RENESAS CAPACITIVE TOUCH SOLUTION
# Introducing the Capacitive Touch Sensor Web Site

## About Capacitive Touch Interfaces

## Advantages of Capacitive Touch Interfaces

## Features of New Renesas Capacitive Touch IP

## Capacitive Touch Evaluation Systems

## Touch-Free User Interface Solution

## Self-Capacitance Waterproof Button Solution

## Touchless-Button-Reference-Design

## MCU Lineup

## Related Devices

---

**CONTENTS**

Introducing the Capacitive Touch Sensor Web Site ............................................... 03
About Capacitive Touch Interfaces ........................................................................... 04
Advantages of Capacitive Touch Interfaces ............................................................... 05
Features of New Renesas Capacitive Touch IP ......................................................... 06
Capacitive Touch Evaluation Systems ...................................................................... 08
Touch-Free User Interface Solution .......................................................................... 10
Self-Capacitance Waterproof Button Solution ......................................................... 11
Touchless-Button-Reference-Design ......................................................................... 11
MCU Lineup ................................................................................................................ 12
Related Devices .......................................................................................................... 12
The second generation of capacitive touch solutions for the advanced capacitive touch HMIs that are becoming an essential part of our daily lives

Truly ubiquitous computing is rapidly becoming a reality as network capabilities find their way into every aspect of our daily lives, including household equipment such as electric home appliances. At the same time rapid advances are occurring in the human machine interfaces (HMIs) that link people and machines, and the use of capacitive touch panels is expanding quickly. By replacing the fixed functions of mechanical switches with capacitive touch panels it is possible to achieve more intuitive interfaces incorporating complex and sophisticated operations to match a variety of applications. For example, users can touch an overlay with their fingers or slide their fingers to specify the volume. Nevertheless, the time and cost of development can raise high hurdles to the realization of advanced usability due to the need to achieve greater sensitivity and noise tolerance, assure error-free operation even when the user’s hands are wet, and so on. We at Renesas Electronics are developing second-generation solutions that lower the capacitive touch development hurdles for customers. We provide total support for the development of products with high added value.

INTRODUCING THE CAPACITIVE TOUCH SENSOR WEB SITE

Here you will find timely, up-to-date information that you will find useful when selecting capacitive touch solutions.

https://www.renesas.com/solutions/proposal/touch-key.html
ABOUT CAPACITIVE TOUCH INTERFACES

Utilization of capacitive touch interfaces in an ever wider range of fields
We rely on the functionality of a variety of electrical appliances and household equipment in our everyday lives. Most such products are becoming ever more advanced as they acquire added value and enhanced functionality. As a result, a superior HMI is necessary in order to make full use of this functionality. This is why much attention has come to be focused on capacitive touch interfaces. They enable the user to accomplish a variety of tasks in an intuitive way, bringing out the full potential of today’s highly functional products.

High Hopes for Capacitive Touch Interfaces to Expand Markets by Pioneering New Applications

Applications for capacitive touch keypads have grown rapidly in recent years. Previously used mainly in high-end digital home electronic products requiring a high functionality and aesthetically appealing design, the use of touch keypads has expanded over the past few years to include ordinary home appliances known as “white goods” as well as healthcare-related devices.

The advantages of capacitive touch interfaces, such as durability and resistance to dust and moisture, make them attractive for use both in household and industrial equipment, and they are expected to achieve adoption in all types of devices moving forward.

Market trend toward rapid adoption of capacitive touch interfaces in embedded devices

As replacements for mechanical keys, touch keypads enable a variety of interface types
ADVANTAGES OF CAPACITIVE TOUCH INTERFACES

Capacitive touch interfaces as a way to reduce costs and boost added value
Incorporating capacitive touch systems into embedded devices provides support for advanced functionality and brings many other advantages as well. In addition to reducing the cost of production and providing excellent environmental tolerance, there are benefits that appeal to consumers such as attractive design and ease of cleaning.

Cutting Costs by Reducing the Number of Components
As products gain advanced functionality the number of control related components increases, resulting in higher component costs and assembly costs. In contrast, touch keypads have a simpler structure the mechanical key assemblies. They eliminate the need for components such as springs, plastic parts, and metal electrodes. This reduction in the total number of components helps reduce costs overall.

Hygenic and Less Prone to Malfunction
Mechanical key assemblies have physical gaps that allow dust and water to get inside. In contrast, touch keypads have a flat surface that can easily be wiped clean with a cloth. Their excellent resistance to dust and moisture make them more durable than mechanical key assemblies, and they are less prone to malfunction when used as frequently operated controls.

