To our customers,

Old Company Name in Catalogs and Other Documents

On April 1\(^{st}\), 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1\(^{st}\), 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
This manual explains the sample program functions of the 16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC) for the V850E/IA4 microcontroller.

The explanations are based on usage with the V850E/IA4 microcontroller. Refer to this manual when using the V850E/IA3 microcontroller.

Caution

This sample program is provided for reference purposes only and operations are therefore not subject to guarantee by NEC Electronics Corporation. When using this sample program, customers are kindly advised to sufficiently evaluate this product based on their system before usage.
VOLTAGE APPLICATION WAVEFORM AT INPUT PIN
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).

HANDLING OF UNUSED INPUT PINS
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

PRECAUTION AGAINST ESD
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

STATUS BEFORE INITIALIZATION
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

POWER ON/OFF SEQUENCE
In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

INPUT OF SIGNAL DURING POWER OFF STATE
Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.
These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of July, 2006. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 * "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 * "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 * "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).
INTRODUCTION

Cautions 1. Download the program used in this manual from the NEC Electronics Website (http://www.necel.com/).
 2. When using this sample program, reference the following startup file and link directive file and adjust them if as necessary.
 - Startup file: IA4_start.s
 - Link directive file: IA4_link.dir
Note The function lists are structured as follows.

Hardware name (symbol)

<table>
<thead>
<tr>
<th>[Function]</th>
<th>Function description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Function name]</td>
<td>Name of sample function</td>
</tr>
<tr>
<td>[Argument(s)]</td>
<td>Type and overview of argument</td>
</tr>
<tr>
<td>[Processing content]</td>
<td>Processing content of sample function</td>
</tr>
<tr>
<td>[Starting method]</td>
<td>Conditions for calling a function</td>
</tr>
<tr>
<td>[SFR(s) used]</td>
<td>Register name and setting content</td>
</tr>
<tr>
<td>[call function(s)]</td>
<td>Name and function of call function(s)</td>
</tr>
<tr>
<td>[Variable(s)]</td>
<td>Type, name, and overview of variable(s) used in sample function</td>
</tr>
<tr>
<td>[Interrupt(s)]</td>
<td>Name of function</td>
</tr>
<tr>
<td>[Interrupt source(s)]</td>
<td>Name</td>
</tr>
<tr>
<td>[File name]</td>
<td>Name of corresponding sample program file</td>
</tr>
<tr>
<td>[Caution(s)]</td>
<td>Caution(s) upon function usage</td>
</tr>
</tbody>
</table>

Interrupt function(s)

[Function name]	Name of interrupt function
[Overview]	Processing content
[Factor(s)]	Name of interrupt and conditions for occurrence
[call function(s)]	None
[Variable(s)]	Name of variable, function
[File name]	Name of corresponding sample program file
[Caution(s)]	None

Product Differences The differences between the V850E/IA4 and the V850E/IA3 related to the 16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC)

<table>
<thead>
<tr>
<th>Item</th>
<th>V850E/IA4</th>
<th>V850E/IA3</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of channels</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents related to V850E/IA3 and V850E/IA4

<table>
<thead>
<tr>
<th>Document Name</th>
<th>Document No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V850E1 Architecture User’s Manual</td>
<td>U14559E</td>
</tr>
<tr>
<td>V850E/IA3, V850E/IA4 Hardware User’s Manual</td>
<td>U16543E</td>
</tr>
<tr>
<td>Inverter Control by V850 Series Vector Control by Hole Sensor Application Note</td>
<td>U17338E</td>
</tr>
<tr>
<td>Inverter Control by V850 Series Vector Control by Encoder Application Note</td>
<td>U17324E</td>
</tr>
<tr>
<td>Inverter Control by V850 Series 120° Excitation Method Control by Zero-Cross Detection Application Note</td>
<td>U17209E</td>
</tr>
<tr>
<td>Manual for Using Sample Program Functions DMA Functions (V850E/IA3, V850E/IA4) Application Note</td>
<td>U18235E</td>
</tr>
<tr>
<td>Manual for Using Sample Program Functions Timer ENC (V850E/IA3, V850E/IA4) Application Note</td>
<td>U18240E</td>
</tr>
<tr>
<td>Manual for Using Sample Program Functions Clock Generator (V850E/IA3, V850E/IA4, V850ES/IK1, V850ES/IE2) Application Note</td>
<td>U18242E</td>
</tr>
</tbody>
</table>
CONTENTS

16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n) (n = 0, 1)
 General-purpose timer mode: Interval operation ... 8
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n) (n = 0, 1)
 General-purpose timer mode: Free-running operation .. 11
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n) (n = 0, 1)
 General-purpose timer mode: Compare function ... 14
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n) (n = 0, 1)
 General-purpose timer mode: Capture function ... 19
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n) (n = 0, 1)
 UDC mode A: Interval/transfer operation .. 22
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n) (n = 0, 1)
 UDC mode A: Compare function ... 25
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n) (n = 0, 1)
 UDC mode A: Capture function ... 30
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n) (n = 0, 1)
 UDC mode B: Basic operation .. 33
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n) (n = 0, 1)
 UDC mode B: Compare function ... 36
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n) (n = 0, 1)
 UDC mode B: Capture function ... 41
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n) (n = 0, 1)

General-purpose timer mode: Interval operation

<table>
<thead>
<tr>
<th>Functions</th>
<th>Performs count operation based on the clock selected by software, and generates an interrupt request signal (INTCM00) upon match detection between the values of the counter (TMENC10) and the compare register (CM100). Clears TMENC10 upon the count clock subsequent to the matched count clock.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>timerenc_gen_interval</td>
</tr>
<tr>
<td>Argument</td>
<td>None</td>
</tr>
<tr>
<td>Processing content</td>
<td>Performs count operation of an (\frac{fx}{32}) count clock, and generates an interrupt when the value of TMENC10 reaches 249 (1 ms).</td>
</tr>
<tr>
<td>Starting method</td>
<td>Starts by calling the timerenc_gen_interval_st function.</td>
</tr>
</tbody>
</table>
| SFRs used | TUM10 Specifies the operation mode of TMENC10.
TMC10 Controls the clear operation of TMENC10.
PRM10 Selects the count clock.
CM100 Compare register |
| call function | main main function |
| Variable | None |
| Interrupt | timerenc_CM00_int |
| Interrupt source | INTCM00 |
| File name | timerenc_gen_interval\timerenc_gen_0.c, timerenc_gen_interval\MAIN.C |
| Caution | None |

