To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for the product which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-terrorism systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
This manual explains the sample program functions of the standby function for the V850E/IA4 microcontroller. The explanations are based on usage with the V850E/IA4 microcontroller. Refer to this manual when using the V850E/IA3, V850ES/IK1, and V850ES/IE2 microcontrollers.

Caution

This sample program is provided for reference purposes only and operations are therefore not subject to guarantee by NEC Electronics Corporation. When using this sample program, customers are kindly advised to sufficiently evaluate this product based on their system before usage.
NOTES FOR CMOS DEVICES

1. **VOLTAGE APPLICATION WAVEFORM AT INPUT PIN**
 Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

2. **HANDLING OF UNUSED INPUT PINS**
 Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to V_{DD} or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

3. **PRECAUTION AGAINST ESD**
 A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

4. **STATUS BEFORE INITIALIZATION**
 Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5. **POWER ON/OFF SEQUENCE**
 In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

 The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6. **INPUT OF SIGNAL DURING POWER OFF STATE**
 Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements.

 Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.
These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of July, 2006. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
 The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 *Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 *Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 *Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)
1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).
Cautions
1. Download the program used in this manual from the NEC Electronics Website (http://www.necel.com/).

2. When using this sample program, reference the following startup file and link directive file and adjust them if as necessary.
 - Startup file: IA4_start.s
 - Link directive file: IA4_link.dir

3. In this sample program, control after releasing each standby mode varies depending on whether interrupt is enabled or disabled.
 After the HALT mode and IDLE mode are released and an interrupt is enabled, the control branches to the handler, and after the STOP mode is released and interrupt is disabled, the next instruction is executed.
Conventions

The function lists are structured as follows.

Hardware name (symbol)

<table>
<thead>
<tr>
<th>Function</th>
<th>Function description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>Name of sample function</td>
</tr>
<tr>
<td>Argument</td>
<td>Type and overview of argument</td>
</tr>
<tr>
<td>Processing content</td>
<td>Processing content of sample function</td>
</tr>
<tr>
<td>Starting method</td>
<td>Conditions for calling a function</td>
</tr>
<tr>
<td>SFR(s) used</td>
<td>Register name and setting content</td>
</tr>
<tr>
<td>call function(s)</td>
<td>Name and function of call function(s)</td>
</tr>
<tr>
<td>Variable(s)</td>
<td>Type, name, and overview of variable(s) used in sample function</td>
</tr>
<tr>
<td>Interrupt(s)</td>
<td>Name of function</td>
</tr>
<tr>
<td>Interrupt source(s)</td>
<td>Name</td>
</tr>
<tr>
<td>File name</td>
<td>Name of corresponding sample program file</td>
</tr>
<tr>
<td>Caution(s)</td>
<td>Caution(s) upon function usage</td>
</tr>
</tbody>
</table>

Interrupt function

<table>
<thead>
<tr>
<th>Function name</th>
<th>Name of interrupt function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing content</td>
<td>Processing content of interrupt function</td>
</tr>
<tr>
<td>SFR(s) used</td>
<td>Register name and setting content</td>
</tr>
<tr>
<td>call function(s)</td>
<td>None</td>
</tr>
<tr>
<td>Variable(s)</td>
<td>Name of variable, function</td>
</tr>
<tr>
<td>File name</td>
<td>Name of corresponding sample program file</td>
</tr>
<tr>
<td>Caution(s)</td>
<td>None</td>
</tr>
</tbody>
</table>
Product Differences
The differences between the V850E/IA4 and the V850E/IA3, V850ES/IK1, and V850ES/IE2 related to the standby functions are shown below.

