To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

 “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Notice 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Notice 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
This manual explains the sample program functions of the port functions for the V850E/IA4 microcontroller. The explanations are based on usage with the V850E/IA4 microcontroller. Refer to this manual when using the V850E/IA3, V850ES/IK1, and V850ES/IE2 microcontrollers.

Caution
This sample program is provided for reference purposes only and operations are therefore not subject to guarantee by NEC Electronics Corporation. When using this sample program, customers are kindly advised to sufficiently evaluate this product based on their system before usage.
NOTES FOR CMOS DEVICES

1. VOLTAGE APPLICATION WAVEFORM AT INPUT PIN
 Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the
 CMOS device stays in the area between $V_{IL\,\text{MAX}}$ and $V_{IH\,\text{MIN}}$ due to noise, etc., the device may
 malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,
 and also in the transition period when the input level passes through the area between $V_{IL\,\text{MAX}}$ and
 $V_{IH\,\text{MIN}}$.

2. HANDLING OF UNUSED INPUT PINS
 Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is
 possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS
 devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed
 high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to V_{DD} or GND
 via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must
 be judged separately for each device and according to related specifications governing the device.

3. PRECAUTION AGAINST ESD
 A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
 ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as
 much as possible, and quickly dissipate it when it has occurred. Environmental control must be
 adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that
 easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static
 container, static shielding bag or conductive material. All test and measurement tools including work
 benches and floors should be grounded. The operator should be grounded using a wrist strap.
 Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for
 PW boards with mounted semiconductor devices.

4. STATUS BEFORE INITIALIZATION
 Power-on does not necessarily define the initial status of a MOS device. Immediately after the power
 source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does
 not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the
 reset signal is received. A reset operation must be executed immediately after power-on for devices
 with reset functions.

5. POWER ON/OFF SEQUENCE
 In the case of a device that uses different power supplies for the internal operation and external
 interface, as a rule, switch on the external power supply after switching on the internal power supply.
 When switching the power supply off, as a rule, switch off the external power supply and then the
 internal power supply. Use of the reverse power on/off sequences may result in the application of an
 overvoltage to the internal elements of the device, causing malfunction and degradation of internal
 elements due to the passage of an abnormal current.
 The correct power on/off sequence must be judged separately for each device and according to related
 specifications governing the device.

6. INPUT OF SIGNAL DURING POWER OFF STATE
 Do not input signals or an I/O pull-up power supply while the device is not powered. The current
 injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and
 the abnormal current that passes in the device at this time may cause degradation of internal elements.
 Input of signals during the power off state must be judged separately for each device and according to
 related specifications governing the device.
These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of July, 2006. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
- "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)
1. "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
2. "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).
INTRODUCTION

Cautions 1. Download the program used in this manual from the NEC Electronics Website (http://www.necel.com/).
2. When using this sample program, reference the following startup file and link directive file and adjust them if as necessary.
 • Startup file: IA4_start.s
 • Link directive file: IA4_link.dir

Conventions The function lists are structured as follows.

Hardware name

<table>
<thead>
<tr>
<th>[Function]</th>
<th>Function description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Function name]</td>
<td>Name of sample function</td>
</tr>
<tr>
<td>[Argument]</td>
<td>Type and overview of argument</td>
</tr>
<tr>
<td>[Processing content]</td>
<td>Processing content of sample function</td>
</tr>
<tr>
<td>[SFR(s) used]</td>
<td>Register name and setting content</td>
</tr>
<tr>
<td>[call function(s)]</td>
<td>Name and function of call function(s)</td>
</tr>
<tr>
<td>[Variable(s)]</td>
<td>Type, name, and overview of variable(s) used in sample function</td>
</tr>
<tr>
<td>[Interrupt(s)]</td>
<td>Name of function</td>
</tr>
<tr>
<td>[Interrupt source(s)]</td>
<td>Name</td>
</tr>
<tr>
<td>[File name]</td>
<td>Name of corresponding sample program file</td>
</tr>
<tr>
<td>[Caution(s)]</td>
<td>Caution(s) upon function usage</td>
</tr>
</tbody>
</table>

Product Differences The differences between the V850E/IA4 and the V850E/IA3, V850ES/IK1, and V850ES/IE2 related to the port functions are shown below.