The interval cycle can be calculated by the following formula.

\[
\text{Interval cycle} = (\text{value of CM100 register} + 1) \times \text{Count clock rate of TMENC10}
\]
Interrupt function

<table>
<thead>
<tr>
<th>[Function name]</th>
<th>timerenc_CM00_int</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Overview]</td>
<td>Defined by the user.</td>
</tr>
<tr>
<td>[Factor]</td>
<td>INTCM00</td>
</tr>
<tr>
<td></td>
<td>Match between the values of the TMENC10 counter and CM100</td>
</tr>
<tr>
<td>[call function]</td>
<td>None</td>
</tr>
<tr>
<td>[Variable]</td>
<td>None</td>
</tr>
<tr>
<td>[File name]</td>
<td>timerenc_gen_interval\timerenc_gen_0.c</td>
</tr>
<tr>
<td>[Caution]</td>
<td>None</td>
</tr>
</tbody>
</table>
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n)

General-purpose timer mode: Interval operation

- Enables interrupt
- Disables TMENC10 count operation
- Sets interrupt mask flag (Enables interrupt servicing)
- Enables TMENC10 count operation
- Sets operation mode to general-purpose timer mode
- Enables clear operation
- Sets count clock as fXX/32
- Sets compare register
- (Match between count value of TMENC10 counter and CM100)
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n) (n = 0, 1)

General-purpose timer mode: Free-running operation

<table>
<thead>
<tr>
<th>[Function]</th>
<th>Performs count operation based on the clock selected by software, and generates an interrupt request signal (INTCM00) upon match detection between the values of the counter (TMENC10) and the compare register (CM100).</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Function name]</td>
<td>timerenc_gen_freerun</td>
</tr>
<tr>
<td>[Argument]</td>
<td>None</td>
</tr>
<tr>
<td>[Processing content]</td>
<td>Performs count operation of an fxx/32 count clock, and generates an interrupt when the value of TMENC10 reaches 0x8000.</td>
</tr>
<tr>
<td>[Starting method]</td>
<td>Starts by calling the timerenc_gen_freerun_st function.</td>
</tr>
<tr>
<td>[SFRs used]</td>
<td>TUM10 Specifies the operation mode of TMENC10. TMC10 Controls the clear operation of TMENC10. PRM10 Selects the count clock. CM100 Compare register</td>
</tr>
<tr>
<td>[call function]</td>
<td>main main function</td>
</tr>
<tr>
<td>[Variable]</td>
<td>None</td>
</tr>
<tr>
<td>[Interrupt]</td>
<td>timerenc_CM00_int</td>
</tr>
<tr>
<td>[Interrupt source]</td>
<td>INTCM00</td>
</tr>
<tr>
<td>[File name]</td>
<td>timerenc_gen_freerun	imerenc_gen_1.c, timerenc_gen_freerun\MAIN.C</td>
</tr>
<tr>
<td>[Caution]</td>
<td>None</td>
</tr>
</tbody>
</table>

The free-running cycle can be calculated by the following formula.

Free-running cycle = 65,536 × Count clock rate of TMENC10
<table>
<thead>
<tr>
<th>Function name</th>
<th>timerenc_gen_freerun_st</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument</td>
<td>None</td>
</tr>
<tr>
<td>Processing content</td>
<td>Starting function of timerenc_gen_freerun</td>
</tr>
<tr>
<td>Starting method</td>
<td>Call this function after calling the timerenc_gen_freerun function.</td>
</tr>
<tr>
<td>SFR used</td>
<td>TMC10.TM1CE0 Controls TMENC10 operation.</td>
</tr>
<tr>
<td>call function</td>
<td>None</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>File name</td>
<td>timerenc_gen_freerun\timerenc_gen_1.c</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
</tbody>
</table>

Interrupt function

<table>
<thead>
<tr>
<th>Function name</th>
<th>timerenc_CM00_int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Defined by the user.</td>
</tr>
<tr>
<td>Factor</td>
<td>INTCM00 Match between the values of the TMENC10 counter and CM100</td>
</tr>
<tr>
<td>call function</td>
<td>None</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>File name</td>
<td>timerenc_gen_freerun\timerenc_gen_1.c</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
</tbody>
</table>
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n)

General-purpose timer mode: Free-running operation

- Enables interrupt
- TMENC10 general-purpose timer (setting)
- TMENC10 general-purpose timer (start)
- Disables TMENC10 count operation
- Sets interrupt mask flag (Enables interrupt servicing)

- EI Enables interrupt
- TMENC10 general-purpose timer (setting)
- TMENC10 general-purpose timer (start)
- TMENC10 count operation
- Sets interrupt mask flag (Enables interrupt servicing)

- TUM10.7 \(\rightarrow\) 0
- TMC10.2 \(\rightarrow\) 0
- PRM10.2 \(\rightarrow\) 1, PRM10.1 \(\rightarrow\) 0, PRM10.0 \(\rightarrow\) 0
- CM100 \(\rightarrow\) 0x7FFF

- INTCM00
 (Match between count value of TMENC10 counter and CM100)

- TMENC10 general-purpose timer
- TMENC10 count operation
- Enables TMENC10 count operation

- CM0MK0 \(\rightarrow\) 0
- TM1CE0 \(\rightarrow\) 0
- TM1CE0 \(\rightarrow\) 1
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n) (n = 0, 1)