Attractive Design Possibilities
Touch keypads can be configured to blend in visually with the exterior casing of products, providing a great deal of design flexibility. No longer is it necessary when adding new functions to a product to provide complex and diverse mechanical controls such as wheels, buttons and sliders. Capacitive touch interfaces provide an excellent HMI with high added value by combining ease of operation and aesthetically appealing design.
FEATURES OF NEW RENESAS CAPACITIVE TOUCH IP

Development support tools for high-level capacitive touch interface development
Renesas microcontrollers for capacitive touch applications feature contact detection circuits with improved sensitivity and noise tolerance, making it possible to create capacitive touch panel interfaces using a variety of cover materials, including acrylic, glass, fabric, or stone. The lack of limitations on the cover material means that touch panels can be used on a wide range of products, such as household and industrial equipment, in addition to home appliances (white goods). Examples include light switches recessed into the wall surface, glass switch panels with excellent resistance to environmental factors, control panels for machine tools requiring a high level of resistance to dust or moisture, and products used in the kitchen in wet areas near the sink.

High Sensitivity and Noise Tolerance

The new Renesas capacitive touch IP provides enhanced operability under a variety conditions. For example, it supports sensing through acrylic or wood panels up to 10 mm thick, enough for use in household equipment with thick doors or partitions. It also implements proximity sensing (hovering) distance of up to 30 cm. This accommodates limitations related to hygiene or safety. Noise tolerance meets the requirements of IEC 61000 4-3/4-6 level 3 with acrylic panels 5 mm thick. This assures reliable operation with minimal sensing errors.

Support for Both “Self-Capacitance” and “Mutual Capacitance” Detection Methods

The new Renesas capacitive touch IP supports the mutual capacitance detection method in addition to the self capacitance method available previously. Mutual capacitance uses one transmission node and one reception node, working as a pair, to generate an electromagnetic field, and changes in the electromagnetic field between the nodes are detected. With this detection method the electromagnetic field changes hardly at all when water gets on the panel surface, making it suitable for use in wet environments.

New overlay material with support for greater thickness

<table>
<thead>
<tr>
<th>Overlay material</th>
<th>Previous capacitive touch system</th>
<th>New Renesas capacitive touch system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Acrylic</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Wood (dry)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Air</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Features of self capacitance and mutual capacitance detection methods

<table>
<thead>
<tr>
<th></th>
<th>Self capacitance</th>
<th>Mutual capacitance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrode pattern</td>
<td>Good: Simple</td>
<td>Poor: More complex than self capacitance</td>
</tr>
<tr>
<td>Substrate cost</td>
<td>Good: Low</td>
<td>Poor: Higher than self capacitance</td>
</tr>
<tr>
<td>Water resistance</td>
<td>Poor: Weak</td>
<td>Good: Strong</td>
</tr>
<tr>
<td>Matrix</td>
<td>Poor: Subject to limitation</td>
<td>Good: Possible</td>
</tr>
</tbody>
</table>
QE for Capacitive Touch: Development Assistance Tool for Capacitive Touch Sensors

QE for Capacitive Touch is a solution toolkit that runs in the e² studio integrated development environment. It speeds up the development of integrated systems utilizing capacitive touch sensors by simplifying tasks such as configuring initial settings or tuning the sensitivity of the touch interface.

Monitoring and parameter adjustment functions

- Monitoring functions:
  - The condition of input through the touch sensor is displayed as it is confirmed by the MCU.
  - The graph displays the intensity of input in chronological order.
  - Present threshold
  - Present average value without input through the touch sensors

- Parameter adjustment functions:
  - The intensity of input to the selected touch sensor interface is displayed on a graph.
  - The state of confirmation by the MCU of input through the touch sensors is displayed.

Tuning functions

1. Preparing for adjustment
2. Measuring parasitic capacitance
3. Adjusting the offset
4. Measuring sensitivity (while not touched)
5. Measuring sensitivity (while touched)
6. Result of the tuning
The capacitive touch evaluation system for RX130 includes an RX130 CPU board alongside a self-capacitance evaluation board and a mutual-capacitance matrix keys + self-capacitance proximity sensor evaluation board for use as touch application boards. It has everything you’ll need to get started evaluating applications incorporating buttons, sliders, wheels, matrix keys, and proximity sensors.

For more information, visit https://www.renesas.com/rssk-touch-rx130

The capacitive touch evaluation system for RA6M2 includes an RA6M2 CPU board and a self-capacitance evaluation board for use as a touch application board. It has everything you’ll need to get started evaluating applications incorporating buttons, sliders, and wheels.

For more information, visit https://www.renesas.com/rssk-touch-ra6m2

The capacitive touch evaluation system for RA2L1 includes an RA2L1 CPU board and a self-capacitance evaluation board for use as a touch application board. It has everything you’ll need to get started evaluating applications incorporating buttons, sliders, and wheels.

For more information, visit https://www.renesas.com/rssk-touch-ra2l1
The capacitive touch evaluation system for RL78/G23 includes an RL78/G23 CPU board and a self-capacitance evaluation board for use as a touch application board. It has everything you’ll need to get started evaluating applications incorporating buttons, sliders, and wheels.