<table>
<thead>
<tr>
<th>Item</th>
<th>V850E/IA4</th>
<th>V850E/IA3</th>
<th>V850ES/IK1</th>
<th>V850ES/IE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port 0</td>
<td>P00 to P07</td>
<td>P00, P02 to P07</td>
<td>P00 to P06</td>
<td></td>
</tr>
<tr>
<td>Port 1</td>
<td>P10 to P17</td>
<td>P10 to P17</td>
<td>P10 to P17 (P16 (CLMER))</td>
<td></td>
</tr>
<tr>
<td>Port 2</td>
<td>P20 to P27</td>
<td>Not provided</td>
<td>P20 to P27</td>
<td></td>
</tr>
<tr>
<td>Port 3</td>
<td>P30 to P37</td>
<td>P30 to P37</td>
<td>P30 to P33</td>
<td></td>
</tr>
<tr>
<td>Port 4</td>
<td>P40 to P44</td>
<td>P40 to P44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port 5</td>
<td>P50 to P52</td>
<td>Not provided</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port 7</td>
<td>P70 to P77</td>
<td>P70 to P75</td>
<td>Not provided</td>
<td></td>
</tr>
<tr>
<td>Port DL</td>
<td>PDL0 to PDL15</td>
<td>PDL0 to PDL15</td>
<td>PDL0 to PDL7</td>
<td></td>
</tr>
</tbody>
</table>
Related Documents
The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents related to V850E/IA3, V850E/IA4, V850ES/IK1, and V850ES/IE2

<table>
<thead>
<tr>
<th>Document Name</th>
<th>Document No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V850E1 Architecture User’s Manual</td>
<td>U14559E</td>
</tr>
<tr>
<td>V850E/IA3, V850E/IA4 Hardware User’s Manual</td>
<td>U16543E</td>
</tr>
<tr>
<td>V850ES Architecture User’s Manual</td>
<td>U15943E</td>
</tr>
<tr>
<td>V850ES/IK1 Hardware User’s Manual</td>
<td>U16910E</td>
</tr>
<tr>
<td>V850ES/IE2 Hardware User’s Manual</td>
<td>U17716E</td>
</tr>
<tr>
<td>Inverter Control by V850 Series Vector Control by Hole Sensor Application Note</td>
<td>U17338E</td>
</tr>
<tr>
<td>Inverter Control by V850 Series Vector Control by Encoder Application Note</td>
<td>U17324E</td>
</tr>
<tr>
<td>Inverter Control by V850 Series 120° Excitation Method Control by Zero-Cross Detection Application Note</td>
<td>U17209E</td>
</tr>
<tr>
<td>Manual for Using Sample Program Functions DMA Functions (V850E/IA3, V850E/IA4) Application Note</td>
<td>U18235E</td>
</tr>
<tr>
<td>Manual for Using Sample Program Functions Timer ENC (V850E/IA3, V850E/IA4) Application Note</td>
<td>U18240E</td>
</tr>
</tbody>
</table>
CONTENTS

Port functions
 Port input ... 7
Port functions
 Port output .. 14
Port functions
 Alternate-function pins .. 20
Port functions
Port input

<table>
<thead>
<tr>
<th>[Function]</th>
<th>Sets all ports as input pins of port mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Function name]</td>
<td>port_input_main</td>
</tr>
<tr>
<td>[Argument]</td>
<td>None</td>
</tr>
<tr>
<td>[Processing content]</td>
<td>Calls setting function of each port and sets to input pin.</td>
</tr>
<tr>
<td>[SFR used]</td>
<td>None</td>
</tr>
<tr>
<td>[call functions]</td>
<td>port0_input, port1_input, port2_input, port3_input, port4_input, port5_input, port7_input, portDL_input</td>
</tr>
<tr>
<td>[Variable]</td>
<td>None</td>
</tr>
<tr>
<td>[Interrupt]</td>
<td>None</td>
</tr>
<tr>
<td>[Interrupt source]</td>
<td>None</td>
</tr>
<tr>
<td>[File name]</td>
<td>port_input.c</td>
</tr>
<tr>
<td>[Caution]</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[Function name]</th>
<th>port0_input</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Processing content]</td>
<td>Sets P0 pin to input mode of I/O port.</td>
</tr>
<tr>
<td>[SFRs used]</td>
<td>PMC0: 0x00 (Sets to I/O port)</td>
</tr>
<tr>
<td></td>
<td>PU0: 0x00 (Sets on-chip pull-up resistor as unused)</td>
</tr>
<tr>
<td></td>
<td>PM0: 0xFF (Sets to input mode)</td>
</tr>
<tr>
<td>[call function]</td>
<td>None</td>
</tr>
<tr>
<td>[Variable]</td>
<td>None</td>
</tr>
<tr>
<td>[File name]</td>
<td>port_input.c</td>
</tr>
<tr>
<td>[Cautions]</td>
<td>The connection of the on-chip pull-up resistor becomes valid only when in input mode during port mode or in alternate-function mode.</td>
</tr>
<tr>
<td></td>
<td>The on-chip pull-up resistor is set as “Not connected” in this sample program.</td>
</tr>
</tbody>
</table>
[Function name] port1_input