General-purpose timer mode: Compare function

<table>
<thead>
<tr>
<th>Functions</th>
<th>Performs count operation based on the clock selected by software, and generates an interrupt request signal upon match detection between the values of the counter (TMENC10) and the compare register. Interrupt request signals INTCM00, INTCM01, INTCC00, and INTCC01 are generated for compare registers CM100, CM101, CC100, and CC101 respectively.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>timerenc_gen_compare</td>
</tr>
<tr>
<td>Argument</td>
<td>None</td>
</tr>
<tr>
<td>Processing content</td>
<td>Performs count operation of an fXX/32 count clock, and generates an interrupt upon the count subsequent to which the values of TMENC10 match their respective compare register values.</td>
</tr>
<tr>
<td>Starting method</td>
<td>Starts by calling the timerenc_gen_compare_st function.</td>
</tr>
<tr>
<td>SFRs used</td>
<td>TUM10 Specifications: operation mode of TMENC10. CCR10 Specifications: operation mode of the CC100 register. TMC10 Specifications: operation mode of the CC101 register. PRM10 Selects the count clock. CM100 Compare register CM101 Compare register CC100 Compare register CC101 Compare register</td>
</tr>
<tr>
<td>call function</td>
<td>main main function</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>Interrupts</td>
<td>timerenc_CM00_int timerenc_CM01_int timerenc_CC00_int timerenc_CC01_int</td>
</tr>
<tr>
<td>Interrupt sources</td>
<td>INTCM00 INTCM01 INTCC00 INTCC01</td>
</tr>
<tr>
<td>File name</td>
<td>timerenc_gen_compare\timerenc_gen_2.c, timerenc_gen_compare\MAIN.C</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
</tbody>
</table>
Interrupt functions

<table>
<thead>
<tr>
<th>Function name</th>
<th>timerenc_CM00_int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Defined by the user.</td>
</tr>
<tr>
<td>Factor</td>
<td>INTCM00</td>
</tr>
<tr>
<td>Match between the values of the TMENC10 counter and CM100</td>
<td></td>
</tr>
<tr>
<td>call function</td>
<td>None</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>File name</td>
<td>timerenc_gen_compare\timerenc_gen_2.c</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function name</th>
<th>timerenc_CM01_int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Defined by the user.</td>
</tr>
<tr>
<td>Factor</td>
<td>INTCM01</td>
</tr>
<tr>
<td>Match between the values of the TMENC10 counter and CM101.</td>
<td></td>
</tr>
<tr>
<td>call function</td>
<td>None</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>File name</td>
<td>timerenc_gen_compare\timerenc_gen_2.c</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
<tr>
<td>Function name</td>
<td>timerenc_CC00_int</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Overview</td>
<td>Defined by the user.</td>
</tr>
<tr>
<td>Factor</td>
<td>INTCC00 Match between the values of the TMENC10 counter and CC100.</td>
</tr>
<tr>
<td>call function</td>
<td>None</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>File name</td>
<td>timerenc_gen_compare\timerenc_gen_2.c</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function name</th>
<th>timerenc_CC01_int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Defined by the user.</td>
</tr>
<tr>
<td>Factor</td>
<td>INTCC01 Match between the values of the TMENC10 counter and CC101.</td>
</tr>
<tr>
<td>call function</td>
<td>None</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>File name</td>
<td>timerenc_gen_compare\timerenc_gen_2.c</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
</tbody>
</table>
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n)

General-purpose timer mode: Compare function (1/2)

- Enables interrupt
- TMENC10 general-purpose timer (setting)
- TMENC10 general-purpose timer (start)
- Enables TMENC10 count operation
- Sets interrupt mask flag (Enables interrupt servicing)
- Disables TMENC10 count operation
- Sets operation mode to general-purpose timer mode
- Sets operation mode of CC101 register to compare register
- Sets operation mode of CC100 register to compare register
- Disables clear operation
- Sets compare register
- Sets count clock as fXX/32
- Sets operation mode of CC100 register to compare register
- Sets operation mode of CC100 register to compare register
- Enables TMENC10 count operation
- Disables clear operation
- Sets compare register
- Sets count clock as fXX/32
- Sets operation mode of CC100 register to compare register
- Sets operation mode of CC100 register to compare register
- Enables TMENC10 count operation
- Disables clear operation
- Sets compare register
- Sets count clock as fXX/32
- Sets operation mode of CC100 register to compare register
- Sets operation mode of CC100 register to compare register
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n)

General-purpose timer mode: Compare function (2/2)

INTCC10
(Match between count value of TMENC10 counter and CC100)

INTCC11
(Match between count value of TMENC10 counter and CC101)
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n) (n = 0, 1)

General-purpose timer mode: Capture function

[Functions]	Performs count operation based on the clock selected by software, and captures the counter (TMENC10) value to the capture registers CC100 and CC101 upon valid edge of the TCUD10 and TCLR10 input signals that are specified as the capture trigger signals. Generates interrupt request signals (INTCC00 and INTCC01) during capture operation.
[Function name]	timerenc_gen_capture
[Argument]	None
[Processing content]	Generates an interrupt upon valid edge detection of the capture trigger signal, via count operation of an fxx/32 count clock.
[Starting method]	Starts by calling the timerenc_gen_capture_st function.
[SFRs used]	TUM10 Specifies the operation mode of TMENC10.
	SESA10 • Specifies the valid edge of the capture trigger of the CC100 register.
	• Specifies the valid edge of the capture trigger of the CC101 register.
	CCR10 • Specifies the operation mode of the CC100 register.
	• Specifies the operation mode of the CC101 register.
	CSL10 Selects the capture input signal of the CC101 register.
	TMC10 Controls the clear operation of TMENC10.
	PRM10 Selects the count clock.
	CC100 Capture register
	CC101 Capture register
[call function]	main main function
[Variable]	None
[Interrupts]	timerenc_CC00_int
	timerenc_CC01_int
[Interrupt sources]	INTCC00
	INTCC01
[File name]	timerenc_gen_capture/timerenc_gen_3.c,
	timerenc_gen_capture/MAIN.C
[Caution]	• CC100 and CC101 registers must not be read successively.
Function: timerenc_gen_capture_st

[Function name]
timerenc_gen_capture_st

[Argument]
None

[Processing content]
Starting function of timerenc_gen_capture

[Starting method]
Call this function after calling the timerenc_gen_capture function.

