
O
ne common question with serial

RapidIO (sRIO) boards is how to

support hot swap. Generically

speaking, hot swapping should be easy –

simply insert or remove the hardware.

The sRIO protocol is targeted for high

speed chip to chip communication and data

transfer. Compared to gigabit Ethernet and

PCI-Express, sRIO has minimal latency, less

header overhead, higher efficiency and a

guaranteed delivery advantage. Ironically,

these key benefits are the crux of the hot

swap headache.

The devil is in the detail. If the user

doesn’t understand the details, then

packets stop, ports go into error states,

ports stop and, potentially, the system

goes down. To achieve guaranteed

delivery, sRIO uses Acknowledge

Identification (AckID)

counters to track each

packet and ensure it has been delivered –

ultimately to its destination.

AckID is located in the physical layer,

not in the packet header. Each port keeps

track of its AckID counters and these values

are used in the packet acknowledgment

control symbol to update the packet

transmit status between devices.

Each port has inbound, outbound and

outstanding AckIDs. Inbound AckID is the

next expected AckID value. When the

input port receives a packet, it will use

that value as the packet ID, send a

response and indicate whether or not the

packet with packet ID has been accepted.

Outbound AckID is the output port’s

next packet AckID value. When the device

sends a packet, outbound AckID will

increase from 0 to 1, but the

outstanding AckID will not

increase until it receives a

response. On the receiving

side, the device will use

inbound AckID to

respond. If the packet accepts, then

inbound AckID will increase by 1 for the

next expected packet. AckID is a 5bit

counter and, when it reaches 31, will

rollover to 0.

When the sending port receives a

packet accept control symbol, the sender

will compare response AckID with

outstanding AckID. If it matches, it will

increase outstanding AckID by 1. If not, it

will report ‘unexpected AckID error’.The

only requirement to support hot swap is

simply to match the inbound and

outbound AckIDs on both sides of the link.

Expecting a packet
Serial RapidIO ports on the device that

has been hot swapped or where power has

been cycled or reset, will start to transmit

with an AckID value of 0 and will expect to

receive packets from the connected port

beginning with an AckID value of 0.

If the connected port was previously

transmitting and receiving, it is unlikely it

will resume transmission with an AckID

value of 0 or expect the next packet

received to have an AckID value of 0. Thus,

it goes into an error state and traffic halts.

The sRIO spec does not provide for

automatic hardware resynchronisation, but

it does allow the software to resynchronise

the AckIDs so transmission can resume.

While this provides the user with the ways

and means to resolve a broken link, it does

require software to

manage hot swap

activity. So it’s

S Y S T E M D E S I G N

Backplanes & Boards

Taking the frustration out of

hot swapping. By Trevor Hiatt

and Raymond Ho.

w w w . n e w e l e c t r o n i c s . c o . u k 1 0 M a r c h 2 0 0 9 37

Chilling out

P037_NELE_MAR10.QXP:Tech Temp 6/3/09 10:43 Page 37

likely those boards that lock up during hot

swap in the lab do not have the application

layer software support running.

Chal lenges and solutions
The hot swap challenge is further

complicated because not all devices have

the same level of support or even the same

implementation for Software Assist Error

Recovery registers. These registers are

optional, so some devices may not allow

local reprogramming of AckIDs or querying

of a link partner’s AckIDs. Further, some

devices implement Software Assist Error

Recovery registers differently.

System topology also plays a role.

Which is the board that gets swapped (and

whose AckIDs will zero)? Which remains

powered (and whose AckIDs will be non

zero)? On which board is the host

responsible for reprogramming AckIDs?

In general, there are two solutions

(see figures 1 and 2). Solution 1 requires

a hardware reset of inbound/outbound

AckID to 0. This is simple and direct, but

packets in the output buffers may be lost.

Multiple ways exist to reset AckID.

Methods a and b require the link partner

to change its AckID to 0 after unplug and

before replug. Method c will reset the link

partner’s AckID automatically.

Method a: For some implementations,

disabling and enabling the port will reset

inbound and outbound AckID to 0. The

local device will also have to set its own

AckID values back to zero.

Method b: Hard or soft reset of the full

device is not ideal in a live system, since all

functionality is affected and traffic will not

route. It requires reprogramming the

switch after reset. The local device will have

to set its own AckID values back to zero.

Method c: For most implementations, ‘per

port reset’ allows the local port to be reset

by sending a reset control symbol using the

Software Assist Error Recovery registers.

In solution 2, the Software Assisted

Error Recovery Mechanism can be used to

change the inbound/outbound AckID,

enabling a match to the other side. This

needs a host device to execute and

specific procedures to ensure AckIDs are

matched during hot swap.

In most cases, a ‘port disable’ state

should be used to halt traffic to a live port,

which is disabled before the partner

device/board is removed. Most hardware

specs – including MicroTCA – have standard

‘port enable’ and ‘port disable’ states.

There are three ways to get the same

the AckID on both sides. Methods a and b

require matching the AckID before link up

or stop all traffic after link up. Method c

allows AckID matching after link up, but

will stop all transitions on both sides. For

all methods, it is best to stop all traffic to

the port before swapping.

Method a: Have an AckID value defined in

software that will be used on both sides of

the link. Zero is easiest, since newly

powered devices will start at 0 by default.

Method b: Use a second bus (such as i2c)

connected to the link partner to identify

AckIDs, then program these values locally.

Method c: Send a link request control

symbol to the link partner and get its

inbound AckID value. Program that value

into the switch so the outbound AckID will

match the link partner’s inbound AckID.

The partner needs to send a link request to

the switch and use the switch’s inbound

AckID value for its outbound AckID.

In the figures, Class R devices only have

vendor specific per port reset of AckID and

no Software Assist Error Recovery option.

Class S devices have the sRIO standard

Software Assist Error Recovery option and

vendor specific per port reset of AckID.

Unplugged is the board that will be hot

swapped.

Author prof i les:
Trevor Hiatt is applications manager,

Raymond Ho is an application engineer,

with IDT’s communications division.

38 w w w . n e w e l e c t r o n i c s . c o . u k 1 0 M a r c h 2 0 0 9

“Generically, hot swapping should be easy –

simply insert or remove the hardware.”

Trevor Hiatt and Raymond Ho, IDT

S Y S T E M D E S I G N

Backplanes & Boards

Figure 2: Hot swap between class S and class R switches

class Rendpoint€£

condition:

one host on the powered off side. the power will turn off or reset on side B.
side A is powered all the time

solution:

step 1: enable pre port reset option at side A before unplug.
step 2: after power up, side B sends a reset control symbol to side A.
it will reset both side AckID to 0

port 0 port 1

unpluggedconnectionpowered on
side Bside A

class S host

Figure 1: Hot swap between two class R switches

class Rhost

condition:

two class R switches, one host on one switch. side B will power off or reset during unplug

solution:

step 1: disable port 0 on side A
step 2: plug in the link or power up side B
step 3: enable the port 0 on side A to clear all AckIDs to 0

port 0 port 1

unpluggedconnectionpowered on
side Bside A

class R endpoint

P037_NELE_MAR10.QXP:Tech Temp 6/3/09 10:43 Page 38

	P037_NELE_MAR10_LO
	P038_NELE_MAR10_LO