[Processing content] Sets P1 pin to input mode of I/O port.

[SFRs used] PMC1: 0x00 (Sets to I/O port)
PU1: 0x00 (Sets on-chip pull-up resistor as unused)
PM1: 0xFF (Sets to input mode)

[call function] None

[Variable] None

[File name] port_input.c

[Cautions]
- The connection of the on-chip pull-up resistor becomes valid only when in input mode during port mode, when the pins function as input pins in alternate-function mode, or when the TOQ0T1 to TOQ1T3, TOQ0B1 to TOQ0B3, and TOP21 pins which are output pins during alternate-function mode go into a high impedance state due to TOQ0OFF and TOP2OFF pins or software processing.
- The on-chip pull-up resistor is set as “Not connected” in this sample program.

[Function name] port2_input

[Processing content] Sets P2 pin to input mode of I/O port.

[SFRs used] PMC2: 0x00 (Sets to I/O port)
PU2: 0x00 (Sets on-chip pull-up resistor as unused)
PM2: 0xFF (Sets to input mode)

[call function] None

[Variable] None

[File name] port_input.c

[Cautions]
- The connection of the on-chip pull-up resistor becomes valid only when in input mode during port mode, or when the TOQ1T1 to TOQ1T3, TOQ1B1 to TOQ1B3, and TOP31 pins which are output pins during alternate-function mode go into a high impedance state due to TOQ1OFF and TOP3OFF pins or software processing.
- The on-chip pull-up resistor is set as “Not connected” in this sample program.
<table>
<thead>
<tr>
<th>Function name</th>
<th>port3_input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing content</td>
<td>Sets P3 pin to input mode of I/O port.</td>
</tr>
</tbody>
</table>
| SFRs used | PMC3: 0x00 (Sets to I/O port)
PU3: 0x00 (Sets on-chip pull-up resistor as unused)
PM3: 0xFF (Sets to input mode) |
| call function | None |
| Variable | None |
| File name | port_input.c |
| Cautions | • The connection of the on-chip pull-up resistor becomes valid only when in input mode during port mode or when the pins function as input pins in the alternate-function mode.
• The on-chip pull-up resistor is set as “Not connected” in this sample program. |

<table>
<thead>
<tr>
<th>Function name</th>
<th>port4_input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing content</td>
<td>Sets P4 pin to input mode of I/O port.</td>
</tr>
</tbody>
</table>
| SFRs used | PMC4: 0x00 (Sets to I/O port)
PU4: 0x00 (Sets on-chip pull-up resistor as unused)
PM4: 0xFF (Sets to input mode) |
| call function | None |
| Variable | None |
| File name | port_input.c |
| Cautions | • The connection of the on-chip pull-up resistor becomes valid only when in input mode during port mode or when the pins function as input pins in the alternate-function mode (including when the SCKB0 pin is in slave mode).
• The on-chip pull-up resistor is set as “Not connected” in this sample program. |
port5_input

Function name: port5_input
Processing content: Sets P5 pin to input mode of I/O port.
SFRs used:
- PMC5: 0x00 (Sets to I/O port)
- PU5: 0x00 (Sets on-chip pull-up resistor as unused)
- PM5: 0xFF (Sets to input mode)
call function: None
Variable: None
File name: port_input.c
Caution:
- The connection of the on-chip pull-up resistor becomes valid only when in input mode during port mode or when the pins function as input pins in the alternate-function mode.
- The on-chip pull-up resistor is set as “Not connected” in this sample program.