[SFR used]
TMC10.TM1CE0 Controls TMENC10 operation.

[call function]
None

[Variable]
None

[File name]
timerenc_gen_capture/timerenc_gen_3.c

[Caution]
None

Interrupt functions

[Function name]
timerenc_CC00_int

[Overview]
Defined by the user.

[Factor]
INTCC00 Valid edge detection of the TCUD10 input signal specified as the capture trigger signal

[call function]
None

[Variable]
None

[File name]
timerenc_gen_capture/timerenc_gen_3.c

[Caution]
None

[Function name]
timerenc_CC01_int

[Overview]
Defined by the user.

[Factor]
INTCC01 Valid edge detection of the TCLR10 input signal specified as the capture trigger signal

[call function]
None

[Variable]
None

[File name]
timerenc_gen_capture/timerenc_gen_3.c

[Caution]
None
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n)

General-purpose timer mode: Capture function

- Enables interrupt
- TMENC10 general-purpose timer (setting)
- TMENC10 general-purpose timer (start)
- TMENC10 general-purpose timer
- Enables TMENC10 count operation
- Sets alternate-function pin
- Sets interrupt mask flag (Enables interrupt servicing)
- TMENC10 general-purpose timer
- Enables TMENC10 count operation
- SETS operation mode to general-purpose timer mode
- Sets valid edge of CC101 capture trigger to falling edge
- Sets valid edge of CC100 capture trigger to rising edge
- Sets operation mode of CC101 register to capture register
- Sets operation mode of CC100 register to capture register
- Sets CC101 input to TCLR10
- Sets count clock as fXX/32

INTCC00 (Rising edge detection of TCUD10)
INTCC01 (Falling edge detection of TCLR10)
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n) (n = 0, 1)

UDC mode A: interval/transfer operation

<table>
<thead>
<tr>
<th>Functions</th>
<th>Performs a count up/down of the counter (TMENC10) for the number of clock pulses input from the external input pin. Performs a count up/down according to the mode specified by the PRM10 register, clears TMENC10 upon the count clock subsequent to which the value of the compare register (CM100) matches, and generates an interrupt request signal (INTCM00). Transfers the value of CM100 to TMENC10 upon the subsequent count clock to which if the count value of TMENC10 becomes 0 during count down.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>timerenc_udca_interval</td>
</tr>
<tr>
<td>Argument</td>
<td>None</td>
</tr>
<tr>
<td>Processing content</td>
<td>Performs a count up/down by loading the clock pulse input from the external input pin, and generates an interrupt upon the count clock subsequent to which the values of TMENC10 and CM100 match. Transfers the value of CM100 upon the count subsequent to which if the value of TMENC10 becomes 0 during count down.</td>
</tr>
<tr>
<td>Starting method</td>
<td>Starts by calling the timerenc_udca_interval_st function.</td>
</tr>
<tr>
<td>SFRs used</td>
<td>TUM10 • Specifies the operation mode of TMENC10. • Specifies the operation during UDC mode. SESA10 • Specifies the valid edges of the TIUD10 and TCUD10 pins. • Specifies the valid edge of the TCLR10 pin. TMC10 • Specifies the clear factor of TMENC10. • Specifies the transfer operation from the CM100 register to TMENC10. PRM10 Selects the count operation mode. CM100 Sets compare register.</td>
</tr>
<tr>
<td>call function</td>
<td>main main function</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>Interrupt</td>
<td>timerenc_CM00_int</td>
</tr>
<tr>
<td>Interrupt source</td>
<td>INTCM00</td>
</tr>
<tr>
<td>File name</td>
<td>timerenc_udca_interval\timerenc_udca_0.c, timerenc_udca_interval\MAIN.C</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
</tbody>
</table>
timer_enc_udca_interval_st

- **Function name:** timer_enc_udca_interval_st
- **Argument:** None
- **Processing content:** Starting function of timer_enc_udca_interval
- **Starting method:** Call this function after calling the timer_enc_udca_interval function.
- **SFR used:** TMC10.TM1CE0 Controls TMENC10 operation.
- **call function:** None
- **Variable:** None
- **File name:** timer_enc_udca_interval/timer_enc_udca_0.c
- **Caution:** None

Interrupt function

- **Function name:** timer_enc_CM00_int
- **Overview:** Defined by the user.
- **Factor:** INTCM00 Match between the values of the TMENC10 counter and CM100
- **call function:** None
- **Variable:** None
- **File name:** timer_enc_udca_interval/timer_enc_udca_0.c
- **Caution:** None
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n)

UDC mode A: interval/transfer operation

- Enables interrupt
- Sets TMENC10 up/down counter (setting)
- Sets TMENC10 up/down counter (start)
- Disables TMENC10 count operation
- Sets alternate-function pin
- Sets interrupt mask flag (Enables interrupt servicing)
- TMENC10 up/down counter
- Enables TMENC10 count operation

- Sets operation mode to UDC mode
- Sets UDC mode to UDC mode A
- Sets valid edges of TIUD10 and TCUD10 pins to falling edge
- Sets valid edge of TCLR10 pin to falling edge
- Sets TMENC10 clear factor to external input (TCLR10) only
- Enables transfer operation
- Sets UDC mode to mode 1
- Sets compare register

INTCM00 (Match between count value of TMENC10 counter and CM100)
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n) (n = 0, 1)

UDC mode A: Compare function

[Functions]
Performs a count up/down of the counter (TMENC10) for the number of clock pulses input from the external input pin.
Performs a count up/down according to the mode specified by the PRM10 register, and generates an interrupt request signal upon match detection between the values of TMENC10 and the compare register. Interrupt request signals INTCM00, INTCM01, INTCC00, and INTCC01 are generated for compare registers CM100, CM101, CC100, and CC101 respectively.
Clears TMENC10 when INTCM00 is generated.