For more information, visit https://www.renesas.com/rssk-touch-rl78g23

The capacitive touch evaluation system for RX140 includes an RX140 CPU board and a self-capacitance evaluation board for use as a touch application board. It has everything you’ll need to get started evaluating applications incorporating buttons, sliders, and wheels.

For more information, visit https://www.renesas.com/rssk-touch-rx140

The capacitive touch evaluation system for RX671 includes an RX671 CPU board and a self-capacitance evaluation board for use as a touch application board. It has everything you’ll need to get started evaluating applications incorporating buttons, sliders, and wheels.

Scheduled to release at the end of December 2022
* Use the RX671-Starter-Kit-Plus until the touch evaluation system is available (supports 2 buttons and 1 slider).
TOUCH-FREE USER INTERFACE SOLUTION

This touch-free user interface solution includes a 3D gesture solution, which allows the user to control the product touch-free by detecting gestures in three-dimensional space, and a 2D gesture solution, which detects movement using two-dimensional coordinates. Both are intended for situations where the user needs to control the product without touching it, perhaps because their hands are wet, or because they can’t reach the product, or because they don’t want to touch the product. Such a system might allow the user to adjust the heat and volume of water at the kitchen sink by moving their hands, or adjust the fan setting or turn on the light of the exhaust hood above the range by holding their hand over it.

3D Gesture Reference Design

Hand positions are converted into coordinates up to a maximum height of 200mm above the sensor. Conversion is accurate and fast, making it possible to control devices by means of dynamic gestures or simple figure recognition.

2D Gesture Reference Design

By combining multiple capacitive proximity sensors, it is possible to detect when the user’s hand is held over or near an electrode for a certain period of time as well as hand movements spanning multiple electrodes. This makes it a simple matter to implement gesture-based controls.

Features

Based on Renesas’ high-sensitivity, noise-tolerant capacitive touch solutions.

- Recognition of hand position up to a height of 200mm above the sensor
- Maximum accuracy: 1mm

High tolerance for noise and obstructions.

- Sensing is possible through obstructions such as walls, windows, and paper.
- Support for IEC 61000 4-3 and IEC 61000 4-6 Level 3 Class B noise immunity standards*

* Class B: No false detection in a noisy environment when there are no objects nearby.

Suitable for use in a variety of products.

- High-performance and power-efficient 32-bit MCU and capacitive touch IP enable product system control and operation using 3D gestures.
- Can be combined with existing capacitive touch functions (gestures and capacitive touch buttons).

SELF-CAPACITANCE WATERPROOF BUTTON SOLUTION

The demonstration of self-capacitance waterproof button compares the waterproof capabilities of GND shields and Active shields used in a self-capacitance button.

The Renesas capacitive sensor, CTSU2 can utilize an active shield without any external components. Active shielding is effective in improving water resistance and noise immunity of self-capacitance buttons. The Self-Capacitance Waterproof Button Solution reference design compares water resistance of traditional GND shields to active shield for the self-capacitance buttons.

For more information, visit https://www.renesas.com/application/home-building/capacitive-touch-solutions/self-capacitance-waterproof-button-solution

TOUCHLESS-BUTTON REFERENCE DESIGN

The touchless button reference design can detect the approach of fingers and hands without physical contact using Renesas’ capacitive touch solution. The electrode detects the proximity of the finger via self-capacitance and turns on the LED. The demo solution is compatible with all types of Renesas capacitive touch CPU boards.

For more information, visit https://www.renesas.com/application/home-building/capacitive-touch-solutions/capacitive-sensor-application-reference-design-touchless-button-solution-reference-design
## MCU LINEUP

<table>
<thead>
<tr>
<th>16-bit</th>
<th>32-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL78/G23 32MHz</td>
<td>Cortex M23 48MHz</td>
</tr>
<tr>
<td>RX100 32MHz</td>
<td>RA2 M23</td>
</tr>
<tr>
<td>RX113</td>
<td>RA2A1 CTBU</td>
</tr>
<tr>
<td>RX130</td>
<td>RA2L1 CTBU</td>
</tr>
<tr>
<td>RX140</td>
<td>RA2E1 CTBU</td>
</tr>
<tr>
<td>RX130</td>
<td>RA4 CTBU</td>
</tr>
<tr>
<td>RX200 54MHz</td>
<td>RA4M1 CTBU</td>
</tr>
<tr>
<td>RX231</td>
<td>RA4M2 CTBU</td>
</tr>
<tr>
<td>RX23W</td>
<td>RA4M3 CTBU</td>
</tr>
<tr>
<td>RX300</td>
<td>RA4M1 CTBU</td>
</tr>
<tr>
<td>RX600 120MHz</td>
<td>RA4E1 CTBU</td>
</tr>
<tr>
<td>RX671</td>
<td>RA6M1 CTBU</td>
</tr>
<tr>
<td>RX800 160MHz</td>
<td>RA6M2 CTBU</td>
</tr>
<tr>
<td>RX1000 200MHz</td>
<td>RA6M3 CTBU</td>
</tr>
<tr>
<td>RX1200 240MHz</td>
<td>RA6M4 CTBU</td>
</tr>
<tr>
<td>RX1400 280MHz</td>
<td>RA6M5 CTBU</td>
</tr>
<tr>
<td>RX1600 320MHz</td>
<td>RA6M6 CTBU</td>
</tr>
</tbody>
</table>

