, 8KB data Flash, a DAC, and communication channels. Pin counts in the RX100 series are as low as 36 pins, and the on-chip Flash memory is from 16KB up to 128KB, with a roadmap to 256KB.

RX200
- RX210 MCUs feature memory sizes from 32KB to 1MB and provide an integrated 12-bit ADC, analog comparator and temperature sensor. RX220 MCUs aim at price-sensitive designs; they come in smaller packages with as few as 48 pins and offer additional options for smaller memory footprint applications. The RX21A group features advanced analog and security functions such as a 24-bit Delta-Sigma data converter and a Memory Protection Unit.

RX600
- RX62N and RX63N product groups are characterized by advanced connectivity with Ethernet, USB host function, and multiple CAN interfaces; those in the RX62T, RX63T and RX62G groups have features specifically intended for controlling motors and power inverters.
RX600 MCU Series Roadmap

RX600 MCU Series Portfolio
Comprehensive On-chip Peripherals

To save cost, simplify system designs, reduce total system power consumption, and enable the implementation of value-added features, a wide range of on-chip peripheral functions is clustered around the powerful CPU core of RX MCUs. Broadly categorized into analog, timer, communication and system functions, these numerous peripherals are proven designs delivering impressive performance. The many different types of RX MCUs offer diverse sets of functions, so chip capabilities and cost can be matched to application needs. The devices in the RX621/62N/630/631/63N and RX62T/63T/62G product groups exemplify this diversity and optimization.

- RX621/62N/631/63N MCUs provide extensive communication peripherals with options for Ethernet, up to three CAN, and up to two USB-FS 2.0 channels, each operating as USB Host, USB Device, or USB OTG (On the Go). Additionally, they offer up to thirteen SCI, three SPI, and four I²C serial channels. Among their other peripherals are analog interfaces; timers; RTC and POR/LVD functions; and more.

- RX62T/63T MCUs provide improved motor/inverter control timers and enhanced analog peripherals for implementing very precise motor control and positioning applications. The MTU3 and GPT timer peripherals enable one MCU to control three motors simultaneously. An FPU and improved analog functions make these MCUs ideal for use with three-shunt or single-shunt vector-type motor control methods.

- RX630 MCU provides an fantastic General Purpose feature set making it suitable for many different applications. Communication peripherals with up to 3 CAN, and USB-FS 2.0 channel operating as USB Device. Additionally, they offer up to thirteen SCI, three SPI and four I²C serial channels. Among their other peripherals are analog interfaces; timers; RTC and POR/LVD functions; and more.

- RX62G MCU provides improved high resolution timer functionality base on the GPT Timer unit, enable to generate a PWM signal with 312.5 psec/bit. An FPU and improved analog functions make these MCUs ideal solution for Digital Power Supply designs, where a High Resolution timer is essential to bring the system design cost down.
<table>
<thead>
<tr>
<th>Connectivity</th>
<th>Advanced Peripheral Set</th>
<th>Security</th>
<th>Basic Peripheral Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX62I</td>
<td>Advanced ADC</td>
<td>AES</td>
<td>Memory</td>
</tr>
<tr>
<td>RX63I</td>
<td>Advanced ADC</td>
<td>AES</td>
<td>Analog</td>
</tr>
<tr>
<td>RX62N</td>
<td>Advanced ADC</td>
<td>AES</td>
<td>Timers</td>
</tr>
<tr>
<td>RX63N</td>
<td>Advanced ADC</td>
<td>AES</td>
<td>Communication</td>
</tr>
<tr>
<td>RX610</td>
<td>General Purpose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX630</td>
<td>General Purpose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX62T</td>
<td>Motor Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX63T</td>
<td>Motor Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX63T-H</td>
<td>Motor Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX62G</td>
<td>Motor Control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* USB device only **Digital Power Supply ***Incl. High Res. Timer

10/100 MAC
- MI or RMII connection to PHY
- 2KB xmit and 2KB recv buffers

Up to 2 x FS Host, Device, or OTG
- 10 endpoints, 2KB FIFO
- Self or bus-powered, on-chip PHY

Compliant with CAN 2.0B specification
- 32 x transmit/receive mailbox
- 8 x individual acceptance masks

1 x master channel
- Baud rate generator

Standard, Fast, and High Speed (1MHz)
- Master, slave, multi-master support
- Digital noise filtering

Serial Communications Interface
- Synchronous and Asynchronous UART and 9-bit mode, Smart Card

Master, slave, multi-master support
- 3-wire or 4-wire operation
- Double-buffered 8-bit to 32-bit data length

Transfers data from external to external device
- Data movement has minimal load on CPU
- Drive colour TFT-LCD with external frame SDRAM/SRAM

8-, 16-, 32-bit CPU data width, 24-bit address
- 8 x programmable chip select regions
- SDRAM support

Programmable configuration at each pin
- Options for built-in pull-up and 5V tolerance
- Multiplexed with internal peripheral functions