[Function name] timerenc_udca_compare
[Argument] None
[Processing content] Performs a count up/down by loading the clock pulse input from the external input pin, and generates an interrupt upon the count clock subsequent to which the values of TMENC10 match their respective compare register values
[Starting method] Starts by calling the timerenc_udca_compare_st function.
[SFRs used]
- TUM10 • Specifies the operation mode of TMENC10.
 • Specifies the operation during UDC mode.
- SESA10 • Specifies the valid edges of the TIUD10 and TCUD10 pins.
 • Specifies the valid edge of the TCLR10 register.
- CCR10 • Specifies the operation mode of the CC100 register.
 • Specifies the operation mode of the CC101 register.
- TMC10 • Specifies the clear factor of TMENC10.
 • Specifies the transfer operation from the CM100 register to TMENC10.
- PRM10 Selects the count operation mode.
- CM100 Compare register
- CM101 Compare register
- CC100 Compare register
- CC101 Compare register

[call function] main main function
[Variable] None
[Interrupts] timerenc_CM00_int
timerenc_CM01_int
timerenc_CC00_int
timerenc_CC01_int
Interrupt functions

<table>
<thead>
<tr>
<th>Function name</th>
<th>timerenc_CM00_int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Defined by the user.</td>
</tr>
<tr>
<td>Factor</td>
<td>INTCM00 Match between the values of the TMENC10 counter and CM100</td>
</tr>
<tr>
<td>call function</td>
<td>None</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>File name</td>
<td>timerenc_udca_compare\timerenc_udca_1.c</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
<tr>
<td>Function name</td>
<td>timerenc_CM01_int</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Overview</td>
<td>Defined by the user.</td>
</tr>
<tr>
<td>Factor</td>
<td>INTCM01 Match between the values of the TMENC10 counter and CM101.</td>
</tr>
<tr>
<td>call function</td>
<td>None</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>File name</td>
<td>timerenc_udca_compare/timerenc_udc_1.c</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function name</th>
<th>timerenc_CC00_int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Defined by the user.</td>
</tr>
<tr>
<td>Factor</td>
<td>INTCC00 Match between the values of the TMENC10 counter and CC100.</td>
</tr>
<tr>
<td>call function</td>
<td>None</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>File name</td>
<td>timerenc_udca_compare/timerenc_udc_1.c</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function name</th>
<th>timerenc_CC01_int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Defined by the user.</td>
</tr>
<tr>
<td>Factor</td>
<td>INTCC01 Match between the values of the TMENC10 counter and CC101.</td>
</tr>
<tr>
<td>call function</td>
<td>None</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>File name</td>
<td>timerenc_udca_compare/timerenc_udc_1.c</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
</tbody>
</table>
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n)

UDC mode A: Compare function (1/2)

- Enables interrupt
- TMENC10 up/down counter (setting)
- TMENC10 up/down counter (start)
- TIM1CE0 ← 0
- PFC3 ← 0, PMC3 ← 0xE0
- CM0MK0 ← 0
- CM0MK1 ← 0
- CC0MK0 ← 0
- CC0MK1 ← 0
- TMENC10 count operation
- Sets alternate-function pin
- Sets interrupt mask flag
- TMENC10 up/down counter
- Enables TMENC10 count operation
- TM1CE0 ← 1
- ret
- Enable interrupt
- TIM1CE0 ← 1
- TIM1CE0 ← 0
- TUM10.7 ← 1
- TUM10.0 ← 0
- SESA10.7 ← 0
- SESA10.6 ← 0
- SESA10.5 ← 0
- SESA10.4 ← 0
- CCR10.1 ← 1
- CCR10.0 ← 1
- TMC10.1 ← 1
- TMC10.0 ← 1
- TMC10.3 ← 0
- PRM10.2 ← 1
- PRM10.1 ← 0
- PRM10.0 ← 0
- CM100 ← 40
- CM101 ← 30
- CC100 ← 20
- CC101 ← 30
- Sets operation mode to UDC mode
- Sets UDC mode to UDC mode A
- Sets valid edges of TIUD10 and TCUD10 pins to falling edge
- Sets valid edge of TCLR10 pin to falling edge
- Sets TMENC10 clear factor to match between values of TMENC and CM100
- Sets operation mode of CC101 register to compare register
- Sets operation mode of CC100 register to compare register
- Enables TMENC10 count operation
- Sets UDC mode to mode 1
- Sets compare register

INTCM00
(Match between count value of TMENC10 counter and CM100)

INTCM01
(Match between count value of TMENC10 counter and CM101)
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n)

UDC mode A: Compare function (2/2)

INTCC00
(Match between count value of TMENC10 counter and CC100)

timerenc_CC00_int
int
reti

INTCC01
(Match between count value of TMENC10 counter and CC101)

timerenc_CC01_int
int
reti
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n) \((n = 0, 1)\)

UDC mode A: Capture function

[Functions]	Performs a count up/down of the counter for the number of clock pulses input from the external input pin. Performs a count up/down according to the mode specified by the PRM10 register, and captures the value of TMENC10 to the capture registers CC100 and CC101 upon valid edge detection of the TCUD10 and TCLR10 input signals that are specified as the capture trigger signals.
[Function name]	timerenc_udca_capture
[Argument]	None
[Processing content]	Performs a count up/down by loading the clock pulse input from the external input pin, and generates an interrupt upon valid edge of the capture trigger signal.
[Starting method]	Starts by calling the timerenc_udca_capture_st function.
[SFRs used]	TUM10
- Specifies the operation mode of TMENC10.
- Specifies the operation during UDC mode.
SESA10
- Specifies the valid edges of the TIUD10 and TCUD10 pins.
- Specifies the valid edge of the TCLR10 register.
- Specifies the valid edge of the capture trigger of the CC100 register.
- Specifies the valid edge of the capture trigger of the CC101 register.
CCR10
- Specifies the operation mode of the CC100 register.
- Specifies the operation mode of the CC101 register.
CSL10
- Selects the capture input signal of the CC101 register.
TMC10
- Specifies the clear factor of TMENC10.
- Specifies the transfer operation from the CM100 register to TMENC10.
PRM10
- Selects the count operation mode.
CC100
- Capture register
CC101
- Capture register |

| [call function] | main
- main function |
| [Variable] | None |
| [Interrupt] | timerenc_CC00_int
timerenc_CC01_int |
| [Interrupt source] | INTCC00
INTCC01 |
| [File name] | timerenc_udca_capture\timerenc_udca_2.c,
timerenc_udca_capture\MAIN.C |
| [Caution] | - CC100 and CC101 registers must not be read successively. |
Interrupt functions