<table>
<thead>
<tr>
<th>Item</th>
<th>V850E/IA4</th>
<th>V850E/IA3</th>
<th>V850ES/IK1</th>
<th>V850ES/IE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for releasing HALT mode</td>
<td>• Non-maskable interrupt request signal (INTWDT)</td>
</tr>
<tr>
<td></td>
<td>• Unmasked maskable interrupt request signal</td>
<td>• Unmasked maskable interrupt request signal</td>
<td>• Unmasked maskable interrupt request signal</td>
<td>• Unmasked maskable interrupt request signal (INTLVI)</td>
</tr>
<tr>
<td></td>
<td>• Reset signal (RESET pin input, WDTRES signal generation)</td>
<td>• Reset signal (RESET pin input, WDTRES signal generation)</td>
<td>• Reset signal (RESET pin input, WDTRES signal generation)</td>
<td>• Reset signal (RESET pin input, WDTRES signal generation, LVIRES signal generation, POCRES signal generation)</td>
</tr>
<tr>
<td>Conditions for releasing IDLE mode</td>
<td>• Unmasked external interrupt request signal (INTP0 to INTP5, INTP7 pin input)</td>
<td>• Unmasked external interrupt request signal (INTP0 to INTP5, INTP7 pin input)</td>
<td>• Unmasked external interrupt request signal (INTP0 to INTP5, INTP7 pin input)</td>
<td>• Unmasked external interrupt request signal (INTP0 to INTP5 pin input)</td>
</tr>
<tr>
<td></td>
<td>• Unmasked internal interrupt request signal from peripheral functions operable in IDLE mode (interrupt request signal related to CSIB in slave mode).</td>
<td>• Unmasked internal interrupt request signal from peripheral functions operable in IDLE mode (interrupt request signal related to CSIB in slave mode).</td>
<td>• Unmasked internal interrupt request signal from peripheral functions operable in IDLE mode (interrupt request signal related to CSIB in slave mode).</td>
<td>• Unmasked internal interrupt request signal from peripheral functions operable in IDLE mode (interrupt request signal related to CSIB in slave mode).</td>
</tr>
<tr>
<td></td>
<td>• RESET pin input</td>
<td>• RESET pin input</td>
<td>• RESET pin input</td>
<td>• RESET pin input</td>
</tr>
<tr>
<td>Conditions for releasing STOP mode</td>
<td>• Unmasked external interrupt request signal (INTP0 to INTP5, INTP7 pin input)</td>
<td>• Unmasked external interrupt request signal (INTP0 to INTP5, INTP7 pin input)</td>
<td>• Unmasked external interrupt request signal (INTP0 to INTP5, INTP7 pin input)</td>
<td>• Unmasked external interrupt request signal (INTP0 to INTP5 pin input)</td>
</tr>
<tr>
<td></td>
<td>• Unmasked internal interrupt request signal from peripheral functions operable in STOP mode (interrupt request signal related to CSIB in slave mode).</td>
<td>• Unmasked internal interrupt request signal from peripheral functions operable in STOP mode (interrupt request signal related to CSIB in slave mode).</td>
<td>• Unmasked internal interrupt request signal from peripheral functions operable in STOP mode (interrupt request signal related to CSIB in slave mode).</td>
<td>• Unmasked internal interrupt request signal from peripheral functions operable in STOP mode (interrupt request signal related to CSIB in slave mode).</td>
</tr>
<tr>
<td></td>
<td>• RESET pin input</td>
<td>• RESET pin input</td>
<td>• RESET pin input</td>
<td>• RESET pin input</td>
</tr>
<tr>
<td></td>
<td>• Unmasked external interrupt request signal (INTP0 to INTP5 pin input)</td>
<td>• Unmasked external interrupt request signal (INTLVI)</td>
<td>• Unmasked external interrupt request signal (INTP0 to INTP5, INTP7 pin input)</td>
<td>• Unmasked internal interrupt request signal (INTLVI)</td>
</tr>
<tr>
<td></td>
<td>• Unmasked internal interrupt request signal from peripheral functions operable in STOP mode (interrupt request signal related to CSIB in slave mode).</td>
<td>• Unmasked internal interrupt request signal from peripheral functions operable in STOP mode (interrupt request signal related to CSIB in slave mode).</td>
<td>• Unmasked internal interrupt request signal from peripheral functions operable in STOP mode (interrupt request signal related to CSIB in slave mode).</td>
<td>• Unmasked internal interrupt request signal from peripheral functions operable in STOP mode (interrupt request signal related to CSIB in slave mode).</td>
</tr>
<tr>
<td></td>
<td>• RESET pin input</td>
<td>• RESET pin input</td>
<td>• RESET pin input</td>
<td>• RESET pin input</td>
</tr>
<tr>
<td></td>
<td>• Unmasked external interrupt request signal (INTP0 to INTP5 pin input)</td>
<td>• Unmasked external interrupt request signal (INTLVI)</td>
<td>• Unmasked external interrupt request signal (INTP0 to INTP5, INTP7 pin input)</td>
<td>• Unmasked internal interrupt request signal (INTLVI)</td>
</tr>
<tr>
<td></td>
<td>• Unmasked internal interrupt request signal from peripheral functions operable in STOP mode (interrupt request signal related to CSIB in slave mode).</td>
<td>• Unmasked internal interrupt request signal from peripheral functions operable in STOP mode (interrupt request signal related to CSIB in slave mode).</td>
<td>• Unmasked internal interrupt request signal from peripheral functions operable in STOP mode (interrupt request signal related to CSIB in slave mode).</td>
<td>• Unmasked internal interrupt request signal from peripheral functions operable in STOP mode (interrupt request signal related to CSIB in slave mode).</td>
</tr>
<tr>
<td></td>
<td>• UNMASKED pin input</td>
<td>• UNMASKED pin input</td>
<td>• UNMASKED pin input</td>
<td>• UNMASKED pin input</td>
</tr>
<tr>
<td></td>
<td>• LVIRES signal generation</td>
<td>• LVIRES signal generation</td>
<td>• LVIRES signal generation</td>
<td>• LVIRES signal generation</td>
</tr>
<tr>
<td></td>
<td>• POCRES signal generation</td>
<td>• POCRES signal generation</td>
<td>• POCRES signal generation</td>
<td>• POCRES signal generation</td>
</tr>
</tbody>
</table>