Built-in Power-on Reset generation
- Precision Low-voltage Detect early warning
- Source of reset can be read by firmware
<table>
<thead>
<tr>
<th>Device</th>
<th>Memory</th>
<th>Operation</th>
<th>Interfaces</th>
<th>Timers</th>
<th>Clock</th>
<th>Parallel I/F</th>
<th>Analog</th>
<th>Miscellaneous Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX610</td>
<td>128 k + 8 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX62G</td>
<td>128 k + 8 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F562G7DDFP</td>
<td>128 k + 8 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F562G7DDFH</td>
<td>128 k + 8 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F56218BDLD</td>
<td>512 k + 32 k</td>
<td>96 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F562N7ADFP</td>
<td>384 k + 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F562N8ADFP</td>
<td>512 k + 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F562N7ADLE</td>
<td>384 k + 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F562N8ADLE</td>
<td>512 k + 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F562N7BDBG</td>
<td>384 k + 32 k</td>
<td>8 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F56216BDLD</td>
<td>256 k + 32 k</td>
<td>96 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F56217BDLD</td>
<td>384 k + 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F56216BDFP</td>
<td>256 k + 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F56216BDFB</td>
<td>256 k + 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F56217BDFB</td>
<td>384 k + 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F56216BDLE</td>
<td>256 k + 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F56217BDBG</td>
<td>384 k + 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F56218BDBG</td>
<td>512 k + 32 k</td>
<td>96 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F56107VDFP</td>
<td>1536 k + 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F56106WDBG</td>
<td>1024 k + 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F56107WDBG</td>
<td>1536 k + 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F56104VDFP</td>
<td>768 x 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Device: RX600 MCU Series Devices 1/8

Memory:
- 128 k + 8 k
- 256 k + 32 k
- 512 k + 32 k
- 384 k + 32 k
- 256 k + 32 k
- 512 k + 32 k
- 256 k + 32 k
- 384 k + 32 k
- 512 k + 32 k
- 256 k + 32 k
- 384 k + 32 k
- 512 k + 32 k
- 384 k + 32 k
- 512 k + 32 k
- 256 k + 32 k
- 384 k + 32 k
- 512 k + 32 k

Operation:
- 3.0 - 3.6 V
- 2.7 - 3.6 V
- 4.0 - 5.5 V

Interfaces:
- UART
- SPI
- SCI
- LIN
- CAN
- USB Device
- Ethernet
- USB Host
- USB Hub
- USB-OTG

Timers:
- 8 ch
- 16 ch
- 14 ch
- 6 ch
- 12 ch

Clock:
- 4 MHz
- 1.6 MHz

Parallel I/F:
- 2 ch

Analog:
- I2C
- SPI

Miscellaneous Information:
- BGA 176-pin
- FPU
- DSP

Other Features:
- Barl Shifter
- Pattern Generator
- Detection
- Clock Stop
- ADC

Package:
- 144-pin LQFP
- 100-pin LQFP
- 176-pin TQFP

Qualification:
- Generator (PPG)
- Programable
- Barl Shifter
- Programmable
- Pattern Generator
- ADC

Other Information:
- 312.5 k/sec/Hz

Clock:
- 4 MHz
- 1.6 MHz
RX600 MCU Series Devices 2/8

<table>
<thead>
<tr>
<th>Device</th>
<th>Memory</th>
<th>Operation</th>
<th>Interfaces</th>
<th>Timers</th>
<th>Clock</th>
<th>Parallel I/F</th>
<th>Analog</th>
<th>Miscellaneous Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600T</td>
<td></td>
<td>256 k + 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600H</td>
<td></td>
<td>256 k + 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600F</td>
<td></td>
<td>256 k + 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600E</td>
<td></td>
<td>256 k + 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600D</td>
<td></td>
<td>256 k + 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600C</td>
<td></td>
<td>256 k + 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600B</td>
<td></td>
<td>256 k + 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600A</td>
<td></td>
<td>256 k + 32 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600G</td>
<td></td>
<td>128 k + 8 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600F</td>
<td></td>
<td>128 k + 8 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600E</td>
<td></td>
<td>128 k + 8 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600D</td>
<td></td>
<td>128 k + 8 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600C</td>
<td></td>
<td>128 k + 8 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600B</td>
<td></td>
<td>128 k + 8 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600A</td>
<td></td>
<td>128 k + 8 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600G</td>
<td></td>
<td>64 k + 8 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600F</td>
<td></td>
<td>64 k + 8 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600E</td>
<td></td>
<td>64 k + 8 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600D</td>
<td></td>
<td>64 k + 8 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600C</td>
<td></td>
<td>64 k + 8 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600B</td>
<td></td>
<td>64 k + 8 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600A</td>
<td></td>
<td>64 k + 8 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600G</td>
<td></td>
<td>32 k + 4 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600F</td>
<td></td>
<td>32 k + 4 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600E</td>
<td></td>
<td>32 k + 4 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600D</td>
<td></td>
<td>32 k + 4 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600C</td>
<td></td>
<td>32 k + 4 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600B</td>
<td></td>
<td>32 k + 4 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600A</td>
<td></td>
<td>32 k + 4 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600G</td>
<td></td>
<td>16 k + 2 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600F</td>
<td></td>
<td>16 k + 2 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600E</td>
<td></td>
<td>16 k + 2 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600D</td>
<td></td>
<td>16 k + 2 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600C</td>
<td></td>
<td>16 k + 2 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600B</td>
<td></td>
<td>16 k + 2 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600A</td>
<td></td>
<td>16 k + 2 k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Device Memory Operation Interfaces Timers Clock Parallel I/F Analog Miscellaneous Information

- **Device**: RX600T, RX600H, RX600F, RX600E, RX600D, RX600C, RX600B, RX600A, RX600G
- **Memory**: 256 k + 32 k, 128 k + 8 k, 64 k + 8 k, 32 k + 4 k, 16 k + 2 k
- **Operation**: 2.7 – 3.6 V, 4.0 – 5.5 V, 2.7 – 3.6 V, 2.7 – 3.6 V
- **Interfaces**: SPI, SCI, I2C, LIN, CAN, USB (Host/Device/OTG), Ethernet
- **Timers**: Timer 8-bit, Timer 16-bit, Motor, IWDT, WDTRTC, LOCO, HOCO, 32.768 kHz, TFT LCD, External Data Bus
- **Clock**: 10-bit ADC, 12-bit ADC, ProgOpAmp, POR & LVD
- **Parallel I/F**: SPI, SCI, I2C, LIN, CAN, USB (Host/Device/OTG), Ethernet
- **Analog**: Security, DMADTC, Packages
- **Miscellaneous Information**: Industrial: -40°C to 85°C, FPU, DSP, RMPA, Barrel Shifter, External Input, POE, Windows, Comparator, Clock Stop Detection, Clock Monitoring, ADC Diagnostic, CRC Unit