port7_input

Function name: port7_input
Processing content: Sets P7 pin to input mode of input port.
SFR used: PMC7: 0x00 (Sets to input port)
call function: None
Variable: None
File name: port_input.c
Caution: None

portDL_input

Function name: portDL_input
Processing content: Sets PDL pin to input mode of I/O port.
SFRs used:
- PUDL: 0x0000 (Sets on-chip pull-up resistor as unused)
- PMDL: 0xFFFF (Sets to input mode)
call function: None
Variable: None
File name: port_input.c
Caution:
- The connection of the on-chip pull-up resistor becomes valid only when in input mode during port mode.
- The on-chip pull-up resistor is set as “Not connected” in this sample program.
Port functions
Port input (1/3)

- port_input_main
 - port0_input: Port 0 input setting function
 - port1_input: Port 1 input setting function
 - port2_input: Port 2 input setting function
 - port3_input: Port 3 input setting function
 - port4_input: Port 4 input setting function
 - port5_input: Port 5 input setting function
 - port7_input: Port 7 input setting function
 - portDL_input: Port DL input setting function
 - ret
Port functions
Port input (2/3)

Port 0 input setting function

port0_input

PM0 = 0xFF
Sets alternate-function pin to I/O port

PU0 = 0x00
Sets pull-up resistor as unused

PM0 = 0xFF
Sets I/O mode to input mode

ret

Port 1 input setting function

port1_input

PM1 = 0xFF
Sets alternate-function pin to I/O port

PU1 = 0x00
Sets pull-up resistor as unused

PM1 = 0xFF
Sets I/O mode to input mode

ret

Port 2 input setting function

port2_input

PM2 = 0xFF
Sets alternate-function pin to I/O port

PU2 = 0x00
Sets pull-up resistor as unused

PM2 = 0xFF
Sets I/O mode to input mode

ret

Port 3 input setting function

port3_input

PM3 = 0xFF
Sets alternate-function pin to I/O port

PU3 = 0x00
Sets pull-up resistor as unused

PM3 = 0xFF
Sets I/O mode to input mode

ret
Port functions
Port input (3/3)

Port 4 input setting function
- `port4_input`
- `PMC4 = 0x00` Sets alternate-function pin to I/O port
- `PU4 = 0x00` Sets pull-up resistor as unused
- `PM4 = 0xFF` Sets I/O mode to input mode
- `ret`

Port 5 input setting function
- `port5_input`
- `PMC5 = 0x00` Sets alternate-function pin to I/O port
- `PU5 = 0x00` Sets pull-up resistor as unused
- `PM5 = 0xFF` Sets I/O mode to input mode
- `ret`

Port 7 input setting function
- `port7_input`
- `PMC7 = 0x00` Sets alternate-function pin to input port
- `ret`

Port DL input setting function
- `portDL_input`
- `PUDL = 0x0000` Sets pull-up resistor as unused
- `PMDL = 0xFFFF` Sets I/O mode to input mode
- `ret`
Port functions
Port output

<table>
<thead>
<tr>
<th>[Function]</th>
<th>Sets all ports as output pins of port mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Function name]</td>
<td>port_output_main</td>
</tr>
<tr>
<td>[Argument]</td>
<td>None</td>
</tr>
<tr>
<td>[Processing content]</td>
<td>Calls setting function of each port and sets to output pin.</td>
</tr>
<tr>
<td>[SFR used]</td>
<td>None</td>
</tr>
<tr>
<td>[call functions]</td>
<td>port0_output, port1_output, port2_output, port3_output, port4_output, port5_output, portDL_output</td>
</tr>
<tr>
<td>[Variable]</td>
<td>None</td>
</tr>
<tr>
<td>[Interrupt]</td>
<td>None</td>
</tr>
<tr>
<td>[Interrupt source]</td>
<td>None</td>
</tr>
<tr>
<td>[File name]</td>
<td>port_output.c</td>
</tr>
<tr>
<td>[Caution]</td>
<td>None</td>
</tr>
</tbody>
</table>

[Function name]	port0_output
[Processing content]	Sets P0 pin to output mode of I/O port.
[SFR used]	PMC0: 0x00 (Sets to I/O port)
	P0: 0x00 (Sets initial value to output data)
	PM0: 0x00 (Sets to output mode)
[call function]	None
[Variable]	None
[File name]	port_output.c
[Caution]	Set the initial value of the output data as desired according to specifications.
[Function name] port1_output

[Processing content] Sets P1 pin to output mode of I/O port.