* CTSU2SL: Products with 128-Kbyte or larger ROM

## RELATED DEVICES

### RA2A1

32-bit MCUs built around the 48MHz Arm® Cortex®-M23 core and incorporating a 24-bit A/D converter (32 to 64 pins, 256KB)

The RA2A1 group is built around the high-performance Arm® Cortex®-M23 core. The peripheral functions are tightly integrated, making these MCUs suitable for applications requiring highly accurate analog signal processing. The RA2A1 group also offers analog solutions for adjusting and measuring signals from sensors, so you are sure to find just the MCU to match your requirements. RA2A1 group MCUs support a wide range of power supply voltages from 1.6V to 5.5V. Peripheral functions include a 16-bit SAR A/D converter, 24-bit ∆Σ A/D converter, comparator, op-amp, and D/A converter. The high-resolution analog signal processing block in the RA2A1 group provides substantial cost advantages, making it ideal for industrial sensor applications with an emphasis on power efficiency and low cost.

### RA2A1 block diagram

- **Memory**
  - Code Flash (256KB)
  - SRAM (16KB) Party
  - SRAM (16KB) ECC
  - Data Flash (8KB)

- **Analogue**
  - 16-bit A/D (17ch)
  - 24-bit Sigma Delta A/D (15ch)
  - 12-bit DAC (2ch)
  - 8-bit DAC (2ch)
  - OPAMP (2ch)
  - ACMPH5
  - ACMPLP (2ch)
  - Temperature Sensor

- **Communication**
  - USB2.0 FS x1
  - CAN x1
  - I2C x2
  - SCI x3
  - SPI x2

- **System**
  - SysTick
  - DTC
  - Multiplex Clocks
  - On-Chip Oscillator
  - HOCO (24,32,48,64MHz), LOCO (32kHz)
  - ELC
  - Port Function Select
  - RTC

- **Timers**
  - GPT 16-bit (6ch)
  - Low Power GPT (2ch)
  - GPT 32-bit (1ch)

- **HMI**
  - Capacitive Touch Sensing Unit (26ch)

- **Safety**
  - Memory Protection Unit
  - SRAM Party Protection
  - ECC in SRAM
  - Clock Frequency Accuracy Measurement
  - CRC Calculator
  - WDT
  - Data Operation Circuit
  - Flash Area Protection
  - ADC Self Test

- **Security**
  - AES (128/256)
  - TRNG
  - 128 bit Unique ID

- **Package**
  - LGFP 32, 44
  - QFN 40, 48, BGA 36

- **Package**
  - LQFP 32, 44
RA2E1

48MHz Arm® Cortex®-M23 Entry Line General Purpose Microcontroller

The RA2E1 group is RA Family's entry line single-chip microcontroller based on the 48-MHz Arm® Cortex®-M23 core and up to 128-KB code flash and 16-KB SRAM memory. The optimized processing and Renesas MF4 (110nm) process technology make it the industry’s most energy-efficient, ultra-low power microcontroller. The RA2E1 group supports a wide operating voltage range of 1.6V to 5.5V and a large selection of packages such as LQFP, QFN, LGA, BGA and WLCSP. The RA2E1 provides pin and peripheral compatibility with RA2L1 group and is ideal for battery-operated applications and other systems requiring high performance and low-energy consumption.

RA2E1 block diagram

RA2L1

48MHz Arm® Cortex®-M23 Ultra-Low-power General Purpose Microcontroller

The RA2L1 group is based on the Arm® Cortex®-M23 core, the most energy-efficient CPU among Arm Cortex-M today. The optimized processing and Renesas MF4 (110nm) process technology make it the industry's most energy-efficient, ultra-low power microcontroller. The RA2L1 group supports a wide operating voltage range of 1.6V to 5.5V, and a maximum CPU clock frequency of 48MHz, lower active mode current and standby mode current. The RA2L1 group also features an enhanced Capacitive Touch Sensing Unit (CTSU2), a set of serial communications, highly accurate Analogs and Timers. The products are available with pin counts ranging from 48-pin to 100-pin.

RA2L1 block diagram
RA4M1

32-bit MCUs built around the 48MHz Arm® Cortex®-M4 core and incorporating LCD controller and HMI capacitive touch system capabilities (40 to 100 pins, 256KB)

The RA4M1 group is built around the high-performance Arm® Cortex®-M4 core, and provides a segment LCD controller and input via a capacitive touch sensing unit to enable HMI design for centralized control applications. Fabricated using a highly efficient process that achieves minimal power consumption, these MCUs support open and flexible ecosystems (FSP and FreeRTOS). Naturally, they can also be extended to support other RTOSes and middleware. The RA4M1 group is suitable for applications requiring large-capacity capacitive touch channels and segment LCD controller capabilities.