- **RX600T**
 - 256 k + 32 k
 - 2.7 – 3.6 V
 - 16 k
 - SPI
 - 2 x 4ch
 - LQFP 100-pin 20 x 20mm 0.85 mm pitch

- **RX600H**
 - 256 k + 32 k
 - 2.7 – 3.6 V
 - 16 k
 - SPI
 - 1 x 4ch
 - LQFP 100-pin 14 x 14 mm 0.5 mm pitch

- **RX600F**
 - 256 k + 32 k
 - 2.7 – 3.6 V
 - 8 k
 - SPI
 - 1 x 4ch
 - LQFP 80-pin 14 x 14 mm 0.65 mm pitch

- **RX600E**
 - 256 k + 32 k
 - 2.7 – 3.6 V
 - 8 k
 - SPI
 - 1 x 4ch
 - LQFP 112-pin 20 x 20mm 0.65 mm pitch

- **RX600D**
 - 256 k + 32 k
 - 2.7 – 3.6 V
 - 8 k
 - SPI
 - 1 x 4ch
 - LQFP 80-pin 14 x 14 mm 0.5 mm pitch

- **RX600C**
 - 256 k + 32 k
 - 2.7 – 3.6 V
 - 8 k
 - SPI
 - 1 x 4ch
 - LQFP 80-pin 14 x 14 mm 0.65 mm pitch

- **RX600B**
 - 256 k + 32 k
 - 2.7 – 3.6 V
 - 8 k
 - SPI
 - 1 x 4ch
 - LQFP 80-pin 14 x 14 mm 0.5 mm pitch

- **RX600A**
 - 256 k + 32 k
 - 2.7 – 3.6 V
 - 8 k
 - SPI
 - 1 x 4ch
 - LQFP 80-pin 14 x 14 mm 0.65 mm pitch

- **RX600G**
 - 256 k + 32 k
 - 2.7 – 3.6 V
 - 16 k
 - SPI
 - 2 x 4ch
 - LQFP 64-pin 10 x 10 mm 0.5 mm pitch
RX630 MCU Series Devices