Related Documents The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents related to V850E/IA3, V850E/IA4, V850ES/IK1, and V850ES/IE2

<table>
<thead>
<tr>
<th>Document Name</th>
<th>Document No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V850E1 Architecture User's Manual</td>
<td>U14559E</td>
</tr>
<tr>
<td>V850E/IA3, V850E/IA4 Hardware User’s Manual</td>
<td>U16543E</td>
</tr>
<tr>
<td>V850ES Architecture User’s Manual</td>
<td>U15943E</td>
</tr>
<tr>
<td>V850ES/IK1 Hardware User’s Manual</td>
<td>U16910E</td>
</tr>
<tr>
<td>V850ES/IE2 Hardware User’s Manual</td>
<td>U17716E</td>
</tr>
<tr>
<td>Inverter Control by V850 Series Vector Control by Hole Sensor Application Note</td>
<td>U17338E</td>
</tr>
<tr>
<td>Inverter Control by V850 Series Vector Control by Encoder Application Note</td>
<td>U17324E</td>
</tr>
<tr>
<td>Inverter Control by V850 Series 120° Excitation Method Control by Zero-Cross Detection Application Note</td>
<td>U17209E</td>
</tr>
<tr>
<td>Manual for Using Sample Program Functions DMA Functions (V850E/IA3, V850E/IA4) Application Note</td>
<td>U18235E</td>
</tr>
<tr>
<td>Manual for Using Sample Program Functions Timer ENC (V850E/IA3, V850E/IA4) Application Note</td>
<td>U18240E</td>
</tr>
<tr>
<td>Manual for Using Sample Program Functions Clock Generator (V850E/IA3, V850E/IA4, V850ES/IK1, V850ES/IE2) Application Note</td>
<td>U18242E</td>
</tr>
<tr>
<td>Manual for Using Sample Program Functions Standby Functions (V850E/IA3, V850E/IA4, V850ES/IK1, V850ES/IE2) Application Note</td>
<td>This manual</td>
</tr>
</tbody>
</table>
CONTENTS