RA4M2

100MHz Arm® Cortex®-M33 TrustZone®, High Integration With Lowest Active Power Consumption

The Renesas RA4M2 group of 32-bit microcontrollers (MCUs) uses the high-performance Arm® Cortex®-M33 core with TrustZone. In concert with the secure crypto engine, it offers secure element functionality. The RA4M2 is built on a highly efficient 40nm process and is supported by an open and flexible ecosystem concept called Flexible Software Package (FSP), built on FreeRTOS and is expandable to use on any other RTOS and middleware preferred. The RA4M2 is suitable for IoT application requiring vast communication options, strong security, large embedded RAM with parity/ECC and low power consumption.
RA4W1

32-bit MCUs built around the 48MHz Arm® Cortex®-M4 core and incorporating Bluetooth® 5.0 Low Energy support (56 pins, 512KB)

The RA4W1 group MCUs belong to the highly power efficient RA4 series, and they are the first products in the RA family to support Bluetooth® 5.0 Low Energy. In addition to Bluetooth 5.0 Low Energy and the Arm® Cortex®-M4 core, these MCUs provide an ample array of on-chip peripheral functions, including security functionality essential to IoT devices, capacitive touch, USB, and CAN. This makes them an effective way to reduce the power consumption and cost of the system overall. In addition, source code is provided for the Flexible Software Package (FSP), which is based on FreeRTOS and can be freely used for a range of applications.
The Renesas RA4E1 group of 32-bit microcontrollers (MCUs) uses the high-performance Arm® Cortex®-M33 core with TrustZone. The RA4E1 is built on a highly efficient 40nm process and is supported by an open and flexible ecosystem concept—the Flexible Software Package (FSP) — and is the perfect entry point into the RA Family of microcontrollers. The RA4E1 is suitable for entry IoT applications requiring value optimized feature and connectivity integration, total system cost reduction and an optimized mixture of high performance with 100 MHz Cortex-M33 Core in combination with lowest active power consumption down to 81µA/MHz running the CoreMark® algorithm from Flash.

The RA6M1 group of entry-level MCUs brings a superior cost-performance ratio to the RA6 series, which is intended for applications requiring high-performance Arm® Cortex®-M4 core. Fabricated using a highly efficient 40nm process, these MCUs support open and flexible ecosystems (FSP and FreeRTOS). Naturally, they can also be extended to support other RTOSes and middleware. The RA6M1 group is suitable for embedded systems equipped with security functions and large-capacity RAM, as well as for IoT applications demanding power efficiency.
RA6M2

32-bit MCUs built around the 120MHz Arm® Cortex®-M4 core and incorporating midrange memory capacity and Ethernet support (100 to 145 pins, 512KB to 1MB)

The RA6M2 group is built around the high-performance Arm® Cortex®-M4 core, and its Ethernet MAC with DMA on each channel delivers outstanding data throughput. Fabricated using a highly efficient 40nm process, these MCUs support open and flexible ecosystems (FSP and FreeRTOS). Naturally, they can also be extended to support other RTOSes and middleware. The RA6M2 group is suitable for embedded systems equipped with Ethernet, security functions, and large-capacity RAM, as well as for IoT applications demanding power efficiency.

RA6M3

32-bit MCUs built around the 120MHz Arm® Cortex®-M4 core and incorporating USB High-Speed, Ethernet, and TFT controller capabilities (100 to 176 pins, 1MB to 2MB)

The RA6M3 group is built around the high-performance Arm® Cortex®-M4 core, and incorporates a TFT controller with a 2D graphic accelerator and JPEG decoder. An Ethernet MAC with DMA on each channel and USB high-speed interface deliver outstanding data throughput. Fabricated using a highly efficient 40nm process, these MCUs support open and flexible ecosystems (FSP and FreeRTOS). Naturally, they can also be extended to support other RTOSes and middleware. The RA6M3 group is suitable for IoT applications demanding TFT panel, Ethernet, and security capabilities, large-capacity RAM, and USB High Speed (HS).
The Renesas RA6M4 group of microcontrollers (MCUs) uses the high-performance Arm® Cortex®-M33 core with TrustZone®. In concert with the secure crypto engine, it offers secure element functionality. The integrated Ethernet MAC with individual DMA ensures high data throughput. The RA6M4 is built on a highly efficient 40nm process and is supported by an open and flexible ecosystem concept called Flexible Software Package (FSP), built on FreeRTOS and is expandable to use on any other RTOS and middleware preferred. RA6M4 is suitable for IoT application requiring strong security, rich connectivity, large embedded RAM with parity/ECC and low power consumption.