<table>
<thead>
<tr>
<th>Group</th>
<th>Device</th>
<th>Part Number</th>
<th>Flash (Byte)</th>
<th>RAM (Byte)</th>
<th>Max. Clock Speed (MHz)</th>
<th>Supply Voltage (V)</th>
<th>Interface</th>
<th>Timer</th>
<th>Clock</th>
<th>Parallel</th>
<th>Analog</th>
<th>Miscellaneous Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOFF 176-pin 24 x 24 mm 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>BGA 176-pin 13 x 13mm 0.8 mm</td>
</tr>
<tr>
<td></td>
<td>LGA 145-pin 7 x 7 mm 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>LGA 100-pin 5 x 5.5 mm 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>LOPF 100-pin 14 x 14 mm 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>LOPF 100-pin 12 x 12 mm 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>FP1/DSP RMPA; Barrel Shifter; Programmable Pattern Generator (PPG); RTC with Vbat; CRC Unit; Temperature Sensor</td>
</tr>
<tr>
<td></td>
<td>FP1/DSP RMPA; Barrel Shifter; External Input (POE) Windows Comparator; Clock Stop Detection; Clock Monitoring; ADC Diagnostic; CRC Unit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Device</th>
<th>Part Number</th>
<th>Flash (Byte)</th>
<th>RAM (Byte)</th>
<th>Max. Clock Speed (MHz)</th>
<th>Supply Voltage (V)</th>
<th>Interface</th>
<th>Timer</th>
<th>Clock</th>
<th>Parallel</th>
<th>Analog</th>
<th>Miscellaneous Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOFF 176-pin 24 x 24 mm 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>BGA 176-pin 13 x 13mm 0.8 mm</td>
</tr>
<tr>
<td></td>
<td>LGA 145-pin 7 x 7 mm 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>LGA 100-pin 5 x 5.5 mm 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>LOPF 100-pin 14 x 14 mm 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>LOPF 100-pin 12 x 12 mm 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>FP1/DSP RMPA; Barrel Shifter; Programmable Pattern Generator (PPG); RTC with Vbat; CRC Unit; Temperature Sensor</td>
</tr>
<tr>
<td></td>
<td>FP1/DSP RMPA; Barrel Shifter; External Input (POE) Windows Comparator; Clock Stop Detection; Clock Monitoring; ADC Diagnostic; CRC Unit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Device</th>
<th>Part Number</th>
<th>Flash (Byte)</th>
<th>RAM (Byte)</th>
<th>Max. Clock Speed (MHz)</th>
<th>Supply Voltage (V)</th>
<th>Interface</th>
<th>Timer</th>
<th>Clock</th>
<th>Parallel</th>
<th>Analog</th>
<th>Miscellaneous Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOFF 176-pin 24 x 24 mm 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>BGA 176-pin 13 x 13mm 0.8 mm</td>
</tr>
<tr>
<td></td>
<td>LGA 145-pin 7 x 7 mm 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>LGA 100-pin 5 x 5.5 mm 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>LOPF 100-pin 14 x 14 mm 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>LOPF 100-pin 12 x 12 mm 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>FP1/DSP RMPA; Barrel Shifter; Programmable Pattern Generator (PPG); RTC with Vbat; CRC Unit; Temperature Sensor</td>
</tr>
<tr>
<td></td>
<td>FP1/DSP RMPA; Barrel Shifter; External Input (POE) Windows Comparator; Clock Stop Detection; Clock Monitoring; ADC Diagnostic; CRC Unit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Device</th>
<th>Part Number</th>
<th>Flash (Byte)</th>
<th>RAM (Byte)</th>
<th>Max. Clock Speed (MHz)</th>
<th>Supply Voltage (V)</th>
<th>Interface</th>
<th>Timer</th>
<th>Clock</th>
<th>Parallel</th>
<th>Analog</th>
<th>Miscellaneous Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOFF 176-pin 24 x 24 mm 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>BGA 176-pin 13 x 13mm 0.8 mm</td>
</tr>
<tr>
<td></td>
<td>LGA 145-pin 7 x 7 mm 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>LGA 100-pin 5 x 5.5 mm 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>LOPF 100-pin 14 x 14 mm 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>LOPF 100-pin 12 x 12 mm 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>FP1/DSP RMPA; Barrel Shifter; Programmable Pattern Generator (PPG); RTC with Vbat; CRC Unit; Temperature Sensor</td>
</tr>
<tr>
<td></td>
<td>FP1/DSP RMPA; Barrel Shifter; External Input (POE) Windows Comparator; Clock Stop Detection; Clock Monitoring; ADC Diagnostic; CRC Unit</td>
</tr>
<tr>
<td>Device</td>
<td>Memory</td>
<td>Operation</td>
<td>Interfaces</td>
<td>Timers</td>
<td>Clock</td>
<td>Parallel I/F</td>
<td>Analog</td>
<td>Miscellaneous Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part Number</td>
<td>Package</td>
<td>Qualification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX63T</td>
<td>R5F563TBBDF 256k + 32k</td>
<td>256x – 32k</td>
<td>LQFP 144-pin 20 x 20 mm 6.5 mm pitch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R5F563TBBDF 256k + 32k</td>
<td>256x – 32k</td>
<td>LQFP 112-pin 16 x 16 mm 5.5 mm pitch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R5F563TBBDF 256k + 32k</td>
<td>256x – 32k</td>
<td>LQFP 100-pin 14 x 14 mm 5.5 mm pitch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R5F563TBBDF 256k + 32k</td>
<td>256x – 32k</td>
<td>LQFP 64-pin 10 x 10 mm 6.5 mm pitch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R5F563TBBDF 256k + 32k</td>
<td>256x – 32k</td>
<td>LQFP 48-pin 7 x 7 mm 5.5 mm pitch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device</td>
<td>Memory</td>
<td>Operation</td>
<td>Interfaces</td>
<td>Timers</td>
<td>Clock</td>
<td>Parallel/UF</td>
<td>Analog</td>
<td>Miscellaneous Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>--------</td>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX600</td>
<td>MCU</td>
<td>RAM [k]</td>
<td>SPI/SCI/US</td>
<td>Timer 8-bit</td>
<td>Timer 16-bit</td>
<td>Port & LVD</td>
<td>Security</td>
<td>Package</td>
<td>Qualification</td>
<td>Others Features</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| RX630 | 1024 k | 256 k | 130 | 2 | 4 | 22 | 1 1 | Vbat Anti Tamper | Yes | Yes | SDRAM
| RX631 | 1024 k | 256 k | 111 | 1 | 1 | 1 | 1 1 | Vbat Anti Tamper | Yes | 4 | YES |
| RX632 | 1024 k | 256 k | 130 | 2 | 4 | 22 | 1 1 | Vbat Anti Tamper | Yes | Yes | SDRAM
| RX633 | 1024 k | 256 k | 111 | 1 | 1 | 1 | 1 1 | Vbat Anti Tamper | Yes | 4 | YES |
| RX634 | 1024 k | 256 k | 130 | 2 | 4 | 22 | 1 1 | Vbat Anti Tamper | Yes | Yes | SDRAM
| RX635 | 1024 k | 256 k | 111 | 1 | 1 | 1 | 1 1 | Vbat Anti Tamper | Yes | 4 | YES |
| RX636 | 1024 k | 256 k | 130 | 2 | 4 | 22 | 1 1 | Vbat Anti Tamper | Yes | Yes | SDRAM
| RX637 | 1024 k | 256 k | 111 | 1 | 1 | 1 | 1 1 | Vbat Anti Tamper | Yes | 4 | YES |
| RX638 | 1024 k | 256 k | 130 | 2 | 4 | 22 | 1 1 | Vbat Anti Tamper | Yes | Yes | SDRAM
| RX639 | 1024 k | 256 k | 111 | 1 | 1 | 1 | 1 1 | Vbat Anti Tamper | Yes | 4 | YES |
| RX640 | 1024 k | 256 k | 130 | 2 | 4 | 22 | 1 1 | Vbat Anti Tamper | Yes | Yes | SDRAM
| RX641 | 1024 k | 256 k | 111 | 1 | 1 | 1 | 1 1 | Vbat Anti Tamper | Yes | 4 | YES |
| RX643 | 1024 k | 256 k | 130 | 2 | 4 | 22 | 1 1 | Vbat Anti Tamper | Yes | Yes | SDRAM
| RX644 | 1024 k | 256 k | 111 | 1 | 1 | 1 | 1 1 | Vbat Anti Tamper | Yes | 4 | YES |
| RX645 | 1024 k | 256 k | 130 | 2 | 4 | 22 | 1 1 | Vbat Anti Tamper | Yes | Yes | SDRAM
| RX646 | 1024 k | 256 k | 111 | 1 | 1 | 1 | 1 1 | Vbat Anti Tamper | Yes | 4 | YES |
| RX647 | 1024 k | 256 k | 130 | 2 | 4 | 22 | 1 1 | Vbat Anti Tamper | Yes | Yes | SDRAM
| RX648 | 1024 k | 256 k | 111 | 1 | 1 | 1 | 1 1 | Vbat Anti Tamper | Yes | 4 | YES |
| RX649 | 1024 k | 256 k | 130 | 2 | 4 | 22 | 1 1 | Vbat Anti Tamper | Yes | Yes | SDRAM
| RX650 | 1024 k | 256 k | 111 | 1 | 1 | 1 | 1 1 | Vbat Anti Tamper | Yes | 4 | YES |
| RX651 | 1024 k | 256 k | 130 | 2 | 4 | 22 | 1 1 | Vbat Anti Tamper | Yes | Yes | SDRAM
| RX652 | 1024 k | 256 k | 111 | 1 | 1 | 1 | 1 1 | Vbat Anti Tamper | Yes | 4 | YES |
| RX653 | 1024 k | 256 k | 130 | 2 | 4 | 22 | 1 1 | Vbat Anti Tamper | Yes | Yes | SDRAM
| RX654 | 1024 k | 256 k | 111 | 1 | 1 | 1 | 1 1 | Vbat Anti Tamper | Yes | 4 | YES |
| RX655 | 1024 k | 256 k | 130 | 2 | 4 | 22 | 1 1 | Vbat Anti Tamper | Yes | Yes | SDRAM
| RX656 | 1024 k | 256 k | 111 | 1 | 1 | 1 | 1 1 | Vbat Anti Tamper | Yes | 4 | YES |
| RX657 | 1024 k | 256 k | 130 | 2 | 4 | 22 | 1 1 | Vbat Anti Tamper | Yes | Yes | SDRAM
| RX658 | 1024 k | 256 k | 111 | 1 | 1 | 1 | 1 1 | Vbat Anti Tamper | Yes | 4 | YES |
| RX659 | 1024 k | 256 k | 130 | 2 | 4 | 22 | 1 1 | Vbat Anti Tamper | Yes | Yes | SDRAM
| RX660 | 1024 k | 256 k | 111 | 1 | 1 | 1 | 1 1 | Vbat Anti Tamper | Yes | 4 | YES |
| RX661 | 1024 k | 256 k | 130 | 2 | 4 | 22 | 1 1 | Vbat Anti Tamper | Yes | Yes | SDRAM
| RX662 | 1024 k | 256 k | 111 | 1 | 1 | 1 | 1 1 | Vbat Anti Tamper | Yes | 4 | YES |
| RX663 | 1024 k | 256 k | 130 | 2 | 4 | 22 | 1 1 | Vbat Anti Tamper | Yes | Yes | SDRAM
| RX664 | 1024 k | 256 k | 111 | 1 | 1 | 1 | 1 1 | Vbat Anti Tamper | Yes | 4 | YES |
| RX665 | 1024 k | 256 k | 130 | 2 | 4 | 22 | 1 1 | Vbat Anti Tamper | Yes | Yes | SDRAM
| RX666 | 1024 k | 256 k | 111 | 1 | 1 | 1 | 1 1 | Vbat Anti Tamper | Yes | 4 | YES |
| RX667 | 1024 k | 256 k | 130 | 2 | 4 | 22 | 1 1 | Vbat Anti Tamper | Yes | Yes | SDRAM
| RX668 | 1024 k | 256 k | 111 | 1 | 1 | 1 | 1 1 | Vbat Anti Tamper | Yes | 4 | YES |
| RX669 | 1024 k | 256 k | 130 | 2 | 4 | 22 | 1 1 | Vbat Anti Tamper | Yes | Yes | SDRAM
<p>| RX670 | 1024 k | 256 k | 111 | 1 | 1 | 1 | 1 1 | Vbat Anti Tamper | Yes | 4 | YES |</p>
<table>
<thead>
<tr>
<th>Device</th>
<th>Memory</th>
<th>Operation</th>
<th>Interfaces</th>
<th>Timers</th>
<th>Clock</th>
<th>Parallel I/F</th>
<th>Analog</th>
<th>Miscellaneous Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX631</td>
<td>2048 k + 32 k</td>
<td>16384 k + 32 k</td>
<td>512 k + 32 k</td>
<td>128 k</td>
<td>128 k</td>
<td>AES</td>
<td>AES</td>
<td>164-pin 20 x 20 mm 0.5 mm</td>
</tr>
<tr>
<td>RX631 JHDFB</td>
<td>1536 k + 32 k</td>
<td>1024 k + 32 k</td>
<td>384 k + 32 k</td>
<td>128 k</td>
<td>128 k</td>
<td>AES</td>
<td>AES</td>
<td>144-pin 10 x 10 mm 0.5 mm</td>
</tr>
<tr>
<td>RX631 KDDFB</td>
<td>768 k + 32 k</td>
<td>512 k + 32 k</td>
<td>256 k + 32 k</td>
<td>128 k</td>
<td>128 k</td>
<td>AES</td>
<td>AES</td>
<td>100-pin 7 x 7 mm 0.65 mm</td>
</tr>
<tr>
<td>RX631 JDDFB</td>
<td>576 k + 32 k</td>
<td>384 k + 32 k</td>
<td>192 k + 32 k</td>
<td>64 k</td>
<td>64 k</td>
<td>AES</td>
<td>AES</td>
<td>51-pin 7 x 7 mm 0.65 mm</td>
</tr>
<tr>
<td>RX631 NDDFB</td>
<td>256 k + 32 k</td>
<td>128 k + 32 k</td>
<td>32 k + 32 k</td>
<td>128 k</td>
<td>128 k</td>
<td>AES</td>
<td>AES</td>
<td>32-pin 7 x 7 mm 0.65 mm</td>
</tr>
</tbody>
</table>