[SFRs used] PMC1: 0x00 (Sets to I/O port)
P1: 0x00 (Sets initial value to output data)
PM1: 0x00 (Sets to output mode)

[call function] None

[Variable] None

[File name] port_output.c

[Caution] Set the initial value of the output data as desired according to specifications.

[Function name] port2_output

[Processing content] Sets P2 pin to output mode of I/O port.

[SFRs used] PMC2: 0x00 (Sets to I/O port)
P2: 0x00 (Sets initial value to output data)
PM2: 0x00 (Sets to output mode)

[call function] None

[Variable] None

[File name] port_output.c

[Caution] Set the initial value of the output data as desired according to specifications.

[Function name] port3_output

[Processing content] Sets P3 pin to output mode of I/O port.

[SFRs used] PMC3: 0x00 (Sets to I/O port)
P3: 0x00 (Sets initial value to output data)
PM3: 0x00 (Sets to output mode)

[call function] None

[Variable] None

[File name] port_output.c

[Caution] Set the initial value of the output data as desired according to specifications.
[Function name] port4_output

[Processing content] Sets P4 pin to output mode of I/O port.

[SFRs used] PMC4: 0x00 (Sets to I/O port)
P4: 0x00 (Sets initial value to output data)
PM4: 0xE0 (Sets to output mode)

call function] None

[Variable] None

[File name] port_output.c

[Caution] Set the initial value of the output data as desired according to specifications.

[Function name] port5_output

[Processing content] Sets P5 pin to output mode of I/O port.

[SFRs used] PMC5: 0x00 (Sets to I/O port)
P5: 0x00 (Sets initial value to output data)
PM5: 0xF8 (Sets to output mode)

call function] None

[Variable] None

[File name] port_output.c

[Caution] Set the initial value of the output data as desired according to specifications.

[Function name] portDL_output

[Processing content] Sets PDL pin to output mode of I/O port.

[SFRs used] PDL: 0x0000 (Sets initial value to output data)
PMDL: 0x0000 (Sets to output mode)

call function] None

[Variable] None

[File name] port_output.c

[Caution] Set the initial value of the output data as desired according to specifications.
Port functions
Port output (1/3)

- port_output_main
 - port0_output: Port 0 output setting function
 - port1_output: Port 1 output setting function
 - port2_output: Port 2 output setting function
 - port3_output: Port 3 output setting function
 - port4_output: Port 4 output setting function
 - port5_output: Port 5 output setting function
 - portDL_output: Port DL output setting function
 - ret
Port functions
Port output (2/3)

Port 0 output setting function

port0_output

PM0 = 0x00 Sets alternate-function pin to I/O port

P0 = 0x00 Sets initial value of port latch specification

PM0 = 0x00 Sets I/O mode to output mode

ret

Port 1 output setting function

port1_output

PM1 = 0x00 Sets alternate-function pin to I/O port

P1 = 0x00 Sets initial value of port latch specification

PM1 = 0x00 Sets I/O mode to output mode

ret

Port 2 output setting function

port2_output

PM2 = 0x00 Sets alternate-function pin to I/O port

P2 = 0x00 Sets initial value of port latch specification

PM2 = 0x00 Sets I/O mode to output mode

ret

Port 3 output setting function

port3_output

PM3 = 0x00 Sets alternate-function pin to I/O port

P3 = 0x00 Sets initial value of port latch specification

PM3 = 0x00 Sets I/O mode to output mode

ret
Port 4 output setting function

- **port4.output**
- PMC4 = 0x00
- P4 = 0x00
- PM4 = 0xE0
- Sets alternate-function pin to I/O port
- Sets initial value of port latch specification
- Sets I/O mode to output mode
- **ret**

Port 5 output setting function

- **port5.output**
- PMC5 = 0x00
- P5 = 0x00
- PM5 = 0xF8
- Sets alternate-function pin to I/O port
- Sets initial value of port latch specification
- Sets I/O mode to output mode
- **ret**

Port DL output setting function

- **portDL.output**
- PDL = 0x0000
- PMDL = 0x0000
- Sets initial value of port latch specification
- Sets I/O mode to output mode
- **ret**
Port functions
Alternate-function pins