Standby functions

HALT mode.. 9

Standby functions

IDLE mode... 12

Standby functions

STOP mode... 18
Standby functions
HALT mode

<table>
<thead>
<tr>
<th>[Function]</th>
<th>Sets standby function (HALT mode).</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Function name]</td>
<td>halt_main</td>
</tr>
<tr>
<td>[Argument]</td>
<td>None</td>
</tr>
<tr>
<td>[Processing content]</td>
<td>Sets from normal operation mode to HALT mode. The HALT mode is released by an external interrupt request signal.</td>
</tr>
<tr>
<td>[Starting method]</td>
<td>None</td>
</tr>
<tr>
<td>[SFR used]</td>
<td>None</td>
</tr>
<tr>
<td>[call functions]</td>
<td>halt_init, halt_mode</td>
</tr>
<tr>
<td>[Variable]</td>
<td>None</td>
</tr>
<tr>
<td>[Interrupt]</td>
<td>external_int</td>
</tr>
<tr>
<td>[Interrupt source]</td>
<td>INTP7</td>
</tr>
<tr>
<td>[File name]</td>
<td>halt.c</td>
</tr>
<tr>
<td>[Caution]</td>
<td>Interrupts not to be used must be masked before setting to HALT mode.</td>
</tr>
</tbody>
</table>

Function: halt_init

<table>
<thead>
<tr>
<th>[Function name]</th>
<th>halt_init</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Processing content]</td>
<td>Sets an external interrupt request signal (INTP7) for releasing HALT mode.</td>
</tr>
</tbody>
</table>
| [SFRs used] | - PMC0: 0x80 (Sets to alternate-function pin.)
 - INTR0: 0x80 (Sets valid edge to rising edge.)
 - INTF0: 0x00 (Sets valid edge to rising edge.)
 - PIC7.PIF7: 0 (Clears INTP7 interrupt request flag.)
 - IMR3: 0xFFFF (Masks interrupt.)
 - IMR2: 0xFFFF (Masks interrupt.)
 - IMR1: 0xFFFF (Masks interrupt.)
 - IMR0: 0xFFFF (Masks interrupt.)
 - PIC7.PMK7: 0 (Enables INTP7 interrupt servicing.) |
| [call function] | None |
| [Variable] | None |
| [File name] | halt.c |
| [Caution] | None |
[Function name] halt_mode
[Processing content] Executes HALT instruction.
[SFR used] None
[call function] None
[Variable] None
[File name] halt.c
[Cautions] Insert five or more NOP instructions after the HALT instruction.

Interrupt function

[Function name] external_int
[Processing content] There is no particular processing because this is used for confirmation of external interrupt occurrence.
[SFR used] None
[call function] None
[Variable] None
[File name] halt.c
[Cautions] None
Standby functions
HALT mode

- **halt_main**
- **DI**
 - Disables maskable interrupt request
- **halt_init**
 - HALT mode release setting function
- **EI**
 - Enables maskable interrupt request
- **halt_mode**
 - HALT mode function
- **ret**

HALT mode release setting function:

- **halt_init**
- **ret**

PMCO = 0x80

- **INTR0 = 0x80**
- **INTF0 = 0x00**
- **PIF7 = 0**
- **IMR3 = 0xFFFF**
- **IMR2 = 0xFFFF**
- **IMR1 = 0xFFFF**
- **IMR0 = 0xFFFF**
- **PMK7 = 0**

Sets alternate-function pin to INTP7 input pin

Sets edge detection to rising edge

Clears INTP7 interrupt request flag

Masks all maskable interrupts not to be used

Enables INTP7 interrupt servicing

HALT mode function:

- **halt_mode**
- **HALT**
 - Executes HALT instruction
 - **NOP instruction × 5**
 - Inserts five or more NOP instructions
- **ret**

INTP7 interrupt function:

- **external_int**
- **reti**

IMR0 = 0xFFFF
PIF7 = 0
PMK7 = 0

Enables INTP7 interrupt servicing

Diagrams

1. **DI**
2. **EI**
3. **halt_mode**
4. **ret**
5. **PMCO = 0x80**
6. **INTR0 = 0x80**
7. **INTF0 = 0x00**
8. **PIF7 = 0**
9. **IMR3 = 0xFFFF**
10. **IMR2 = 0xFFFF**
11. **IMR1 = 0xFFFF**
12. **IMR0 = 0xFFFF**
13. **PMK7 = 0**

Textual Content

- **Disables maskable interrupt request**
- **Enables maskable interrupt request**
- **Sets edge detection to rising edge**
- **Sets alternate-function pin to INTP7 input pin**
- **Masks all maskable interrupts not to be used**
- **Enables INTP7 interrupt servicing**