RX600 MCU Series Devices 6/8
<table>
<thead>
<tr>
<th>Device</th>
<th>Memory</th>
<th>Operation</th>
<th>Interfaces</th>
<th>Timers</th>
<th>Clock</th>
<th>Parallel I/F</th>
<th>Analog</th>
<th>Miscellaneous Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX600 MCU Series Devices 7/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device</td>
<td>Memory</td>
<td>Operation</td>
<td>Interfaces</td>
<td>Timers</td>
<td>Clock</td>
<td>Parallel/I/F</td>
<td>Analog</td>
<td>Miscellaneous Information</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>----------------------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>RX63N</td>
<td>R5F563NEDDFJ</td>
<td>2048 k + 32 k</td>
<td>100</td>
<td>2.3 – 3.6 V</td>
<td>76</td>
<td>2</td>
<td>1</td>
<td>1 Vbat, Anti Tamper, Security, LGA 100-pin 7 x 2 mm 0.65 mm</td>
</tr>
<tr>
<td></td>
<td>R5F563NDDDFJ</td>
<td>1536 k + 32 k</td>
<td></td>
<td></td>
<td>120</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R5F563NBDDDFJ</td>
<td>1024 k + 32 k</td>
<td></td>
<td></td>
<td>120</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R5F563NADDFJ</td>
<td>768 k + 32 k</td>
<td></td>
<td></td>
<td>120</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R5F563NEDDFP</td>
<td>2048 k + 32 k</td>
<td></td>
<td></td>
<td>256</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R5F563NDDDFP</td>
<td>1536 k + 32 k</td>
<td></td>
<td></td>
<td>256</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R5F563NBDDFP</td>
<td>1024 k + 32 k</td>
<td></td>
<td></td>
<td>256</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R5F563NADDFP</td>
<td>768 k + 32 k</td>
<td></td>
<td></td>
<td>256</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R5F563NEDDPF</td>
<td>2048 k + 32 k</td>
<td></td>
<td></td>
<td>10</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R5F563NDDDPF</td>
<td>1536 k + 32 k</td>
<td></td>
<td></td>
<td>10</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R5F563NBDDFP</td>
<td>1024 k + 32 k</td>
<td></td>
<td></td>
<td>10</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R5F563NADDPF</td>
<td>768 k + 32 k</td>
<td></td>
<td></td>
<td>10</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Group: RX600 MCU Series Devices