<table>
<thead>
<tr>
<th>Function name</th>
<th>timerenc_CC00_int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Defined by the user.</td>
</tr>
<tr>
<td>Factor</td>
<td>INTCC00</td>
</tr>
<tr>
<td></td>
<td>Valid edge detection of the TCUD10 input signal specified as the capture trigger signal</td>
</tr>
<tr>
<td>call function</td>
<td>None</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>File name</td>
<td>timerenc_udca_capture\timerenc_udc_2.c</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function name</th>
<th>timerenc_CC01_int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Defined by the user.</td>
</tr>
<tr>
<td>Factor</td>
<td>INTCC01</td>
</tr>
<tr>
<td></td>
<td>Valid edge detection of the TCLR10 input signal specified as the capture trigger signal</td>
</tr>
<tr>
<td>call function</td>
<td>None</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>File name</td>
<td>timerenc_udca_capture\timerenc_udc_2.c</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
</tbody>
</table>
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n)

UDC mode A: Capture function

- Enables interrupt
- TMENC10 up/down counter (setting)
 - TUM10.7 ← 1
 - TUM10.0 ← 0
 - SESA10.7 ← 0, SESA10.6 ← 0
 - SESA10.5 ← 0, SESA10.4 ← 0
 - SESA10.3 ← 0, SESA10.2 ← 0
 - SESA10.1 ← 0, SESA10.0 ← 0
 - CCR10.1 ← 0, CCR10.0 ← 0
 - CSL10.0 ← 0
 - TMC10.1 ← 1, TMC10.0 ← 1
 - TMC10.3 ← 0
 - PRM10.2 ← 1, PRM10.1 ← 0, PRM10.0 ← 0
- TMENC10 up/down counter (start)
 - TM1CE0 ← 0
 - PFC3 ← 0, PMC3 ← 0xE0
 - CC0MK0 ← 0, CC0MK1 ← 0
 - TMENC10 clear factor to “Not cleared”
 - Disables TMENC10 count operation
 - Sets alternate-function pin

- Enables TMENC10 count operation
- CC0MK0 ← 0, CC0MK1 ← 0
 - Sets interrupt mask flag (Enables interrupt servicing)
- TMENC10 up/down counter
- TMENC10 count operation
 - TM1CE0 ← 1
- Enables TMENC10 count operation

- Sets operation mode to UDC mode
- Sets UDC mode to UDC mode A
- Sets valid edges of TIUD10 and TCUD10 pins to falling edge
- Sets valid edge of TCLR10 pin to falling edge
- Sets valid edge of CC101 capture trigger to falling edge
- Sets valid edge of CC100 capture trigger to rising edge
- Sets operation mode of CC101 register to capture register
- Sets operation mode of CC100 register to capture register
- Sets C101 input to TCLR10
- Sets TMENC10 clear factor to “Not cleared”
- Enables transfer operation
- Sets UDC mode to mode 1
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n) (n = 0, 1)

UDC mode B: Basic operation

Functions	Performs a count up/down of the counter for the number of clock pulses input from the external input pin. Performs a count up/down according to the mode specified by the PRM10 register, and generates interrupt request signals INTCM00 and INTCM01 respectively upon a match between the values of TMENC10 and CM100 if during count up, and a match between the values of TMENC10 and CM101 if during count down.
Function name	timerenc_udcb_basic
Argument	None
Processing content	Performs a count up/down by loading the clock pulses input from the external input pin, and generates interrupts upon the count clocks subsequent to which the values of TMENC10 and CM100 match if during count up, and the values of TMENC10 and CM101 match if during count down.
Starting method	Starts by calling the timerenc_udcb_basic_st function.
SFRs used	TUM10 • Specifies the operation mode of TMENC10. • Specifies the operation during UDC mode. SESA10 Specifies the valid edges of the TIUD10 and TCUD10 pins. PRM10 Selects the count operation mode. CM100 Compare register CM101 Compare register
Call function	main main function
Variable	None
Interrupts	timerenc_CM00_int timerenc_CM01_int
Interrupt sources	INTCM00 INTCM01
File name	timerenc_udcb_basic\timerenc_udcb_0.c, timerenc_udcb_basic\MAIN.C
Caution	• Interrupt generation and counter clearance are not performed if the value of TMENC10 matches the value of CM101 during count up, or the value of CM100 during count down.
[Function name] timerenc_udcb_basic_st
[Argument] None
[Processing content] Starting function of timerenc_udcb_basic
[Starting method] Call this function after calling the timerenc_udcb_basic function.
[SFR used] TMC10.TM1CE0 Controls TMENC10 operation.
[call function] None
[Variable] None
[File name] timerenc_udcb_basic\timerenc_udcb_0.c
[Caution] None

Interrupt functions

[Function name] timerenc_CM00_int
[Overview] Defined by the user.
[Factor] INTCM00 Match between the values of the TMENC10 counter and CM100 during count up
[call function] None
[Variable] None
[File name] timerenc_udcb_basic\timerenc_udcb_0.c
[Caution] None

[Function name] timerenc_CM01_int
[Overview] Defined by the user.
[Factor] INTCM01 Match between the values of the TMENC10 counter and CM101 during count down
[call function] None
[Variable] None
[File name] timerenc_udcb_interval\timerenc_udc_0.c
[Caution] None
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n)

UDC mode B: Basic operation

main

Ei

timerenc_udcb_basic

TMENC10 up/down counter (setting)