Key Terms

- **HALT**
- **NOP**
- **IMR**
- **PMK**
- **PIF**
- **external_int**
Standby functions
IDLE mode

[Function]	Sets standby function (IDLE mode).
[Function name]	idle_main
[Argument]	None
[Processing content]	Sets from normal operation mode to IDLE mode. The IDLE mode is released by an external interrupt request signal.
[Starting method]	None
[SFR used]	None
[call functions]	idle_init, idle_mode
[Variable]	None
[Interrupt]	external_int
[Interrupt source]	INTP7
[File name]	idle.c
[Caution]	Interrupts not to be used must be masked before setting to IDLE mode.

[Function name]	idle_init
[Processing content]	Sets an external interrupt request signal (INTP7) for releasing IDLE mode.
[SFRs used]	PMCO: 0x80 (Sets to alternate-function pin.)
	INTR0: 0x80 (Sets valid edge to rising edge.)
	INTF0: 0x00 (Sets valid edge to rising edge.)
	PIC7.PIF7: 0 (Clears INTP7 interrupt request flag.)
	IMR3: 0xFFFF (Masks interrupt.)
	IMR2: 0xFFFF (Masks interrupt.)
	IMR1: 0xFFFF (Masks interrupt.)
	IMR0: 0xFFFF (Masks interrupt.)
	PIC7.PMK7: 0 (Enables INTP7 interrupt servicing.)
[call function]	None
[Variable]	None
[File name]	idle.c
[Caution]	None
[Function name] idle_mode

[Processing content] Executes IDLE mode by forcibly terminating all DMA transfers.

[SFRs used]
- DCHC0.TC0 DMA0 transfer status bit
- DCHC0.E00: 1 (Enables DMA0 transfer.)
- DCHC0.INIT0: 1 (Forcibly terminates DMA0 transfer.)
- DCHC1.TC1 DMA1 transfer status bit
- DCHC1.E11: 1 (Enables DMA1 transfer.)
- DCHC1.INIT1: 1 (Forcibly terminates DMA1 transfer.)
- DCHC2.TC2 DMA2 transfer status bit
- DCHC2.E22: 1 (Enables DMA2 transfer.)
- DCHC2.INIT2: 1 (Forcibly terminates DMA2 transfer.)
- DCHC3.TC3 DMA3 transfer status bit
- DCHC3.E33: 1 (Enables DMA3 transfer.)
- DCHC3.INIT3: 1 (Forcibly terminates DMA3 transfer.)

PRCMD: 0x03 (Writes to command register (used when writing to a special register).)

PCC: 0x03 (Selects clock as fxx/8.)

PSMR: 0x00 (Sets to IDLE mode.)

PRCMD: 0x02 (Writes to command register (used when writing to a special register).)

PSC: 0x02 (Enables standby mode release and sets to standby mode.)

[call function] None

[Variable] None

[File name] idle_mode.c

[Cautions]
- DMA transfer is forcibly terminated in this sample program, because all DMA transfers must be terminated before performing data setting to the special register.
- PCC and PSC registers are special registers and can therefore only be written in combination of specific sequences.
- When setting to IDLE mode, set in the order of, the PCC register (set to 03H), the PSMR.PSM0 bit, and the PSC.STB bit.
Interrupt function

<table>
<thead>
<tr>
<th>[Function name]</th>
<th>external_int</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Processing content]</td>
<td>There is no particular processing because this is used for confirmation of external interrupt occurrence.</td>
</tr>
<tr>
<td>[SFR used]</td>
<td>None</td>
</tr>
<tr>
<td>[call function]</td>
<td>None</td>
</tr>
<tr>
<td>[Variable]</td>
<td>None</td>
</tr>
<tr>
<td>[File name]</td>
<td>idle.c</td>
</tr>
<tr>
<td>[Caution]</td>
<td>None</td>
</tr>
</tbody>
</table>
Standby functions
IDLE mode (1/3)

idle_main

DI
Disables maskable interrupt request

idle_init
IDLE mode release setting function

EI
Enables maskable interrupt request

idle_mode
IDLE mode function

PRERR == 1
Checks protection error flag

Yes

No

ret
Standby functions
IDLE mode (2/3)