Part Number:
- R5F563NEDDFJ
- R5F563NDDDFJ
- R5F563NBDDDFJ
- R5F563NADDFJ
- R5F563NEDDFP
- R5F563NDDDFP
- R5F563NBDDFP
- R5F563NADDFP
- R5F563NEDDPF
- R5F563NDDDPF
- R5F563NBDDFP
- R5F563NADDPF
- R5F563NEDDFP
- R5F563NDDDFP
- R5F563NBDDFP
- R5F563NADDFP
- R5F563NEDDPF
- R5F563NDDDPF
- R5F563NBDDFP
- R5F563NADDPF

Features:
- DDR3
- SPI
- SCI
- I2C
- LINCAN
- USB (Host/Device/OTG)
- Ethernet
- Timer 8-bit
- Timer 16-bit
- Motor
- IOMT
- RTC
- WDT
- CO
- 32.768 kHz
- TFT LCD
- External Data Bus
- 10-bit ADC
- 12-bit ADC
- 10-bit DAC
- ProgOpAmp
- POR & LVD
- Security

Security Features:
- AES
- LGA
- LQFP
- DPA
- FPU
- AES
- LGA
- LQFP
- DPA

Qualification:
- Industrial

Applications:
- FPU
- DSP
- RMPA
- Barrel Shifter
- SDRAM Interface
- Programmable Pattern Generator (PPG)
- RTC with Vbat
- Ethernet DMA
- CRC Unit
- Temperature Sensor
Design Potential and Versatility of the RX

System design versatility, application capability, and economic sensibility are built into the many microcontrollers in the RX family. Driven by a technology roadmap that anticipates more sophisticated applications in the next decade that demand cost effectiveness, RX devices offer abundant core performance and extensive peripheral functions.

RX62T/RX63T for Motor Control

High-performance CPU and FPU capability, and advanced analog and timer peripherals, make the RX62T/RX63T an ideal solution for inverter and motor control applications. Renesas can help you develop your motor control solution with kits and firmware that support many kinds of motor control, including ultra-quiet, energy-efficient, and high-precision three-phase sensorless vector control.

In the home appliance example shown here, the RX62T/RX63T is driving two three-phase motors simultaneously using its advanced PWM timers. These timers are well suited for Brushless DC three-phase motors by having complimentary PWM outputs with automatic dead-time insertion, an emergency “Shut-down” (stop) input, and quadrature encoder inputs for speed and direction feedback.

The RX62T/RX63T’s advanced analog subsystem with multiple sample-hold circuits enables sampling of three simultaneous current measurements. It also offers programmable operational amplifiers and integrated window comparators to eliminate external components. The 12-bit ADCs have a fast 1 μsec conversion time, can be triggered by the PWM timers, and provide self-diagnostic capability.