Enables interrupt

TUM10.7 ← 1
TUM10.0 ← 1
SESA10.7 ← 0, SESA10.6 ← 0
PRM10.2 ← 1, PRM10.1 ← 0,
PRM10.0 ← 0
CM100 ← 20
CM101 ← 10

ret

INTCM00
(Match between count value of TMENC10 counter and CM100, during count up only)

• Sets operation mode to UDC mode
• Sets UDC mode to UDC mode B
• Sets valid edges of TIUD10 and TCUD10 pins to falling edge
• Sets UDC mode to mode 1
• Sets compare register

timerenc_CM00_int

reti

INTCM01
(Match between count value of TMENC10 counter and CM101, during count down only)

timerenc_CM01_int

reti

• Sets operation mode to UDC mode
• Sets UDC mode to UDC mode B
• Sets valid edges of TIUD10 and TCUD10 pins to falling edge
• Sets UDC mode to mode 1
• Sets compare register

timerenc_udcb_basic

TMENC10 up/down counter (start)

Disables TMENC10 count operation

TM1CE0 ← 0

PFC3 ← 0
PMC3 ← 0xE0

CM0MK0 ← 0
CM0MK1 ← 0

ret

INTCM00
(Match between count value of TMENC10 counter and CM100, during count up only)

timerenc_CM00_int

reti

INTCM01
(Match between count value of TMENC10 counter and CM101, during count down only)

timerenc_CM01_int

reti

• Sets operation mode to UDC mode
• Sets UDC mode to UDC mode B
• Sets valid edges of TIUD10 and TCUD10 pins to falling edge
• Sets UDC mode to mode 1
• Sets compare register

timerenc_udcb_basic

TM1CE0 ← 1

Enables TMENC10 count operation

ret

INTCM00
(Match between count value of TMENC10 counter and CM100, during count up only)

timerenc_CM00_int

reti

INTCM01
(Match between count value of TMENC10 counter and CM101, during count down only)

timerenc_CM01_int

reti

• Sets operation mode to UDC mode
• Sets UDC mode to UDC mode B
• Sets valid edges of TIUD10 and TCUD10 pins to falling edge
• Sets UDC mode to mode 1
• Sets compare register
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n) (n = 0, 1)

UDC mode B: Compare function

(1/2)

[Functions] Performs a count up/down of the counter (TMENC10) for the number of clock pulses input from the external input pin.
Performs a count up/down according to the mode specified by the PRM10 register, and generates an interrupt request signal upon match detection between the values of TMENC10 and the compare register. Interrupt request signals INTCM00, INTCM01, INTC00, and INTC01 are generated for compare register CM100, CM101, CC100, and CC101 respectively. Clears TMENC10 when INTCM00 is generated.

[Function name] timerenc_udcb_compare

[Argument] None

[Processing content] Performs a count up/down by loading the clock pulses input from the external input pin, and generates an interrupt upon a match between the values of TMENC10 and the corresponding compare registers.

[Starting method] Starts by calling the timerenc_udcb_compare_st function.

[SFRs used] TUM10
• Specifies the operation mode of TMENC10.
• Specifies the operation during UDC mode.
SESUD10 Specifies the valid edges of the TIUD10 and TCUD10 pins.
CCR10
• Specifies the operation mode of the CC100 register.
• Specifies the operation mode of the CC101 register.
PRM10 Selects the count operation mode.
CM100 Compare register
CM101 Compare register
CC100 Compare register
CC101 Compare register

[call function] main main function

[Variable] None

[Interrupts] timerenc_CM00_int
timerenc_CM01_int
timerenc_CC00_int
timerenc_CC01_int

[Interrupt sources] INTCM00
INTCM01
INTCC00
INTCC01
Interrupt functions

[Function name] timerenc_CM00_int
[Overview] Defined by the user.
[Factor] INTCM00 Match between the values of the TMENC10 counter and CM100 during count up
[call function] None
[Variable] None
[File name] timerenc_udcb_compare\timerenc_udcb_1.c
[Caution] None
<table>
<thead>
<tr>
<th>Function name</th>
<th>Overview</th>
<th>Factor</th>
<th>Call function</th>
<th>Variable</th>
<th>File name</th>
<th>Caution</th>
</tr>
</thead>
<tbody>
<tr>
<td>timerenc_CM01_int</td>
<td>Defined by the user.</td>
<td>INTCM01 Match between the values of the TMENC10 counter and CM101 during count down</td>
<td>None</td>
<td>None</td>
<td>timerenc_udcb_compare	imerenc_udcb_1.c</td>
<td>None</td>
</tr>
<tr>
<td>timerenc_CC00_int</td>
<td>Defined by the user.</td>
<td>INTCC00 Match between the values of the TMENC10 counter and CC100.</td>
<td>None</td>
<td>None</td>
<td>timerenc_udcb_compare	imerenc_udc_1.c</td>
<td>None</td>
</tr>
<tr>
<td>timerenc_CC01_int</td>
<td>Defined by the user.</td>
<td>INTCC01 Match between the values of the TMENC10 counter and CC101.</td>
<td>None</td>
<td>None</td>
<td>timerenc_udcb_compare	imerenc_udc_1.c</td>
<td>None</td>
</tr>
</tbody>
</table>
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n)

UDC mode B: Compare function (1/2)

- Enables interrupt
- TMENC10 up/down counter (setting)

- Disables TMENC10 count operation
- Sets alternate-function pin
- Sets interrupt mask flag (Enables interrupt servicing)
- TMENC10 up/down counter

- Enables TMENC10 count operation
- TM1CE0 ← 1

- Sets operation mode to UDC mode
- Sets UDC mode to mode B
- Sets valid edges of the TIUD10 and TCUD10 pins to falling edge
- Sets operation mode of CC101 register to compare register
- Sets operation mode of CC100 register to compare register
- Sets UDC mode to mode 1
- Sets compare register