<table>
<thead>
<tr>
<th>Function</th>
<th>Sets all ports as alternate-function pins of alternate-function mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>port_use_main</td>
</tr>
<tr>
<td>Argument</td>
<td>None</td>
</tr>
<tr>
<td>Processing content</td>
<td>Calls setting function of each port and sets to alternate-function pin.</td>
</tr>
<tr>
<td>SFRs used</td>
<td>None</td>
</tr>
<tr>
<td>call functions</td>
<td>port0_use, port1_use, port2_use, port3_use, port4_use, port5_use, port7_use</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>Interrupt</td>
<td>None</td>
</tr>
<tr>
<td>Interrupt source</td>
<td>None</td>
</tr>
<tr>
<td>File name</td>
<td>port_use.c</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
</tbody>
</table>

Function name	port0_use
Processing content	Sets P0 pin as alternate-function pin.
SFRs used	PMC0: 0xFF (Sets to alternate-function pin)
	PU0: 0x00 (Sets on-chip pull-up resistor as unused)
	INTR0: 0x00 (Sets to falling edge)
	INTF0: 0xFF (Sets to falling edge)
call function	None
Variable	None
File name	port_use.c
Cautions	The connection of the on-chip pull-up resistor becomes valid only when in input mode during port mode or in alternate-function mode.
	The on-chip pull-up resistor is set as “Not connected” in this sample program.
[Function name] port1_use

[Processing content] Sets P1 pin as alternate-function pin.

[SFRs used] PFC1: 0xFF (Sets to alternate-function pin)
PFCE1: 0x00 (Sets to alternate-function pin)
PMC1: 0xFF (Sets to alternate-function pin)
PU1: 0x00 (Sets on-chip pull-up resistor as unused)

[call function] None

[Variable] None

[File name] port_use.c

[Cautions] • The connection of the on-chip pull-up resistor becomes valid only when in input mode during port mode, when the pins function as input pins in alternate-function mode, or when the TOQ0T1 to TOQ0T3, TOQ0B1 to TOQ0B3, and TOP21 pins which are output pins during alternate-function mode go into a high impedance state due to TOQ0OFF and TOP2OFF pins or software processing.
• The on-chip pull-up resistor is set as “Not connected” in this sample program.

[Function name] port2_use

[Processing content] Sets P2 pin as alternate-function pin.

[SFRs used] PMC2: 0xFF (Sets to alternate-function pin)
PU2: 0x00 (Sets on-chip pull-up resistor as unused)

[call function] None

[Variable] None

[File name] port_use.c

[Cautions] • The connection of the on-chip pull-up resistor becomes valid only when in input mode during port mode, or when the TOQ1T1 to TOQ1T3, TOQ1B1 to TOQ1B3, and TOP31 pins which are output pins during alternate-function mode go into a high impedance state due to TOQ1OFF and TOP3OFF pins or software processing.
• The on-chip pull-up resistor is set as “Not connected” in this sample program.
<table>
<thead>
<tr>
<th>Function name</th>
<th>port3_use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing content</td>
<td>Sets P3 pin as alternate-function pin.</td>
</tr>
</tbody>
</table>
| SFRs used | PFC3: 0x2C (Sets to alternate-function pin)
PMC3: 0xFFF (Sets to alternate-function pin)
PU3: 0x00 (Sets on-chip pull-up resistor as unused) |
| call function | None |
| Variable | None |
| File name | port_use.c |
| Cautions |
- The connection of the on-chip pull-up resistor becomes valid only when in input mode during port mode or when the pins function as input pins in the alternate-function mode.
- The on-chip pull-up resistor is set as “Not connected” in this sample program. |

<table>
<thead>
<tr>
<th>Function name</th>
<th>port4_use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing content</td>
<td>Sets P4 pin as alternate-function pin.</td>
</tr>
</tbody>
</table>
| SFRs used | PFC4: 0x18 (Sets to alternate-function pin)
PMC4: 0x1F (Sets to alternate-function pin)
PU4: 0x00 (Sets on-chip pull-up resistor as unused) |
| call function | None |
| Variable | None |
| File name | port_use.c |
| Cautions |
- The connection of the on-chip pull-up resistor becomes valid only when in input mode during port mode or when the pins function as input pins in the alternate-function mode (including when the SCKB0 pin is in slave mode).
- The on-chip pull-up resistor is set as “Not connected” in this sample program. |
port5_use