Advanced Analog
- Two 12-bit ADC units, each with 4 input channels, 1 μsec conversion time and self-diagnostic capability
- Each 12-bit ADC unit has
 - 3 x independent sample-hold circuits
 - 3 x programmable op amps
 - 3 x analog window comparators
 - 3 trigger sources (PWM timers, external and software)

Advanced Timers
- 100 MHz, 16-bit Multifunction Timer unit (MTU3)
- 100 MHz, 16-bit General Purpose Timer unit (GPT)
- Complimentary PWM and Reset-Synchronous outputs
- Dead-time insertion
- Quadrature encoder inputs
- Emergency motor “Shut-down” (stop) input
RX for Connectivity

RX MCUs provide built-in hardware for implementing efficient communications with external peripherals, systems, test equipment and networks such as the Internet. The Ethernet, USB and CAN connectivity modules are well-proven, reliable designs.

Ethernet MAC
- 10/100 Mbps
- 2 KB TX FIFO
- 2 KB RX FIFO
- MII, RMII connection to PHY
- Wake on LAN

USB
- Host/Device/OTG
- 12 Mbps
- Up to 2 ports
- 10 Endpoints
- 2 KB FIFO

CAN
- ISO11898-1
- 1 Mbps
- 32 Mailboxes

SPI/SCI
- Up to 18 MHz (SPI Master)
- Flexible configurations

RX for TFT-LCD Applications
The external DMA controller integrated into RX devices can drive a TFT-LCD panel directly, greatly reducing the load on the MCU’s CPU; thus, maximizing the performance of application software.

External DMA Controller
- Directly drive a TFT-LCD panel
- RGB pixel data moves directly from frame buffer to the TFT-LCD and never enters the RX MCU
- RX CPU is loaded only 5%, while refreshing at 60 Hz
- Plenty of CPU bandwidth remains to run the application, communication channels, and create moderate animation on the TFT-LCD
Get up and running with the RX Ecosystem

Renesas makes it easy to launch new system designs. And our comprehensive range of hardware and software tools – including very low cost and free products – helps swiftly advance the product development process from concept stage to final RX-based design.

System Development Kits

> The Renesas Starter Kit (RSK) facilitates in-depth MCU experimentation and allows system design development

Renesas RX Starter Kit (RSK)

> This complete RX600-based hardware/software platform for in-depth application design includes the E1 Debugger, a trial version of the HEW/eStudio IDE, and demonstration firmware.

> The RSKs are specifically designed to be both an evaluation and development system. The kit includes everything that an engineer needs to be up and running within only a few minutes.

> The single installer prepares the target PC with a comprehensive development environment including trial C/C++ compiler, editor, build manager and full source level debugger. A full set of peripheral sample code gives the user an excellent kick start to their project development

> Where necessary (for example RSK RX62N) the kit includes open source communication stacks such as USB host / function as well as Ethernet.

> Many third part OS vendors, such as Micrium, Segger and FreeRTOS have ported their software to the RSKs. Trial BSPs are generally available for their web sites.

<table>
<thead>
<tr>
<th>Processor</th>
<th>RSK Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX610</td>
<td>R0K556100S000BE</td>
</tr>
<tr>
<td>RX62N</td>
<td>R0K5562N0S000BE</td>
</tr>
<tr>
<td>RX62T</td>
<td>R0K5562T0S000BE</td>
</tr>
<tr>
<td>RX630</td>
<td>R0K556300S000BE</td>
</tr>
<tr>
<td>RX63N</td>
<td>R0K5563N0S000BE</td>
</tr>
<tr>
<td>RX63T</td>
<td>R0K5563T0S000BE</td>
</tr>
<tr>
<td>RX63T-H</td>
<td>R0K5563THS000BE</td>
</tr>
<tr>
<td>RX62G</td>
<td>R0K5562G0S000BE</td>
</tr>
</tbody>
</table>

Application Development Tools

RX MCUs are supported by a comprehensive set of popular Renesas hardware and software tools that have been widely praised for their capabilities and ease of use. Additional support is provided by a dedicated community of third-party experts offering many helpful, time-saving products and services, including the development environments and optimized compilers from KPIT Cummins (GNURX) and IAR.

HEW: A Complete Integrated Development Environment (IDE)

HEW accelerates progress on the full range of system design tasks, from editing, to peripheral driver generation, to compilation, to debugging, and to Flash programming. HEW works with the Renesas compiler or Open Source GNURX compiler. HEW and the GNURX compiler are both free. The free Renesas C++ compiler allows unlimited binary output size for 60 days; thereafter, restricting compile size to 128 KB.

> Project Manager
> Output Window
> Built-in Editor
> Full Bus Trace
> Peripheral Driver Generator
> Virtual Desktop

> Local Variable Watch
> C/C++ Variable Watch
> Stack Trace
> Memory Views
> Debug Control (E1, E20, J-Link)

Complete Debugging, Emulation, and Programming

On-chip debugging of an RX-based application is performed via JTAG connection to the target and USB connection to the Windows-based IDE. E1 and J-Link offer thorough CPU control and visibility. E20 adds high-speed tracing.

HEW Part Number: YS32HEWRX-1-8

Renesas E1

| YR0E000010KCE00-EE |

Renesas E20

| ROE000200KCT00 |

SEGGER

| J-Link |
Support Software

Renesas Software Library

Renesas offers a wide variety of free sample code and libraries supporting applications using Ethernet, USB, CAN, DSP, Motor Control, PCM Audio and Graphics. Renesas also provides the Renesas Peripheral Driver Library (RPDL) and the Peripheral Driver Generator (PDG) free of charge.

Renesas Peripheral Driver Library (RPDL)

Low-level firmware drivers for all basic RX peripherals are free, source code included. RPDL eliminates the need for creating your drivers, saving time and reducing errors. RPDL functions are easily integrated into HEW projects, and PDG can be used to generate initialization code and calls to RPDL functions based on your own specified configuration.