The Renesas RA6M5 group uses the high-performance Arm® Cortex®-M33 core with TrustZone®. In concert with the secure crypto engine, it offers secure element functionality. The integrated Ethernet MAC with individual DMA ensures high data throughput. The RA6M5 is built on a highly efficient 40nm process and is supported by an open and flexible ecosystem concept called Flexible Software Package (FSP), built on FreeRTOS and is expandable to use on any other RTOS and middleware preferred. RA6M5 is suitable for IoT application requiring strong security, rich connectivity, large embedded RAM with parity/ECC and low power consumption.
RX140

48MHz RXv2 core, 32-bit MCUs with 3rd generation touch IP (32-80pin, 64-256KB)

The RX140 group microcontrollers combine the highest processing performance and low supply current in the RX100 series. The RXv2 core achieves a 48MHz maximum operating frequency, with about twice the performance, and 30% lower power consumption of RX130. Snooze mode also further lowers power consumption for applications that require intermittent operation. The improved noise immunity and water resistance of third generation touch IP enables adoption in a wider range of applications than ever before, including noisy or wet surroundings.

RX671

120MHz RXv3 core, 32-bit MCUs for high-speed real-time control and non-contact HMI (48-144pin, 1-2MB)

The RX671 group microcontrollers deliver superior real-time performance with the RXv3 core running at 120MHz. The HMI functions enable contactless operation through proximity switches and voice recognition, making it possible to realize hygienic HMI suitable for the new normal. A wide variety of packages, including the 4.5mm x 4.5mm 64-pin TFBGA, are all equipped with 2MB flash memory and 384KB SRAM to meet a wide range of needs using a single chip.
RX113

32MHz RXv1 core, 32-bit MCUs with segment LCD controller and USB (64-100pin, 128-512KB)

The RX113 group microcontrollers have built-in communications functions such as USB and IrDA, a capacitive touch sensing unit (CTSU), a segment LCD, and a serial sound interface (SSI). They offer a single-chip solution for industrial and measuring devices that have low current supply capabilities, or for user interfaces for system control in home appliances, healthcare devices, and more.

RX130

32MHz RXv1 core, 32-bit MCUs with a wide range of memory lineup (48-100pin, 64-512KB)

The RX130 group microcontrollers integrate a built-in max. 36-channel capacitive touch sensor. The capacitive touch sensor uses an improved detection method compared to previous products and so has vastly improved noise immunity, sensitivity and water resistance. As a result, malfunctions have been reduced, and touch keys are now able to be applied to a variety of materials like e.g. wood, other than the typical acrylic or glass. The RX130 touch feature is an ideal fit to consumer electronics products that are used in wet environments such as in the kitchen or bath. The RX130 group has a lot of built-in functional safety hardware, and can easily support the IEC/UL60730 safety standard for consumer electronics. The RX130 operates at a maximum voltage of up to 5.5 V. So it is suitable for applications such as home appliances (washing machine, IH cooking heater) with touch panel function.

RX113 block diagram

RX130 block diagram
RX231/RX230

54MHz RXv2 core, 32-bit MCUs with enhanced communication functions and security (48-100pin, 128-512KB)

The RX231 group microcontrollers leverage an optimal combination of RXv2 CPU core with improved DSP/FPU and low-power consumption technology to realize extreme power efficiency. High-performance digital filtering, floating-point operations, and other processing can be performed even in environments with low current supply capacity. The RX231 implements the industry's top level communication security and encryption functions, high sensitivity level of noise tolerance capacitive touch sensor capabilities, as well as SD host interface, USB, and CAN communication functionality. These products are suitable for applications in industrial, home appliance, healthcare, smart meter, IoT, and other fields.

RX23W

54MHz RXv2 core, 32-bit MCUs supporting Bluetooth® 5 wireless communication (56-85pin, 384-512KB)

The RX23W group microcontrollers incorporate security functions that are vital for Bluetooth® 5.0 Low Energy (BLE) and IoT devices, as well as a wealth of peripheral functions such as touch keys, USB and CAN, enabling system control and wireless communication with devices using a single chip. The RX23W have full function support for Bluetooth 5.0 Low Energy long range and mesh networking, and provide excellent reception performance.

In addition to the microcontrollers, the RX23W lineup includes a module with a built-in antenna and oscillator enabling the use of many MCU peripheral function pins in the industry’s smallest footprint for a module. This module has obtained Radio Law (Japan), FCC/ISED (North America), and CE (Europe) certifications, saving users the trouble of designing an RF circuit or obtaining certifications on their own, shortening time to market.