IDLE mode release setting function

idle_init

Sets edge detection to rising edge

PMC0 = 0x80

Sets alternate-function pin to INTP7 input pin

INTR0 = 0x80

INTF0 = 0x00

PIF7 = 0

Clears INTP7 interrupt request flag

IMR3 = 0xFFFF

IMR2 = 0xFFFF

IMR1 = 0xFFFF

IMR0 = 0xFFFF

PMK7 = 0

Enables INTP7 interrupt servicing

ret

INTP7 interrupt function

external_int

reti

INTP7 interrupt
Standby functions
IDLE mode (3/3)

- **IDLE mode setting function**
 - `idle_mode`
 - **TC0 == 0 & E00 == 1**
 - No
 - **INIT0 = 1**
 - Checks DMA0 transfer
 - Forcibly terminates DMA0
 - Yes

- **TC1 == 0 & E11 == 1**
 - No
 - **INIT1 = 1**
 - Checks DMA1 transfer
 - Forcibly terminates DMA1
 - Yes

- **TC2 == 0 & E22 == 1**
 - No
 - **INIT2 = 1**
 - Checks DMA2 transfer
 - Forcibly terminates DMA2
 - Yes

- **TC3 == 0 & E33 == 1**
 - No
 - **INIT3 = 1**
 - Checks DMA3 transfer
 - Forcibly terminates DMA3
 - Yes

- **A**
 - **PRCMD = 0x03**
 - Writes to command register
 - **PCC = 0x03**
 - Selects clock as f fxx/8
 - **NOP instruction × 5**
 - Inserts five or more NOP instructions
 - **PSMR = 0x00**
 - Specifies standby mode operation as IDLE mode
 - **PRCMD = 0x02**
 - Writes to command register
 - **PSC = 0x02**
 - Enables release of standby control via maskable interrupt request
 - **NOP instruction × 5**
 - Inserts five or more NOP instructions
 - **ret**
Standby functions
STOP mode

<table>
<thead>
<tr>
<th>Function</th>
<th>Sets standby function (STOP mode).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>stop_main</td>
</tr>
<tr>
<td>Argument</td>
<td>None</td>
</tr>
<tr>
<td>Processing content</td>
<td>Sets from normal operation mode to STOP mode. The STOP mode is released by an external interrupt request signal.</td>
</tr>
<tr>
<td>Starting method</td>
<td>None</td>
</tr>
<tr>
<td>SFR used</td>
<td>None</td>
</tr>
<tr>
<td>Call functions</td>
<td>stop_init, stop_mode</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>Interrupt</td>
<td>None</td>
</tr>
<tr>
<td>Interrupt source</td>
<td>None</td>
</tr>
<tr>
<td>File name</td>
<td>stop.c</td>
</tr>
<tr>
<td>Cautions</td>
<td>• Interrupts not to be used must be masked before setting to STOP mode. • The INTP7 interrupt request signal is kept set after releasing STOP mode.</td>
</tr>
</tbody>
</table>

Function name	stop_init
Processing content	Sets an external interrupt request signal (INTP7) for releasing STOP mode.
SFRs used	OSTS: 0x07 (Sets oscillation stabilization time to 16.4 ms)
	PMC0: 0x80 (Sets to alternate-function pin.)
	INTR0: 0x80 (Sets valid edge to rising edge.)
	INTF0: 0x00 (Sets valid edge to rising edge.)
	PIC7.PIF7: 0 (Clears INTP7 interrupt request flag.)
	IMR3: 0xFFFF (Masks interrupt.)
	IMR2: 0xFFFF (Masks interrupt.)
	IMR1: 0xFFFF (Masks interrupt.)
	IMR0: 0xFFFF (Masks interrupt.)
	PIC7.PMK7: 0 (Enables INTP7 interrupt servicing.)
Call function	None
Variable	None
File name	stop.c
Caution	None
[Function name] stop_mode

[Processing content] Executes STOP mode by forcibly terminating all DMA transfers.