- **Function name**: port5_use
- **Processing content**: Sets P5 pin as alternate-function pin.
- **SFRs used**:
 - PFC5: 0x01 (Sets to alternate-function pin)
 - PMC5: 0x07 (Sets to alternate-function pin)
 - PU5: 0x00 (Sets on-chip pull-up resistor as unused)
- **Call function**: None
- **Variable**: None
- **File name**: port_use.c
- **Cautions**:
 - The connection of the on-chip pull-up resistor becomes valid only when in input mode during port mode or when the pins function as input pins in the alternate-function mode.
 - The on-chip pull-up resistor is set as “Not connected” in this sample program.

port7_use

- **Function name**: port7_use
- **Processing content**: Sets P7 pin as alternate-function pin.
- **SFR used**:
 - PMC7: 0xFF (Sets to alternate-function pin)
- **Call function**: None
- **Variable**: None
- **File name**: port_use.c
- **Cautions**: None
Port functions
Alternate-function pin (1/3)

diagram:

- port_use_main
 - port0_use: Port 0 alternate-function pin setting function
 - port1_use: Port 1 alternate-function pin setting function
 - port2_use: Port 2 alternate-function pin setting function
 - port3_use: Port 3 alternate-function pin setting function
 - port4_use: Port 4 alternate-function pin setting function
 - port5_use: Port 5 alternate-function pin setting function
 - port7_use: Port 7 alternate-function pin setting function
 - ret
Port functions
Alternate-function pin (2/3)

Port 0 alternate-function pin setting function

- **port0_use**
- **PMC0 = 0xFF**
- **PU0 = 0x00**
- **INTR0 = 0x00**
- **INTF0 = 0xFF**
- **Sets alternate-function pin to INTP0 to INTP7 inputs**
- **Sets pull-up resistor as unused**
- **Sets to falling edge of external interrupt**
- **ret**

Port 1 alternate-function pin setting function

- **port1_use**
- **PFC1 = 0xFF**
- **PFCE1 = 0x00**
- **PMC1 = 0xFF**
- **PU1 = 0x00**
- **Sets to falling edge of external interrupt**
- **Sets pull-up resistor as unused**
- **ret**

Port 2 alternate-function pin setting function

- **port2_use**
- **PMC2 = 0xFF**
- **PU2 = 0x00**
- **Sets alternate-function pins to TOP31 output, TOQ10 output, TOQ1B3 output, TOQ1T3 output, TOQ1B2 output, TOQ1T2 output, TOQ1B1 output, TOQ1T1 output**
- **Sets pull-up resistor as unused**
- **ret**

Port 3 alternate-function pin setting function

- **port3_use**
- **PFC3 = 0x2C**
- **PMC3 = 0xFF**
- **PU3 = 0x00**
- **Sets alternate-function pins to TCLR10 input, TCUD10 input, TO10 output, SCKB1 I/O, TXDA1 output, RXDA1 input, TXDA0 output, RXDA0 input**
- **Sets pull-up resistor as unused**
- **ret**
Port functions
Alternate-function pin (3/3)

Port 4 alternate-function pin setting function

port4_use

PFC4 = 0x18

Sets alternate-function pins to TIP01 input, TIP00 input, SCKB0 i/O, SOB0 output, SIB0 input

PMC4 = 0x1F

PU4 = 0x00 Sets pull-up resistor as unused

ret

Port 5 alternate-function pin setting function

port5_use

PFC5 = 0x01

Sets alternate-function pin to TCLR11 input, TCUD11 input, TO11 output

PMC5 = 0x07

PU5 = 0x00 Sets pull-up resistor as unused

ret

Port 7 alternate-function pin setting function

port7_use

PMC7 = 0xFF

Sets alternate-function pin to ANI20 to ANI27 inputs

ret
For further information, please contact:

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan
Tel: 044-435-5111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
800-368-9782
http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielskistrasse 166 B
30177 Hannover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestraße 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygns House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 911-504-2787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Steigerweg 6
5616 HS Eindhoven
The Netherlands
Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: 010-8235-1155
http://www.cn.necel.com/

NEC Electronics Shanghai Ltd.
Room 2511-2512, Bank of China Tower,
200 Yinchen Road Central,
Pudong New Area, Shanghai P.R. China P.C:200120
Tel: 021-5888-5400
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
12/F, Cityplaza 4,
12 Taikoo Wan Road, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
1F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737
http://www.kr.necel.com/