---

### RX231 54MHz 32-bit RXv2 core

#### Memory
- Code Flash (512KB)
- SRAM (64KB)
- Data Flash (8KB)

#### Analogue
- 12-bit A/D converter (24ch)
- 12-bit D/A converter (2ch)
- Temperature Sensor
- Comparator (4ch)
- 12-bit ADC (1ch)
- 16-bit External bus

#### System
- DMAC (4ch)
- Interrupt (6-pin/HWI)
- High-speed on-chip oscillators
- Power-on reset (POR)
- Voltage detection circuit (LVD)
- Event link controller
- 8/16-bit External bus

#### Timer
- Multi-function timer pulse unit 2
- Compare match timer
- Realtime clock
- Low power timer
- 16-bit timer pulse unit (5ch)

#### HMI
- Capacitive touch sensing unit (24ch)

#### Security
- Clock frequency accuracy measurement circuit
- Register write protection
- Oscillation stop detection
- CRC calculator
- Data operation circuit (RAM test assist)
- AES self-diagnostic (Fault detection)
- AES disconnection detection
- 14-bit watchdog timer
- 14-bit independent watchdog timer
- Port output enable
- Memory protection unit

#### Package
- LFQFP 48/64/100
- LQFP 48/64
- WFLGA 64
- TFLGA 100

---

### RX23W 54MHz 32-bit RXv2 core

#### Memory
- Code Flash (512KB)
- SRAM (64KB)
- Data Flash (8KB)

#### Analogue
- 12-bit A/D converter (14ch)
- 12-bit D/A converter (2ch)
- Temperature Sensor
- Comparator (2ch)

#### System
- DMAC (4ch)
- Interrupt (6-pin/HWI)
- High-speed on-chip oscillators
- Power-on reset (POR)
- Voltage detection circuit (LVD)
- Event link controller

#### Timer
- Multi-function timer pulse unit 2
- Compare match timer
- Realtime clock
- Low power timer
- 16-bit timer pulse unit (5ch)

#### HMI
- Capacitive touch sensing unit (24ch)

#### Security
- AES hardware accelerator
- True random number generator
- ID code protection
- Unique ID
- Key management
- Access management

#### Package
- QFN 56
- BGA 85
- QFN 96

---

*1: Only RX231
16-bit MCUs built around the 32 MHz RL78 CPU core and the first capacitive touch sensor in the RL78 family with pin count from 30 to 128 pins, ROM: 96 to 768 KB, and RAM: 12 to 48 KB.

The RL78/G23 microcontroller group is a new generation of the RL78 family of microcontrollers, with 41 µA/MHz CPU operation. The RL78/G23 group has the industry’s lowest power consumption with 210 nA at stop (4 KB SRAM retention), and a snooze mode sequencer which significantly reduces power consumption during intermittent operation. The RL78/G23 group features a wide operating voltage range of 1.6 V to 5.5 V at up to 32 MHz, a broad range of package pin counts from 30 pins to 128 pins, and up to 768 KB of flash memory. In addition to enhanced analog and security features, it also incorporates logic and event link controllers (ELCL) and the first capacitive touch sensor (Capacitive Sensing Unit: CTSU2L) in the RL78 family.

**RL78/G23 block diagram**

<table>
<thead>
<tr>
<th>Memory</th>
<th>RL78 CPU Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Flash</td>
<td>32 MHz 51.2 DMIPS</td>
</tr>
<tr>
<td>up to 768KB</td>
<td>CISC Harvard Architecture</td>
</tr>
<tr>
<td>SRAM</td>
<td>3-stage Pipeline</td>
</tr>
<tr>
<td>up to 48KB</td>
<td>Four-Register Banks</td>
</tr>
<tr>
<td>Data Flash</td>
<td>16-bit Barrel Shifter</td>
</tr>
<tr>
<td>8KB</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interrupt Controller</td>
<td>RAM</td>
</tr>
<tr>
<td>4 Levels</td>
<td>Parity Check</td>
</tr>
<tr>
<td>POR, LVD</td>
<td>ADC</td>
</tr>
<tr>
<td>Clock Generation</td>
<td>Self-Diagnostic</td>
</tr>
<tr>
<td>(Internal, External)</td>
<td>Clock Monitoring</td>
</tr>
<tr>
<td>Data Transfer Controller</td>
<td>Memory</td>
</tr>
<tr>
<td>Logic &amp; Event link</td>
<td>CRC</td>
</tr>
<tr>
<td>Controller</td>
<td>Output Level</td>
</tr>
<tr>
<td>Debug</td>
<td>Detection</td>
</tr>
<tr>
<td>(Single Wire, Two Wires)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power Management</th>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>HALT</td>
<td>I/F Single-Master, 8ch</td>
</tr>
<tr>
<td>(ADC, DAC, RTC Enabled)</td>
<td>I/F Multi-Master/Slave, 2ch</td>
</tr>
<tr>
<td>SNOOZE</td>
<td>CSI/SPI, 8ch</td>
</tr>
<tr>
<td>(DTC, ADC Enabled)</td>
<td>UART, 4ch</td>
</tr>
<tr>
<td>SNOOZE mode sequencer</td>
<td>UART with sync clock, 2ch</td>
</tr>
<tr>
<td>STOP</td>
<td>LIN, 1ch</td>
</tr>
<tr>
<td>(RTC Enabled)</td>
<td>Remote Controller</td>
</tr>
<tr>
<td>Human Machine Interface</td>
<td>Receiver</td>
</tr>
<tr>
<td>Capacitive Sensing Unit (CTSU2L), 32ch</td>
<td></td>
</tr>
<tr>
<td>40-mA port, 4ch</td>
<td></td>
</tr>
<tr>
<td>Output Current Control Port, 8ch</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analog</th>
<th>Security &amp; Encryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Flash Read Protection</td>
</tr>
<tr>
<td>12-bit, 26ch</td>
<td>Flash Shield Protection</td>
</tr>
<tr>
<td>DAC</td>
<td>Unique ID</td>
</tr>
<tr>
<td>8-bit, 2ch</td>
<td>Customer ID</td>
</tr>
<tr>
<td>Comparator, 2ch</td>
<td>True Random Number Generator</td>
</tr>
<tr>
<td>Internal Vref.</td>
<td></td>
</tr>
<tr>
<td>Temp. Sensor</td>
<td></td>
</tr>
</tbody>
</table>