[SFRs used]
- DCHC0.TC0 DMA0 transfer status bit
- DCHC0.E00: 1 (Enables DMA0 transfer.)
- DCHC0.INIT0: 1 (Forcibly terminates DMA0 transfer.)
- DCHC1.TC1 DMA1 transfer status bit
- DCHC1.E11: 1 (Enables DMA1 transfer.)
- DCHC1.INIT1: 1 (Forcibly terminates DMA1 transfer.)
- DCHC2.TC2 DMA2 transfer status bit
- DCHC2.E22: 1 (Enables DMA2 transfer.)
- DCHC2.INIT2: 1 (Forcibly terminates DMA2 transfer.)
- DCHC3.TC3 DMA3 transfer status bit
- DCHC3.E33: 1 (Enables DMA3 transfer.)
- DCHC3.INIT3: 1 (Forcibly terminates DMA3 transfer.)

- PRCMD: 0x03 (Writes to command register (used when writing to a special register).)
- PCC: 0x03 (Selects clock as fXX/8.)
- PSMR: 0x01 (Sets to STOP mode.)
- PRCMD: 0x02 (Writes to command register (used when writing to a special register).)
- PSC: 0x02 (Enables standby mode release and sets to standby mode.)

[call function] None

[Variable] None

[File name] stop.c

[Cautions]
- DMA transfer is forcibly terminated in this sample program, because all DMA transfers must be terminated before performing data setting to the special register.
- PCC and PSC registers are special registers and can therefore only be written in combination of specific sequences.
- When setting to STOP mode, set in the order of, the PCC register (set to 03H), the PSMR.PSM0 bit, and the PSC.STB bit.
Standby functions
STOP mode (1/3)

stop_main

DI
Disables maskable interrupt request

stop_init
STOP mode release setting function

stop_mode
STOP mode function

PRERR == 1
Checks protection error flag

Yes

No

ret
STOP mode release setting function

```plaintext
stop_init

OSTS = 0x07
- Sets oscillation stabilization time to 16.4 ms

PMCO = 0x80
- Sets alternate-function pin to INTP7 input pin

INTR0 = 0x80
- Sets edge detection to rising edge

INTF0 = 0x00

PIF7 = 0
- Clears INTP7 interrupt request flag

IMR3 = 0xFFFF

IMR2 = 0xFFFF
- Masks all maskable interrupts not to be used

IMR1 = 0xFFFF

IMR0 = 0xFFFF

PMK7 = 0
- Enables INTP7 interrupt servicing

ret
```
Standby functions
STOP mode (3/3)

STOP mode setting function

stop_mode

TC0 == 0 & E00 == 1
Yes

INIT0 = 1

TC1 == 0 & E11 == 1
No

Checks DMA0 transfer
Forcibly terminates DMA0

Yes

INIT1 = 1

TC2 == 0 & E22 == 1
No

Checks DMA1 transfer
Forcibly terminates DMA1

Yes

INIT2 = 1

TC3 == 0 & E33 == 1
No

Checks DMA2 transfer
Forcibly terminates DMA2

Yes

INIT3 = 1

A

A

PREM = 0x02

Forcibly terminates DMA3

A

PRCMD = 0x02

Forcibly terminates DMA1

PCC = 0x03

Selects clock as fxx/8

NOP instruction × 5

PSMR = 0x01

Specifies standby mode operation as STOP mode

PRCMD = 0x03

Forcibly terminates DMA0

Enables release of standby control via maskable interrupt request
Specifies operation mode as standby mode

NOP instruction × 5

PCC = 0x03

Inserts five or more NOP instructions

PSMR = 0x01

 insertion five or more NOP instructions

NOP instruction × 5

ret

Writing to command register

Writing to command register
For further information, please contact:

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668, Japan
Tel: 044-435-5111
http://www.necel.com/

[America]
NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
800-368-9782
http://www.am.necel.com/

[Europe]
NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielskistraße 166 B
30177 Hannover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

Sucursale Française
9, rue Paul Dautier, B.P.52
78142 Velzly-Villacoublay Cédex
France
Tel: 01-3067-5800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 911-504-2787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Steigerweg 6
5616 HS Eindhoven
The Netherlands
Tel: 040 265 40 10

[Asia & Oceania]
NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: 010-8235-1155
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
12/F., Cityplaza 4,
12 Taikoo Wan Road, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
11F., Samik Lavied‘or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737
http://www.kr.necel.com/