1. timerenc_udcb_compare
2. TUM10.7 ← 1
3. TUM10.0 ← 1
4. SESA10.7 ← 0, SESA10.6 ← 0
5. CCR10.1 ← 1, CCR10.0 ← 1
6. PRM10.2 ← 1, PRM10.1 ← 0, PRM10.0 ← 0
7. CM100 ← 10
8. CM101 ← 10
9. CC100 ← 20
10. CC101 ← 30

- INTCM00 (Match between count value of TMENC10 counter and CM100, during count up only)
- INTCM01 (Match between count value of TMENC10 counter and CM101, during count down only)
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n)

UDC mode B: Compare function (2/2)

INTCC00
(Match between count value of TMENC10 counter and CC100)

INTCC01
(Match between count value of TMENC10 counter and CC101)
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n) (n = 0, 1)

UDC mode B: Capture function

<table>
<thead>
<tr>
<th>[Functions]</th>
<th>Performs a count up/down of the counter (TMENC10) for the number of clock pulses input from the external input pin. Performs count up/down according to the mode specified by the PRM10 register, and captures the value of TMENC10 to the capture registers CC100 and CC101 upon valid edge of the TCUD10 and TCLR10 input signals that are specified as the capture trigger signals. Generates an interrupt request signal during capture operation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Function name]</td>
<td>timerenc_udcb_capture</td>
</tr>
<tr>
<td>[Argument]</td>
<td>None</td>
</tr>
<tr>
<td>[Processing content]</td>
<td>Performs a count up/down by loading the clock pulse input from the external input pin, and generates an interrupt upon valid edge of the capture trigger signal.</td>
</tr>
<tr>
<td>[Starting method]</td>
<td>Starts by calling the timerenc_udcb_capture_st function.</td>
</tr>
<tr>
<td>[SFRs used]</td>
<td>TUM10 • Specifies the operation mode of TMENC10. • Specifies the operation during UDC mode. SESA10 • Specifies the valid edges of the TIUD10 and TCUD10 pins. • Specifies the valid edge of the TCLR10 register. • Specifies the valid edge of the capture trigger of the CC100 register. • Specifies the valid edge of the capture trigger of the CC101 register. CCR10 • Specifies the operation mode of the CC100 register. • Specifies the operation mode of the CC101 register. CSL10 Selects the capture input signal of the CC101 register. PRM10 Selects the count operation mode. CM100 Compare register CM101 Compare register CC100 Capture register CC101 Capture register</td>
</tr>
<tr>
<td>[call function]</td>
<td>main main function</td>
</tr>
<tr>
<td>[Variable]</td>
<td>None</td>
</tr>
<tr>
<td>[Interrupts]</td>
<td>timerenc_CC00_int timerenc_CC01_int</td>
</tr>
<tr>
<td>[Interrupt sources]</td>
<td>INTCC00 INTCC01</td>
</tr>
<tr>
<td>[File name]</td>
<td>timerenc_udcb_capture_timerenc_udc_2.c, timerenc_udcb_capture_MAIN.C</td>
</tr>
</tbody>
</table>
[Caution]
- CC100 and CC101 registers must not be read successively.
- CM100 and CM101 registers function as compare registers.

Thus, the counter is cleared if the counter (TMENC10) value matches the value of the CM101 register during count up, or matches the value of the CM100 register during count down.

The counter starts from 0000H.

Thus, the counter practically stands still because it is cleared by each count when the CM100 and CM101 register values are set to 0000H.

Therefore, set appropriate values to the CM100 and CM101 registers.

[Function name] timerenc_udcb_capture_st

[Argument] None

[Processing content] Starting function of timerenc_udcb_capture

[Starting method] Call this function after calling the timerenc_udcb_capture function.

[SFR used] TMC10.TM1CE0 Controls TMENC10 operation.

[call function] None

[Variable] None

[File name] timerenc_udcb_capture\timerenc_udc_2.c

[Caution] None
Interrupt functions

<table>
<thead>
<tr>
<th>Function name</th>
<th>timerenc_CC00_int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Defined by the user.</td>
</tr>
<tr>
<td>Factor</td>
<td>INTCC00 Valid edge detection of the TCUD10 input signal specified as the capture trigger signal</td>
</tr>
<tr>
<td>call function</td>
<td>None</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>File name</td>
<td>timerenc_udcb_capture\timerenc_udc_2.c</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function name</th>
<th>timerenc_CC01_int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Defined by the user.</td>
</tr>
<tr>
<td>Factor</td>
<td>INTCC01 Valid edge detection of the TCLR10 input signal specified as the capture trigger signal</td>
</tr>
<tr>
<td>call function</td>
<td>None</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>File name</td>
<td>timerenc_udcb_capture\timerenc_udc_2.c</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
</tbody>
</table>
16-bit 2-phase encoder input up/down counter/general-purpose timer (TMENC1n)

UDC mode B: Capture function

- Sets operation mode to UDC mode
- Sets UDC mode to UDC mode B
- Sets valid edges of the TIUD10 and TCUD10 pins to falling edge
- Sets valid edge of the TCLR10 pin to falling edge
- Sets valid edge of CC101 capture trigger to falling edge
- Sets valid edge of CC100 capture trigger to rising edge
- Sets valid edge of CC100 capture trigger to capture register
- Sets operation mode of CC101 register to capture register
- Sets operation mode of CC100 register to capture register
- Sets CC101 input to TCLR10
- Sets UDC mode to mode 1
- Sets compare register
For further information, please contact:

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan
Tel: 044-435-5111
http://www.necel.com/

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielskiistraße 166 B
30177 Hannover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex, France
Tel: 01-3067-5800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Steigenweg 6
5616 HS Eindhoven
The Netherlands
Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: 010-8235-1155
http://www.cn.necel.com/

NEC Electronics Shanghai Ltd.
Room 2511-2512, Bank of China Tower,
200 Yincheng Road Central,
Pudong New Area, Shanghai P.R. China P.C:200120
Tel: 021-5888-5400
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
12/F., Cityplaza 4,
12 Taikoo Wan Road, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737
http://www.kr.necel.com/