**Note:** The condition for operating voltage of CTSU2L is VDD = 1.8V to 5.5V. When using the CTSU2L, use it within the voltage range of VDD = 1.8 V to 5.5 V.
1. The terms of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or your third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement of any other claims involving patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to: the product data, drawings, charts, programs, algorithms, and application examples.

3. No licenses, expressed or implied, is provided hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or your third parties arising from such alterations, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality." The intended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below.

   - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, test and visual equipment, home electronics appliances, machine tools, personal electronic equipment, industrial robots, etc.
   - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

7. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality." The intended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below.

   - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, test and visual equipment, home electronics appliances, machine tools, personal electronic equipment, industrial robots, etc.
   - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Safety for Handling and Using Semiconductors Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified in Renesas Electronics products with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accidents arising out of the use of Renesas Electronics products outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain usage conditions. Unless designated as a high-reliability product or in a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of micropower software silicon user is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances. For further information, please refer to Section 7.2, "Environmental," of the EU RoHS Directive, and using Renesas Electronics products in compliance with all applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. Renesas Electronics products and technologies must be used only in accordance with any products or systems whose manufacture, use, sale or reproduction is permitted under any applicable domestic or foreign laws or regulations. You shall comply with all applicable export control and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disperses or, in any other way or means, transfers or modifies the product for a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reproduced, republished or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

Renesas Electronics Corporation

www.renesas.com

© 2022 Renesas Electronics Corporation. All rights reserved.

Document No. R30CA0159EJ0500

SALES OFFICES

Refer to “http://www.renesas.com/” for the latest and detailed information.

Renesas Electronics Corporation
1051 Maitland Park Road, Suite 101, Maitland, FL 32751, USA
Tel: +1-408-432-0888, Fax: +1-408-434-5611

Renesas Electronics America Inc.
5045 South Creek Valley Road, San Jose, CA 95123, USA
Tel: +1-408-746-2020, Fax: +1-408-284-8475

Renesas Electronics Canada Limited
633 March Road, Ottawa, ON K2C 3M9, Canada
Tel: +1-813-555-5300, Fax: +1-863-555-5309

Renesas Electronics Europe GmbH
Ansfelder Str. 10, 40724 Dusseldorf, Germany
Tel: +49-211-6021, Fax: +49-211-6021-1217

Renesas Electronics (China) Co., Ltd.
Room 501-503, Floor 1, Building B, No. 7, Xitai Road, Shanghai, Pudong District, Shanghai 200120, China
Tel: +86-21-2226-0088, Fax: +86-21-2226-0088

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Pudong District, Shanghai 200120, China
Tel: +86-21-2226-0088, Fax: +86-21-2226-0088

Renesas Electronics Hong Kong Limited
Unit 2011-2013, 35/F, One Wan chai Tower, Wan Chai, Hong Kong
Tel: +852-2586-6868, Fax: +852-2888-0027

Renesas Electronics Taiwan Co., Ltd.
10F, No. 363, Fu Sheng North Road, Taipei 10641, Taiwan
Tel: +886-2-875-3682, Fax: +886-2-875-3683

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, #03-01 Singapore 324888
Tel: +65-6798-0206, Fax: +65-6798-0205

Renesas Electronics Malaysia Sdn. Bhd.
No 38-11 Lebuh Tua Tew 8, UOA Business Park, One Jalan Pangsapuri UOA 151, Segambut 51100 Shah Alam, Selangor, Malaysia
Tel: +60-3-5021-1204, Fax: +60-3-5021-1205

Renesas Electronics India Pvt. Ltd.
Bapuji Tech Park, Alkapuri, Nashik-422 141, Maharashtra, India
Tel: +91-261-2232333, Fax: +91-261-2232330

Renesas Electronics Korea Co., Ltd.
8F, Hansol ELC Building, 500, Teheran-ro, Gangnam-gu, Seoul, Korea 06178
Tel: +82-2-556-3773, Fax: +82-2-556-5238