RPDL Drivers

<table>
<thead>
<tr>
<th>Timers</th>
<th></th>
<th>RPDL Drivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMR</td>
<td>MTU</td>
<td>Interrupt DMAC ExDMA LVD</td>
</tr>
<tr>
<td>PPG</td>
<td>PWM</td>
<td>I/O SCI CGC DTC</td>
</tr>
<tr>
<td>CMT</td>
<td>TPU</td>
<td>MCU RSPI</td>
</tr>
<tr>
<td>GPT</td>
<td>WDT</td>
<td>CRC ADC DAC I2C PFC BSC</td>
</tr>
</tbody>
</table>

Renesas Peripheral Device Generator (PDG)

- A Windows user interface for configuring RX peripherals and pins
- Generates C code calls to RPDL driver functions
- Menus to select/initialize peripherals
- Select and manage pin assignments

Third-party RTOS and Middleware

RX600 devices are well suited for embedded real time tasks, high computation, as well as simultaneous data transfers on many high-speed communication channels. Because of this, communication middleware and Real Time Operating Systems (RTOS) are commonly needed. Renesas has established technology partnerships with many leading independent suppliers to provide high-quality, cost-effective solutions.

<table>
<thead>
<tr>
<th>RTOS</th>
<th>USB Stack</th>
<th>TCP/IP Stack</th>
<th>File System</th>
<th>Graphic SW</th>
<th>Wi-Fi</th>
<th>BlueTooth</th>
<th>CANopen</th>
<th>Ethernet</th>
<th>Peripherals</th>
<th>Prefuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>FreeRTOS</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>Micrium</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>Redpine Signals</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>SEGGER</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>FreeRTOS</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>Express Logic</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>Sciopta</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>port</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️ ✔️</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>Thesycon</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>IXXAT</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>HCC embedded</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>TMG</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>Wittenstein</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>Gainspan</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>ThreadX</td>
<td>✔️ ✔️</td>
</tr>
</tbody>
</table>

e²studio

Based on the popular open source Eclipse environment, e²studio offers a complete integrated development environment based on the free of charge GNU, IAR or Renesas RX compilers. When the powerful project management and editor features of the Eclipse environment are used with the integrated debugging interface e²studio becomes everything you need for embedded RX development. Can be downloaded free of charge or purchased as part of a compiler package.
Solution Kits for RX

RX Direct-drive Solutions for TFT-LCD
A quick and easy solution to add colour TFT-LCD to your design

- Low-cost 32-bit MCU solution to drive colour TFT-LCD panels up to WQVGA resolution
- Only 5% loading on CPU when refreshing the TFT-LCD panel at 60 Hz, with ample bandwidth left for running the rest of the application
- Free graphics API library and examples for evaluating graphics
- Third-party support for additional graphics requirements

Motor Control Solutions Using the RX MCU
A solid evaluation and development platform for motor control

- Low voltage Motor Control Starter Kit Evaluation System with RX62T
- Support 3 phase BLDC motor, 24V, 1.8A.
- Hall sensors, encoders and three-shunt current detection.
- Single PCB: Inverter + MCU
- Demo code and library for Field oriented control, 3 phases
- Variable parameter tuning without stopping CPU, via In Circuit Scope (ICS) waveform analyzer.
- E1, RX Family C/C++ toolchains, CubeSuite+1

Footnotes:
1: Future support for eStudio

Renesas RX62N RPB Board
RX62N Webserver Demo kit with outstanding test routines you could do via network

- HTML file hosting
- FPU function test by bouncing ball and Mandelbrot calculation
- DMIPS MCU benchmark
- “Pong” Mini game

Features
- Real-Time IEEE-1588 Ethernet PHY
- USB device port
- Mini Joystick
- Connection port for fast prototyping

Development Environment
- Renesas HEW IDE
- Built-in SEGGER J-Link Lite debugger
- Demo Source code and libraries

Renesas Demonstration Board (RDK) for Seminar purpose
This board plugs into a PC’s USB port to showcase the features and capabilities of RX600 MCUs

- RX MCU board with J-Link integrated debugger and huge peripheral set, including Ethernet, CAN and USB
- Graphic display
- 3-axis accelerometer
- Audio in/out
- Board will be supplied during hands-on sessions seminars
- Installation CD containing:
 - High-performance Embedded Workshop (HEW)
 - RX Family C/C++ toolchains (Renesas 128 KB evaluation version, full GNU version)
 - Quick-start guide, sample projects

Footnotes:
1: Future support for eStudio

Part Numbers:
- YLCDRSKRX62NS
- YRPBRX62N (Contact your sales channel for availability)

Part Numbers:
- YRDKRX62N (Processor RX62N)
- YRDKRX63N (Processor RX63N)
 (Contact your sales channel for the next seminar in your area)
RX is Online – sg.renesas.com/rx600

Renesas makes product data, design and application information, and much more available 24/7 in the RX area of our website. Bookmark it and visit it often to get the latest data on the newest and previously released devices, learn details about (and download free versions of) system development tools, use time-saving MCU-selection aids, participate in discussion forums, find out about upcoming events, take advantage of special promotions, and more.

Additional Renesas MCU Support

- The Alliance Partner Program allows you to connect instantly with hundreds of qualified design consulting and contracting professionals. sg.renesas.com/alliance
- For educators and students. Teach with professional grade tools. Learn MCUs with a modern architecture. www.renesasuniversity.com
- Gain the technical knowledge you need. Research and learn at your own pace, where you want, when you want, for free. www.renesasinteractive.com
- Gathering place for technical information on Renesas MCUs and MPUs. www.renesasrulz.com